Water Resources Data Colorado Water Year 2000 Volume 2. Colorado River Basin By R.M. Crowfoot, J.W. Unruh, R.W. Boulger, and G.B. O'Neill Water-Data Report CO-00-2 Prepared in cooperation with the State of Colorado and with other agencies # UNITED STATES DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U. S. GEOLOGICAL SURVEY Charles G. Groat, Director For information on the water program in Colorado contact: District Chief, Water Resources Division U.S. Geological Survey Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225 (303) 236-4882 http://co.water.usgs.gov 2001 ### **CALENDAR FOR WATER YEAR 2000** 1999 | | | OC | TOE | BER | | | | | | NO | VEM | BEF | ? | | | | | DE | CEN | 1BEI | R | | |----|----|----|------|-----|----|----|-----|----|---------------------|----|------|-----|----|---------------|---|----|-----|-----|------|----------|----------|----| | S | Μ | Τ | W | T | F | S | | ·S | S M T W T F S S M T | | | | | W | Τ | F | S | | | | | | | | * | | | | 1 | 2 | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | 4 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | 28 | 29 | 30 | | | | | | 26 | 27 | 28 | 29 | 30 | 31 | | | 31 | • | | | | | | | | | | | 200 | 0 | | | | | | | | | | | | | | JA | NUA | RY | | | | | | FE | BRU | ARY | | | | | | N | IAR | СН | | | | S | Μ | Т | W | T | F | S | | S | Μ | Т | W | Т | F | F S S M T W T | | | | F | S | | | | | | | | | | | 1 | | | | 1 | 2 | 3 | 4 | 5 | | | | | 1 | 2 | 3 | 4 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 5 | . 6 | 7 | 8 | 9 | 10 | 11 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | | 12 | 13 | .14 | 15 | 16 | 17 | 18 | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | 27 | 28 | 29 | | | | | | 26 | 27 | 28 | 29 | 30 | 31 | | | 30 | 31 | A | PRI | L | | | | | | ı | MAY | | | | | | | J | UNE | | | | | S | Μ | T | W | Т | F | S | | S | Μ | T | W | Τ | F | S | | S | Μ | Τ | W | Τ | F | S | | | | | | | | 1 | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | | 1 | 2 | 3 | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 1 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 1 | | | | | | | 24 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | , · | 28 | 29 | 30 | 31 | | | | 2 | 25 | 26 | 27 | 28 | 29 | 30 | | | 30 | | | | | | | | | | | | | | | | | _ | | | . | | | | | | | JULY | | | | | | | | IGUS | | | | | | | | reme | | | | | S | Μ | T | W | T | F | S | | S | M | Τ | W | Τ | F | S | | S | Μ | Τ | W | Τ | F | S | | | | | | | | 1 | | | | 1 | 2 | 3 | 4 | 5 | | | | | | | 1 | 2 | | 2 | .3 | 4 | 5 | 6 | 7 | 8 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | , | 3 | | 5 | | 7 | 8 | 9 | | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 1 | | | | | | 15 | 16 | | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 1 | | | | | | | 23 | | | | 25 | 26 | 27 | 28 | 29 | | 27 | 28 | 29 | 30 | 31 | | | 2 | 4 | 25 | 26 | 27 | 28 | 29 | 30 | | 30 | 31 | #### **PREFACE** Volume 2 of the annual hydrologic data report of Colorado is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Colorado are contained in two volumes: Volume 1. Missouri River, Arkansas River, and Rio Grande basins in Colorado. Volume 2. Colorado River basin. Volume 2 is the culmination of a concerted effort by dedicated personnel of the U. S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data: C. F. Adibi J. B. Evans P. J. Mellone P. A. Solberg S. P. Anders J. S. Ferarese M. Messer J. R. Sullivan J. A. Barela J. B. Foster S. V. Muro C. H. Thompson J. D. Bennett M. A. Gress R. M. Neam L. A. Walsh R. J. Brandle D. W. Grey K. G. Petty M. E. Whiteman J. B. Brown D. M. Hartle S. M. Powers K. N. Butcher W. B. Herbert S. A. Rafferty R. G. Carver K. J. Leib R. L. Reed J. A. Collins M. Lewis D. G. Shubert G. J. Smith J. R. Dungan J. D. Martinez D. E. Smits A. M. Duran J. M. McCormack This report was prepared in cooperation with the State of Colorado and with other agencies under the general supervision of W.F. Horak, District Chief, Colorado. ### REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | Davis Highway, Suite 1204, Arlington, VA 22202-430 | 2, and to the Office of Management ar | nd Budget, Paperwork Reduction Pr | oject (0704-0188), Washington, DC 20503. | |---|---|--|---| | 1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
April 2001 | 3. REPORT TYPE AND AnnualOct. 1, 1 | DATES COVERED
999 to Sept. 30, 2000 | | 4. TITLE AND SUBTITLE | 1 | | 5. FUNDING NUMBERS | | Water Resources Data for Colorad
Volume 2. Colorado River basin | lo, Water Year 2000 | | | | 6. AUTHOR(S) R.M. Crowfoot, J.W. Unruh, R.W. Boulger, and G.B. O'Neill | | | | | 7. PERFORMING ORGANIZATION NAME(S) AN | | | 8. PERFORMING ORGANIZATION | | U.S. Geological Survey, Water Re | esources Division | | REPORT NUMBER | | Box 25046, Mail Stop 415 | | | USGS-WDR-CO-00-2 | | Denver Federal Center | | | | | Lakewood, CO 80225 | | | | | 9. SPONSORING / MONITORING AGENCY NAM | | | 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER | | U.S. Geological Survey, Water Re | esources Division | | | | Box 25046, Mail Stop 415 | | | USGS-WDR-CO-00-2 | | Denver Federal Center
Lakewood, CO 80225 | | | | | Lakewood, CO 80223 | | | | | 11. SUPPLEMENTARY NOTES Prepared in cooperation with the S | State of Colorado and oth | ner agencies. | | | 12a. DISTRIBUTION / AVAILABILITY STATEME | NT | | 12b. DISTRIBUTION CODE | | No restriction on distribution, this nical Information Service, Springs | | from: National Tech- | | | Water-resources data for Colorado of streams; stage, contents, and water quality of wells and springs. It stage and contents of 15 lakes and 1 miscellaneous site, peak flow in stations and for 7 lakes and reserved laneous sites and 14 observation. Three pertinent stations operated by computed by the Water Resources. District Chief. These data represensal survey and cooperating State and | ater-quality of lakes and refine report (Volumes 1 and reservoirs, discharge met formation for 22 crest-states are supplemental water in wells; water levels for a boy bordering states also are supplemental water in the part of the Nation | reservoirs; meteorologicand 2) contains discharged assurements for 1 partial age partial-record station requality for 185 gaged 4 observation wells, and included in this reporological Survey under the second station of the second station wells. | cal data; and water levels and water records for 305 gaging stations, al-record low-flow station and ons; water-quality for 102 gaging sites; water-quality for 141 mish meteorological data for 45 sites. t. The records were collected and the direction of W.F. Horak, | | 14. SUBJECT
TERMS | | | 15. NUMBER OF PAGES | | *Colorado, *Hydrologic data, *S rate, Gaging stations, Lakes, Rese | | | | | atures, Sampling sites, Water anal | | s, seument, water ten | | | 17. SECURITY CLASSIFICATION 18. S
OF REPORT | SECURITY CLASSIFICATION
OF THIS PAGE | SECURITY CLASSIFICATION OF ABSTRACT | DN 20. LIMITATION OF ABSTRACT | | unclassified | | | unclassified | #### **CONTENTS** | Preface List of surface-water stations, in downstream order, for which records are published in this volume Introduction Cooperation | | |---|---| | Introduction | | | | | | Sooberation | | | Propial naturally and programs | | | Special networks and programsExplanation of the records | | | Station identification numbers | | | Downstream order system | | | Latitude-longitude system | | | System for numbering wells, springs, and miscellaneous sites | | | Records of stage and water discharge | | | Data collection and computation | | | Data presentation | | | Station manuscript | | | Data table of daily mean values | | | Statistics of monthly mean data | | | Summary statistics | | | Identifying estimated daily discharge | | | Accuracy of the records | | | Other records available | | | Records of surface-water quality | | | Accuracy of the records | | | Classification of records | | | Arrangement of records | | | Onsite measurement and sample collection | | | Water temperature | | | Sediment | | | Laboratory measurements | | | Water-quality data reporting convention | | | Data presentation | | | Remark codes | | | Records of ground-water quality | | | Data collection and computation | | | Data presentation | | | Access to USGS water data | | | Definition of terms | | | Selected references | | | List of discontinued surface-water discharge or stage only stations | | | List of discontinued surface-water-quality stations | | | Publications on techniques of water-resources investigations | | | Station records, surface-water | | | Transmountain diversions from Colorado River basin in Colorado that are no longer published | | | Discharge at partial-record stations and miscellaneous sites | | | Low-flow partial-record stations | | | Crest-stage partial-record stations. | | | Meteorological stations in the Gunnison River Basin | | | Supplemental water-quality data for gaging stations | | | Eagle River Watershed Synoptic Sampling study | | | North Fork Elk River Blowdown study | | | Lower Gunnison River Basin Selenium Study | | | Station records, ground-water levels in La Plata County. | | | ndex | | | | | | ILLUSTRATIONS | P | | Figure 1-2. Map showing: | | | Locations of lake and surface-water stations and surface-water-quality stations in Colorado | | NOTE.--Data for partial-record stations and miscellaneous sites for both surface-water discharge and quality are published in seperate sections of the data report. (Letter after station name designates type and frequency of published data. Daily tables: (D) discharge, (C) specific conductance, (S) sediment, (T) temperature, (E) elevation or contents, (O) dissolved oxygen, (P) pH, (R) precipitation. Periodic tables: (c) chemical, (b) biological, (e) elevation or contents, (m) microbiological, (s) sediment, (t) temperature.) | | Station number | page | |---|-----------------|----------| | COLORADO RIVER BASIN | | | | Colorado River: Colorado River below Baker Gulch near Grand Lake (D) | 09010500 | 45 | | Alva B. Adams Tunnel at east portal near Estes Park (ct) | | 46 | | Shadow Mountain Lake near Grand Lake (cmt) | | 48 | | Granby Pump Canal near Grand Lake (tc) | | 50 | | Lake Granby near Granby (etcbm) | | 51 | | Lake Granby (West) near Granby (tcbm) | | 54
56 | | FRASER RIVER BASIN | | | | Fraser River at upper station near Winter Park (Dtc) | 09022000 | 57 | | Fraser River below Buck Creek at Winter Park (tc) | 09023750 | 59 | | Fraser River at Winter Park (D) | | 60 | | Vasquez Creek at Winter Park (D) | | 61 | | Fraser River below Vasquez Creek at Winter Park (tc) | | 62 | | Elk Creek at upper station near Fraser (D) | | 63 | | St. Louis Creek near Fraser (D) | | 64 | | Fraser River at Tabernash (tc) | | 65 | | Ranch Creek near Fraser (Dtcm) | | 66 | | Cabin Creek near Fraser (D) | | 68 | | Hurd Creek below Trail Creek near Tabernash (ctm) | | | | Ranch Creek below Meadow Creek near Tabernash (Dctm) | | 70
72 | | Crooked Creek below Ptarmigan Creek near Tabernash (cmt) | | 72
73 | | Crooked Creek below Tipperary Creek near Tabernash (tcm) | | | | Pole Creek at upper station near Tabernash (tcm) | | | | Pole Creek at mouth near Tabernash (tcm) | | | | Fraser River below Crooked Creek at Tabernash (Dctm) | | 77 | | Fraser River at Hwy 40, at Granby (cmt) | | | | Ten Mile Creek above Pond Above Eight Mile Creek near Granby (cmt) | | | | Ten Mile Creek near Granby (ctm) | | | | Colorado River at Windy Gap near Granby (Dct) | | 83 | | WILLIAMS FORK BASIN | | | | Williams Fork: | 00004000 | 00 | | Bobtail Creek near Jones Pass (D) | | 86 | | Williams Fork below Steelman Creek (D) | | 87 | | Williams Fork above Darling Creek near Leal (D) | | 88
90 | | Darling Creek near Leal (D) | | 89
90 | | Williams Fork near Leal (D) | | 91 | | Williams Fork near Parshall (D) | | 92 | | Williams Fork below Williams Fork Reservoir (D) | | 93 | | MUDDY CREEK BASIN | | _ | | Muddy Creek above Antelope Creek near Kremmling (DstcCT) | | 94 | | Wolford Mountain Reservoir at Inflow near Kremmling (ct) | | | | Wolford Mountain Reservoir at Midlake near Kremmling (ct) | | | | Alkali Slough #2 at Wolford Mountain Reservoir near Kremmling (ct) | 400812106254800 | 107 | | Colorado RiverContinued | Station
number | page | |--|-------------------|------------| | Colorado RiverContinued | | | | MUDDY CREEK BASINContinued Muddy CreekContinued | | | | Wolford Mountain Reservoir near Kremmling (ctmbe) | | 109 | | Muddy Creek below Wolford Mountain Reservoir near Kremmling (DctCTO) | 09041400 | 113 | | BLUE RIVER BASIN | | | | Monte Cristo Creek (head of Blue River): | | | | Monte Cristo diversion near Hoosier Pass (D) | 09041900 | 122 | | Bemrose-Hoosier diversion near Hoosier Pass (D) | 09044300 | 123 | | Blue River: McCullough Creek: | | | | McCullough-Spruce-Crystal diversion near Hoosier Pass (D) | 09044800 | 124 | | Blue River at Blue River (D) | | 125 | | French Gulch at Breckenridge (D) | | 126 | | Blue River near Dillon (D) | | 127 | | Snake River near Montezuma (D) | 09047500 | 128 | | Keystone Gulch near Dillon (D) | | 129 | | Tenmile Creek below North Tenmile Creek at Frisco (D) | | 130 | | Blue River below Dillon (D) | | 131 | | Straight Creek below Laskey Gulch near Dillon (D) | | 132 | | Blue River below Green Mountain Reservoir (D) | | 133 | | Colorado River near Kremmling (Dctm) | 09058000 | 134 | | PINEY RIVER BASIN | | | | Piney River below Piney Lake near Minturn (D) | 00059500 | 137 | | Dickson Creek near Vail (D) | | 138 | | Freeman Creek near Minturn (D) | | 139 | | East Meadow Creek near Minturn (D) | | 140 | | Piney River near State Bridge (D) | | 141 | | | | | | EAGLE RIVER BASIN | | | | Eagle River: East Fork Eagle River near Red Cliff (ctm) | 2025111061640 | nnn 142 | | Eagle River at Red Cliff (Dctms) | | 144 | | Turkey Creek: | 09003000 | 177 | | Wearyman Creek near Red Cliff (D) | 09063200 | 147 | | Turkey Creek near Red Cliff (D) | | 148 | | Homestake Creek: | 00000100 | 1 10 | | Missouri Creek near Gold Park (D) | 09063900 | 149 | | Homestake Creek at Gold Park (D) | | 150 | | Homestake Creek near Red Cliff (D) | | 151 | | Eagle River near Minturn (D) | 09064600 | 152 | | Cross Creek near Minturn (D) | | 153 | | Gore Creek at upper station near Minturn (D) | | 154 | | Black Gore Creek near Minturn (D) | | 155 | | Bighorn Creek near Minturn (D) | | 156 | | Pitkin Creek near Minturn (D) | | 157 | | Booth Creek near Minturn (D) | | 158 | | Middle Creek near Minturn (D) | | 159 | | Gore Creek above Red Sandstone Creek at Vail (D) | | 160
161 | | Red Sandstone Creek near Minturn (D) | | 161
162 | | Gore Creek at mouth near Minturn (Dcts) | | 162
166 | | Eagle River at Avon (ctms) | | 167 | | Eagle River below Wastewater Treatment Plant at Avon (D) | | 170 | | Lake Creek near Edwards (D) | | 170 | | Alkali Creek below Muddy Creek near Wolcott (cts) | | | | Eagle River below Milk Creek near Wolcott (cmt) | | | | · | | | | Colorado RiverContinued | Station properties of the state | oage | |---
--|-------------------| | Colorado RiverContinued | | | | EAGLE RIVER BASINContinued Eagle RiverContinued Eagle River at Gypsum (ctms) | | 175 | | Eagle River below Gypsum (D) Colorado River near Dotsero (D) Colorado River above Glenwood Springs (ctTC) | 09070500 | 179
180
181 | | ROARING FORK RIVER BASIN Roaring Fork River above Difficult Creek near Aspen (DCTctm) | 09073300 | 185 | | Roaring Fork River near Aspen (D) | | 191 | | Hunter Creek near Aspen (D) | | 192 | | Fryingpan River: | | | | Ruedi Reservoir near Basalt (e) | 09080190 | 193 | | Fryingpan River near Ruedi (D) | 09080400 | 194 | | Roaring Fork River near Basalt (CTc) | 392110107011300 | 195 | | Roaring Fork River near Emma (Dtcms) | 09081000 | 199 | | Crystal River above Avalanche Creek near Redstone (Dctm) | 09081600 | 202 | | Crystal River below Carbondale (Dctm) | | 205 | | Roaring Fork River at Glenwood Springs (Dtcm) | | 208 | | Colorado River below Glenwood Springs (D) | 09085100 | 211 | | DIVIDE CREEK BASIN Divide Creek: | | | | West Divide Creek near Raven (D) | 09089500 | 212 | | Colorado River near Cameo (DctCT) | | 213 | | PLATEAU CREEK BASIN Plateau Creek near Cameo (DTCtc) | | 218 | | Colorado River below Grand Valley Diversion near Palisade (D) | 09106150 | 223 | | GUNNISON RIVER BASIN Gunnison River: Taylor River: | | | | Taylor River at Taylor Park (D) | 09107000 | 224 | | Taylor Park Reservoir at Taylor Park (e) | | 225 | | Taylor River below Taylor Park Reservoir (D) | | 226 | | Taylor River at Almont (Dtcm) | | 227 | | East River below Gothic (ctm) | | 229 | | East River above Crested Butte (ctm) | | | | East River above Slate River (ctms) | | | | Slate River, above Oh-Be-Joyful Creek (ctms) | | | | Oh-Be-Joyful Creek above Slate River (ctms) | | | | Slate River above Coal Creek (ctms) | | | | Slate River near Crested Butte (Dtcm) | | 235 | | Slate River above East River (ctm) | | | | East River below Cement Creek near Crested Butte (Dtcms) | | 239 | | East River at Almont (Dctms) | | 244 | | Ohio Creek above mouth near Gunnison (Dctms) | | 247 | | Gunnison River near Gunnison (Dctms) | | 250
253 | | Cochetopa Creek below Rock Creek near Parlin (D) | | 253
254 | | Tomichi Creek at Gunnison (Dctms) | | 254
255 | | Gunnison River at County Road 32 below Gunnison (Tctsm) | | | | Lake Fork at Gateview (D) | | 260 | | Silver Jack Reservoir near Cimarron (e) | | 261 | | Cimarron River near Cimarron (D) | | 262 | | Gunnison River below Gunnison tunnel (Dctm) | | 263 | | | | | | Colorado RiverContinued | Station
number | page | |--|-------------------|-------------------| | Colorado NiverContinued | | | | GUNNISON RIVER BASINContinued Gunnison RiverContinued Muddy Creek (head of North Fork Gunnison River): | | | | Paonia Reservoir near Bardine (e) | 09132500 | 265
266 | | Minnesota Creek near Paonia (D) | | 267 | | North Fork Gunnison River below Paonia (D) | | 268
269 | | Tongue Creek: Surface Creek near Cedaredge (D) | | 270 | | Surface Creek at Cedaredge (D) | | 271
272 | | Gunnison River at Delta (D) | | 272 | | Dallas Creek near Ridgway (D) | | 274 | | Ridgway Reservoir near Ridgway (e) | | 275 | | Uncompangre River below Ridgway Reservoir (D) | | 276 | | Uncompangre River at Colona (D) | | 277 | | Uncompangre River at Delta (Dct) | | 278 | | Gunnison River near Grand Junction (DctCT) | | 280
285 | | | 09132320 | 265 | | REED WASH BASIN Road Wash poor Mask (D) | 00153200 | 287 | | Reed Wash near Mack (D) | | 288 | | Colorado Nivor nodi Colorado Ciari Stato lino (Estacor) | 0010000 | 200 | | DOLORES RIVER BASIN | | | | Dolores River below Rico (D) | | 295 | | Dolores River at Dolores (D) | | 296 | | Lost Canyon Creek near Dolores (D) | | 297 | | Dolores River near Slick Rock (D) | | 298 | | Dolores River at Bedrock (DCTct) | | 299
304 | | Dolores River near Bedrock (DctCT) | | 304 | | San Miguel River near Placerville (D) | | 310 | | San Miguel River at Brooks Bridge near Nucla (D) | | 311 | | San Miguel River at Uravan (D) | | 312 | | GREEN RIVER BASIN | 40.444.7400.5 | | | Green River above Gates of Lodore (st) | | 524900 313
314 | | Yampa River below Stagecoach Reservoir (D) | | 314 | | Fish Creek at upper station near Steamboat Springs (D) | | 316 | | Yampa River at Steamboat Springs (Dctm) | | 317 | | Elk River above Clark (D) | | 320 | | Elk River at Clark (D) | 09241000 | 321 | | Elk River near Milner (D) | 09242500 | 322 | | Trout Creek: | 00040700 | 000 | | Middle Creek near Oak Creek (D) | | 323 | | Foidel Creek near Oak Creek (D) | | 324
325 | | Elkhead Creek above Long Gulch near Hayden (Dctsm) | | 325
326 | | Elkhead Creek below Maynard Gulch near Craig (Dctsm) | | 329 | | Yampa River below Craig (Dctm) | | 332 | | Williams Fork River at mouth near Hamilton (D) | 09249750 | 335 | | Yampa River near Maybell (DctCT) | | 336 | | Yampa River above Little Snake River near Maybell (Ds) | 09251100 | 343 | | Slater Fork near Slater (D) | | 345 | | Little Snake River near Lily (Dst) | 09260000 | 346 | ## SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME | | Station number | page | |--|-----------------|------------| | Colorado RiverContinued | | | | GREEN RIVER BASINContinued Green RiverContinued | | | | Yampa RiverContinued | | | | Yampa River at Deerlodge Park (Dctms) | 09260050 | 348 | | North Fork White River at Buford (Dctms) | 09303000 | 352 | | South Fork White River at Buford (ctms) | 09304000 | 354 | | White River above Dry Creek near Meeker (ctms) | 395650107435600 | 356 | | White River above Coal Creek near Meeker (Dctms) | | 358 | | White River near Meeker (D) | | 361 | | White River below Meeker (Dctms) | | 362 | | Piceance Creek below Ryan Gulch near Rio Blanco (Dtcs) | | 365 | | Piceance Creek at White River (Dtcs) | | 368 | | Corral Gulch near Rangely (Dtcs) | | 371 | | Yellow Creek near White River (Dcts) | | 374 | | White River below Boise Creek near Rangely (Dctms) | | 377 | | White River below Taylor Draw Reservoir above Rangely (ctms) | 09300305 | 380 | | SAN JUAN RIVER BASIN | | | | San Juan River: East Fork San Juan River at West Fork Campground near Pagosa Springs (D) | 00330000 | 382 | | San Juan River at Pagosa Springs (D) | | 383 | | San Juan River near Carracas (D) | | 384 | | Piedra River near Arboles (D) | | 385 | | Los Pinos River: | | | | Vallecito Creek near Bayfield (D) | 09352900 | 386 | | Vallecito Reservoir near Bayfield (e) | 09353000 | 387 | | Los Pinos River near Ignacio (D) | 09353800 | 388 | | Los Pinos River at La Boca (D) | | 389 | | Spring Creek at La Boca (D) | | 390 | | Animas River at Silverton (D) | | 391 | | Cement Creek at Silverton (D) | | 392
393 | | Mineral Creek at Silverton (D) | | 394 | | Animas River at Durango (D) | | 397 | | Wilson Gulch near Durango (D) | | 398 | | Florida River: | | | | Lemon Reservoir near Durango (e) | | 399
400 | | La Plata River at Colorado-New Mexico State line (D) | | 401 | | Mancos River near Towaoc (D) | | 402 | | McElmo Creek: | | | | Mud Creek at Highway 32 near Cortez (DctCT) | | 403 | | McElmo Creek above Trail Canyon near Cortez (DctCT) | | 408 | | McElmo Creek near Colorado-Utah State line (Dct) | 09372000 | 413 | | HYDROLOGIC STATIONS FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUM | E | | | Discharge at partial-record stations and miscellaneous sites | | 416 | | Low-flow partial-record stations | | 416 | | Crest-stage partial-record stations | | 417 | | Meteorological stations in the Gunnison River Basin | | 418 | | Supplemental water-quality data for gaging stations | | 448 | | Miscellaneous water-quality data | | 476 | | Eagle River Watershed Synoptic Sampling study | | 476 | | North Fork Elk River Blowdown study | | 553 | | Lower Gunnison River
Basin Selenium study | | 563 | | Ground-water level stations in LaPlata County | | 589 | #### **VOLUME 2: COLORADO RIVER BASIN** By R.M. Crowfoot, J.W. Unruh, R.W. Boulger, and G.B. O'Neill #### INTRODUCTION The Water-Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Colorado each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in the report series entitled "Water Resources Data - Colorado". This report (Volume 2 of two volumes) includes records on both surface and ground water in the State, west of the Continental Divide. Specifically, it contains: (1) discharge records for 162 surface-water stations, and peak discharge data for 1 partial-record surface-water station and discharge-measurement data for 1 low-flow partial-record site; (2) stage and contents for 9 lakes and reservoirs; (3) surface-water-quality data for 61 surface-water stations, 3 reservoirs, 115 miscellaneous sites, and miscellaneous surface-water-quality data for 107 gaged sites; and (4) ground-water level records for 2 sites, and meteorological data for 10 sites. Locations of lake and surface-water-gaging stations and surface-water-quality stations are shown in figure 1, locations of crest-stage partial-record stations are shown in figure 2. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Colorado. Prior to introduction of this series and for several water years concurrent with it, water-resources data for Colorado were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-water Supply of the United States," Parts 6B, 7, 8, and 9. For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States." Data on ground-water levels for the 1935 through 1955 water years were published annually under the title "Water Levels and Artesian Pressures in Observation Wells in the United States." For the 1956 through 1974 water years the data were published in four 5-year reports under the title "Ground-Water Levels in the United States." Water-supply papers may be purchased from the, U.S. Geological Survey, Books and Open-File Reports, Federal Center, Building 810, Box 25425, Denver, CO 80225. For water years 1961 through 1970, streamflow data were released by the Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records. Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report CO-00-2." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale, in paper copy or in micro-fiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District office at the address given on the back of the title page or by telephone (303) 236-4882. Figure 1.--Map showing locations of lake and surface-water stations and surface-water-quality stations in Colorado. Figure 2.--Map showing locations of crest-stage partial-record stations in Colorado. #### **COOPERATION** The U.S. Geological Survey and organizations in the State of Colorado have had cooperative agreements for the systematic collection of surface-water records since 1895 and for water-quality records since 1941. Organizations that supported data-collection activities through cooperative agreements with the Survey during the **2000 water year** are: Arapahoe County Water and Wastewater Authority. Arkansas River Compact Administration. Centennial Water and Sanitation District Center of Colorado Water Conservancy District. Cherokee Metropolitan District. City and County of Denver, Board of Water Commissioners. City of Aurora. City of Black Hawk. City of Boulder. City of Broomfield. City of Colorado Springs. City of Creede. City of Englewood. City of Fort Collins. City of Glendale. City of Golden. City of Gunnison. City of Idaho Springs. City of Lakewood. City of Longmont. City of Louisville. City of Loveland. City of Pueblo. City of Westminster. Clear Creek Board of County Commissioners. Colorado City Metropolitan District. Colorado Department of Public Health and Environment. Colorado Department of Transportation. Colorado Division of Parks and Outdoor Recreation. Colorado Division of Water Resources. Colorado Division of Wildlife. Colorado River Water Conservation District. Colorado Springs Utilities. Colorado Water Conservation Board Crested Butte South Metropolitan District. Delta County Board of County Commissioners. Dolores Water Conservancy District. Eagle County Board of Commissioners. Eagle River Water and Sanitation District. Eagle River Watershed Council. East Grand County Water-Quality Board. Evergreen Metropolitan District. Fountain Valley Authority. Gilpin County. Grand County. La Plata County. Lower Fountain Water-Quality Management Association. Meeker Sanitation District. Metro Wastewater Reclamation District. Moffat County. Mount Crested Butte Water and Sanitation District. North Front Range Water Quality Planning Association. Northern Colorado Water Conservancy District. Northwest Colorado Council of Governments. Park County. Plum Creek Wastewater Authority. Pueblo Board of Water Works. Pueblo West Metropolitan District. Rio Blanco County Board of County Commissioners. Rio Grande Water Conservation District. Southeastern Colorado Water Conservancy District. Southern Ute Indian Tribe. Southwestern Colorado Water Conservation District. St. Charles Mesa Water District. St. Criaries Mesa Water District. Summit County. Teller - Park Soil Conservation District. Town of Basalt. Town of Breckenridge. Town of Crested Butte. Town of Hotchkiss. Town of Meeker. Town of Paonia. Town of Rangely. Town of Vail. Trinchera Water Conservancy District. Upper Arkansas River Water Conservancy District. Upper Eagle Regional Water Authority. Upper Gunnison River Water Conservancy District. Upper Yampa Water Conservancy District. Urban Drainage and Flood Control District. Yellowjacket Water Conservancy District. Financial assistance was also provided by the U.S. Air Force Academy; U.S. Army, Corps of Engineers; U.S. Army; Bureau of Land Management; Bureau of Reclamation; National Park Service; U.S. Fish and Wildlife Service; U.S. Forest Service; and U.S. Environmental Protection Agency. Organizations that supplied data are acknowledged in station descriptions. #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/. National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande basins. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at at http://water.usgs.gov/nasqan/. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents
in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/. The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/nawqa_home.html #### **EXPLANATION OF THE RECORDS** The surface-water and ground-water records published in this report are for the 2000 water year that began on October 1, 1999, and ended September 30, 2000. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, ground-water level data, and water-quality data for surface and ground water. The locations of the stations where the surface-water data were collected are shown in figures 1 and 2. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. #### Station Identification Numbers Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Colorado, for surface-water stations where only infrequent measurements are made. #### Downstream Order System Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 06614800, which appears just to the left of the station name, includes the two-digit Part number "06" plus the six-digit downstream-order number "614800." The Part number designates the major river basin; for example, Part "06" is the Missouri River basin. #### Latitude-Longitude System The identification numbers for wells, springs, and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote the degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and may have no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below). System for numbering wells, springs, and miscellaneous sites. The local well number locates a well within a 10-acre tract using the U. S. Bureau of Land Management system of land subdivision. The components of the local well number proceed from the largest to the smallest land subdivisions. This is in contrast to the legal description, which proceeds from the smallest to the largest land subdivision. The largest subdivision is the survey. Colorado is governed by three surveys: The Sixth Principal Meridian Survey (S), the New Mexico Survey (N), and the Ute Survey (U). Costilla County was not included in any of the above official surveys. This report follows the convention of the Costilla County Assessor in which the northern part of the county is governed by the Sixth Principal Meridian Survey and the southern part of the county is governed by a local system called the Costilla Survey (C). The first letter of the well location designates the survey. A survey is subdivided into four quadrants formed by the intersection of the baseline and the principal meridian. The second letter of the well location designates the quadrant: A indicates the northeast quadrant, B the northwest, C the southwest, and D the southeast. A quadrant is subdivided in the north-south direction every 6 mi by townships and is divided in the east-west direction every 6 mi by ranges. The first number of the well location designates the township and the second number designates the range. The 36-mi² area described by the township and range designation is subdivided into 1-mi² areas called sections. The sections are numbered sequentially. The third number of the well location designates the section. The section, which contains 640 acres, is subdivided into quarter sections. The 160-acre area is designated by the first letter following the section: A indicates the northeast quarter, B the northwest, C the southwest, and D the southeast. The quarter section is subdivided into quarter-quarter sections. The 40- acre area is designated in the same manner by the second letter following the section. The 10-acre area is designated in the same manner by the third letter following the section. If more than one well is located within the 10-acre tract, the wells are numbered sequentially in the order in which they were originally inventoried. If this number is necessary, it will follow the three-letter designation. #### Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is
indicated by table titles. Records of miscellaneous discharge measurements or of measurements from special studies may be considered as partial records, but they are presented separately in this report. Location of all complete-record stations for which data are given in this report are shown in figure 1. #### **Data Collection and Computation** The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage, with digital recorders that punch stage values on paper tapes at selected time intervals, with electronic recorders that store stage values on computer chips at selected time intervals, or with satellite data-collection platforms that transmit near real-time data at selected time intervals to office computers. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6. In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques. Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods. At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed. For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections. "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge." #### **Data Presentation** Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1992 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences. The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description and the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flow as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. #### Station manuscript The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that flow at it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station. In addition,
information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given. Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents. #### Data table of daily mean values The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second during the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote. If applicable, data collected at partial-record stations follow the information for continuous-record sites. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. #### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS_____-, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. #### Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS_______," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table. ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN .-- The minimum daily mean discharge for the year or for the designated period. - ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) - INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.) - INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ. the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. - INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. - ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters. - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and
area. - Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it. - 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period. - 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period. - 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. #### Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of estimated record in the REMARKS paragraph of the station description. #### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true value; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for daily values less than 1 $\rm ft^3/s$; to the nearest tenth between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures for more than 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. #### Other Records Available The National Water Data Exchange (NAWDEX), U.S. Geological Survey, Reston, VA 22092, maintains an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records at specific sites can be obtained from that office upon request. Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Colorado District office. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office. #### Records of Surface-Water Quality Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. In March 1989 the National Water-Quality Laboratory discovered a bias in the turbidimetric method for sulfate analysis, indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. On October 1, 1995, the Colorado District adopted a new sampling and quality-assurance protocol for sampling of surface waters (Horowitz and others, 1994). This protocol was adopted as standard operating procedure for the collection and processing of all trace-element, major-ion, nutrient, and radiochemical species in filtered, surface-water samples. #### Accuracy of the Records Accuracy of water-quality monitor records are based on: (1) The completeness of the record, (2) frequency of calibration checks, (3) the length of time and frequency that data exceed allowable error limits, (4) the magnitude of errors, and (5) confidence in the resultant shifts applied. Listed below are the limits of allowable error. * Temperature: \pm 0.3 degree C. Specific Conductance: $\pm 5 \mu \text{S/cm} \text{ or } \pm 5\% \text{ whichever is greater}$ pH: ± 0.2 pH units * Dissolved Oxygen: \pm 0.3 mg/L or \pm 5% whichever is greater. A record is rated excellent if the allowable error limits are never exceeded, good if limits are occasionally exceeded and shifts are no greater than two times the limit, fair if limits are regularly exceeded and shifts are no greater than three times the limit, and poor for all others. #### Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched or recorded at short intervals on a paper tape, magnetic tape, computer chip, or some other medium. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 1. #### Arrangement of Records Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. #### Onsite Measurements and Sample Collection In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on pages 30 and 31 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector. Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the
time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory. For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. District Office whose address is given on the back of the title page of this report. #### Water Temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by wasteheat discharges. At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are recorded to the nearest 0.1 degree Celsius. Water temperatures measured at the time of water-discharge measurements are published in this report as supplemental water-quality for gaging stations. #### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment discharge characteristics of the stream. In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. #### Laboratory Measurements Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally, most other samples are analyzed in the Geological Survey laboratories in Lakewood, CO. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. Historical and current-year dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure. #### Water-Quality Data Reporting Convention The USGS National Water Quality Laboratory collects quality-control data on a continuing basis to evaluate selected analytical methods to determine long-term method detection levels (LT-MDL's) and laboratory reporting levels (LRL's). These values are re-evaluated each year on the basis of the most recent quality-control data and, consequently, may change from year to year. This reporting procedure limits the occurrence of false positive error. The chance of falsely reporting a concentration greater than the LT-MDL for a sample in which the analyte is present is 1 percent or less. Application of the LRL limits the occurrence of false negative error. The chance of falsely reporting a non-detection for a sample in which the analyte is present at a concentration equal to or greater than the LRL is 1 percent or less. Accordingly, concentrations are reported as <LRL for samples in which the analyte was either not detected or did not pass identification. Analytes that are detected at concentrations between the LT-MDL and LRL and that pass identification criteria are estimated. Estimated concentrations will be noted with a remark code of "E". These data should be used with the understanding that their uncertainty is greater than that of data reported without the "E" remark code. #### **Data Presentation** For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION .-- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates. The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence. #### Remark Codes The following remark codes may appear with the water-quality data in this report: #### PRINTED OUTPUT REMARK - E Estimated laboratory analysis value - e Estimated value - > Actual value is known to be greater than the value shown - < Actual value is known to be less than the value shown - K Based on non-ideal colony count - M Presence of material verified but not quantified #### Records of Ground-Water Quality Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general
purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes. #### **Data Collection and Computation** The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years. Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed at the end of the introductory text. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings. #### **Data Presentation** The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records. #### **ACCESS TO USGS WATER DATA** The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed at: http://water.usgs.gov National home page http://co.water.usgs.gov Colorado home page Some water-quality, ground-water, and meteorological data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3.5 inch floppy diskette. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page). #### **DEFINITION OF TERMS** Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover. Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. Algae are mostly aquatic single-celled, colonial, or multicelled plants containing chlorophyll and lacking roots, stems, and leaves. **Algal growth potential** (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. Alkalinity represents the capacity of solutes in an aqueous sample to neutralize acid. Total alkalinity titrations are performed in the field (FIELD) environment on an aqueous sample, filtered through a 0.45 micrometer filter (DIS), to an inflection point near pH = 4.5, using the iterative-titration (IT) method. Alkalinity titrations in the laboratory (LAB) are performed on unfiltered samples using the fixed-endpoint (FEP) method to pH = 4.5. On occasion, for chemical or hydrologic considerations, alkalinity titrations are performed in the field environment on unfiltered, whole-water (WWR) samples and noted. Column headings in this publication containing total alkalinity results will display the location: FIELD or LAB; titration method: IT or FEP; and type of aqueous sample: DIS or WWR. **Annual runoff** is the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data: Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. Cubic foot per second per square mile [CFSM, (ft3/s)/mi2] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. Inch (IN., in.) as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. **Aroclor** is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine. **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. **Total coliform** bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at $35 \infty C$. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at $35 \infty C$ plus or minus $1.0 \infty C$ on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at $44.5 \, \text{c}$ C plus or minus $0.2 \, \text{c}$ C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Fecal streptococcal bacteria are bacteria found in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at $35 \text{ } \infty\text{C}$ plus or minus $1.0 \text{ } \infty\text{C}$ on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 ∞C on mE agar and subsequent transfer to EIA medium. Enterococci include Streptococcus feacalis, Streptococcus feacium, Streptococcus avium, and their variants. **Escherichia coli (E. coli)** are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24
hours at 44.5 °C on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample. Base flow is flow in a channel sustained by ground-water discharge in the absence of direct runoff. Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. Benthic organisms (invertebrates) are the group of animals inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 ∞C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m3), and periphyton and benthic organisms in grams per square meter (g/m2). **Dry mass** refers to the mass of residue present after drying in an oven at 105 ∞C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash, and sediment in the sample. Dry mass is expressed in the same units as ash mass. **Organic mass** or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. Wet mass is the mass of living matter plus contained water. **Biomass pigment ratio** is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index. Bottom material: See "Bed material." **Cells/volume** refers to the number of plankton cells or natural units counted using a microscope and grid or counting cell. Results are generally reported as cells or units per milliliter. Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (mm3) is determined by obtaining critical cell measurements on cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere 4/3 pr3 cone 1/3 pr3h cylinder pr3h. From cell volume, total algal biomass expressed as biovolume (mm3/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species. Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. Chlorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common green pigments in plants. **Colloid** is any substance with particles in such a fine state of subdivision dispersed in a medium (for example, water) that they do not settle out; but not in so fine a state of subdivision that they can be said to be truly dissolved. Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. **Confined aquifer** is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases the water level can rise above the ground surface, yielding a flowing well. Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. Continuous-record station is a site that meets either of the following conditions: - 1. Stage or streamflow are recorded at some interval on a continuous basis. The recording interval is usually 15 minutes, but may be less or more frequent. - 2. Water-quality, sediment, or other hydrologic measure-ments are recorded at least daily. **Control** designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the station. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. Cubic foot per second (CFS, ft3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second. Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft3/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.9835 acre-feet, 646,317 gallons, or 2,447 cubic meters. **Daily record** is a summary of streamflow, sediment, or water-quality values computed from data collected with sufficient frequency to obtain reliable estimates of daily mean values. Daily record station is a site for which daily records of streamflow, sediment, or water-quality values are computed. Datum, as used in this report, is an elevation above mean sea level to which all gage height readings are referenced. Diel is of or pertaining to a 24-hour period of time; a regular daily cycle. **Discharge**, or flow, is the volume of water (or more broadly, volume of fluid including solid- and dissolved-phase material), that passes a given point in a given period of time. **Annual 7-day minimum** is the lowest mean discharge for 7 consecutive days in a year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) **Instantaneous discharge** is the discharge at a particular instant of time. Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate. **Dissolved oxygen** (DO) content of water in equilibrium with air is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved solids, with small temperature changes having the more significant offset. Photosynthesis and respiration may cause diurnal variations in dissolved-oxygen concentration in water from some streams. **Dissolved-solids concentration** of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During that analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to reflect the change. Alternatively, alkalinity concentration (as mg/L CaCO3) can be converted to carbonate concentration by multiplying by 0.60. Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\bar{d} = -\sum_{i=1}^{g} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$ where ni is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. **Drainage area** of a site on a stream is that area, measured in a horizontal plane, that has a common outlet at the site for its surface runoff. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. **Drainage basin** is a part of the Earth's surface that is occupied by a drainage system with a common outlet for its surface runoff (see "Drainage area"). **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. **Flow-duration percentiles** are values on a scale of 100 that
indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. **Gage datum** is the elevation of the zero point of the reference gage from which gage height is determined as compared to sea level (see "Datum"). This elevation is established by a system of levels from known benchmarks, by approximation from topographic maps, or by geographical positioning system. **Gage height** (G.H.) is the water-surface elevation referenced to the gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage. **Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed. Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. Ground-water level is the elevation of the water table or another potentiometric surface at a particular location. Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO3). **Hydrologic benchmark station** is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin. **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the U.S. Geological Survey. Each hydrologic unit is identified by an 8-digit number. Land-surface datum (Isd) is a datum plane that is approximately at land surface at each ground-water observation well. **Light-attenuation coefficient**, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation $$I = I_0 e^{-\lambda L}$$, where lo is the source light intensity, I is the light intensity at length L (in meters) from the source, I is the light-attenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as $$\lambda = -\frac{1}{L} \log_{e} \frac{I}{I_{o}} .$$ **Lipid** is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. **Macrophytes** are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymphadult **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. **Micrograms per gram** (UG/G, mg/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. **Micrograms per kilogram** (UG/KG, mg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. **Micrograms per liter** (UG/L, mg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. **Microsiemens per centimeter** (US/CM, mS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture. **Miscellaneous site**, or miscellaneous station, is a site where streamflow, sediment, and/or water-quality data are collected once, or more often on a random or discontinuous basis. Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), suspended organic carbon (SOC), or total organic carbon (TOC). Organism is any living entity. **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m2), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. Total organism count is the total number of organisms collected and enumerated in any particular sample. **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. **Parameter Code** is a 5-digit number used in the U.S. Geological Survey computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. **Partial-record station** is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the
river water at the time and point of sampling). Particle-size classification used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size | e (n | nm) | Method of analysis | |----------------|---------|------|-------|---------------------| | Clay | 0.00024 | _ | 0.004 | Sedimentation | | Silt | 0.004 | - | 0.062 | Sedimentation | | Sand | 0.062 | - | 2.0 | Sedimentation/sieve | | Gravel | 2.0 | - | 64.0 | Sieve | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. **Percent composition or percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, or volume. **Periodic station** is a site where stage, discharge, sediment, chemical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record. **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. **Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water. **Picocurie** (PC, pCi) is one trillionth (1 x 10-12) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 1010 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute). **Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample). **Phytoplankton** is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. **Blue-green algae** (Cyanophyta) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. **Euglenoids** (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. Fire algae (Pyrrhophyta) are a group of algae that are free-swimming unicells characterized by a red pigment spot. **Green algae** have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. **Zooplankton** is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. **Polychlorinated biphenyls** (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. **Polychlorinated naphthalenes** (PCN's) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCB's) and have been identified in commercial PCB preparations. **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. **Primary productivity** (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m2/time)] for periphyton and macrophytes or per volume [mg C/(m3/time)] for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. **Primary productivity** (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m2/time)] for periphyton and macrophytes or per volume [mg O/(m3/time)] for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow (7Q10) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q10 occur less than 10 years after the previous non-exceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the 7Q10. **Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. River mile is the distance of a point on a river measured in miles from the river's mouth
along the low-water channel. River mileage is the linear distance along the meandering path of a stream channel determined in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council. Runoff in inches (IN., in.) is the depth, in inches, to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. Sea level refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the first-order level nets of the United States and Canada, formerly called Sea Level Datum of 1929. See: http://www.co-ops.nos.noaa.gov/glossary/gloss_n.html#NGVD **Sediment** is solid material that is transported by, suspended in, or deposited from water. It originates mostly from disintegrated rocks; it also includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation. **Bed load** is the sediment that is transported in a stream by rolling, sliding, or skipping along or very close to the bed. In this report, bed load is considered to consist of particles in transit from the bed to an elevation equal to the top of the bed-load sampler nozzle (usually within 0.25 ft of the streambed). **Bed-load discharge** (tons per day) is the quantity of sediment moving as bed load, reported as dry weight, that passes a cross section in a given time. **Suspended sediment** is the sediment that is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. **Suspended-sediment concentration** is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The entire sample is used for the analysis. **Mean concentration of suspended sediment** is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day. **Suspended-sediment discharge** (tons/day) is the quantity of sediment moving in suspension, reported as dry weight, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft3/s) x 0.0027. **Suspended-sediment load** is a term that refers to material in suspension. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. **Total sediment discharge** (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, reported as dry weight, that passes a cross section in a given time. **Total sediment load** or total load is a term that refers to the total sediment (bed load plus suspended-sediment load) that is in transport. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with total sediment discharge. **Seven-day 10-year low flow** (7Q10, 7Q10) is the minimum flow averaged over 7 consecutive days that is expected to occur on average, once in any 10-year period. The 7Q10 has a 10-percent chance of occurring in any given year. **Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation. **Solute** is any substance that is dissolved in water. Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 ∞C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. **Stable isotope ratio** (per MILL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage: See "Gage height." **Stage-discharge relation** is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. **Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Substrate is the physical surface upon which an organism lives. **Artificial substrate** is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. **Surface area** of a lake or impoundment is that area encompassed by the boundary of the lake or impoundment as shown on USGS topographic maps, or on other available maps or photographs. The computed surface areas reflect the water levels of the lakes or impoundments at the times when the information for the maps or photographs was obtained. Surficial bed material is the top 0.1 to 0.2 ft of the bed material that is sampled using U.S. Series Bed-Material Samplers. **Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter. **Suspended, recoverable** is the amount of a given constituent that is in solution after the part of a representative suspended-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. **Suspended, total** is the total amount of a given constituent in the part of a representative suspended-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. **Synoptic Studies** are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following: Kingdom Animal Phylum Arthropoda Class Insecta Order Ephemeroptera Family Ephemeridae Genus Hexagenia Species Hexagenia limbata **Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal
quantities of water from the stream each day for the year. **Tons per acre-foot** is the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. Tons per day (T/DAY, tons/d) is the rate representing a mass of 1 ton of a constituent in streamflow passing a cross section in 1 day. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. **Total** is the total amount of a given constituent in a representative suspended-sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a suspended-sediment mixture and that the analytical method determined all of the constituent in the sample.) **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. **Total in bottom material** is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. **Total recoverable** is the amount of a given constituent that is in solution after a representative suspended-sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. **Turbidity** is a measurement of the collective optical properties of a water sample that cause light to be scattered and absorbed rather than transmitted in straight lines; the higher the intensity of scattered light, the higher the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU) or Formazin turbidity units (FTU) depending on the method and equipment used. **Volatile organic compounds** (VOC's) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOC's are manmade chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996). **Water level** is the water-surface elevation or stage of the free surface of a body of water above or below any datum (see "Gage height"), or the surface of water standing in a well, usually indicative of the position of the water table or other potentiometric surface. Water table is the surface of a ground-water body at which the water is at atmospheric pressure. Water-table aquifer is an unconfined aquifer within which is found the water table. Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1999, is called the "1999 water year." **WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) **Weighted average** is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. **Well** is an excavation (pit, hole, tunnel), generally cylindrical in form and often walled in, drilled, dug, driven, bored, or jetted into the ground to such a depth as to penetrate water-yielding geologic material and allow the water to flow or to be pumped to the surface. Wet weight refers to the weight of animal tissue or other substance including its contained water. WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports. #### **SELECTED REFERENCES** The following publications are available for background information on the methods for collecting, analyzing, and evaluating the chemical and physical properties of surface waters: - American Public Health Association, and others, 1980, Standard methods for the examination of water and waste water, 13th ed: American Public Health Assoc., New York, 1134 p. - Box, George E. P., Hunter, William G., and Hunter, J. Stuart, 1978, Statistics for Experimenters: New York, John Wiley, and Sons, 653 p. - Cain, D. L., 1984, Quality of the Arkansas River and irrigation-return flows in the lower Arkansas River Valley of Colorado: Water-Resources Investigation Report 84-4273, 91 p. - Carter, R. W., and Davidian, Jacob, 1968, General procedures for gaging streams: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6, 13 p. - Clarke, F. W., 1924, The composition of the river and lake waters of the United States: U.S. Geological Survey Professional Paper 135, 199 p. - Colby, B. R., 1963, Fluvial sediments--a summary of source, transportation, deposition, and measurements of sediment discharge: U.S. Geological Survey Bulletin 1181-A, 47 p. - Colby, B. R., and Hembree, C. H., 1955, Computations of total sediment discharge, Niobrara River near Cody, Nebraska: U.S. Geological Survey Water-Supply Paper 1357, 187 p. - Colby, B. R., and Hubbell, D. W., 1961, Simplified methods for computing total sediment discharge with the modified Einstein procedure: U.S. Geological Survey Water-Supply Paper 1593, 17 p. - Collins, W. D., and Howard, C. S., 1928, Quality of water of Colorado River in 1925-26: U.S. Geological Survey Water-Supply Paper 596 B, p. 33-43. - Corbett, D. M., and others, 1942, Stream-gaging procedure, a manual describing methods and practices of the Geological Survey: U.S. Geological Survey Water-Supply Paper 888, 245 p. - Crouch, T. M., and others, 1984, Water-Resources Appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado: Water-Resources Investigation Report 82-4114, 123 p. - Fishman, M. J., and Bradford, W. L., 1982, A supplement to methods for the determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Laboratory Analysis, Chapter A1, openfile report 82-272, 136 p. - Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A3, 40 p. - Gregg, D. O., and others, 1961, Public water supplies of Colorado (1959-60): Fort Collins, Colorado State University Agricultural Experiment Station, General Service 757, 128 p. - Guy, H. P., 1970, Fluvial sediment concepts: U.S. Geological Survey Techniques of Water-Resources Investigation, Book 3, Chapter C1, 55 p. - ____1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C1, 57 p. - Guy, H. P., and Norman, V. W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p. - Hawley, Gessner G., 1981, The condensed chemical dictionary; Van Nostrand-Reinhold Publication Corporation, New York, 10th edition, 1135 p. - Hem, John D., 1970, Study and interpretation of the chemical characteristics of natural water, 2d ed.: U.S. Geological Survey Water-Supply Paper 1473, 363 p. - Horowitz, A.J., and others, 1994, U.S. Geological Survey protocol for the collection and processing of surface-water samples for the subsequent determination of inorganic constituents in filtered water: U.S. Geological Survey open-file report 94-539, 57 p. - Howard, C. W., 1955, Quality of water of the Colorado River, 1925-40:
U.S. Geological Survey open-file report, 103 p. - Iorns, W. V., and others, 1964, Water Resources of the Upper Colorado River basin--basic data: U.S. Geological Survey Professional Paper 442, 1,036 p. - _____1965, Water Resources of the Upper Colorado River basin--technical report: U.S. Geological Survey Professional Paper 441, 370 p. - Lane, E. W., and others, 1947, Reports of Subcommittee on terminology: American Geophysical Union Transaction, v. 28, p. 937. - Langbein, W. B., and Iseri, K. T., 1960, General introduction and hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p. - Lohman, S. W., and others, 1972, Definitions of selected ground-water terms--revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, p. 2. - McGuinness, C. L., 1963, The role of ground water in the national water situation: U.S. Geological Survey Water-Supply Paper 1800, 1121 p. - Meinzer, O. E., 1923, The occurrence of ground water in the United States: U.S. Geological Survey Water-Supply Paper 489, 321 p. - _____1923, Outline of ground-water hydrology, with definitions: U.S. Geological Survey Water-Supply Paper 494, 71 p. - Moran, R. E., and Wentz, D. A., 1974, Effects of metal-mine drainage on water quality in selected areas of Colorado, 2 of 3, 1972-73: Colorado Water Conservation Board Circular 25, 250 p. - Ott, R.L., 1993, An introduction to statistical methods and data analysis, 4th ed: Duxbury Press, 1051 p. - Porterfield, George, 1972, Computations of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p. - Rantz, S. E. and others, Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge: U.S. Geological Survey Water-Supply Paper 2175, 284 p. - Rantz, S. E. and others, Measurement and Computation of Streamflow: Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 285-631 p. - Ritter, J. R., and Helley, E. J., 1969, Optical method for determining particle sizes of coarse sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter C3, 33 p. - Slack, K. V., and others, 1973, Methods for collection and analysis of aquatic biological and microbiological samples: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A4, 165 p. - Spahr, N. E., Blakely, S. R., and Hammond, S. E., 1985, Selected Hydrologic Data for the South Platte River through Denver, Colorado: U. S. Geological Survey open file report 84-703, 225 p. - Stabler, Herman, 1911, Some stream waters of the Western United States: U.S. Geological Survey Water-Supply Paper 274, 188 p. - U.S. Inter-Agency Committee on Water Resources, A study of methods used in measurements and analysis of sediment loads in streams: - Report 11, 1957, The development and calibration of visual accumulation tube: St. Anthony Falls Hydraulic Lab., Minneapolis, Minn., 109 p. - Report 12, 1957, Some fundamentals of particle-size analysis: Washington, D. C., U.S. Government Printing Office, 55 p. - Report AA, 1959, Federal Inter-Agency sedimentation instruments and reports: St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minn., 41 p. - Report 13, 1961, The single-stage sampler for suspended sediment: Washington, D. C., U.S. Government Printing Office, 105 p. - Report 14, 1963, Determinations of fluvial sediment discharge: Washington, D. C., U.S. Government Printing Office, 151 p. # WATER RESOURCES DATA - COLORADO, 2000 DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |--|----------------------|--------------------------|--------------------------------| | ady Creek near Grand Lake, CO | 09010100 | 0.08 | 1969-75 | | limmy Creek near Grand Lake, CO | 09010400 | 0.08 | 1969-75 | | Onahu Creek near Grand Lake, CO | 09010600 | 8.84 | 1969 | | Colorado River near Grand Lake, CO | 09011000 | 102 | 1904-18, | | Joiotado Niver fiear Grafia Lake, CO | 09011000 | 102 | | | ittle Columbia a Corolladoro Obodoro Morratoia I also at Corold I also CO | 00044500 | 4.05 | 1933-86 | | Little Columbine Creek above Shadow Mountain Lake at Grand Lake, CO | 09011500 | 1.65 | 1950-55 | | Tonahutu Creek near Grand Lake, CO | 09012400 | 16.0 | 1969 | | Harbison Ditch near Grand Lake, CO | 09012410 | | 1969 | | Tonahutu Creek below Harbison Ditch near Grand Lake, CO | 09012420 | | 1969 | | North Inlet at Grand Lake, CO | 09012500 | 45.9 | 1905-09, | | | | | 1910-12, | | | | | 1947-55 | | East Inlet near Grand Lake, CO | 09013500 | 27.2 | 1947-55 | | Grand Lake Outlet at Grand Lake, CO | 09014000 | 76.3 | 1904-09, | | Statia Earlo Salist at Statia Earlo, SS | 00011000 | 7 0.0 | 1910-13 | | Shaday Mauntain Laka near Crand Laka CO | 00014500 | 185 | | | Shadow Mountain Lake near Grand Lake, CO | 09014500 | | 1947-98 | | Colorado River below Shadow Mountain Reservoir, CO | 09015000 | 190 | 1947-59 | | Columbine Creek above Lake Granby near Grand Lake, CO | 09015500 | 7.38 | 1950-55 | | Roaring Fork above Lake Granby, CO | 09016000 | 5.95 | 1951-55 | | Arapahoe Creek at Monarch Lake Outlet, CO | 09016500 | 46.9 | 1944-71 | | Arapahoe Creek below Monarch Lake, CO | 09017000 | 56.9 | 1934-44 | | Stillwater Creek above Lake Granby, CO | 09018000 | 17.5 | 1950-55 | | Colorado River below Lake Granby, CO | 09019000 | 312 | 1950-82 | | Villow Creek near Granby, CO | 09020000 | 109 | 1934-53 | | Villow Creek above Willow Creek Reservoir, CO | 09020500 | 127 | 1953-60 | | Villow Creek above While Great Reservoir, GO Villow Creek Reservoir near Granby, CO | 09020700 | 134 | 1953-98 | | · · · · · · · · · · · · · · · · · · · | | | | | Villow Creek below Willow Creek Reservoir, CO | 09021000 | 134 | 1953-82 | | Moffat Water Tunnel at East Portal, CO | 09022500 | | 1935-82 | | Fraser River above Winter Park, CO | 09023500 | 22.4 | 1907-09, | | | | | 1934-37 | | Elk Creek near Fraser, CO | 09025400 | 7.15 | 1970-96 | | Ranch Creek Ditch near Fraser, CO | 09031900 | | 1948-67 | | Ranch Creek near Tabernash, CO | 09032500 | 51.3 | 1934-60 | | Meadow Creek near Tabernash, CO | 09033000 | 8.03 | 1935-56 | | Strawberry Creek near Granby, CO | 09033500 | 11.6 | 1935-45 | | | 09034000 | 297 | 1904-09, | | Fraser River at Granby, CO | 09034000 | 231 | | | 2 | 00004500 | 205 | 1937-55 | | Colorado River at Hot Sulphur Springs, CO | 09034500 | 825 | 1904-94 | | Little Muddy Creek near Parshall, CO | 09034800 | 6.52 | 1953-65 | | South Fork Williams Fork at Upper Station near Ptarmigan Pass, CO | 09035820 | 2.78 | 1984-87 | | South Fork Williams Fork near Ptarmigan Pass, CO | 09035830 | 4.01 | 1984-88 | | South Fork Williams Fork above Tributary near Ptarmigan Pass, CO | 09035840 | 5.53 | 1984-87 | | South Fork Williams Fork Tributary near Ptarmigan Pass, CO | 09035845 | 0.60 | 1984-88 | | South Fork Williams Fork above Short Creek near Ptarmigan Pass, CO | 09035850 | 6.53 | 1984-87 | | South Fork Williams Fork below Short Creek near Ptarmigan Pass, CO | 09035870 | 20.0 | 1984-87 | | South Fork Williams Fork below Old Baldy Mountain near Leal, CO | 09035880 | 21.8 | 1985-88 | | · | 09036500 | 13.8 | 1942-52 | | Keyser Creek near Leal, CO | | | | | Williams Fork near Scholl, CO | 09037000 | 141 | 1910-17 | | Skylark Creek near Parshall, CO | 09037200 | 2.42 | 1958-65 | | Villiams Fork Reservoir near Parshall, CO | 09038000 | 230 | 1939-98 | | Froublesome Creek near Pearmont, CO | 09039000 | 44.6 | 1953-93 | | Troublesome Creek at Atmore Ranch near Troublesome, CO | 09039500 | 48.8 | 1937-43 | | East Fork Troublesome Creek near Troublesome, CO | 09040000 | 76.0 | 1937-43, | | , | | | 1953-83 | | roublesome Creek near Troublesome, CO | 09040500 | 168 | 1904-05, | | Toublesome Greek flear floublesome, GO | 03040300 | 100 | , | | | | | 1921-22, | | | | | 1937-56 | | Muddy Creek near Kremmling, CO | 09041000 | 87.4 | 1937-43, | | | | | 1955-71, | | | | | 1993-99 | | Antelope Creek near Kremmling, CO | 09041100 | 11.5 | 1955-68 | | Red Dirt Creek near Kremmling, CO | 09041200 | 19.0 | 1955-74 | | Pass Creek near Kremmling, CO | 09041300 | 17.8 | 1957-70 | | Muddy Creek at Kremmling, CO | | | | | AUGUY OFER AL NEHHIIIIU. OO | 09041500 | 290 | 1904-05, | | 3, | | | 1982-95 | | , | | | | | Monte Cristo Creek near Hoosier Pass, CO | 09043000 | 5.66 | 1953-58 | | Monte Cristo Creek near Hoosier Pass, CO | 09043000
09044000 | 5.66
1.15 | 1953-58
1953-58 | | , | | | | | Monte Cristo Creek near Hoosier Pass, CO
Hoosier Creek near Hoosier Pass, CO | 09044000 | 1.15 | 1953-58 | # DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |--|----------------|--------------------------|--------------------------------| | Blue River at Dillon, CO | 09047000 | 128 | 1910-61 | | Snake River at Dillon, CO | 09048000 | 90.9 | 1910-19, | | , | | | 1929-64 | | West Tenmile Creek at Copper Mountain, CO | 09049200 | 21.0 | 1973-79 | | Tenmile Creek at Frisco, CO | 09050000 | 81.0 | 1942-50 | | Tenmile Creek at Dillon, CO | 09050500 | 111 | 1910-19, | | Tomming Grook at 2 mon, Go | 0000000 | | 1929-61 | | Dillon Reservoir | 09050600 | 335 | 1963-98 | | Straight Creek near Dillon, CO | 09051000 | 12.9 | 1943-52 | | Willow Creek near Dillon, CO | 09051500 | 13.4 | 1942-51 | | Rock Creek near Dillon, CO | 09052000 | 15.8 | 1942-56, | | Nock Creek flear Billoff, CO | 09032000 | 13.0 | 1966-94 | | Paulder Creek et upper etation, near Dillon, CO | 00052400 | 8.56 | | | Boulder Creek at upper station, near Dillon, CO | 09052400 | | 1966-94 | | Boulder Creek near Dillon, CO | 09052500 | 9.89 | 1942-51 | | Slate Creek at upper station, near Dillon, CO | 09052800 |
14.2 | 1966-94 | | Slate Creek near Dillon, CO | 09053000 | 16.6 | 1942-54 | | Blue River above Green Mountain Reservoir, CO | 09053500 | 511 | 1943-71, | | | | | 1985-88 | | Black Creek below Black Lake, near Dillon, CO | 09054000 | 15.0 | 1942-49, | | | | | 1966-94 | | Black Creek above Green Mountain Reservoir, CO | 09054500 | 18.5 | 1944-53 | | Otter Creek above Green Mountain Reservoir, CO | 09055000 | 8.40 | 1944-53 | | Cataract Creek near Kremmling, CO | 09055300 | 12.0 | 1966-94 | | Cataract Creek above Green Mountain Reservoir, CO | 09055500 | 13.6 | 1944-53 | | Blue River near Kremmling, CO | 09056000 | 571 | 1904-08 | | Green Mountain Reservoir | 09057000 | 598 | 1942-98 | | Blue River below Spruce Creek near Kremmling, CO | 09057520 | 645 | 1989-94 | | Colorado River near Radium, CO | 09058030 | 2,412 | 1981-90 | | Dickson Creek near Minturn, CO | 09058600 | 3.41 | 1964-71 | | Rock Creek near Toponas, CO | 09060500 | 47.6 | 1952-81 | | Rock Creek at Crater, CO | 09060550 | 72.6 | 1984-99 | | Egeria Creek near Toponas, CO | 09060700 | 28.2 | 1965-73 | | Rock Creek at McCoy, CO | 09060770 | 198 | 1983-97 | | • | | 14.2 | | | Big Alkali Creek near Burns, CO | 09060800 | | 1958-65 | | Catamount Creek near Burns, CO | 09060900 | 5.31 | 1955-61 | | Big Alkali Creek below Castle Creek near Burns, CO | 09060950 | 34.2 | 1981-86 | | Sunnyside Creek near Burns, CO | 09061000 | 9.04 | 1952-58 | | Columbine Ditch near Fremont Pass, CO | 09061500 | | 1930-82 | | Ewing Ditch at Tennessee Pass, CO | 09062000 | | 1908-82 | | Wurtz Ditch near Tennessee Pass, CO | 09062500 | | 1931-82 | | Turkey Creek at Red Cliff, CO | 09063500 | 29.4 | 1913-21, | | | | | 1944-56 | | Black Gore Creek near Vail, CO | 09066050 | 19.6 | 1974-79 | | Gore Creek at Vail, CO | 09066250 | 57.3 | 1974-79 | | Gore Creek at Lower Station, at Vail, CO | 09066310 | 77.1 | 1988-99 | | Gore Creek near Minturn, CO | 09066500 | 101 | 1911-14, | | | | | 1944-56 | | Beaver Creek at Avon, CO | 09067000 | 14.8 | 1911, | | , | | | 1912-14, | | | | | 1974-87, | | | | | 1988 | | Eagle River at Avon, CO | 09067005 | 395 | 1988-99, | | Alkali Creek near Wolcott, CO | 09067300 | 27.3 | , | | | | | 1958-65
1910-24 | | Eagle River at Eagle, CO | 09067500 | 629 | | | East Brush Creek at Yeoman Park near Eagle, CO | 09067700 | 9.74 | 1965-72 | | Brush Creek near Eagle, CO | 09068000 | 71.4 | 1950-72 | | Gypsum Creek near Gypsum, CO | 09069500 | 62.7 | 1950-55, | | | | | 1965-72 | | Colorado River near Glenwood Springs, CO | 09071100 | | 1941-85 | | Grizzly Creek near Glenwood Springs, CO | 09071300 | 5.73 | 1976-96 | | Colorado River at Glenwood Springs, CO | 09072500 | 4,558 | 1899-1966 | | Roaring Fork above Lost Man Creek near Aspen, CO | 09072550 | 9.10 | 1980-86 | | Lincoln Creek below Grizzly Reservoir near Aspen, CO | 09073005 | 15.2 | 1980-86 | | Roaring Fork River at Aspen, CO | 09073500 | 109 | 1910-21, | | = ' ' | | | 1931-64 | | Hunter Creek above Midway Creek near Aspen, CO | 09073700 | 6.18 | 1964-80 | | Hunter Creek Feeder Conduit near Aspen, CO | 09073720 | | 1981-83 | | Midway Creek Feeder Conduit near Aspen, CO | 09073720 |
 | | | Midway Creek Feeder Conduit near Aspen, CO Midway Creek near Aspen, CO | | | 1981-83
1971-80 | | | 09073800 | 8.62 | 197.1-80 | | No Name Creek Feeder Conduit near Aspen, CO | 09073890 | | 1981-83 | # WATER RESOURCES DATA - COLORADO, 2000 DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |---|----------------|--------------------------|--------------------------------| | No Name Creek near Aspen, CO | 09073900 | 6.54 | 1971-80 | | Castle Creek above Aspen, CO | 09074800 | 32.2 | 1969-94 | | Castle Creek near Aspen, CO | 09075000 | 67.0 | 1911-20 | | Roaring Fork below Aspen, CO | 09075500 | 228 | 1913-18 | | Maroon Creek above Aspen, CO | 09075700 | 35.4 | 1969-94 | | Maroon Creek near Aspen, CO | 09076000 | 41.7 | 1910-17 | | Owl Creek near Aspen, CO | 09076520 | 6.60 | 1974-89 | | Fryingpan River Feeder Canal near Norrie, CO | 09077150 | | 1971-83 | | Fryingpan River near Ivanhoe Lake, CO | 09077200 | 18.7 | 1963-82 | | • • | | 10.7 | 1972-83 | | Lily Pad Feeder Canal near Norrie, CO | 09077250 | | | | Granite Creek Feeder Conduit near Norrie, CO | 09077300 | | 1981-83 | | Fryingpan River near Norrie, CO | 09077400 | 32.2 | 1963-67 | | Ivanhoe Creek near Norrie, CO | 09077600 | 9.12 | 1963-76 | | Ivanhoe Creek Feeder Canal near Nast, CO | 09077605 | | 1976-83 | | Ivanhoe Creek near Nast, CO | 09077610 | 9.43 | 1976-82 | | South Fork Fryingpan River Feeder Canal near Norrie, CO | 09077750 | | 1971-83 | | South Fork Fryingpan River at Upper Station near Norrie, CO | 09077800 | 11.5 | 1963-82 | | South Fork Fryingpan River near Norrie, CO | 09077900 | 17.3 | 1963-67 | | Chapman Gulch Feeder Canal near Norrie, CO | 09077940 | | 1971-83 | | Chapman Gulch near Nast, CO | 09077945 | 6.00 | 1973-82 | | Chapman Gulch near Norrie, CO | 09077950 | 6.38 | 1966-72 | | Sawyer Creek Feeder Canal near Norrie, CO | 09077960 | | 1972-83 | | Fryingpan River at Norrie, CO | 09078000 | 90.6 | 1910-17, | | Tryingpairtito attions, 55 | 3337.5353 | 00.0 | 1947-83 | | North Fork Fryingpan River Feeder Canal near Norrie, CO | 09078040 | | 1980-83 | | Morman Creek Feeder Canal near Norrie, CO | 09078050 | | 1979-83 | | Carter Creek Feeder Canal near Norrie, CO | 09078060 |
 | 1980-83 | | | | | | | North Fork Fryingpan River above Cunningham Creek near Norrie, CO | 09078100 | 12.0 | 1963-80 | | Cunningham Creek Feeder Canal near Norrie, CO | 09078140 | | 1979-83 | | Middle Cunningham Creek Feeder Canal near Norrie, CO | 09078150 | | 1980-83 | | Cunningham Creek near Norrie, CO | 09078200 | 7.12 | 1963-80 | | North Fork Fryingpan River below Cunningham Creek near Norrie, CO | 09078300 | 24.2 | 1963-68 | | North Fork Fryingpan River near Norrie, CO | 09078500 | 42.0 | 1910-17, | | | | | 1947-82 | | Lime Creek near Troutville, CO | 09078900 | 4.56 | 1963-68 | | Lime Creek at Troutville, CO | 09079000 | 7.76 | 1950-56 | | Lime Creek at Thomasville, CO | 09079500 | 35.0 | 1950-56 | | Fryingpan River at Thomasville, CO | 09080000 | 173 | 1915-20 | | Fryingpan River at Meredith, CO | 09080100 | 191 | 1910-15, | | , 91 | | | 1966-80 | | Fryingpan River at Ruedi, CO | 09080200 | 226 | 1959-64 | | Rocky Fork Creek near Meredith, CO | 09080300 | 12.3 | 1968-82 | | West Sopris Creek near Basalt, CO | 09080800 | 14.4 | 1963-68 | | , | | 74.3 | | | Crystal River at Marble, CO | 09081500 | 74.3 | 1910-15, | | 0 (18) (8) (9) | 00004550 | 407 | 1916-17 | | Crystal River at Placita, CO | 09081550 | 107 | 1959-73, | | | | | 1975-77 | | Crystal River near Redstone, CO | 09082500 | 229 | 1935-63 | | North Thompson Creek near Carbondale, CO | 09082800 | 27.8 (revised) | | | Thompson Creek near Carbondale, CO | 09083000 | 75.4 (revised) | 1950-60, | | | | | 1964-68 | | Prince Creek near Carbondale, CO | 09083700 | 3.04 | 1963-68 | | Cattle Creek near Carbondale, CO | 09084000 | 31.1 | 1950-55, | | | | | 1962-72 | | Fourmile Creek near Carbondale, CO | 09084500 | 8.10 | 1941-47 | | Fourmile Creek near Glenwood Springs, CO | 09084600 | 16.7 | 1957-65 | | Canyon Creek above New Castle, CO | 09085200 | 23.8 | 1969-86 | | East Canyon Creek near New Castle, CO | 09085300 | 15.1 | 1969-83 | | Possum Creek near New Castle, CO | 09085400 | 6.41 | 1969-82 | | Canyon Creek near New Castle, CO | 09085500 | 55.0 | 1954-60 | | · | | | | | West Elk Creek near New Castle, CO | 09086000 | 9.55 | 1991-97 | | Main Elk Creek near New Castle, CO | 09086470 | 91.0 | 1991-97 | | East Elk Creek above Boiler Creek near New Castle, CO | 09086970 | 23.4 | 1991-97 | | Elk Creek at New Castle, CO | 09087500 | 180 | 1922-24, | | | | | 1954-60 | | Colorado River at New Castle, CO | 09087600 | 6,308 | 1966-72 | | Baldy Creek near New Castle, CO | 09088000 | 15.3 | 1955-61 | | West Divide Creek below Willow Creek near Raven, CO | 09089000 | 34.9 | 1938-47, | | · · · · · · · · · · · · · · · · · · · | | | 1963-70 | # DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record
(water years) | |---|----------------------|--------------------------|-----------------------------------| | East Divide Creek near Silt, CO | 09090700 | 40.8 | 1959-65 | | East Rifle Creek near Rifle, CO | 09091500 | 34.3 | 1936-43, | | 2451 14110 51551 11541 14110, 55 | 5555.555 | 00 | 1956-64 | | Rifle Creek near Rifle, CO | 09092000 | 137 | 1939-46, | | | | | 1952-64 | | Beaver Creek near Rifle, CO | 09092500 | 7.90 | 1952-82 | | Battlement Creek near Parachute, CO | 09092600 | 10.5 | 1956-65 | | West Parachute Creek near Parachute, CO | 09092800 | 48.1 | 1957-62 | | Northwater Creek near Anvil Points, CO | 09092830 | 12.6 | 1976-83 | | East Middle Fork Parachute Creek near Rio Blanco, CO | 09092850 | 22.1 | 1976-83 | | East Fork Parachute Creek near Anvil Points, CO | 09092960 | 14.5 | 1976-83 | | East Fork Parachute Creek near Rulison, CO | 09092970 | 20.4 | 1976-83 | | Ben Good Creek near Rulison, CO | 09092980 | 4.04 | 1976-83 | | Parachute Creek near Parachute, CO | 09093000 | 141 | 1948-54, | | | | | 1964-70, | | | | | 1975-86 | | Parachute Creek at Parachute, CO | 09093500 | 198 | 1921-27, | | | | | 1948-54, | | | | | 1975-82 | | Colorado River near DeBeque, CO | 09093700 | 7,370 | 1967-97 | | Roan Creek above Clear Creek near De Beque, CO | 09094200 | 151 | 1962-68 | | Clear Creek near De Beque, CO | 09094400 | 110 | 1966-68 | | Roan Creek near De Beque, CO | 09095000 | 321 | 1921-26, | | | | | 1962-72, | | Dry Fork at Hancy Station near DeBogue CO | 00005300 | 07.4 | 1975-81 | | Dry Fork at Upper Station near DeBeque, CO Dry
Fork near De Beque, CO | 09095300 | 97.4 | 1996-98 | | Government Highline Canal at 16 Road near Loma, CO | 09095400
09095526 | 109 | 1974-82 | | Lateral No 48 near Mack, CO | 09095528 |
 | 1975-85
1973-81 | | Government Highline Canal above Camp 7 Spillway near Mack, CO | 090955285 | | 1983-85 | | Camp No 7 Spillway near Mack, CO | 09095529 | | 1975-82 | | Government Highline Canal near Mack, CO | 09095530 |
 | 1973-82 | | Plateau Creek near Heiberger, CO | 09095800 | 18.6 | 1958-64 | | Plateau Creek at Upper Station near Collbran, CO | 09096000 | 24.1 | 1937-43, | | Trateda Grook at Oppor Station floar Collegan, CC | 0000000 | 2 | 1951-58 | | Plateau Creek near Collbran, CO | 09096500 | 80.4 | 1921-80 | | Buzzard Creek below Owens Creek near Heiberger, CO | 09096800 | 49.7 | 1955-70 | | Buzzard Creek near Collbran, CO | 09097500 | 143 | 1921-80 | | Brush Creek near Collbran, CO | 09097600 | 9.57 | 1955-67 | | Atkinson Creek near Collbran, CO | 09098500 | 0.85 | 1952-55 | | East Fork Big Creek near Collbran, CO | 09099000 | 4.92 | 1940-41, | | | | | 1950-55 | | Big Creek at Upper Station near Collbran, CO | 09099500 | 20.2 | 1945-56 | | Big Creek near Collbran, CO | 09100000 | 27.1 | 1937-44 | | Cottonwood Creek at Upper Station near Molina, CO | 09100500 | 14.0 | 1945-57 | | Cottonwood Creek near Molina, CO | 09101000 | 17.8 | 1937-43 | | Bull Creek at Upper Station near Molina, CO | 09101500 | 9.85 | 1945-53 | | Coon Creek near Mesa, CO | 09104000 | 9.35 | 1937-43 | | Mesa Creek near Mesa, CO | 09104500 | 6.79 | 1937-60 | | Colorado River near Palisade, CO | 09106000 | 8,738 | 1901-33 | | Kiefer Extension to Grand Valley Canal near Fruita, CO | 09106104 | | 1975-85 | | Kiefer Extension to Grand Valley Canal near Loma, CO | 09106108 | | 1975-85 | | Lewis Wash near Grand Junction, CO | 09106200 | 4.72 | 1973-79 | | Texas Creek at Taylor Park, CO | 09107500 | 40.4 | 1929-34, | | | | | 1988-92 | | Willow Creek at Taylor Park, CO | 09108000 | | 1913-14, | | | | | 1929-34 | | East River near Crested Butte, CO | 09110500 | 90.3 | 1939-51 | | Coal Creek near Crested Butte, CO | 09111000 | 8.65 | 1941-46 | | Slate River near Crested Butte, CO | 09111500 | 70.1 | 1940-51 | | Cement Creek near Crested Butte, CO | 09112000 | 26.1 | 1910-13, | | | | | 1940-51 | | Castle Creek near Baldwin, CO | 09113000 | 20.3 | 1944-50 | | Castle Creek above mouth near Baldwin, CO | 09113100 | 22.4 | 1993-98 | | Ohio Creek at Baldwin, CO | 09113300 | 47.2 | 1958-70 | | Ohio Creek near Baldwin, CO | 09113500 | 121 | 1940-50, | | | | | 1958-71, | | | 2211122 | 407 | 1979-81 | | Ohio Creek near Gunnison, CO | 09114000 | 167 | 1944-50 | # WATER RESOURCES DATA - COLORADO, 2000 DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Tomichi Creek at Sargents, CO Tomichi Creek near Doyleville, CO Tomichi Creek at Parlin, CO Quartz Creek near Ohio City, CO Cochetopa Creek near Parlin, CO Gunnison River at Iola, CO Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO Curecanti Creek near Sapinero, CO | 09115500 09116000 09117000 09118000 09118500 09120500 09121500 09121800 09122000 09122500 09123400 09123500 09124700 | 149 209 427 106 361 2,352 25.2 248 340 57.4 86.0 57.5 115 | 1916-22,
1937-72
1944-50
1944-51,
1963-70
1937-50,
1959-70
1940-48
1899,
1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | |--|---|---|---| | Tomichi Creek at Parlin, CO Quartz Creek near Ohio City, CO Cochetopa Creek near Parlin, CO Gunnison River at Iola, CO Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09117000 09118000 09118500 09120500 09121500 09121800 09122000 09122500 09123400 09123500 09124000 09124700 | 427
106
361
2,352
25.2
248
340
57.4
86.0
57.5
115 | 1944-51,
1963-70
1937-50,
1959-70
1940-48
1899,
1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Quartz Creek near Ohio City, CO Cochetopa Creek near Parlin, CO Gunnison River at Iola, CO Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09118000 09118500 09120500 09121500 09121800 09122000 09122500 09123000 09123400 09123500 09124000 | 106
361
2,352
25.2
248
340
57.4
86.0
57.5 | 1963-70
1937-50,
1959-70
1940-48
1899,
1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Cochetopa Creek near Parlin, CO Gunnison River at Iola, CO Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09118500
09120500
09121500
09121800
09122000
09122500
09123000
09123400
09123500
09124000 | 361
2,352
25.2
248
340
57.4
86.0
57.5 | 1937-50,
1959-70
1940-48
1899,
1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Cochetopa Creek near Parlin, CO Gunnison River at Iola, CO Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09118500
09120500
09121500
09121800
09122000
09122500
09123000
09123400
09123500
09124000 | 361
2,352
25.2
248
340
57.4
86.0
57.5 | 1959-70
1940-48
1899,
1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Gunnison River at Iola, CO Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09120500 09121500 09121800 09122000 09122500 09123000 09123400 09123500 09124700 | 25.2
248
340
57.4
86.0
57.5 | 1940-48
1899,
1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Gunnison River at Iola, CO Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09120500 09121500 09121800 09122000 09122500 09123000 09123400 09123500 09124700 | 25.2
248
340
57.4
86.0
57.5 | 1899,
1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Cebolla Creek near Lake City, CO Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09121500
09121800
09122000
09122500
09123000
09123400
09123500
09124700 | 25.2
248
340
57.4
86.0
57.5
115 | 1903,
1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09121800
09122000
09122500
09123000
09123400
09123500
09124000 | 248
340
57.4
86.0
57.5
115 | 1937-51
1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Cebolla Creek near Powderhorn, CO Cebolla
Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09121800
09122000
09122500
09123000
09123400
09123500
09124000 | 248
340
57.4
86.0
57.5
115 | 1946-54
1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Cebolla Creek near Powderhorn, CO Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09121800
09122000
09122500
09123000
09123400
09123500
09124000 | 248
340
57.4
86.0
57.5
115 | 1960-63
1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37
1917-19, | | Cebolla Creek at Powderhorn, CO Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09122000
09122500
09123000
09123400
09123500
09124000 | 340
57.4
86.0
57.5
115 | 1937-55
1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37 | | Soap Creek near Sapinero, CO Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09122500
09123000
09123400
09123500
09124000 | 57.4
86.0
57.5
115 | 1955-66
1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37
1917-19, | | Soap Creek at Sapinero, CO Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09123400
09123500
09124000
09124700 | 86.0
57.5
115 | 1910-14,
1945-52
1981-86
1917-24,
1928-30,
1931-37
1917-19, | | Lake Fork below Mill Gulch near Lake City, CO Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09123400
09123500
09124000 | 57.5
115 | 1945-52
1981-86
1917-24,
1928-30,
1931-37
1917-19, | | Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09123500
09124000
09124700 | 115 | 1981-86
1917-24,
1928-30,
1931-37
1917-19, | | Lake Fork at Lake City, CO Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09123500
09124000
09124700 | 115 | 1917-24,
1928-30,
1931-37
1917-19, | | Henson Creek at Lake City, CO Gunnison River below Blue Mesa Dam, CO | 09124000
09124700 | | 1928-30,
1931-37
1917-19, | | Gunnison River below Blue Mesa Dam, CO | 09124700 | 83.1 | 1931-37
1917-19, | | Gunnison River below Blue Mesa Dam, CO | 09124700 | 83.1 | 1917-19, | | Gunnison River below Blue Mesa Dam, CO | 09124700 | | | | | | | | | | | | 1931-37 | | Curecanti Creek near Sapinero, CO | 00405000 | 3,453 | 1963-68 | | | 09125000 | 35.0 | 1945-72 | | Cimarron River at Cimarron, CO | 09126500 | 209 | 1902-05, | | | | | 1962-67 | | Cimarron River below Squaw Creek at Cimarron, CO | 09127000 | 229 | 1942-52 | | Crystal Creek near Maher, CO | 09127500 | 42.2 | 1916-19, | | | | | 1945-54, | | | | | 1960-69 | | Gunnison River above Gunnison Tunnel, CO | 09127998 | 3,965 | 1905-65 | | Gunnison Tunnel near Montrose, CO | 09127999 | 3,965 | 1910-65 | | Smith Fork near Crawford, CO | 09128500 | 42.8 | 1935-94 | | Smith Fork at Crawford, CO | 09129000 | 63.1 | 1954-60 | | Iron Creek near Crawford, CO | 09129500 | 71.5 | 1947-52 | | Smith Fork near Lazear, CO | 09129600 | 166 | 1976-87 | | Clear Fork near Ragged Mountain, CO | 09129800 | 38.5 | 1965-73 | | East Muddy Creek near Bardine, CO | 09130500
09130600 | 133
7.42 | 1934-53
1955-65 | | West Muddy Creek near Ragged Mountain, CO
West Muddy Creek near Bowie, CO | 09130800 | 27.7 | 1968-74 | | Cow Creek near Paonia, CO | 09131100 | 12.0 | 1968-82 | | West Muddy Creek near Somerset, CO | 09131200 | 49.9 | 1961-73 | | Ruby Anthracite Creek near Floresta, CO | 09132000 | 20.7 | 1938-43, | | Transfer Francisco Greek Hour Francisco, Go | 00.02000 | 20 | 1954-58 | | Anthracite Creek near Somerset, CO | 09132050 | 94.6 | 1977-81 | | Main Hubbard Creek near Paonia, CO | 09132700 | 1.33 | 1960-68 | | Middle Hubbard Creek near Paonia, CO | 09132800 | 1.36 | 1960-68 | | West Hubbard Creek near Paonia, CO | 09132900 | 2.34 | 1960-73 | | Hubbard Creek near Bowie, CO | 09132920 | 20.7 | 1968-74 | | North Fork Gunnison River near Paonia, CO | 09133000 | 653 | 1921-32 | | Minnesota Creek at Paonia, CO | 09134050 | 53.5 | 1976-79 | | Cottonwood Creek near Hotchkiss, CO | 09134200 | 41.0 | 1976-79 | | Leroux Creek near Cedaredge, CO | 09134500 | 34.5 | 1936-56, | | | | | 1960-69 | | Cow Creek near Cedaredge, CO | 09134700 | 7.24 | 1960-69 | | Leroux Creek near Lazear, CO | 09135000 | 51.8 | 1917-26 | | Leroux Creek at Hotchkiss, CO | 09135900 | 66.7 | 1976-96 | | Gunnison River near Lazear, CO | 09136200 | 5,241 | 1962-85 | | Current Creek near Cedaredge, CO | 09136500 | 42.2 | 1948-54 | | Currant Creek near Read, CO | 09137050 | 56.9 | 1976-87 | | Dirty George Creek near Grand Mesa, CO | 09137800 | 10.6 | 1957-69 | | Ward Creek near Grand Mesa, CO | 09139200 | 12.2 | 1957-69 | | Ward Creek near Cedaredge, CO | 09139500 | 20.4 | 1939-46 | | Kiser Creek near Grand Mesa, CO | 09140200 | 5.35 | 1957-69 | | Kiser Creek near Cedaredge, CO | 09140500 | 10.8 | 1939-46 | | Cottonwood Creek near Grand Mesa, CO Cottonwood Creek near Cedaredge, CO | 09140700
09141000 | 2.15
4.39 | 1957-68
1939-46 | # DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |--|----------------------|--------------------------|--------------------------------| | Youngs Creek near Grand Mesa, CO | 09141200 | 10.3 | 1957-69 | | Youngs Creek near Cedaredge, CO | 09141500 | 11.3 | 1939-46 | | Ward Creek below Kiser Creek near Cedaredge, CO | 09142000 | 52.2 | 1944-52 | | Surface Creek at Eckert, CO | 09144000 | 43.6 | 1939-51 | | Tongue Creek at Cory, CO | 09144200 | 197 | 1957-68, | | , | | | 1976-87 | | Red Mountain Creek near Ironton, CO | 09144500 | 18.1 | 1947-55 | | Uncompangre River At Ouray, CO | 09145000 | 42.0 | 1908, | | oneompangre raver ra outay, oo | 00110000 | 12.0 | 1910-24 | | Canyon Creek at Ouray, CO | 09145500 | 25.8 | 1910-15 | | Uncompangre River below Ouray, CO | 09146000 | 75.2 | 1913-29 | | West Fork Dallas Creek near Ridgway, CO | 09146400 | 14.1 | 1955-70 | | East Fork Dallas Creek near Ridgway, CO | 09146500 | 16.8 | 1947-53 | | East Fork Bailes Greek field Friegway, Go | 03140000 | 10.0 | 1960-70 | | Beaver Creek near Ridgway, CO | 09146550 | 12.2 | 1960-68 | | Pleasant Valley Creek near Noel, CO | 09146600 | 8.17 | 1955-67 | | Cow Creek near Ridgway, CO | 09147100 | 45.4 | 1955-73 | | 5 • | | | | | Spring Creek near Beaver Hill, CO | 09149400 | 41.6 | 1977-81 | | Spring Creek near Montrose, CO | 09149420 | 76.6 | 1977-81 | | Dry Creek at Begonia Road near Delta, CO | 09149480 | 175 | 1996-98 | | Potter Creek near Columbine Pass, CO | 09149900 | 7.10 | 1980-81 | | Potter Creek near Olathe, CO | 09149910 | 26.0 | 1980-81 | | Roubideau Creek at Mouth near Delta, CO | 09150500 | 242 | 1938-54, | | | | | 1976-83 | | Escalante Creek near Delta, CO | 09151500 | 209 | 1922-23, | | | | | 1970-89 | | Kannah Creek near Whitewater, CO | 09152000 | 61.9 | 1917-82 | | Orchard Mesa Drain at Grand Junction, CO | 09152600 | 3.70 | 1973-83 | | Leach Creek at Durham, CO | 09152650 | 24.8 | 1973-83 | | Adobe Creek near Fruita, CO | 09152900 | 15.4 | 1973-83 | | Colorado River near Fruita, CO | 09153000 | 17,100 | 1907-23 | | Big Salt Wash at Fruita, CO | 09153270 | 142 | 1973-77 | | Reed Wash near Mack, CO | 09153290 | 15.7 | 1975-99 | | Reed Wash near Loma, CO | 09153300 | 29.3 | 1973-83 | | West Salt Creek near Carbonera, CO | 09153330 | 95.6 | 1979-82 | | West Salt Creek near Mack, CO | 09153400 | 168 | 1973-83 | | Badger Wash near Mack, CO | 09163050 | 6.51 | 1973-82 | | East Salt Creek near Mack, CO | 09163310 | 197 | 1973-82 | | Mack Wash near Mack, CO | 09163340 | 15.9 | 1973-82 | | Salt Creek near Mack, CO | 09163490 | 436 | 1973-83 | | Hay Press Creek above Fruita Reservoir 3 near Glade Park, CO | 09163570 | 0.77 | 1983-88 | | | 09166000 | 162 | | | West Fork Dolores River near Stoner, CO | | | 1941-44 | | Lost Canyon Creek at Dolores, CO | 09167000 | 73.5 | 1922-27, | | | 00407450 | 00.0 | 1941-48 | | Plateau Creek near Mouth near Dolores, CO | 09167450 | 83.0 | 1982-83 | | Dolores River near McPhee, CO | 09167500 | 817 | 1938-52 | | Disappointment Creek near Dove Creek, CO | 09168100 | 147 | 1957-86 | | Big Gypsum Creek near Slick Rock, CO | 09168800 | 43.9 | 1979-81 | | West Paradox Creek near Paradox, CO | 09170500 | 23.6 | 1944-52 | | West Paradox Creek above Bedrock, CO | 09170800 | 53.3 | 1971-73 | | West Paradox Creek near Bedrock, CO | 09171000 | 55.3 | 1944-52 | | San Miguel River near Telluride, CO | 09171200 | 42.8 | 1959-65 | | San Miguel River at Fall Creek, CO | 09171500 | 167 | 1895-99, | | | | | 1910 | | Fall Creek near Fall Creek, CO | 09172000 | 33.4 | 1941-59 | | Leopard Creek at Noel, CO | 09172100 | 9.03 | 1955-63 | | Saltado Creek near Norwood, CO | 09172600 | | 1976-80 | | Gurley Ditch near Norwood, CO | 09172700 | | 1976-80 | | West Beaver Creek near Norwood, CO | 09172800 | | 1976-80 | | Beaver Creek near Norwood, CO | 09173000 | 40.6 | 1941-61, | | | | | 1962-67,
1975-81 | | Horsefly Creek near Sams, CO | 09173500 | 28.8 | 1942-51 | | San Miguel River
near Nucla, CO | 09174000 | 649 | 1953-62 | | Cottonwood Creek near Nucla, CO | 09174000 | 38.8 | | | | | | 1942-51 | | West Naturita Creek at Upper Station near Norwood, CO | 09174700 | 7.31 | 1976-80 | | West Naturita Creek near Norwood, CO | 09175000 | 53.0 | 1940-52, | | | | | 1975-80 | | | | | | | Lilylands Canal near Norwood, CO
Maverick Draw near Norwood, CO | 09175200
09175400 | 41.3 | 1976-80
1976-80 | # WATER RESOURCES DATA - COLORADO, 2000 DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |--|----------------|--------------------------|--------------------------------| | San Miguel River at Naturita, CO | 09175500 | 1,069 | 1917-29,
1940-81 | | Tabeguache Creek near Nucla, CO | 09176500 | 16.9 | 1946-53 | | Taylor Creek near Gateway, CO | 09177500 | 15.4 | 1944-67 | | Deep Creek near Paradox, CO | 09178000 | 4.31 | 1944-53 | | Geyser Creek near Paradox, CO | 09178500 | | 1944-51 | | Roc Creek near Uranium CO | 09179000 | 75.8 | 1944-52 | | Salt Creek near Gateway, CO | 09179200 | 31.2 | 1979-85 | | Dolores River at Gateway, CO | 09179500 | 4,347 | 1936-54 | | Vermillion Creek at Ink Springs Ranch, CO | 09235450 | 816 | 1977-81 | | Vermillion Creek below Douglas Draw, near Lodore, CO | 09235490 | 918 | 1977-01 | | Bear River near Toponas, CO | 09236000 | 22.1 (revised) | 1952-65, | | | | , , | 1966-86 | | Bear River near Yampa, CO | 09236500 | 41.6 | 1939-44 | | Service Creek near Oak Creek, CO | 09237800 | 38.2 | 1965-73 | | Oak Creek near Oak Creek, CO | 09238000 | 14.0 | 1952-57 | | North Fork Walton Creek near Rabbit Ears Pass, CO | 09238300 | 0.71 | 1972-75 | | Fishhook Creek near Rabbit Ears Pass, CO | 09238350 | 6.45 | 1972-75 | | Walton Creek near Steamboat Springs, CO | 09238500 | 42.4 | 1920-22, | | | | | 1965-73, | | | | | 1978-87 | | Fish Creek Tributary above Long Lake near Buffalo Pass, CO | 09238700 | 0.43 | 1984-86 | | Long Lake Inlet near Buffalo Pass, CO | 09238705 | 0.71 | 1987-95 | | Fish Creek Tributary below Long Lake, near Buffalo Pass, CO | 09238710 | 1.03 | 1985-95 | | Middle Fork Fish Creek near Buffalo Pass, CO | 09238750 | 1.37 | 1985-95 | | Granite Creek near Buffalo Pass, CO | 09238770 | 2.82 | 1985-95 | | Middle Fork Fish Creek tributary, below Fish Creek Reservoir, CO | 09238800 | 4.78 | 1984-94 | | Spring Creek near Steamboat Springs, CO | 09239400 | 6.96 | 1965-72 | | Elk River at Hinman Park, CO | 09240500 | 61.0 | 1911-18 | | South Fork Elk River near Clark, CO | 09240800 | 33.7 | 1966-73 | | Fish Creek near Milner, CO | 09244100 | 34.5 | 1955-73 | | Grassy Creek near Mount Harris, CO | 09244300 | 25.8 | 1958-66 | | Yampa River near Hayden, CO | 09244400 | 1,390 (revised) | 1965-72 | | | | 1,390 (Teviseu) | | | Gibralter Canal near Hayden, CO | 09244405 | 4 000 (| 1965-72 | | Yampa River below Diversion near Hayden, CO | 09244410 | 1,390 (revised) | 1965-86 | | Sage Creek above Sage Creek Reservoir near Hayden, CO | 09244415 | 4.17 | 1980-83 | | Watering Trough Gulch near Hayden, CO | 09244460 | 2.65 | 1977-81 | | Hubberson Gulch near Hayden, CO | 09244464 | 8.08 | 1977-81 | | Stokes Gulch near Hayden, CO | 09244470 | 13.6 | 1976-81 | | Elkhead Creek near Clark, CO | 09244500 | 45.4 | 1942-44,
1958-73 | | Elkhead Creek near Elkhead, CO | 09245000 | 64.2 | 1953-96 | | North Fork Elkhead Creek near Elkhead, CO | 09245500 | 21.0 | 1910, 1920,
1958-73 | | Elkhead Creek near Craig, CO | 09246500 | 249 | 1906, | | | | | 1909-18 | | Fortification Creek near Craig, CO | 09246900 | 34.3 | 1955-60 | | Fortification Creek near Fortification, CO | 09246920 | 40.0 | 1984-90 | | Fortification Creek at Craig, CO | 09247000 | 258 | 1903-06, | | | | | 1909-18, | | | | | 1943-47 | | Yampa River at Craig, CO | 09247500 | 1,730 | 1901-06, | | East Fork of Williams Fork near Willow Creek, CO | 09248500 | 96.0 | 1943-47 | | East Fork of Williams Fork above Willow Creek, CO | 09248600 | 108 | 1956-72 | | East Fork of Williams Fork near Pagoda, CO | 09249000 | 150 | 1953-71 | | South Fork of Williams Fork near Pagoda, CO | 09249200 | 46.7 | 1965-79 | | Waddle Creek near Pagoda, CO | 09249450 | 5.24 | 1985-86 | | Deep Rock Gulch near Hamilton, CO | 09249455 | 3.53 | 1985-86 | | Williams Fork at Hamilton, CO | 09249433 | 341 | 1904-06, | | Trimanio i on at Hairinton, oo | 03243300 | U T 1 | 1904-00, | | Morapos Creek near Hamilton, CO | 09249700 | 13.7 | 1965-67 | | · | | | | | Milk Creek near Thornburgh, CO | 09250000 | 65.0 | 1952-86 | | Good Spring Creek at Axial, CO | 09250400 | 40.0 | 1975-78 | | Wilson Creek above Taylor Creek near Axial, CO | 09250507 | 20.0 | 1980-92 | | Taylor Creek at mouth near Axial, CO | 09250510 | 7.22 | 1975-92 | | Jubb Creek near Axial, CO | 09250610 | 7.53 | 1975-81 | | Morgan Gulch near Axial, CO | 09250700 | 25.6 | 1980-81 | | Middle Fork Little Snake River near Battle Creek, CO | 09251500 | 120 | 1912-22 | | | 09252500 | 46.0 | 1912-20 | # DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |--|----------------|--------------------------|--------------------------------| | Little Snake River near Slater, CO | 09253000 | 285 | 1942-47, | | Pattle Creek near Slater CO | 09253500 | 285 | 1950-99
1942-51 | | Battle Creek near Slater, CO | | | | | Slater Fork at Baxter Ranch near Slater, CO | 09254500 | 80.0 | 1911-20, | | Little Chake Diver near Diven WV | 00257000 | 000 | 1922 | | Little Snake River near Dixon, WY | 09257000 | 988 | 1910-23, | | Mail O I Di May | 2005020 | 04.0 | 1938-97 | | Willow Creek near Dixon, WY | 09258000 | 24.0 | 1953-93 | | Little Snake River above Lily, CO | 09259950 | | 1950-69 | | Sand Wash near Sunbeam, CO | 09259990 | 239 | 1987-91 | | North Fork White River below Trappers Lake, CO | 09302400 | 19.5 | 1956-65 | | North Fork White River above Ripple Creek near Trappers Lake, CO | 09302420 | 62.5 | 1965-73 | | Lost Creek near Buford, CO | 09302450 | 21.5 | 1964-89 | | Marvine Creek near Buford, CO | 09302500 | 59.7 | 1903-06, | | | | | 1973-84 | | North Fork White River near Buford, CO | 09302800 | 220 | 1903-06, | | | | | 1956-72 | | South Fork White River at Budge's Resort, CO | 09303300 | 52.3 | 1975-95 | | Wagonwheel Creek at Budge's Resort, CO | 09303320 | 7.36 | 1975-89 | | Patterson Creek near Budge's Resort, CO | 09303340 | 11.2 | 1976-77 | | South Fork White River near Budge's Resort, CO | 09303400 | 128 | 1976-95 | | South Fork White River near Buford, CO | 09303500 | 157 | 1903-06, | | | | | 1910-15, | | | | | 1942-47, | | | | | 1967-92 | | South Fork White River at Buford, CO | 09304000 | 177 | 1919-20, | | South Fork White River at Bulord, GO | 09304000 | 177 | 1952-97 | | Big Beaver Creek near Buford, CO | 09304100 | 34.1 | | | 9 | | | 1955-64 | | Miller Creek near Meeker, CO | 09304150 | 57.6 | 1970-79 | | Coal Creek near Meeker, CO | 09304300 | 25.1 | 1957-68 | | White River at Meeker, CO | 09304600 | 808 | 1978-85 | | Piceance Creek at Rio Blanco, CO | 09305500 | 8.97 | 1952-57 | | Piceance Creek below Rio Blanco, CO | 09306007 | 177 | 1974-98 | | Middle Fork Stewart Gulch near Rio Blanco, CO | 09306015 | 24.0 | 1974-76, | | | | | 1977-82 | | Stewart Gulch above West Fork near Rio Blanco, CO | 09306022 | 44.0 | 1976-85 | | West Fork Stewart Gulch near Rio Blanco, CO | 09306025 | 14.2 | 1974-76, | | | | | 1977-82 | | West Fork Stewart Gulch at Mouth near Rio Blanco, CO | 09306028 | 15.7 | 1974-82 | | Sorghum Gulch near Rio Blanco, CO | 09306033 | 1.22 | 1974-76, | | | | | 1977-82 | | Sorghum Gulch at Mouth near Rio Blanco, CO | 09306036 | 3.62 | 1974-86 | | Cottonwood Gulch near Rio Blanco, CO | 09306039 | 1.20 | 1974-85 | | Piceance Creek Tributary near Rio Blanco, CO | 09306042 | 1.06 | 1974-84, | | • | | | 1985-92 | | Piceance Creek below Gardenhire Gulch near Rio Blanco, CO | 09306045 | 255 | 1980-82, | | | | | 1985 | | Scandard Gulch near Rio Blanco, CO | 09306050 | 6.61 | 1974-76, | | | | | 1978-82 | | Scandard Gulch at Mouth near Rio Blanco, CO | 09306052 | 7.97 | 1974-85 | | Willow Creek near Rio Blanco, CO | 09306058 | 48.4 | 1974-85 | | Piceance Creek above Hunter Creek near Rio Blanco, CO | 09306061 | 309 | 1974-87 | | Black Sulphur Creek near Rio Blanco, CO | 09306175 | 103 | 1975-83 | | Horse Draw near Rangely, CO | 09306202 | 1.47 | 1977-81 | | | | | | | Horse Draw at Mouth near Rangely, CO | 09306203 | 2.87 | 1977-81 | | White River above Crooked Wash near White River City, CO | 09306224 | 1,821 | 1982-89 | | Stake Springs Draw near Rangely, CO | 09306230 | 26.1 | 1974-77 | | Corral Gulch below Water Gulch near Rangely, CO | 09306235 | 8.61 | 1974-89 | | Dry Fork near Rangely, CO | 09306237 | 2.74 | 1974-82 | | Box Elder Gulch near Rangely, CO | 09306240 | 9.21 | 1974-85 | | Box Elder Gulch Tributary near Rangely, CO | 09306241 | 2.39 | 1975-82 | | Corral Gulch at 84 Ranch, CO | 09306244 | 37.8 | 1975-77 | | Yellow Creek Tributary near 84 Ranch, CO | 09306246 | 5.53 | 1975-77 | | Duck Creek at Upper Station near 84 Ranch, CO | 09306248 | 39.1 | 1975-77 | | Duck Creek near 84 Ranch, CO | 09306250 | 50.0 | 1975-77 | | White River above Rangely, CO | 09306300 | 2,773 | 1972-82 | | Douglas Creek at Rangely, CO | 09306380 | 425 | 1977-78, | | | | | 1995 | | | | | | | East Fork San Juan River near Pagosa Springs, CO | 09340000 | 86.9 | 1935-80 | # WATER RESOURCES DATA - COLORADO, 2000 DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |---|----------------
--------------------------|--------------------------------| | West Fork San Juan River at West Fork Campground near Pagosa Springs, CO | 09340800 | 50.5 | 1984-87, | | | | | 1997-99 | | Wolf Creek near Pagosa Springs, CO | 09341200 | 14.0 | 1968-75 | | Wolf Creek at Wolf Creek Campground near Pagosa Springs, CO | 09341300 | 18.0 | 1984-87, | | | | | 1997-99 | | Windy Pass Creek near Pagosa Springs, CO | 09341350 | 1.41 | 1984-87 | | West Fork San Juan River near Pagosa Springs, CO | 09341500 | 85.4 | 1935-60, | | vest fork our oddi Alver fiedr fagosa oprings, oo | 03041000 | 00.4 | 1985-87, | | | | | , | | | | | 1997-98 | | Turkey Creek near Pagosa Springs, CO | 09342000 | 23.0 | 1937-49 | | Rio Blanco near Pagosa Springs, CO | 09343000 | 58.0 | 1935-71 | | Rio Blanco below Blanco Diversion Dam near Pagosa Springs, CO | 09343300 | 69.1 | 1971-98 | | Rito Blanco near Pagosa Springs, CO | 09343500 | 23.3 | 1935-52 | | Navajo River at Banded Peak Ranch near Chromo, CO | 09344000 | 69.8 | 1937-95 | | Navajo River above Chromo, CO | 09344300 | 96.4 | 1956-70 | | · | | | | | Navajo River below OSO Diversion Dam near Chromo, CO | 09344400 | 100.5 | 1971-98 | | Little Navajo River at Chromo, CO | 09345500 | 21.9 | 1935-52 | | Navajo River at Edith, CO | 09346000 | 172 | 1912-96 | | Middle Fork Piedra River near Pagosa Springs, CO | 09347200 | 32.2 | 1969-75 | | Middle Fork Piedra River near Dyke, CO | 09347205 | 34.1 | 1978-84 | | Piedra River at Bridge Ranger Station near Pagosa Springs, CO | 09347500 | 82.3 | 1936-41, | | Tiodia tittor at Briago trangor otation floar ragioa opinigo, oo | 00011000 | 02.0 | 1946-54 | | Williams Creek near Bridge Benger Station near Begges Springs CO | 00348500 | 40.7 | | | Williams Creek near Bridge Ranger Station near Pagosa Springs, CO | 09348500 | 43.7 | 1936-41, | | | | | 1946-49 | | Weminuche Creek near Bridge Ranger Station near Pagosa Springs, CO | 09349000 | 53.4 | 1936-41, | | | | | 1946-49 | | Piedra River near Piedra, CO | 09349500 | 371 | 1911-12, | | | | | 1938-73 | | Los Pinos River near Bayfield, CO | 09353500 | 270 | 1927-86 | | Animas River at Howardsville, CO | 09357500 | 55.9 | 1935-82 | | | | | | | Cement Creek near Silverton, CO | 09358500 | 13.5 | 1935-37, | | | | | 1946-49 | | Mineral Creek above Silverton, CO | 09358900 | 11.0 | 1968-75 | | Mineral Creek near Silverton, CO | 09359000 | 43.9 | 1935-49 | | Lime Creek near Silverton, CO | 09359100 | 33.9 | 1956-61 | | Animas River above Tacoma, CO | 09359500 | 348 | 1945-56 | | Hermosa Creek near Hermosa, CO | 09361000 | 172 | 1911, | | Tiermosa Oreak ficai Fiermosa, 00 | 03301000 | 172 | | | | | | 1912-14, | | | | | 1919-28, | | | | | 1939-80 | | Falls Creek near Durango, CO | 09361200 | 7.18 | 1959-65 | | Junction Creek near Durango, CO | 09361400 | 26.3 | 1959-65 | | Lightner Creek near Durango, CO | 09362000 | 66.0 | 1927-49 | | Rainbow Springs Trout Ranch near Bordad, CO | 09362600 | | 1995-97 | | Florida River near Hermosa, CO | 09362900 | 68.8 | 1955-63 | | · · · · · · · · · · · · · · · · · · · | | | | | Florida River near Durango, CO | 09363000 | 97.4 | 1899, | | | | | 1901-03, | | | | | 1910-12, | | | | | 1917-24, | | | | | 1926-60 | | Florida River below Florida Farmers Ditch near Durango, CO | 09363050 | 107 | 1967-82 | | Highway Spring near Loma Linda, CO | 09363070 | | 1995-97 | | | | 477 | | | Salt Creek near Oxford, CO | 09363100 | 17.7 | 1956-63, | | | | | 1967-83 | | Florida River at Bondad, CO | 09363200 | 221 | 1956-63, | | | | | 1967-83 | | Cherry Creek near Red Mesa, CO | 09366000 | 66.0 | 1928-50 | | · · | 09368500 | 39.4 | 1910-11, | | West Mancos River near Mancos CO | 0000000 | JJ.7 | 1938-53 | | West Mancos River near Mancos, CO | | | 1 M 10-2 1 | | West Mancos River near Mancos, CO | 0000000 | 44.0 | | | East Mancos River near Mancos, CO | 09369000 | 11.9 | 1937-51 | | East Mancos River near Mancos, CO
Middle Mancos River near Mancos, CO | 09369500 | 12.1 | 1937-51
1937-51 | | West Mancos River near Mancos, CO East Mancos River near Mancos, CO Middle Mancos River near Mancos, CO Mancos River near Mancos, CO | | | 1937-51 | | East Mancos River near Mancos, CO
Middle Mancos River near Mancos, CO | 09369500 | 12.1 | 1937-51
1937-51 | # DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE ONLY STATIONS (Continued) | Station name | Station number | Drainage area
(sq mi) | Period of record (water years) | |---|----------------|--------------------------|--------------------------------| | Mancos River below Johnson Canyon near Cortez, CO | 09370820 | 320 | 1979-82 | | Navajo Wash near Towaoc, CO | 09371002 | 26.3 | 1986-94 | | Hartman Draw at Cortez, CO | 09371400 | 34.0 | 1978-86 | | McElmoCreek above Alkali Canyon near Cortez, CO | 09371420 | 147 | 1972-86 | | Mud Creek near Cortez, CO | 09371495 | 33.6 | 1978-81 | | McElmo Creek near Cortez, CO | 09371500 | 230 | 1926-29, | | | | | 1940-45, | | | | | 1950-54, | | | | | 1982-93 | | McElmo Creek below Cortez, CO | 09371700 | 283 | 1972-83 | # DISCONTINUED SURFACE-WATER-QUALITY STATIONS The following stations were discontinued as continuous-record surface-water-quality stations. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station. [--, data unavailable] | Station name | Station number | Drainage area
(sq mi) | Type of record | Period of record (water years) | |--|----------------|--------------------------|----------------|--------------------------------| | Colorado River below Baker Gulch near Grand Lake, Co | 09010500 | 53.4 | Temp. | 1997-98 | | Colorado River at Hot Sulphur Springs, CO | 09034500 | 825 | Temp., S.C. | 1947-94 | | Williams Fork near Parshall, CO | 09037500 | 184 | Temp., S.C. | 1986-87 | | Williams Fork below Williams Fork Reservoir, CO | 09038500 | 230 | Temp., S.C. | 1985-87 | | Muddy Creek at Kremmling, CO | 09041500 | 290 | Temp., S.C. | 1986-87, | | vidady orceit at themining, oo | 03041000 | 230 | тетр., о.о. | 1990-95 | | French Gulch at Breckenridge, CO | 09046530 | 10.9 | Temp. | 1997-98 | | <u>. </u> | | | • | 1973-79 | | West Tenmile Creek at Copper Mountain, CO | 09049200 | 21.0 | Sed. | | | Boulder Creek near Dillon, CO | 09052500 | 9.89 | Temp., S.C. | 1982 | | Blue River above Green Mountain Reservoir, CO | 09053500 | 511 | Temp. | 1986 | | N B | | =00 | S.C. | 1986-87 | | Blue River below Green Mountain Reservoir, CO | 09057500 | 599 | Temp., S.C. | 1995-99 | | Rock Creek at Crater, CO | 09060550 | 72.6 | Temp., S.C. | 1986-87 | | Black Gore Creek near Vail, CO | 09066050 | 19.6 | Sed. | 1973-79 | | Gore Creek at Vail, CO | 09066250 | 57.3 | Sed. | 1973-79 | | Gore Creek at mouth near Minturn, CO | 09066510 | 102 | Temp. | 1997-98 | | | | | S.C. | 1997 | | Colorado River near Dotsero, CO | 09070500 | 4,394 | Temp., S.C. | 1980-84 | | | | | Temp. | 1997-98 | | | | | Sed. | 1959-61 | | Colorado River near Glenwood Springs, CO | 09071100 | 4,560 | Temp. | 1969-70, | | onerado rarei near cientresa opringe, e c | 33311133 | .,000 | | 1980-85 | | | | | S.C. | 1980-85 | | Colorado River at Glenwood Springs, CO | 09072500 | 4,558 | Temp. | 1954-58 | | Solorado Miver at Cienwood Springs, CO | 09072500 | 4,550 | Sed. | 1959-61 | | Pooring Fork Diver above Difficult Creak poor Aspen CO | 09073300 | 75.8 | | 2000 | | Roaring Fork River above Difficult Creek near Aspen, CO | | | Temp., S.C. | | | Hunter Creek above Midway Creek near Aspen, CO | 09073700 | 6.18 | Temp., S.C. | 1976-77 | | Roaring Fork River at Glenwood Springs, CO | 09085000 | 1,451 | Temp., S.C. | 1980-84 | | | | | Sed. | 1959-61 | | Colorado River below Glenwood Springs, CO | 09085100 | 6,013 | Temp., S.C. | 1980-84 | | East Middle Fork Parachute Cr near Rio Blanco, CO | 09092850 | 22.1 | Temp., S.C. | 1976-82 | | | | | Sed. | 1977-82 | | East Fork Parachute Creek near Rulison,
CO | 09092970 | 20.4 | Temp. | 1977-78, | | | | | | 1980-83 | | | | | S.C. | 1977-83 | | | | | Sed. | 1978, | | | | | | 1980-83 | | Parachute Creek near Parachute, CO | 09093000 | 141 | Temp., S.C. | 1975-80 | | , | | | Sed. | 1974-75 | | Parachute Creek at Parachute, CO | 09093500 | 198 | Temp., S.C. | 1975-80 | | and of the contract con | 3333333 | .00 | Sed. | 1974-82 | | Colorado River near De Beque, CO | 09093700 | 7,370 | Temp., S.C. | 1973-82 | | Solorado Miver hear De Beque, CO | 09093700 | 7,570 | Sed. | 1974-76 | | Roan Creek near De Beque, CO | 09095000 | 321 | Temp., S.C. | 1975-80 | | Roan Creek flear De Beque, CO | 09093000 | 321 | • • | | | 5 5 1 111 01 11 | 00005000 | 07.4 | Sed. | 1975-81 | | Ory Fork at Upper Station near DeBeque, CO | 09095300 | 97.4 | Temp. | 1997-98 | | Government Highline Canal near Mack, CO | 09095530 | | Temp. | 1973-80 | | | | | S.C. | 1974-80 | | Plateau Creek near Cameo, CO | 09105000 | 592 | Temp., S.C. | 1971-75 | | ewis Wash near Grand Junction, CO. | 09106200 | 4.72 | Temp., S.C. | 1973-77 | | East River below Cement Creek near Crested Butte, CO | 09112200 | 238 | S.C., D.O., | 1995-97 | | | | | Temp. | 1995-98 | | Gunnison River below Gunnison Tunnel, CO | 09128000 | 3,965 | Temp. | 1997-98 | | Jncompahgre River near Ridgway, CO | 09146200 | 149 | Temp. | 1997-98 | | Dry Creek at Begonia Road near Delta, CO | 09149480 | 175 | Temp. | 1997-98 | | | | | S.C. | 1997 | | Jncompahgre River at Delta, CO | 09149500 | 1,115 | Sed. | 1959 | | Potter Creek near Columbine Pass, CO | 09149900 | 7.10 | Temp., S.C. | 1981 | | Potter Creek near Olathe, CO | 09149910 | 26.0 | Temp., S.C. | 1981 | | , | | | • • | | | Orchard Mesa Drain at Grand Junction, CO | 09152600 | 3.70 | Temp., S.C. | 1973-77 | | Leach Creek at Durham, CO | 09152650 | 24.8 | Temp., S.C. | 1973-77 | | Adobe Creek near Fruita, CO | 09152900 | 15.4 | Temp., S.C. | 1973-80 | | Big Salt Wash at Fruita, CO | 09153270 | 142 | Temp., S.C. | 1973-77 | # WATER RESOURCES DATA - COLORADO, 2000 # DISCONTINUED SURFACE-WATER-QUALITY STATIONS (Continued) The following stations were discontinued as continuous-record surface-water-quality stations. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station. [--, data unavailable] | Station name | Station number | Drainage area
(sq mi) | Type of record | Period of
record (water
years) | |---|----------------------|--------------------------|----------------------------|--------------------------------------| | Reed Wash near Mack, CO | 09153290 | 15.7 | Temp. | 1997-98 | | | | | S.C. | 1997 | | Reed Wash near Loma, CO | 09153300 | 29.3 | Temp., S.C. | 1973-83 | | West Salt Creek near Carbonera, CO | 09153330 | 95.6 | Temp., S.C. | 1981-82 | | West Salt Creek near Mack, CO | 09153400 | 168 | Temp., S.C. | 1973-84 | | Badger Wash Observation Res 4-A near Mack, CO | 09160000 | .02 | Temp., S.C. | 1981 | | Badger Wash Observation Res 12 near Mack, CO | 09160500 | .09 | Temp., S.C. | 1981-82 | | Badger Wash Observation Res 2-A near Mack, CO | 09161000 | .15 | Temp., S.C. | 1981 | | Badger Wash near Mack, CO | 09163050 | 6.51 | Temp., S.C. | 1973-80 | | East Salt Creek near Mack, CO | 09163310 | 197 | Temp., S.C. | 1973-82 | | Mack Wash near Mack, CO | 09163340 | 15.9 | Temp. | 1973-82 | | Salt Creek meer Mack CO | 00463400 | 426 | S.C. | 1974-82 | | Salt Creek near Mack, CO | 09163490 | 436 | Temp., S.C. | 1973-83 | | Disappointment Creek near Dove Creek, CO | 09168100 | 147 | Temp., S.C. | 1984 | | Big Gypsum Creek near Slick Rock, CO | 09168800 | 43.9 | Temp., S.C. | 1981
1986-87 | | Dolores River below W. Paradox Cr near Bedrock, CO
Salt Creek near Gateway, CO | 09171070
09179200 | 2,144
31.2 | Temp., S.C.
Temp., S.C. | | | Dolores River at Gateway, CO | 09179500 | 4,347 | Temp., S.C. | 1981-85
1949-52 | | Yampa River near Oak Creek, CO | 09237500 | 4,347
227 | Sed. | 1985-88 | | Middle Creek near Oak Creek, CO | 09243700 | 23.5 | Temp., S.C. | 1976-81 | | Foidel Creek near Oak Creek, CO | 09243800 | 8.61 | Temp., S.C. | 1976-83, | | Tolder Creek flear Oak Creek, CO | 09243000 | 0.01 | Temp., S.C. | 1986-88 | | Foidel Creek at Mouth near Oak Creek, CO | 09243900 | 17.5 | Temp., S.C. | 1976-81 | | Tolder Greek at Wodth hear Oak Greek, GO | 09243900 | 17.5 | Sed. | 1978-81 | | Sage Creek above Sage Creek Res. near Hayden, CO | 09244415 | 4.17 | Temp., S.C. | 1981-83 | | Watering Trough Gulch near Hayden, CO | 09244460 | 2.65 | Temp., S.C. | 1979-81 | | Hubberson Gulch near Hayden, CO | 09244464 | 8.08 | Temp., S.C. | 1979-81 | | Stokes Gulch near Hayden, CO | 09244464 | 13.6 | Temp., S.C., Sed. | 1978-81 | | Elkhead Creek above Long Gulch near Hayden, CO | 09246200 | 171 | Temp., S.C. | 1995-99 | | Elkhead Creek below Maynard Gulch near Graig, CO | 09246400 | 212 | Temp., S.C. | 1995-99 | | Good Spring Creek at Axial, CO | 09250400 | 40.0 | Temp. | 1975-78 | | | ******** | | S.C. | 1974-78 | | Wilson Creek above Taylor Creek near Axial, CO | 09250507 | 20.0 | Temp., S.C., Sed. | 1980-81 | | Taylor Creek at Mouth near Axial, CO | 09250507 | 7.22 | Temp., S.C. | 1976-81 | | Wilson Creek near Axial, CO | 09250600 | 27.4 | Temp. | 1975-80 | | ., | | | S.C. | 1974-80 | | | | | Sed. | 1976-80 | | Jubb Creek near Axial, CO | 09250610 | 7.53 | Temp., S.C. | 1976-81 | | Morgan Gulch near Axial, CO | 09250700 | 25.6 | Temp., S.C. | 1980-81 | | Little Snake River above Lily, CO | 09259950 | 3,730 | Temp., S.C. | 1950-69 | | • | | | Sed. | 1958-64 | | Little Snake River near Lily, CO | 09260000 | 3,730 | Temp., S.C. | 1975-85 | | • | | | Sed. | 1958-64 | | Yampa River at Deerlodge Park, CO | 09260050 | 7,660 | Temp., S.C. | 1977-82 | | White River above Coal Creek, near Meeker, CO | 09304200 | 648 | Temp., S.C. | 1978-84 | | White River near Meeker, CO | 09304500 | 755 | Temp., S.C. | 1973-74 | | White River at Meeker, CO | 09304600 | 808 | Temp., S.C. | 1978-85 | | White River below Meeker, CO | 09304800 | 1,024 | Temp., S.C. | 1978-85 | | Piceance Creek below Rio Blanco, CO | 09306007 | 177 | Temp., S.C., Sed. | 1974-85 | | Middle Fork Stewart Gulch near Rio Blanco, CO | 09306015 | 24.0 | Temp., S.C. | 1976, | | | | | | 1981 | | | | | Sed. | 1976 | | Stewart Gulch above West Fork near Rio Blanco, CO | 09306022 | 44.0 | Temp., S.C., Sed. | 1974-82 | | West Fork Stewart Gulch near Rio Blanco, CO | 09306025 | 14.2 | Temp. | 1974-76, | | | | | | 1980-81 | | | | | S.C. | 1975-76, | | | | | | 1980-81 | | | | | Sed. | 1974-76 | | West Fork Stewart Gulch at Mouth near Rio Blanco, CO | 09306028 | 15.7 | Temp. | 1980-81 | | | | | S.C. | 1977, | | | | | | 1980-81 | | | | | Sed. | 1975-76, | | | | | | 1980-81 | # WATER RESOURCES DATA - COLORADO, 2000 DISCONTINUED SURFACE-WATER-QUALITY STATIONS (Continued) The following stations were discontinued as continuous-record surface-water-quality stations. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station. [--, data unavailable] | Station name | Station number | Drainage area
(sq mi) | Type of record | Period of record (water years) | |--|----------------------|--------------------------|---------------------|--------------------------------| | Sorghum Gulch near Rio Blanco, CO | 09306033 | 1.22 | Temp., S.C. | 1975-76, | | | | | Sed. | 1980
1975-76 | | Sorghum Gulch at Mouth near Rio Blanco, CO | 09306036 | 3.62 | Temp., S.C. | 1976, | | Jongham Jalon at Modal Hoal the Blanco, Jo | 0000000 | 0.02 | iompi, cici | 1978, | | | | | | 1980 | | | | | Sed. | 1975-77, | | 0 " 10 H P' PL 00 | 0000000 | 4.00 | T 00 | 1982 | | Cottonwood Gulch near Rio Blanco, CO | 09306039 | 1.20 | Temp., S.C. | 1976-78,
1980 | | | | | Sed. | 1974-77, | | | | | oca. | 1980 | | Piceance Creek Tributary near Rio Blanco, CO | 09306042 | 1.06 | Temp., S.C. | 1974-86 | | • | | | Sed. | 1974-82 | | Piceance Creek below Gardenhire Gulch near Rio Blanco, CO | 09306045 | 255 | Temp., S.C. | 1980-81 | | Scandard Gulch near Rio Blanco, CO | 09306050 | 6.61 | Temp., S.C. | 1980 | | | | | Sed. | 1975-76 | | Scandard Gulch at Mouth near Rio Blanco, CO | 09306052 | 7.97 | Temp., S.C. | 1976, | | | | | | 1978,
1980 | | | | | Sed. | 1974-76, | | | | | oca. | 1980 | | Willow Creek near Rio Blanco, CO | 09306058 | 48.4 | Temp., S.C. | 1974-82 | | | | | pH, D.O. | 1976-82 | | | | | Sed. | 1974-82 | | Piceance Creek above Hunter Creek near Rio Blanco, CO | 09306061 | 309 | Temp., S.C., Sed. | 1974-85 | | | | | pH, D.O. | 1974-84 | | Black Sulphur Creek near Rio Blanco, CO | 09306175 | 103 | Temp., S.C., Sed. | 1975-81 | | Piceance Creek below Ryan Gulch near Rio Blanco, CO | 09306200 | 506 | Sed. | 1972-83 | | | | | Temp., S.C. | 1980-82,
1986-98 | | Horse Draw near Rangely, CO | 09306202 | 1.47 | Sed. | 1980 | | Horse Draw at Mouth near Rangely, CO | 09306203 | 2.87 | Temp., S.C. | 1980 | | 3 7 | | | Sed. | 1980-81 | | Piceance Creek at White River, CO | 09306222 | 652 | Temp., S.C., Sed. | 1974-83 | | Stake Springs Draw near Rangely, CO | 09306230 | 26.1 | Temp., S.C., Sed. | 1977 | | Corral Gulch below Water Gulch near Rangely, CO | 09306235 | 8.61 | Temp., S.C. | 1975-85 | | Dry Fork pear Pangoly CO | 09306237 | 2.74 | Sed.
Temp., S.C. | 1974-82
1977, | | Dry Fork near Rangely, CO | 09300237 | 2.74 | Temp., S.C. | 1977, | | | | | | 1982 | | | | | Sed. | 1975, | | | | | | 1977, | | | | | | 1979, | | | | | | 1981-82 | | Box Elder Gulch near Rangely, CO | 09306240 | 9.21 | Temp., S.C. | 1975-85 | | Pay Eldar Culah Tributary page Pangaly CO | 00206244 | 2.20 | Sed. | 1975-82 | | Box Elder Gulch Tributary near Rangely, CO | 09306241 | 2.39 | Temp. | 1976,
1980-81 | | | |
| S.C. | 1976-77, | | | | | 0.0. | 1981 | | | | | Sed. | 1975, | | | | | | 1980, | | | | | | 1982 | | Corral Gulch near Rangely, CO | 09306242 | 31.6 | Temp., S.C. | 1975-87 | | Correl Culch at 0.4 Danet CO | 00000044 | 07.0 | Sed. | 1974-85 | | Corral Gulch at 84 Ranch, CO | 09306244 | 37.8
5.53 | Temp., S.C. Sed. | 1975-77
1976 | | Yellow Creek Tributary near 84 Ranch, CO Duck Creek at Upper Station near 84 Ranch, CO | 09306246
09306248 | 5.53
39.1 | Sed.
Sed. | 1976
1976 | | Duck Creek at Opper Station hear 84 Ranch, CO Duck Creek near 84 Ranch, CO | 09306250 | 50.0 | Temp., S.C. | 1976 | | Yellow Creek near White River, CO | 09306255 | 262 | Temp., S.C. Sed. | 1974-82 | | | | | | | | Windy Pass Creek near Pagosa Springs, CO | 09341350 | 1.41 | Sed. | 1986 | # WATER RESOURCES DATA - COLORADO, 2000 DISCONTINUED SURFACE-WATER-QUALITY STATIONS (Continued) The following stations were discontinued as continuous-record surface-water-quality stations. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station. [--, data unavailable] | Station name | Station number | Drainage area
(sq mi) | Type of record | Period of record (water years) | |---|----------------|--------------------------|----------------|--------------------------------| | Rio Blanco near Pagosa Springs, CO | 09343000 | 58.0 | Sed. | 1961-62 | | Navajo River above Chromo, CO | 09344300 | 96.4 | Sed. | 1961-62 | | Vallecito Creek near Bayfield, CO | 09352900 | 72.1 | Temp. | 1962-82 | | Mancos River near Cortez, CO | 09370800 | 302 | Temp., S.C. | 1976-79 | | Mancos River below Johnson Canyon near Cortez, CO | 09370820 | 320 | Temp., S.C. | 1979-82 | | Mancos River near Towaoc, CO | 09371000 | 526 | Sed. | 1961 | | Hartman Draw at Cortez, CO | 09371400 | 34.0 | Temp., S.C. | 1978-81 | | McElmo Creek near Cortez, CO | 09371500 | 230 | Temp., S.C. | 1982-93 | Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment). #### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." # **Book 1. Collection of Water Data by Direct Measurement** ### Section D. Water Quality - 1-D1. Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J.F. Ficke, and G. F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 pages. #### **Book 2. Collection of Environmental Data** ### Section D. Surface Geophysical Methods - 2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI book 2, chap. D1. 1974. 116 pages. - 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI book 2, chap. D2. 1988. 86 pages. # Section E. Subsurface Geophysical Methods - 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS—TWRI book 2, chap. E1. 1971. 126 pages. - 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 pages. # Section F. Drilling and Sampling Methods 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 pages. #### **Book 3. Applications of Hydraulics** #### Section A. Surface-Water Techniques - 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI book 3, chap. A1. 1967. 30 pages. - 3-A2. *Measurement of peak discharge by the slope-area method,* by Tate Dalrymple and M.A. Benson: USGS-TWRI book 3, chap. A2. 1967. 12 pages. - 3-A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 pages. - 3-A4. *Measurement of peak discharge at width contractions by indirect methods,* by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 pages. - 3-A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3. chap. A5. 1967. 29 pages. - 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 pages. - 3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 pages. - 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A8. 1969. 65 pages. - 3-A9. *Measurement of time of travel in streams by dye tracing,* by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS-TWRI book 3, chap. A9. 1989. 27 pages. - 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A10. 1984. 59 pages. - 3-A11. *Measurement of discharge by the moving-boat method,* by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 pages. - 3-A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS—TWRI book 3, chap. A12. 1986. 34 pages. - 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI book 3, chap. A13. 1983. 53 pages. - 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI book 3, chap. A14. 1983. 46 pages. - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI book 3, chap. A15. 1984. 48 pages. - 3-A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI book 3, chap. A16. 1985. 52 pages. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 pages. - 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI book 3, chap. A18. 1989. 52 pages. - 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 pages. - 3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS—TWRI book 3, chap. A20. 1993. 38 pages. - 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 pages. #### Section B. Ground-Water Techniques - 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 pages. - 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS-TWRI book 3, chap. B2. 1976. 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 pages. - 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI book 3, chap. B4. 1990. 232 pages. - 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS—TWRI book 3, chap. B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 pages. - 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI book 3, chap. B7. 1992. 190 pages. # Section C. Sedimentation and Erosion Techniques - 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS–TWRI book 3, chap. C2. 1970. 59 pages. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 pages. # **Book 4. Hydrologic Analysis and Interpretation** # Section A. Statistical Analysis - 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 pages. - 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 pages. #### Section B. Surface Water - 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 pages. - 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI book 4, chap. B2. 1973. 20
pages. - 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 pages. ## Section D. Interrelated Phases of the Hydrologic Cycle 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI book 4, chap. D1. 1970. 17 pages. ### **Book 5. Laboratory Analysis** #### Section A. Water Analysis - 5-A1. *Methods for determination of inorganic substances in water and fluvial sediments,* by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI book 5, chap. A2. 1971. 31 pages. - 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 pages. - 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples,* by L.J. Britton and P.E. Greeson, editors: USGS-TWRI book 5, chap. A4. 1989. 363 pages. - 5-A5. *Methods for determination of radioactive substances in water and fluvial sediments,* by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 pages. # Section C. Sediment Analysis 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 pages. ### **Book 6. Modeling Techniques** #### Section A. Ground Water - 6-A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI book 6, chap. A1. 1988. 586 pages. - 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS—TWRI book 6, chap. A2. 1991. 68 pages. - 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI book 6, chap. A3. 1993. 136 pages. - 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI book 6, chap. A4. 1992. 108 pages. - 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5, 1993. 243 pages. - 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages. # **Book 7. Automated Data Processing and Computations** #### Section C. Computer Programs - 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 pages. #### **Book 8. Instrumentation** ### Section A. Instruments for Measurement of Water Level - 8-A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 pages. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI book 8, chap. A2. 1983. 57 pages. #### Section B. Instruments for Measurement of Discharge 8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI book 8, chap. B2. 1968. 15 pages. # **Book 9. Handbooks for Water-Resources Investigations** # Section A. National Field Manual for the Collection of Water-Quality Data - 9-A1. *National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p. - 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A2. 1998. 94 p. - 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A3. 1998. 75 p. - 9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS—TWRI book 9, chap. A4. 1999. 156 p. - 9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A5. 1999, 149 p. - 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI book 9, chap. A6. 1998. Variously paginated. - 9-A7. *National Field Manual for the Collection of Water-Quality Data: Biological Indicators*,edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGS-TWRI book 9, chap. A8. 1998. 48 pages. - 9-A9. *National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities*, by S.L. Lane and R.G. Fay: USGS-TWRI book 9, chap. A9. 1998. 60 pages. # HYDROLOGIC-DATA STATION RECORDS COLORADO RIVER MAIN STEM #### 09010500 COLORADO RIVER BELOW BAKER GULCH, NEAR GRAND LAKE, CO LOCATION.--Lat $40^{\circ}19^{\circ}33^{\circ}$, long $105^{\circ}51^{\circ}22^{\circ}$, in $NE^{1}/_{4}NW^{1}/_{4}$ sec.12, T.4 N., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 500 ft downstream from Baker Gulch, 1.0 mi upstream from Bowen Gulch, and 5.5 mi northwest of town of Grand Lake. DRAINAGE AREA.--53.4 mi². PERIOD OF RECORD.--May 1953 to current year. Water-quality periodic record from December 1994 to September 1998. Daily water temperature record from October 1996 to September 1998. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,750 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station by Grand River ditch (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAF | RGE, CUBI | C FEET PER | | NATER YE.
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--|---|--------------------------------------|--|---|--|------------------------------------|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 23
21
19
18
18 | e7.4
e7.3
e7.3
e7.3
e7.3 | e7.3
e7.3
e7.3
e7.3 | e8.4
e8.4
e8.4
e8.4 | e8.5
e8.5
e8.5
e8.5 | e10
e10
e10
e10
e10 | e17
e17
e18
e19
e20 | | 533
448
410
394
345 | 87
84
78
71
67 | 23
22
23
23
23 | 28
29
29
27
24 | | 6
7
8
9
10 | 19
23
19
18
17 | e7.3
e7.3
e7.3
e7.3 | e7.3
e7.3
e7.3
e7.3
e7.3 | e8.4
e8.4
e8.4
e8.4
e8.4 | e8.5
e8.5
e8.5
e8.5
e9.2 | e10
e10
e10
e10
e10 | | 356
338
316
238
246 | 323
302
293
277
249 | 63
60
62
65
59 | 23
20
19
18
17 | 23
21
21
21
18 | | 11
12
13
14
15 | 16
16
15
15 | e7.3
e7.3
e7.3
e7.3
e7.3 | e7.3
e7.3
e7.3
e7.3 | e8.4
e8.5
e8.5
e8.5
e8.5 | e9.2
e9.2
e9.2
e9.2 | e10
e10
e10
e10
e10 | e25
e25
e25
e25
e27 | 314
268
201
176
171 | 220
199
189
167
161 | 55
52
55
53
53 | 20
18
18
18
18 | 17
16
16
15
15 | | 16
17
18
19
20 | 14
12
e12
e11
e10 | e7.3
e7.3
e7.3
e7.3
e7.3 | e7.3
e7.3
e7.3
e7.3 | e8.5
e8.5
e8.5
e8.5
e8.5 | e9.2
e9.2
e9.2
e9.2 | e10
e10
e10
e10
e10 | e29
e31
e35
e36
44 | 197
250
210
197
194 | 152
154
134
155
192 | 52
51
50
43
39 | 22
29
29
22
22 | 14
14
14
13
16 | | | | | | | | | 45
53
52
43
46 | | | 36
34
32
31
30 | | 23
65
46
38
33 | | 26
27
28
29
30
31 | e8.4
e8.0
e7.8
e7.6
e7.6 | e7.3
e7.3
e7.3
e7.3
e7.3 |
e7.3
e7.3
e7.4
e7.8
e8.2
e8.2 | e8.5
e8.5
e8.5
e8.5
e8.5 | e10
e10
e10
e10 | e13
e14
e15
e15
e15
e16 | 49
78
121
143
150 | 497
420
429
539
629
580 | 113
110
98
91
86 | 29
29
28
26
25
24 | 62
44
29
30
46
30 | 33
33
32
31
32 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 262.4
8.46
8.5
8.4
520 | | | | 9786
316
629
152
19410 | | 1523
49.1
87
24
3020 | 784
25.3
62
17
1560 | 757
25.2
65
13
1500 | | STATIST | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 24.2
83.7
1962
9.25
1957 | 15.4
37.2
1962
7.29
2000 | 9.97
20.2
1998
4.56
1957 | 7.97
12.8
1985
3.91
1957 | 7.19
10.6
1984
3.90
1977 | 7.77
12.1
1999
4.57
1977 | 27.6
74.5
1962
9.11
1991 | 171
329
1996
65.7
1995 | 318
596
1997
69.8
1954 | 114
425
1983
27.3
1954 | 34.5
104
1983
11.1
1954 | 27.3
78.1
1997
11.8
1956 | | SUMMARY | Y STATIST | ICS | FOR : | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1953 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN TANNUAL M TOAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 22481.9
61.6
427
e7.0
e7.3
44590
252
19
7.3 | Jun 24
Nov 24
Nov 18 | | 22268.4
60.8
629
e7.0
e7.3
690
6.85
44170
198
17 | May 30
Nov 24
Nov 18
May 30
May 30 | | 64.1
109
26.3
916
3.0
3.5
976
a7.19
46430
194
18 | Jun 3
Jan 1
Feb
Jun 3
Jun 3 | 1983
1954
30 1957
3 1963
4 1977
30 1957
80 1957 | e Estimated. a Maximum gage height, 7.32 ft, Jun 10, 1995, but may have been higher during period of estimated record, Jun 13-20, 1995. 46 GRAND LAKE OUTLET BASIN #### 09013000 ALVA B. ADAMS TUNNEL AT EAST PORTAL, NEAR ESTES PARK, CO #### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}19^{\circ}40^{\circ}$, long $105^{\circ}34^{\circ}39^{\circ}$, in $SW^{1}/_{4}NW^{1}/_{4}$ sec.9, T.4 N., R.73 W., Larimer County, Hydrologic Unit 10190006, on right bank at upstream end of Aspen Creek siphon, 700 ft downstream from east portal, and 4.5 mi southwest of Estes Park. PERIOD OF RECORD.--September 1970 to current year. Water Discharge records published from October 1946 to September 1998 (monthly discharge only for August and September 1947). REMARKS.--Field data collected prior to 1974 water year are available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS
CHARG
INST
CUBI
FEE
PER
SECO
(0006 | E, SPE- C CIFI C CON- T DUCT ANCE | C WHOLE FIELD (STAND ARD M) UNITS | TEMPER-
- ATURE
WATER | DIS-
SOLVED
(MG/L) | (MG/L
AS
CACO3) | | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | |-----------|--------------------------------------|--|---|-----------------------------------|--|--|--|--------------------------------------|---|--|--|--| | DEC | | | | | | | | | | | | | | 06
JAN | 0845 | | | 8.3 | 3.5 | 9.7 | 13 | 3.83 | .72 | 1.3 | . 2 | . 4 | | 10
MAR | 0845 | 410 | 44 | 8.2 | 2.0 | 11.2 | 20 | 6.10 | 1.19 | 1.7 | . 2 | .6 | | 06
MAY | 0845 | 360 | 46 | 7.4 | 2.5 | 8.5 | 20 | 6.03 | 1.15 | 1.7 | .2 | .6 | | 08
AUG | 0845 | 553 | 39 | 8.1 | 4.5 | 8.6 | 17 | 5.08 | .98 | 1.5 | .2 | .5 | | 07 | 0850 | 553 | 43 | 7.8 | 16.5 | 7.7 | 18 | 5.29 | 1.05 | 1.9 | .2 | .5 | | DATE | ANC UNFLTR TIT 4. LAB (MG/L AS CACO3 | 5 SULFA
DIS-
SOLV
(MG/
) AS SO | DIS-
ED SOLV
L (MG/
4) AS C | DIS- ED SOLVE L (MG/L L) AS F) | DIS-
SOLVED
D (MG/L
AS
SIO2) | AT 180 DEG. C DIS- SOLVED (MG/L) | E SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS, DIS- SOLVED (TONS PER AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | DEC
06 | 16 | 1.8 | E.2 | .1 | 4.2 | | | | | <.010 | <.050 | <.020 | | JAN
10 | 22 | 1.9 | E.3 | <.1 | 5.5 | 40 | | | | <.010 | <.050 | <.020 | | MAR
06 | 23 | 2.3 | | | 5.5 | 39 | 31 | .05 | 37.9 | <.010 | <.050 | <.020 | | MAY | | | | | | | | | | | | | | 08
AUG | 19 | 2.1 | | | 5.4 | 37 | 27 | .05 | 55.2 | <.010 | <.050 | <.020 | | 07 | 21 | 2.1 | E.3 | .1 | 4.4 | 35 | | | | <.010 | <.050 | <.020 | | 1 | | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS DIS- SOLVED (MG/L AS P) | DIS-
SOLVED S
(MG/L
AS P) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | DIS-
SOLVED
(UG/L
AS BE) | DIS-
SOLVED S
(UG/L (
AS B) | DMIUM I
DIS- I
SOLVED I
UG/L
AS CD) I | DIS- I
SOLVED SC
(UG/L (
AS CR) A | DIS- I
DLVED S
UG/L (
AS CO) I | OPPER, DIS- SOLVED (UG/L AS CU) 01040) | | | | .17 | <.050 | <.050 | <.010 | 5 | <2 | <16 < | 8.0 | <14.0 | <13 | <10 | | | | .17 | <.050 | <.050 | <.010 | 6 | <2 | <16 < | 8.0 | <14.0 | <13 | <10 | | MAR
06 | | .14 | <.050 | <.050 | <.010 | 7 | <2 | <16 < | 8.0 | <14.0 | <13 | <10 | | MAY
08 | | .19 | <.050 | <.050 | <.010 | 6 | <2 | <16 < | 8.0 | <14.0 | <13 | <10 | | AUG
07 | | .20 | <.050 | <.050 | <.010 | 6 | <2 | <16 < | 8.0 | <14.0 | <13 | <10 | # GRAND LAKE OUTLET BASIN 47 # 09013000 ALVA B. ADAMS TUNNEL AT EAST PORTAL, NEAR ESTES PARK, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |-----------|---|---|--|--|---|--|---|---|---|---|---| | DEC
06 | 10 | <100 | <3.9 | 4 | <2 | <34 | <40 | <7 | 21.7 | <10 | <20 | | JAN | 10 | <100 | <3.9 | 4 | <2 | <34 | <40 | < / | 21.7 | <10 | <20 | | 10
MAR | 10 | <100 | <3.9 | 7 | <2 | <34 | <40 | <7 | 35.3 | <10 | <20 | | 06
MAY | 10 | <100 | <3.9 | 4 | <2 | <34 | <40 | <7 | 36.1 | <10 | <20 | | 08 | 30 | <100 | <3.9 | E2 | <2 | <34 | <40 | <7 | 26.5 | <10 | <20 | | AUG
07 | 20 | <100 | <3.9 | 8 | <2 | <34 | <40 | E4 | 31.5 | <10 | <20 | | | MIS | CELLANEOU | S FIELD M | EASUREMEN | TS, WATER | YEAR OCT | OBER 1999 | TO SEPTE | MBER 2000 | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | JAN 09... 0900 533 49 1.0 ### 09014500 SHADOW MOUNTAIN LAKE NEAR GRAND LAKE, CO WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1989 to current year. REMARKS.--Samples were collected near-surface and near-bottom, near dam. Note: The following remark codes may appear in the tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | | | TEMPER-
- ATURE
WATER
) (DEG C | DIS-
SOLVEI
(MG/L) |)
) | | | |------------------------|--|--|--|--
---|--|---|--|--|--|--|--| | | | | OCT
18
18
18
18 | 1140
1141
1142
1143
1144 | .10
5.00
10.0
15.0
20.0 | 46
46
46
46
46 | 8.2
8.3
8.3
8.3 | 8.0
8.0
7.9
7.9 | 8.2
8.2
8.2
8.2
8.2 | | | | | | | | 25
25
25
25
25 | 1105
1106
1107
1108
1109
1110 | .10
5.00
10.0
15.0
20.0
25.0 | 40
40
40
37
35
34 | 7.5
7.5
7.5
7.5
7.4
7.4 | 12.4
11.7
11.3
10.2
8.8
8.4 | 8.0
8.0
7.9
7.9
7.9
8.0 | | | | | | | | AUG
15
15
15
15 | 1130
1131
1132
1133
1134
1135 | .10
5.00
10.0
15.0
20.0
25.0 | 48
47
47
47
47
47 | 7.5
7.4
7.4
7.3
7.3 | 14.0
11.4
10.8
10.7
10.5 | 7.0
6.4
6.1
6.1
5.9 | | | | | | | | 28
28
28
28
28
28 | 1115
1116
1117
1118
1119
1120 | .10
5.00
10.0
15.0
20.0
25.0 | 48
48
48
48
48 | 7.2
7.2
7.2
7.2
7.2
7.2 | 9.6
9.2
9.1
9.0
8.8
8.6 | 7.4
7.4
7.4
7.3
7.2
6.6 | | | | | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN)
(00077) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | | OCT
18
18 | 1150
1205 | 46
46 | 8.2
8.3 | 8.0
7.9 | 91.0 | 8.2
8.2 | <1 | 23
23 | 6.98
6.98 | 1.42
1.40 | 1.7
1.7 | .2 | | MAY
25
25 | 1115
1130 | 40
34 | 7.5
7.4 | 12.4
8.4 | 84.0 | 8.0
8.0 | K1
 | 20
18 | 5.82
5.38 | 1.27
1.19 | 1.7
1.5 | .2 | | AUG
15
15
SEP | 1145
1200 | 48
47 | 7.5
7.3 | 14.0
10.4 | 116
 | 7.0
5.7 | <1
 | 22
22 | 6.79
6.77 | 1.28
1.28 | 1.9
1.8 | .2 | | 28
28 | 1130
1145 | 48
47 | 7.2
7.2 | 9.6
8.6 | 121 | 7.4
6.6 | K1
 | 22
22 | 6.77
6.84 | 1.23
1.21 | 1.9
1.9 | .2 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | OCT
18
18 | . 7
. 7 | 25
25 | 3.5
3.5 | .3 | .2 | 7.0
7.0 | 43
41 | 37
37 | .06 | <.010
<.010 | <.050
<.050 | <.020
<.020 | | MAY
25
25 | .9 | 20
17 | 2.7 | .4
E.3 | .2 | 6.5
6.8 | 41
39 | 32 | .06 | <.010
<.010 | <.050
<.050 | <.020
<.020 | | AUG
15
15 | .7
.6 | 24
24 | 2.2 | .3 | .1 | 5.4
5.5 | 36
37 | 33
33 | .05 | <.001
<.001 | <.005
.005 | <.002 | | SEP
28
28 | .7 | 24
24 | 2.5
2.5 | .5
.5 | .1 | 5.6
5.6 | 33
34 | 33
34 | .04 | <.001
<.001 | <.005
<.005 | .003 | 49 # 09014500 SHADOW MOUNTAIN LAKE NEAR GRAND LAKE, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | |------------------------------------|--|---|--|--|---|--|--|---|---|---|---|--| | OCT
18
18
MAY | .26
.26 | E.048
.054 | <.050
<.050 | <.010
<.010 | 5.3 | .4 | 3.6
3.3 | 6
6 | <2
<2 | <16
<16 | <.1
<.1 | <14.0
<14.0 | | 25
25
AUG | .23 | .016
.021 | E.005
E.005 | <.010
<.010 | .9 | <.1 | 5.9
6.8 | 7
6 | <2
<2 | <16
<16 | <.1
<.1 | <14.0
<14.0 | | 15
15 | .21
.19 | .010
.013 | <.006
E.003 | .001
.001 | 2.5 | <.1 | 3.4
3.4 | 8
8 | <2
<2 | <16
<16 | <.1
<.1 | <.8
<.8 | | SEP
28
28 | .19
.17 | .012 | E.003
E.003 | <.001
<.001 | 1.8 | <.1 | 3.2
3.4 | 7
7 | <2
<2 | E9
<16 | <.1
<.1 | <.8
<.8 | | | COBALT,
DIS- | COPPER,
DIS- | IRON,
DIS- | LEAD,
DIS- | LITHIUM
DIS- | MANGA-
NESE,
DIS- | MOLYB-
DENUM,
DIS- | NICKEL,
DIS- | SILVER,
DIS- | STRON-
TIUM,
DIS- | VANA-
DIUM,
DIS- | ZINC,
DIS- | | DATE | SOLVED
(UG/L
AS CO)
(01035) | SOLVED
(UG/L
AS CU)
(01040) | SOLVED
(UG/L
AS FE)
(01046) | SOLVED
(UG/L
AS PB)
(01049) | SOLVED
(UG/L
AS LI)
(01130) | SOLVED
(UG/L
AS MN)
(01056) | SOLVED
(UG/L
AS MO)
(01060) | SOLVED
(UG/L
AS NI)
(01065) | SOLVED
(UG/L
AS AG)
(01075) | SOLVED
(UG/L
AS SR)
(01080) | SOLVED
(UG/L
AS V)
(01085) | SOLVED
(UG/L
AS ZN)
(01090) | | OCT
18
18 | (UG/L
AS CO) | (UG/L
AS CU) | (UG/L
AS FE) | (UG/L
AS PB) | (UG/L
AS LI) | (UG/L
AS MN) | (UG/L
AS MO) | (UG/L
AS NI) | (UG/L
AS AG) | (UG/L
AS SR) | (UG/L
AS V) | (UG/L
AS ZN) | | OCT
18
18
MAY
25
25 | (UG/L
AS CO)
(01035) | (UG/L
AS CU)
(01040) | (UG/L
AS FE)
(01046) | (UG/L
AS PB)
(01049) | (UG/L
AS LI)
(01130) | (UG/L
AS MN)
(01056) | (UG/L
AS MO)
(01060) | (UG/L
AS NI)
(01065) | (UG/L
AS AG)
(01075) | (UG/L
AS SR)
(01080) | (UG/L
AS V)
(01085) | (UG/L
AS ZN)
(01090) | | OCT
18
18
MAY
25 | (UG/L
AS CO)
(01035)
<13
<13 | (UG/L
AS CU)
(01040)
<10
<10 | (UG/L
AS FE)
(01046)
40
40 | (UG/L
AS PB)
(01049)
<100
<100 | (UG/L
AS LI)
(01130)
E3.0
E2.7 | (UG/L
AS MN)
(01056)
<2
<2
<2 | (UG/L
AS MO)
(01060)
<34
<34 | (UG/L
AS NI)
(01065)
<40
<40 | (UG/L
AS AG)
(01075)
<1
<1
<1 | (UG/L
AS SR)
(01080)
37.5
37.2 | (UG/L
AS V)
(01085)
<10
<10 | (UG/L
AS ZN)
(01090)
<20
<20
<20 | 50 COLORADO RIVER BASIN ### 09018300 GRANBY PUMP CANAL NEAR GRAND LAKE, CO #### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}12^{\circ}25^{\circ}$, long $105^{\circ}50^{\circ}56^{\circ}$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.24, T. 3 N., R.76 W., Grand County, Hydrologic Unit 14010001, at road crossing at south end of Shadow Mountain Lake, 4 mi southwest of Grand Lake, and 13.5 mi northeast of Granby. PERIOD OF RECORD.--September 1970 to September 1975, March 1978 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | ~ - | • | | | | | | | | |-------------------------------------|--|---|---|--
--|---|--|--|---|---|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | | DEC 09 | 0650 | 360 | 51 | 8.1 | 3.0 | 6.3 | 22 | 6.76 | 1.21 | 1.9 | . 2 | | FEB 24 | 1140 | 346 | 51 | 7.6 | 3.4 | 8.6 | 22 | 6.67 | 1.20 | 1.8 | .2 | | SEP
07
11 | 1230
1530 | 352
392 | 50
50 | 7.7
7.5 | 9.4
8.8 | 5.7
5.6 | 21
21 | 6.57
6.52 | 1.21
1.23 | 1.8
1.8 | .2 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ANC
UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | DEC
09
FEB | .7 | 25 | 3.0 | .3 | .1 | 5.2 | 37 | 34 | .05 | 36.0 | <.010 | | 24
SEP | .6 | 24 | 2.3 | .3 | .1 | 5.2 | 45 | 33 | .06 | 42.0 | <.010 | | 07 | .7 | 23 | 2.5 | . 4 | .1 | 5.4 | 41
36 | 33 | .06 | 39.0 | .001
<.001 | | 11 | .6 | 23 | 2.4 | .3 | .1 | 5.5 | 36 | 33 | .05 | 38.1 | <.001 | | 11 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN, | NITRO-
GEN,AM- | PHOS- | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | | DATE DEC 09 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | COBALT,
DIS-
SOLVED
(UG/L
AS CO) | | DATE DEC 09 FEB 24 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | | DATE DEC 09 FEB | NITROGEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | | DEC 09
FEB 24
SEP 07 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED (MG/L
AS N)
(00631)
<.050
<.050 | NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 <.020 .003 | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.050
<.050 | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.050
<.050 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED (UG/L
AS BE) (01010) | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <8.0 <8.0 <.1 | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030)
<14.0
<.8 | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035)
<13
<13 | | DATE DEC 09 FEB 24 SEP 07 11 DATE | NITROGEN, NO2+NO3 DIS-SOLVED (MG/L AS N) (00631) <.050 .040 .036 COPPER, DIS-SOLVED (UG/L AS CU) | NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 <.020 .003 <.002 IRON, DIS- SOLVED (UG/L AS FE) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.15
.16
.14
.18 | PHOS-PHORUS TOTAL (MG/L AS P) (00665) <.050 <.050 .011 .053 LITHIUM DIS-SOLVED (UG/L AS LI) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 .007 .009 MANGA-NESE, DIS-SOLVED (UG/L AS MN) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 .005 .010 MOLYB-DENUM, DIS-SOLVED (UG/L AS MO) | BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 8 7 8 7 NICKEL, DIS- SOLVED (UG/L AS NI) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<2
<2
<2
<2
<2
<2
<2
SILVER,
DIS-
SOLVED
(UG/L | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <8.0 <8.0 <.1 <.1 STRON- TIUM, DIS- SOLVED (UG/L AS SR) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <14.0 <.8 <.8 <.8 VANA-DIUM, DIS-SOLVED (UG/L AS V) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035)
<13
<13
<1
<1
ZINC,
DIS-
SOLVED
(UG/L
AS ZN) | | DEC 09 FEB 24 SEP 07 11 | NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .040 .036 COPPER, DIS- SOLVED (UG/L AS CU) (01040) | NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 <.020 .003 <.002 IRON, DIS- SOLVED (UG/L AS FE) (01046) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.15
.16
.14
.18
LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) <.050 .011 .053 LITHIUM DIS- SOLVED (UG/L AS LI) (01130) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 .007 .009 MANGA-NESE, DIS-SOLVED (UG/L AS MN) (01056) | PHOS-PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.010 .005 .010 MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005)
8
7
8
7
NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<2
<2
<2
<2
<2
<2
<1
SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <8.0 <8.0 <.1 <.1 STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <14.0 <.8 <.8 <.8 VANA-DIUM, DIS-SOLVED (UG/L AS V) (01085) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035)
<13
<13
<1
2INC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | 51 #### 09018500 LAKE GRANBY NEAR GRANBY, CO LOCATION.--Lat $40^{\circ}10^{\circ}55^{\circ}$, long $105^{\circ}52^{\circ}14^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.35, T.3 N., R.76 W., Grand County, Hydrologic Unit 14010001, in Granby pumping plant at north shore of lake, 2.5 mi north of Granby Dam on Colorado River and 7.5 mi northeast of Granby. DRAINAGE AREA.--312 mi². #### RESERVOIR ELEVATIONS AND CONTENTS RECORDS PERIOD OF RECORD. --October 1949 to current year. Prior to October 1955, published as Granby Reservoir near Granby. REVISED RECORDS .-- WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. Prior to Apr. 9, 1951, nonrecording gage at dam at present datum. REMARKS.--Lake is formed by earthfill dam and dikes. Regulation began Sept. 13, 1949, and usable storage began June 14, 1950, while dam was under construction. Usable capacity, 465,600 acre-ft, between elevations 8,186.00 ft, trash rack sill at outlet, and
8,280.00 ft, top of radial spillway gates. Dead storage, 74,190 acre-ft. Figures given represent usable contents. Lake is used to store water for pumping to Shadow Mountain Lake for transmountain diversion through Alva B. Adams tunnel for power and irrigation in South Platte River basin. COOPERATION .-- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 465,900 acre-ft, July 13, 1962, elevation, 8,280.05 ft; minimum since appreciable storage was attained, 13,070 acre-ft, Apr. 16, 1978, elevation, 8,190.93 ft. EXTREMES (AT 0800) FOR CURRENT YEAR.--Maximum contents, 463,200 acre-ft, June 21, elevation, 8,279.68 ft; minimum, 358,200 acre-ft, Apr. 10, elevation, 8,264.47 ft. #### MONTHEND ELEVATION AND CONTENTS AT 0800, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation (feet) | Contents (acre-feet) | Change in
contents
(acre-feet) | |--|--|---|--| | Sept. 30 | 8,277.53
8,275.73
8,275.14
8,272.45 | 447,800
435,000
430,800
412,000 | -12,800
-4,200
-18,800 | | CAL YR 1999 | - | - | -4,200 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 8,269.46
8,267.36
8,265.31
8,266.20
8,276.20
8,279.44
8,275.95
8,271.80
8,269.09 | 391,400
377,200
363,700
369,500
438,300
461,500
436,500
407,500
389,000 | -20,600
-14,200
-13,500
+5,800
+68,800
+23,200
-25,000
-29,000
-18,500 | | WTR YR 2000 | _ | _ | -58,800 | ### 09018500 LAKE GRANBY NEAR GRANBY, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1973 to June 1975, June 1979 to current year. REMARKS.--Samples were collected near-surface and near bottom, near spillway. Note: The following remark codes may appear in the tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | , | | | | | | |--|--|---|--|---|---|---| | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | | OCT 18 | 0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0941
0942
0943
0944
0945
0946
0947 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
110
120
130
140
150
160 | 42
42
42
42
42
42
42
42
43
44
44
44
44
44
44
44
44
44
44 | 7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.7
7.6
7.6
7.6
7.6
7.6 | 10.3 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 | 7.3
7.1
7.2
7.2
7.2
7.2
7.2
7.2
7.2
4.4
3.6
3.5
3.4
3.3
3.3
3.3
3.3 | | 25
25
25
25
25
25
25
25
25
25
25
25
25 | 0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0927
0928
0929 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0 | 43
43
42
42
42
42
43
44
44
44
43
43
43
43 | 7.7
7.7
7.7
7.7
7.7
7.7
7.7
7.6
7.6
7.6 | 8.8
8.6
8.1
8.0
8.0
7.8
7.0
6.6
6.5
6.5
5.8 | 8.6
8.7
8.8
8.7
8.6
8.5
8.1
8.0
7.9
7.8
7.7 | | AUG 15 | 0930
0931
0932
0933
0934
0935
0937
0938
0939
0941
0942
0943
0944
0945
0947
0948 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
110
120
130
140
150 | 47
47
47
47
47
46
45
45
45
45
45
45
45
45
45 | 8.1
8.1
8.1
8.1
7.9
7.6
7.6
7.5
7.4
7.3
7.3
7.3 | 19.0
18.9
18.8
18.8
18.8
16.6
12.4
10.9
8.3
7.2
7.0
7.0
7.0
7.0
7.0
6.9
6.9 | 7.1
7.1
7.1
7.1
7.1
7.1
4.6
4.8
4.7
4.6
4.6
4.6
4.6
4.6 | | 28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28 | 0930
0931
0932
0933
0934
0935
0936
0937
0938
0939
0940
0941
0942
0943 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0
100 | 48
48
48
48
48
48
48
47
47
47
47
47
47
47 | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.2
7.1
7.0
7.0
7.0
6.9
6.9 | 13.7
13.7
13.7
13.6
13.6
13.6
13.5
12.5
9.2
8.1
7.8
7.7
7.6
7.5 | 7.0
7.0
7.0
6.9
6.9
6.9
5.0
3.1
3.2
3.2
3.2
3.2 | > 09018500 LAKE GRANBY NEAR GRANBY, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | WAIEK-QU | MILII DAI | A, WAIEK | IEAR OCIO | DEK 1999 | 10 SEPIEM | DER 2000 | | | | |---|--|--|---|--|---|---|---|--
---|--|--|---| | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN)
(00077) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | | OCT
18
18 | 0950
1005 | 42
44 | 7.9
7.5 | 10.3
7.1 | 158
 | 7.3
3.2 | <1 | 21
22 | 6.51
6.81 | 1.13
1.25 | 1.7
1.8 | .2 | | MAY
25
25 | 0945
1000 | 43
43 | 7.7
7.5 | 8.8
5.8 | 144 | 8.6
7.7 | <1 | 22
22 | 6.80
6.88 | 1.21
1.22 | 1.9
1.9 | .2 | | AUG
15
15 | 1000
1015 | 47
45 | 8.1
7.2 | 19.0
6.9 | 193
 | 7.1
4.6 | <1 | 21
22 | 6.60
6.70 | 1.20
1.26 | 1.8
1.8 | .2 | | SEP
28
28 | 0950
1005 | 48
47 | 7.3
6.9 | 13.7
7.4 | 219 | 7.0
3.2 | <1
 | 22
22 | 6.79
6.68 | 1.17
1.18 | 1.8
1.8 | .2 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ANC
UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | OCT
18
18 | .6
.7 | 23
24 | 2.8 | .3 | .1 | 4.6
5.6 | 37
45 | 32
34 | .05 | <.010
<.010 | <.050
.059 | <.020
<.020 | | MAY
25
25 | .6
.8 | 23
24 | 2.3 | . 4 | <.1
.1 | 5.1
5.2 | 37
38 | 32
33 | .05 | <.010
<.010 | <.050
<.050 | <.020
<.020 | | AUG
15
15 | .6
.6 | 24
24 | 2.0
2.2 | . 4 | .1
<.1 | 4.7
5.5 | 37
34 | 32
33 | .05 | <.001
<.001 | <.005
.034 | .003 | | SEP
28 | .6 | 24 | 2.4 | .5 | .1 | 4.4 | 35
34 | 32 | .05 | <.001 | <.005 | .003 | | 28 | .7 | 23 | 2.4 | .5 | .1 | 5.8 | 34 | 34 | .05 | <.001 | .065 | .005 | | 28
DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) | CHRO-MIUM,
DIS-SOLVED
(UG/L
AS CR) | | DATE OCT 18 18 | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE) | BORON,
DIS-
SOLVED
(UG/L
AS B) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | | DATE OCT 18 18 MAY 25 25 | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
TON
FLUOROM
(UG/L)
(70954) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | | OCT 18 18 MAY 25 25 AUG 15 | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.046
E.039 | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.050
<.050 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 2.09 | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020)
<16
<16 | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 | CHRO-
MIUM,
DIS-
SOLVED (UG/L
AS CR) (01030)
<14.0
<14.0 | | OCT 18 18 MAY 25 AUG 15 | NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .22 .15 .20 .18 .21 | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.046 E.039 .009 .009 | PHOS-
PHORUS
DIS-
SOLVED (MG/L
AS P)
(00666)
<.050
<.050
E.003
<.006 | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010
<.010 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 2.09 1.3 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680)
3.2
2.9
4.0
3.4 | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010)
<2
<2
<2
<2
<2 | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020)
<16
<16
<16
=8
<16
<16 | CADMIUM DIS- SOLVED (UG/L AS (CD) (01025) <.1 <.1 <.1 <.1 <.1 | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <14.0 <14.0 <7.1 <14.0 E7.1 | | OCT 18 18 MAY 25 25 AUG 15 15 SEP 28 | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.046 E.039 .009 .009 .012 E.005 | PHOS-
PHORUS
DIS-
SOLVED (MG/L
AS P)
(00666)
<.050
<.050
<.050
<.006
<.006
E.004 | PHOS-PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 .002 .005 <.001 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 2.09 1.3 1.1 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 <.1 <.1 | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680)
3.2
2.9
4.0
3.4
3.4
3.2
3.5 | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005)
7
7
8
8
8 | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS
BE)
(01010)
<2
<2
<2
<2
<2
<2
<2 | BORON,
DIS-
SOLVED (UG/L
AS B)
(01020)
<16
<16
<16
<16
<16
<16 | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <14.0 <14.0 <14.0 E7.1 E.5 <.8 <.8 | | OCT 18 18 MAY 25 25 AUG 15 15 SEP 28 28 | NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .22 .15 .20 .18 .21 .16 .16 .14 COBALT, DIS- SOLVED (UG/L AS CO) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.046 E.039 .009 .009 .012 E.005 .015 COPPER, DIS-SOLVED (UG/L AS CU) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 <.050 <.006 <.006 E.004 <.006 .011 IRON, DIS-SOLVED (UG/L AS FE) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 DIS-SOLVED (MG/L AS P) (00671) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 2.09 1.3 1.1 LITHIUM DIS- SOLVED (UG/L AS LI) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680)
3.2
2.9
4.0
3.4
3.4
3.2
3.5
3.2
MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO) | BARIUM,
DIS-
SOLVED (UG/L
AS BA) (01005)
7 7 8 8 8 8 8 8 8 8 9 8 8 | BERYL-
LIUM,
DIS-
SOLVED (UG/L
AS BE) (01010)
<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <4 <2 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 | BORON, DIS- SOLVED (UG/L AS B) (01020) <16 <16 <16 <16 <16 <16 <16 <16 <16 LE10 EI0 STRON- TIUM, DIS- SOLVED (UG/L AS SR) | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 AS CD) (UD025) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <14.0 <14.0 <14.0 <7.1 | | DATE OCT 18 18 MAY 25 25 AUG 15 SEP 28 28 DATE OCT 18 18 MAY 25 25 | NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .22 .15 .20 .18 .21 .16 .16 .14 COBALT, DIS- SOLVED (UG/L AS CO) (01035) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.046 E.039 .009 .009 .012 E.005 .015 COPPER, DIS-SOLVED (UG/L AS CU) (01040) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 <.050 <.050 <.006 E.003 <.006 E.004 <.006 DIS-SOLVED (UG/L AS FE) (01046) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 DIS-SOLVED (MG/L AS P) (00671) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 2.09 1.3 1.1 LITHIUM DIS- SOLVED (UG/L AS LI) (01130) | CHLOR-B PHYTO- PLANK- TON CHROMO FLUGROM (UG/L) (70954) <.1 <.1 <.1 <.1 KANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680)
3.2
2.9
4.0
3.4
3.2
3.5
3.2
MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | BARIUM,
DIS-
SOLVED (UG/L
AS BA) (01005)
7 7 8 8 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8 | BERYL-
LIUM,
DIS-
SOLVED (UG/L
AS BE) (01010)
<2 <2 <2 <2 <2 <2 <2 <2 <12 <12 <12 <12 | BORON, DIS- SOLVED (UG/L AS B) (01020) <16 <16 <16 <16 <16 <16 E10 E10 STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080) 37.4 | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <14.0 <14.0 <14.0 <7.1 E.5 <.8 E.4 ZINC, DIS-SOLVED (UG/L AS ZN) (01090) | | DATE OCT 18 18 MAY 25 25 AUG 15 15 SEP 28 28 DATE OCT 18 18 MAY 25 | NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .22 .15 .20 .18 .21 .16 .16 .14 COBALIT, DIS- SOLVED (UG/L AS CO) (01035) <13 <13 <13 | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.046 E.039 .009 .009 .012 E.005 .015 COPPER, DIS-SOLVED (UG/L AS CU) (01040) <10 <10 <10 | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 <.050 <.050 <.006 E.003 <.006 E.004 <.006 E.001 IRON, DIS-SOLVED (UG/L AS FE) (01046) <10 10 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 .002 .005 <.001 .008 LEAD, DIS-SOLVED (UG/L AS PB) (01049) <100 <100 <100 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) 2.09 1.3 1.1 LITHIUM DIS- SOLVED (UG/L AS LI) (01130) E2.2 E2.0 <3.9 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUGROM (UG/L) (70954) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680)
3.2
2.9
4.0
3.4
3.2
3.5
3.2
MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | BARIUM,
DIS-
SOLVED (UG/L
AS BA) (01005)
7 7 8 8 8 8 8 9 8 8 8 8 9 8 8 8 8 8 8 8 | BERYL-
LIUM,
DIS-
SOLVED (UG/L
AS BE) (01010)
<2 <2 <2 <2 <2 <2 <2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | BORON, DIS- SOLVED (UG/L AS B) (01020) <16 <16 <16 <16 <16 E8 <16 <16 <16 CIGNUTE COLUMN C | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <14.0 <14.0 <14.0 E7.1 E.5 <.8 E.4 ZINC, DIS-SOLVED (UG/L AS ZN) (01090) <20 <20 <20 <20 | ### 400844105530800 LAKE GRANBY (WEST) NEAR GRANBY, CO #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1989 to current year. DATE OCT 18... 18... MAY 25... 25... AUG 15... SEP 28... 28... TIME 1050 1105 1030 1045 1045 1100 1040 1055 REMARKS.--Samples were collected near-surface and near-bottom, near dam in Rainbow Bay. Note: The following remark codes may appear in the tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | DATE | TIME | SAM-
PLING
DEPTH
(FEET) | | | WATER
(DEG C) | DIS-
SOLVEI
(MG/L) |) | | | |--|--|--|---|--|---|---|---|---|---|---| | | OCT 18 18 18 18 18 18 18 18 18 18 | 1030
1031
1032
1033
1034
1035
1036
1037
1038
1039 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0 | 42
42
42
42
42
42
42
42
42
42
44 | 8.0
8.0
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 10.0
10.0
10.0
10.0
10.0
10.0
10.0
10.0 | 7.6
7.4
7.4
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | | | | | | MAY 25 25 25 25 25 25 25 25 | 1015
1016
1017
1018
1019
1020
1021
1022
1023 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0 | 48
47
47
47
47
46
46
44 | 7.5
7.5
7.5
7.5
7.5
7.5
7.4
7.4 | 7.7
7.5
7.2
7.1
7.0
6.9
6.5
6.0
5.8 | 8.4
8.3
8.3
8.2
8.2
8.1
8.0
7.6 | | | | | | AUG 15 15 15 15 15 15 15 15 15 15 | 1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
64.0 | 47
47
47
47
47
47
46
46
46
46 | 8.0
8.0
7.9
7.9
7.7
7.5
7.5
7.3 | 19.3
18.9
18.8
18.7
18.7
18.5
16.0
12.7
9.2
8.2
7.9 | 7.2
7.1
7.0
7.0
6.9
5.5
4.5
4.0
3.5
3.6 | | | | | | 28
28
28
28
28
28
28
28
28
28
28 | 1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
67.0 | 48
48
48
48
48
48
48
48
48 | 7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.1 | 13.3
13.3
13.2
13.2
13.2
13.2
13.2
13.1
13.1 | 6.8
6.8
6.8
6.8
6.8
6.8
6.7
2.3 | | | | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN)
(00077) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | | 42
44 | 8.0
7.7 | 10.0
7.7 | 134 | 7.6
3.2 | <1
 | 21
21 | 6.57
6.63 | 1.15
1.14 | 1.7
1.7 | .2 | |
48
44 | 7.5
7.4 | 7.7
5.8 | 114 | 8.4
7.6 | <1 | 24
23 | 7.28
7.01 | 1.36
1.25 | 2.3 | .2 | | 47
46 | 8.0
7.3 | 19.3
7.9 | 142 | 7.2
3.6 | K1
 | 22
22 | 6.62
6.76 | 1.21
1.26 | 1.8
1.8 | .2 | | 48
48 | 7.3
7.0 | 13.3
8.5 | 206 | 6.8 | <1
 | 22
22 | 6.82
6.80 | 1.18
1.19 | 1.8
1.8 | .2 | 55 # 400844105530800 LAKE GRANBY (WEST) NEAR GRANBY, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | |------------------------|---|---|--|--|--|--|---|--|---|--|--|--| | OCT
18
18
MAY | .6
.6 | 23
23 | 2.8 | .3 | .2 | 4.6
4.7 | 36
36 | 32
32 | .05 | <.010
<.010 | <.050
<.050 | <.020
<.020 | | 25
25
AUG | .6
.7 | 25
24 | 2.7
2.5 | . 4 | .1
<.1 | 7.0
5.6 | 43
39 | 37
34 | .06
.05 | <.010
<.010 | <.050
<.050 | <.020
<.020 | | 15
15
SEP | .6
.6 | 24
24 | 2.1
2.2 | . 4 | <.1
<.1 | 4.7
5.6 | 35
37 | 32
33 | .05 | <.001
<.001 | <.005
.020 | <.002 | | 28
28 | .7
.6 | 24
23 | 2.4 | .5
.5 | .1
.1 | 4.4
5.9 | 35
33 | 32
34 | .05 | <.001
.001 | <.005 | .002
.018 | | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70953) | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | | OCT
18
18
MAY | .18
.17 | E.045
E.039 | <.050
<.050 | <.010
<.010 | 1.8 | <.1 | 3.4
3.3 | 7
7 | <2
<2 | <16
<16 | <.1
<.1 | <14.0
<14.0 | | 25
25 | .19
.32 | .017 | E.003
E.004 | <.010
<.010 | 1.8 | <.1 | 4.3
3.8 | 9
8 | <2
<2 | <16
<16 | <.1
<.1 | E7.8
<14.0 | | 15
15
SEP | .18
.18 | E.007
.014 | <.006
E.005 | .001 | .5 | <.1 | 3.6
3.5 | 8
8 | <2
<2 | <16
<16 | <.1
<.1 | E.4
<.8 | | 28
28 | .18
.16 | E.006
.016 | E.003
.008 | <.001
.004 | 1.2 | <.1 | 3.5
3.4 | 8
8 | <2
<2 | E8
E8 | <.1
<.1 | E.4
<.8 | | DATE | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT
18
18
MAY | <13
<13 | <10
<10 | E10
<10 | <100
<100 | E2.2
E2.3 | <2
<2 | <34
<34 | <40
<40 | <1
<1 | 37.6
37.8 | <10
<10 | <20
<20 | | 25
25
AUG | <13
<13 | <10
<10 | 20
20 | <100
<100 | E2.1
<3.9 | <2
<2 | <34
<34 | <40
<40 | <1
<1 | 50.1
41.7 | <10
<10 | <20
<20 | | 15
15
SEP | <1
<1 | <1
<1 | <10
E10 | <1
<1 | .9 | <1
<1 | <1
<1 | <1
<1 | <1
<1 | 38.9
40.7 | <1
<1 | 1
<1 | | 28
28 | <1
<1 | <1
<1 | <10
10 | <1
<1 | .9
.9 | <1
4 | <1
<1 | <1
<1 | <1
<1 | 37.1
38.0 | <1
<1 | 2
<1 | #### 09019500 COLORADO RIVER NEAR GRANBY, CO LOCATION.--Lat $40^{\circ}07^{\circ}15^{\circ}$, long $105^{\circ}54^{\circ}00^{\circ}$, in $SW^{1}/_{4}NW^{1}/_{4}$ sec.22, T.2 N., R.76 W., Grand County, Hydrologic Unit 14010001, on right bank 0.3 mi upstream from bridge on U.S. Highway 34, 1.3 mi upstream from Willow Creek, and 3.2 mi northeast of Granby. DRAINAGE AREA. -- 323 mi². PERIOD OF RECORD.--October 1907 to September 1911 (published as Grand River near Granby), October 1933 to September 1953. May 1961 to current year (irrigation season only). Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,960 ft above sea level, from topographic map. June 10, 1908 to Sept. 30, 1911, and May 12 to June 10, 1934, nonrecording gage, at site 300 ft upstream at different datums. June 11, 1934 to Sept. 30, 1953, water-stage recorder at present site and datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated by Lake Granby (station 09018500) since Sept. 13, 1949. Several diversions for irrigation of hay meadows upstream from station. Transmountain diversions upstream from station by Eureka and Grand River ditches and Alva B. Adams tunnel (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES FOR PERIOD OF SEASONAL RECORD.--Maximum discharge, 2,520 ft³/s, June 22, 1996, 5.76 ft; minimum daily, 9.6 ft³/s, Sept. 21, 1981. EXTREMES FOR PERIOD OF CONTINUOUS RECORD.--Maximum discharge observed, 4,100 ft³/s, June 20, 1909, gage height, 5.5 ft site and datum then in use; minimum daily, 6.6 ft³/s, Jan. 29, 1950; minimum observed prior to starting construction of Shadow Mountain Lake, 20 ft³/s, Apr. 6, 1936 (discharge measurement). EXTREMES FOR CURRENT YEAR (seasonal only).--Maximum discharge, 1,030 ${\rm ft}^3/{\rm s}$ at 2345 June 1, gage height, 3.59 ft; minimum daily, 16 ${\rm ft}^3/{\rm s}$, Sept. 29. | | | DISCHAR | RGE, CUBIC | FEET PER | | WATER YEA
MEAN VAL | | 1999 TC | SEPTEMBE | R 2000 | | | |-------|-----|---------|------------|----------|-----|-----------------------|-----|----------|----------|--------|----------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 459 | | | | | | | 51 | 1010 | 63 | 59 | 28 | | 2 | 458 | | | | | | | 74 | 873 | 64 | 42 | 19 | | 3 | 458 | | | | | | | 73 | 381 | 61 | 41 | 19 | | 4 | 558 | | | | | | | 72 | 85 | 57 | 40 | 19 | | 5 | 613 | | | | | | | 72 | 83 | 58 | 40 | 19 | | - | | | | | | | | | | | | | | 6 | 554 | | | | | | | 74 | 79 | 63 | 40 | 19 | | 7 | 463 | | | | | | | 73 | 80 | 77 | 40 | 19 | | 8 | 462 | | | | | | | 77 | 78 | 78 | 40 | 19 | | 9 | 462 | | | | | | | 73 | 78 | 79 | 40 | 19 | | 10 | 462 | | | | | | | 72 | 78 | 79 | 40 | 18 | | | | | | | | | | | | | | | | 11 | 272 | | | | | | | 72 | 81 | 77 | 40 | 18 | | 12 | 116 | | | | | | | 73 | 80 | 74 | 41 | 18 | | 13 | 114 | | | | | | | 73 | 285 | 77 | 40 | 18 | | 14 | 115 | | | | | | | 73 | 355 | 78 | 41 | 19 | | 15 | 116 | | | | | | | 74 | 258 | 76 | 40 | 20 | | 16 | 116 | | | | | | | 74 | 148 | 77 | 45 | 22 | | 17 | 116 | | | | | | | 81 | 65 | 80 | 42 | 22 | | 18 | 110 | | | | | | | 89 | 62 | 77 | | 22 | | 19 | | | | | | | | 79 | 62
61 | 76 | 41
41 | | | 20 | | | | | | | | 79
77 | 123 | | | 22
22 | | 20 | | | | | | | | 11 | 123 | 74 | 41 | 22 | | 21 | | | | | | | | 78 | 217 | 75 | 40 | 24 | | 22 | | | | | | | | 81 | 215 | 76 | 40 | 23 | | 23 | | | | | | | | 78 | 216 | 76 | 39 | 22 | | 24 | | | | | | | | 83 | 218 | 76 | 39 | 22 | | 25 | | | | | | | | 84 | 225 | 78 | 39 | 21 | | | | | | | | | | | | | | | | 26 | | | | | | | | 83 | 141 | 77 | 39 | 20 | | 27 | | | | | | | | 80 | 57 | 75 | 39 | 19 | | 28 | | | | | | | | 78 | 57 | 75 | 39 | 18 | | 29 | | | | | | | | 78 | 56 | 74 | 39 | 16 | | 30 | | | | | | | | 201 | 59 | 74 | 39 | 18 | | 31 | | | | | | | | 778 | | 78 | 38 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | 3178 | 5804 | 2279 | 1264 | 604 | | MEAN | | | | | | | | 103 | 193 | 73.5 | 40.8 | 20.1 | | MAX | | | | | | | | 778 | 1010 | 80 | 59 | 28 |
| MIN | | | | | | | | 51 | 56 | 57 | 38 | 16 | | AC-FT | | | | | | | | 6300 | 11510 | 4520 | 2510 | 1200 | #### 09022000 FRASER RIVER AT UPPER STATION, NEAR WINTER PARK, CO LOCATION.--Lat $39^{\circ}50'45"$, long $105^{\circ}45'05"$, in sec.26, T.2 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank 0.8 mi upstream from Parsenn Creek, 2.5 mi south of Winter Park, and 7.8 mi southeast of Fraser. DRAINAGE AREA. -- 10.5 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May to September 1908, July to November 1909 (published as "at upper station near Fraser"), October 1968 to September 1973, August 1984 to current year. January to September 1911, gage heights only (published as "near Fraser"). Records for August to December 1910, published in WSP 289 as "near Fraser" are unreliable and should not be used. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,520 ft above sea level, from topographic map. Prior to Oct. 1, 1968, nonrecording gage at site 0.9 mi upstream at different datum. Since Oct. 1, 1968, supplementary water-stage recorder and Parshall flume on Berthoud Pass ditch. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station through Berthoud Pass ditch to Hoop Creek (revised). | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES | | | | | | | | | | | | | |---|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|---|---|--------------------------------------|---|--------------------------------------|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.4
6.3
6.1
5.9 | e6.0
e8.8
e8.8
e8.8 | e3.8
e3.5
e3.4
e3.1
e2.9 | e2.4
e2.4
e2.4
e2.4
e2.4 | e2.8
e2.8
e2.8
e2.8 | e2.2
e2.2
e2.2
e2.2
e2.2 | e3.0
e3.1
e3.3
e3.5
e3.5 | 11
15
21
27
33 | 139
114
104
100
98 | 26
26
25
23
22 | 10
10
10
9.8 | 11
10
9.9
9.6
11 | | | | | | | | | e3.5
e3.5
e3.5
e3.5
e4.0 | | | | | 10
9.8
9.8
9.3
8.4 | | | | | | | | | e4.0
e4.0
e4.0
e4.4
e4.5 | | | | | 8.1
7.8
7.5
7.0
6.8 | | | | | | | | | e4.6
e4.6
5.9
5.9
5.4 | | | 18
21
18
16
15 | | | | 21
22
23
24
25 | e6.6
e7.0
e7.0
e7.0
e6.6 | e4.5
e4.5
e4.5
e4.4
e4.4 | e2.4
e2.4
e2.4
e2.4
e2.4 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.6
e2.6
e2.5
e2.4
e2.4 | e2.5
e2.5
e2.5
e2.5
e2.6 | 5.3
5.2
5.5
5.2
5.3 | 26
31
48
71
82 | 35
33
32
30
30 | 14
14
13
13 | 6.8
7.0
6.7
6.6
6.5 | 8.4
9.9
7.4
7.4
8.0 | | 26
27
28
29
30
31 | e6.6
e6.4
e6.2
e6.0
e6.2 | e4.4
e4.3
e4.2
e4.1
e4.0 | e2.4
e2.4
e2.4
e2.4
e2.4
e2.4 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.4
e2.4
e2.4
e2.3 | e2.9
e2.9
e2.9
e2.9
e2.9 | 6.4
8.8
11
13
13 | 77
68
92
154
169
171 | 35
33
30
29
27 | 12
12
11
11
11
10 | 7.9
6.9
7.9
15
10 | 7.6
7.2
7.0
7.3
7.1 | | | | | | | | | 160.4
5.35
13
3.0
318 | | | 533
17.2 | 263.6
8.50 | 245.9 | | STATIST | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 5.85
9.66
1985
4.15
1995 | 4.09
5.75
2000
2.61
1995 | 2.99
5.11
1998
1.62
1995 | 2.35
2.97
1998
1.63
1987 | 2.04
2.67
2000
1.45
1987 | 2.11
2.73
1997
1.41
1987 | 4.36
6.45
1971
2.12
1973 | 27.4
50.6
2000
8.10
1995 | 71.1
124
1997
38.2
1989 | 29.5
74.6
1995
12.2
1994 | 12.6
21.3
1999
6.39
1994 | 8.10
13.0
1984
4.62
1994 | | SUMMARY | STATIST | ICS | FOR 3 | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | ER YEAR | | WATER YE | ARS 1969 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 101
e1.7
e1.7
10760
43
5.6
2.0 | | | 5182.7
14.2
171
e2.1
e2.2
268
2.06
10280
33
6.2
2.4 | May 31
Mar 10
Mar 4
May 29
May 29 | | 14.4
19.2
10.4
220
1.2
1.4
a291
b2.08
10400
42
5.0
2.0 | Jun
Feb :
Feb :
Jun
Jun | 1997
1994
7 1997
26 1989
20 1989
8 1997
8 1997 | | e Estimated. Extinated. From rating curve extended above 140 ft³/s. Maximum gage height 2.26 ft, Jun 4, 1997, backwater from debris. # 09022000 FRASER RIVER AT UPPER STATION NEAR WINTER PARK, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1994 to current year. REMARKS.--Nutrient analysis based on low-level methods. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | D A ʻ | ΓE | TIME | CHAR
INS
CUB
FE
PE | T. CI
SIC CO
ET DU
R AN | PE-
FIC
DN-
ICT-
ICE
(/CM) | PH
WAT
WHO
FIE
(STA
AR
UNI
(004 | ER
LE
LD
ND-
D
TS) | TEMP
ATU
WAT
(DEG
(000 | RE
ER
C) | OXYGI
DIS
SOLY
(MG, | S-
VED
/L) | HARI
NESS
TOTA
(MG,
AS
CACO | S C
AL
/L
O3) | CALCI
DIS-
SOLV
(MG/
AS C | ED
L
A) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |--------------|----------|------|---|--|---|---|-----------------------------------|---|---------------------------------|---|---|--|--|---------------------------------------|--|---| | OCT 20 | | 1400 | 7. | 2 | 82 | 8. | 5 | 1. | 7 | 10. | 4 | 27 | | 6.2 | 20 | 2.85 | | NOV
02 | | 1200 | 8. | 8 | 94 | 8. | 5 | | 2 | 10. | 7 | 33 | | 7.2 | 22 | 3.64 | | DEC
08 | | 1120 | 2. | 4 | 90 | 8. | 6 | | 1 | 10.2 | 2 | 31 | | 6.8 | 37 | 3.39 | | JAN
19 | - | 1400 | 2. | 9 1 | .02 | 8. | 7 | | 1 | 10. | 1 | 34 | | 7.4 | 18 | 3.65 | | FEB
15 | | 1040 | 2. | 8 1 | .06 | 8. | 6 | | 2 | 9. | 1 | 34 | | 7.5 | 9 | 3.67 | | MAR
29 | - | 1120 | 2. | 9 1 | .78 | 7. | 8 | | 5 | 10.4 | 4 | 45 | | 10.6 | 5 | 4.43 | | APR
19 | | 1240 | 6. | 5 2 | 15 | 8. | 4 | | 1 | 9.9 | 9 | 47 | | 11.6 | 5 | 4.26 | | MAY
18 | | 1320 | 26 | 1 | .02 | 7. | 7 | 2. | 1 | 9.9 | 9 | 26 | | 6.2 | 27 | 2.46 | | JUN
14 | | 1240 | 40 | | 54 | 7. | 8 | 6. | 3 | 9.3 | 2 | 18 | | 4.2 | 23 | 1.82 | | JUL
19 | | 1100 | 16 | | 61 | 8. | 3 | 7. | 1 | 9. | 7 | 22 | | 4.9 | 2 | 2.28 | | AUG
15 | | 1235 | 7. | 6 | 74 | 8. | 2 | 9. | 1 | 8.8 | 8 | 27 | | 6.0 | 8 | 2.79 | | SEP
11 | • | 1100 | 8. | 2 | 81 | 8. | 4 | 5. | 6 | 9. | 5 | 29 | | 6.6 | 52 | 3.12 | | | DATE | | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | G
NIT
D
SO
(M
AS | TRO-
EN,
RITE
IS-
LVED
G/L
N)
613) | MO2
D
SO
(M
AS | TRO-
EN,
+NO3
IS-
LVED
G/L
N)
631) | G
AMM
D
SO
(M
AS | TRO-
EN,
ONIA
IS-
LVED
G/L
N)
608) | PHO
PHOR
TOT
(MG
AS
(006 | US
AL
/L
P) | PHOS
PHORU
DIS
SOLV
(MG/
AS F | S-
ED
L | PHOR
PHOR
ORT
DIS
SOLV
(MG/
AS P | US
THO,
E-
ED
L | | | CT
20 | | 9.0 | 1 | <. | 001 | | 092 | <. | 002 | <.0 | 50 | <.00 | 16 | <.0 | 01 | | | 02 | | 9.4 | 2 | | 002 | <. | 005 | | 003 | <.0 | 50 | <.00 | 16 | <.0 | 01 | | | EC
08 | | 9.8 | <1 | <. | 001 | | 104 | <. | 002 | <.0 | 08 | <.00 | 16 | <.0 | 01 | | | AN
19 | | 12.2 | <1 | <. | 001 | | 124 | <. | 002 | <.0 | 08 | <.00 | 16 | .0 | 01 | | | EB
15 | | 12.3 | 1 | <. | 001 | | 133 | <. | 002 | <.0 | 08 | <.00 | 16 | <.0 | 01 | | | AR
29 | | 36.1 | 4 | <. | 001 | | 130 | <. | 002 | <.0 | 08 | <.00 | 16 | .0 | 02 | | | PR
19 | | 51.4 | 5 | <. | 001 | | 121 | | 006 | .0 | 11 | <.00 | 16 | <.0 | 01 | | | 18 | | 18.1 | <10 | <. | 001 | | 098 | <. | 002 | .0 | 08 | E.00 | 13 | <.0 | 01 | | | JN
14 | | 5.3 | <10 | <. | 001 | | 071 | | 003 | E.0 | 04 | <.00 | 16 | .0 | 01 | | | JL
19 | | 5.7 | <10 | <. | 001 | | 048 | <. | 002 | <.0 | 08 | <.00 | 16 | .0 | 01 | | | JG
15 | | 6.5 | <10 | | 001 | | 041 | | 800 | <.0 | 08 | <.00 | 16 | .0 | 02 | | SI |
EP
11 | | 6.7 | 11 | | 001 | | 110 | | 007 | <.0 | 08 | E.00 | 13 | .0 | 02 | ### 09023750 FRASER RIVER BELOW BUCK CREEK AT WINTER PARK, CO #### WATER-QUALITY RECORDS LOCATION.--Lat 39°53'35", long 105°45'52", T.2 S., R.75 W., Grand County, Hydrologic Unit 14010001 on left bank approximately 400 ft upstream from the confluence of Cub Creek and the Fraser River. DRAINAGE AREA.--25.6 mi². PERIOD OF RECORD. -- August 1990 to current year. REMARKS.--Nutrient analysis based on low-level methods. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. PH DIS- WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAT | E | TIME | DI
CHAR
INS
CUB
FE
PE
SEC
(000 | GE, SPE T. CIF IC CON ET DUC R ANC OND (US/ | FIC WH
N- FI
CT- (ST
CE A
(CM) UN | H
TER
OLE
ELD
AND-
RD
ITS)
400) | TEMP
ATU
WAT
(DEG
(000 | RE
ER
C) | OXYGH
DIS
SOLV
(MG, | EN,
S-
VED
/L) | HARD-
NESS
TOTAL
(MG/I
AS
CACO: | CALC
L DIS
L SOI
(MG
3) AS | S-
LVED
S/L
CA) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |------------------|---------|-----------------------|---|--|--|--|---|----------------------------|---|---------------------------------------|--|--|---------------------------------|---| | OCT 20 | | 1510 | 20 | 8 | 80 8 | . 4 | 2. | 0 | 10.7 | 7 | 29 | 6. | 79 | 2.98 | | NOV
02 | | 1300 | 13 | 9 | 92 7 | . 8 | 1. | 8 | 10.6 | 5 | 33 | 7. | 98 | 3.16 | | DEC 08 | | 1220 | 9. | 3 9 | 95 8 | . 2 | | 9 | 10.2 | 2 | 33 | 7. | 78 | 3.18 | | JAN
19 | | 1230 | 7. | 6 11 | .0 8 | .9 | 1. | 7 | 11.4 | 4 | 36 | 8. | 98 | 3.33 | | FEB
15 | | 1130 | 6. | 3 11 | .5 7 | .9 | 1. | 9 | 10.2 | 2 | 38 | 9. | 54 | 3.38 | | MAR
29 | | 1015 | 8. | 5 17 | 76 8 | . 8 | 3. | 0 | 11.3 | 1 | 48 | 12. | 3 | 4.19 | | APR 19 | | 1040 | 16 | 17 | 78 8 | .1 | | 9 | 11.0 |) | 43 | 10. | 9 | 3.76 | | MAY
18 | | 1215 | 24 | 12 | 21 8 | .1 | 3. | 0 | 10.0 |) | 24 | 6. | 36 | 1.88 | | JUN
14
JUL | | 1145 | 18 | 7 | 74 8 | .0 | 7. | 6 | 9.3 | 3 | 21 | 5. | 32 | 1.77 | | 19 | | 1200 | 32 | 6 | 54 8 | .1 | 9. | 0 | 9.8 | 3 | 23 | 5. | 48 | 2.37 | | 15
SEP | | 1015 | 15 | 8 | 82 8 | .5 | 8. | 2 | 8.9 | 9 | 29 | 6. | 82 | 2.81 | | 11 | | 1140 | 11 | 9 | 90 8 | .1 | 7. | 4 | 9.1 | 1 | 32 | 7. | 75 | 3.02 | | | DATE | R
D
S
(
A | CHLO-
CIDE,
DIS-
COLVED
MG/L
SCL) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | G:
NO2
D
SO:
(M:
AS | TRO-
EN,
+NO3
IS-
LVED
G/L
N)
631) | AMM
D
SO
(M
AS | TRO-
EN,
ONIA
IS-
LVED
G/L
N)
608) | PHOS
PHORU
TOTA
(MG/
AS P | S
L
L
) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOPHON ORTON DISSOLV (MG, AS I | RUS
FHO,
S-
VED
(L | | OC | 20 | | 6.6 | 6 | <.001 | .0 | 74 | <. | 002 | <.05 | 0 | E.003 | <.(| 001 | | | 02 | | 8.4 | 1 | <.001 | .0 | 58 | <. | 002 | <.05 | 0 | <.006 | <.(| 001 | | | 08 | | 8.4 | <1 | <.001 | .0 | 65 | <. | 002 | E.00 | 6 | <.006 | <.(| 001 | | | 19 | 1 | 1.2 | 7 | <.001 | .1 | 14 | | 002 | .01 | 3 | E.003 | <.(| 001 | | | 15 | 1 | 2.0 | 3 | <.001 | .0 | 94 | <. | 002 | E.00 | 6 | <.006 | . (| 001 | | | 29 | 3 | 0.2 | 10 | <.001 | .1 | 42 | <. | 002 | .01 | 3 | <.006 | . (| 002 | | | 19 | 3 | 6.1 | 6 | .001 | .1 | 44 | | 014 | .01 | 6 | E.005 | . (| 002 | | | 18 | 2 | 2.5 | 26 | <.001 | .0 | 46 | <. | 002 | .05 | 1 | .029 | . (|)25 | | JU | 14
L | | 8.1 | <10 | <.001 | .0 | 34 | ٠ | 023 | .01 | 2 | E.003 | .(| 003 | | | 19 | | 5.8 | <10 | .001 | .0 | 38 | ٠ | 002 | E.00 | 4 | <.006 | . (| 001 | | SE | 15
P | | 6.5 | <10 | .001 | .0 | 48 | <. | 002 | E.00 | 6 | <.006 | . (| 002 | | | 11 | | 7.1 | <10 | .001 | .0 | 78 | | 003 | .00 | 8 | .007 | . (| 002 | #### 09024000 FRASER RIVER AT WINTER PARK, CO LOCATION.--Lat $39^{\circ}54^{\circ}00^{\circ}$, long $105^{\circ}46^{\circ}34^{\circ}$, in $SE^{1}/_{4}$ sec.4, T.2 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank 500 ft downstream from bridge on U.S. Highway 40, 1.4 mi south of Winter Park, 2.0 mi upstream from Vasquez Creek, 3.5 mi downstream from point of diversion for Moffat water tunnel, and 3.9 mi southeast of Fraser. DRAINAGE AREA.--27.6 mi². PERIOD OF RECORD.--September 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Arrow" 1910-23 and as "near West Portal" 1924-39 and as "near Winter Park" 1990-1992. Records since June 9, 1936, equivalent to earlier records if transmountain diversions are added to flow past station. REVISED RECORDS. -- WSP 929: Drainage area. WDR CO-89-2: 1988 (M). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,906.23 ft above sea level, Colorado State Highway Datum (levels by U.S. Geological Survey). Sept. 23, 1910 to May 12, 1916, nonrecording gage at trail bridge 0.6 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station through Berthoud Pass ditch (see elsewhere in this report) and to Moffat water tunnel (not known since 1968). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | | | | | | | |---|---|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--|--|------------------------------------|-------------------------------------|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 18
18
17
17 | 7.1
e9.2 | e8.4
7.8
8.1
e8.2
e8.2 | e7.0
e7.0
e7.0
e7.0
e7.0 | e6.2
6.3
6.4
6.3 | 6.3
6.5
6.6
6.7 | 6.8
6.2
6.4
8.1
8.4 | 16
18
21
23
24 | 71
58
48
43
49 | 48
48
48
46
43 | 18
18
18
18 | 9.0
7.6
7.3
8.0
8.4 | | 6
7
8
9
10 | 17
21
20
19
18 | e9.2
e9.2
e9.2
e9.2
e9.2 | e8.2
e8.2
e8.2
e8.2
e8.2 | e7.0
e7.0
e7.0
e7.0
e7.0 | 6.1
6.2
6.4
6.5 | 6.7
6.6
6.3
6.2
6.1 | 9.4
8.8
9.3
11
12 | 23
23
22
21
24 | 40
43
37
30
38 | 40
38
36
36
38 | 17
16
15
15 | 8.2
8.2
9.7
9.4
9.1 | | 11
12
13
14
15 | 17
17
16
16
15 | e9.2
e9.2
e9.2
e9.2
e9.2 | e7.8
e7.8
e7.8
e7.8
e7.8 | e7.0
6.3
6.4
6.2
6.3 | 6.7
6.5
6.4
6.6
6.5 | 6.2
6.0
6.2
6.1
6.1 | 11
12
14
15 | 25
22
19
20
21 | 39
30
27
19
17 | 32
31
30
29
30 | 15
15
14
14 | 9.1
9.0
9.4
9.8
8.3 | | 16
17
18
19
20 | 15
e15
e15
15
15 | e9.2
e9.2
e9.2
e9.2
e9.2 | e7.8
e7.8
e7.8
e7.8
e7.8 | 6.3
6.1
6.1
6.0
6.1 | 6.6
6.6
6.4
6.2
6.5 | e5.8
e5.8
5.8
e5.9
5.9 | 14
12
15
18
15 | 24
22
22
23
23 | 15
29
51
55
74 | 31
37
31
29
28 | 15
18
18
14
12 | 5.4
4.8
4.3
4.1
4.5 | | | | e9.4
9.5
e9.2
e9.2
e9.0 | | | | 6.3
6.1
6.4
6.8
6.9 | | 23
26
28
29
31 | 62
60
58
56
55 | 27
25
24
23
22 | 10
7.9
7.7
8.1
8.9 | 6.7
6.4
4.7
5.3 | | 26
27
28
29
30
31 | 13
13
10
7.4
6.9
7.2 | e9.0
9.0
9.1
e9.1
8.9 | e7.4
e7.4
e7.4
e7.4
e7.4 | 6.0
5.9
e6.0
e6.0
e6.0 | 6.2
6.5
6.5
 | 6.7
7.2
7.4
7.2
6.7
6.3 | 20
26
29
19
19 | 30
32
33
39
53
67 | 60
58
54
51
49 | 22
21
20
20
19
18 | 9.1
8.9
9.3
12
11
9.8 | 5.0
4.7
4.4
4.6
4.4 | | TOTAL
MEAN
MAX
MIN
AC-FT | 15.0 | 270.9
9.03
9.5
6.8
537 | 242.7
7.83
8.4
7.0
481 | 199.6
6.44
7.0
5.9
396 | 186.2
6.42
6.8
6.1
369 | 198.1
6.39
7.4
5.8
393 | 412.4
13.7
29
6.2
818 | 827
26.7
67
16
1640 | 1376
45.9
74
15
2730 | 970
31.3
48
18
1920 | 419.7
13.5
18
7.7
832 |
205.0
6.83
9.8
4.1
407 | | | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.9
31.0
1914
2.93
1957 | 9.57
20.4
1928
2.72
1965 | 7.64
21.1
1928
2.83
1965 | 6.66
12.1
1928
2.92
1967 | 6.23
9.88
1938
3.11
1933 | 6.65
13.6
1918
3.58
1990 | 12.7
31.5
1925
5.05
1970 | 49.0
163
1928
7.42
1954 | 115
354
1918
5.76
1954 | 48.7
209
1957
4.92
1954 | 19.7
72.2
1929
3.37
1954 | 13.1
46.0
1925
2.57
1966 | | SUMMARY | Y STATIST | | | | DAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YE | ARS 1911 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 9014.3
24.7
193 Jun 23
4.3 Feb 19
4.4 Feb 15 | | | 5774.1
15.8
74
4.1
4.8
113
1.78
11450
36
9.2
6.2 | Jun 20
Sep 19
Sep 24
May 31
May 31 | | | 60.9 1 5.93 1 622 Jun 14 1 a2.0 Mar 29 1 2.1 Oct 5 1 820 Jun 13 1 b2.90 Jun 13 1 460 58 8.9 | | e Estimated. a Also occurred Mar 30, Apr 9, 1912, and Jan 23, 1915. b Maximum gage height, 2.95 ft, Jun 9, 1997. #### 09025000 VASQUEZ CREEK AT WINTER PARK, CO LOCATION.--Lat $39^{\circ}55'13"$, long $105^{\circ}47'05"$, in $NE^{1}/_{4}NW^{1}/_{4}$ sec.33. T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 30 ft downstream from bridge on U.S. Highway 40, 0.2 mi upstream from mouth, 2.5 mi southeast of Fraser, and 4.5 mi downstream from Moffat water tunnel diversion. PERIOD OF RECORD.--June to August 1907, July to November 1909, October 1933 to current year. Monthly discharge only for some periods, published in WSP 1313. Records for June to October 1908, published in WSP 269, are unreliable and should not be used. Published as Vasquez River at lower station, near Fraser 1907-09, as "near West Portal" 1934-39, and as "near Winter Park" 1940-87. Records for May 26, 1937 to September 1959, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station. REVISED RECORDS. -- See PERIOD OF RECORD. GAGE.--Water-stage recorder and concrete control. Datum of gage is 8,768.48 ft above sea level. June 1, 1907 to Oct. 31, 1909, nonrecording gage at site 0.8 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel not known since 1959. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHA | RGE, CUBI | C FEET PER | | MEAN VA | | . 1999 10 | SEPIEMBE | R 2000 | | | |---|--|---|--|---|--------------------------------------|--|---|--|------------------------------------|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 17
17
16
16
16 | 6.0
e6.0
e5.8
e5.8 | e4.3
e4.2
e4.2
e4.1
e4.1 | e8.0
e8.0
e8.0
e8.0 | e9.7
e10
e10
e10
e10 | e9.3
e9.3
e9.3
e9.3 | 8.0
9.1
8.6
8.6
8.7 | e11
e11
e11
e12
14 | 95
53
46
45
39 | 9.5
9.3
9.3
9.5
9.1 | 8.5
8.6
8.7
8.7 | 9.0
8.7
8.6
8.5
8.8 | | 6
7
8
9
10 | 16
18
19
19 | e5.8
e5.7
e5.6
e5.5
e5.4 | 4.0
4.4
e4.6
e4.9
5.2 | e8.0
e8.0
e8.0
e8.0 | e10
e10
e9.7
e9.7
e9.7 | 7.4
7.4
7.4
7.6
7.7 | 8.7
8.4
8.8
8.6
8.3 | e15
e15
e15
e14
e14 | 30
28
22
14
11 | 9.5
9.3
9.5
9.7
9.6 | 8.6
8.4
8.1
8.3
8.4 | 8.9
8.7
8.9
8.7
8.6 | | 11
12
13
14
15 | 12
4.7
4.3
4.2
4.1 | e5.4
e5.4
e5.4
e5.4
5.4 | 5.0
5.4
5.2
5.1
e5.2 | e7.2
e6.1
e6.1
e6.1
e6.1 | e9.7
e9.7
e9.7
e9.7
e9.7 | 7.8
e7.6
7.6
7.8
e8.0 | 8.2
8.5
8.8
9.2
9.4 | e15
e14
e14
13
e12 | 10
9.3
9.7
9.6
9.6 | 9.2
9.1
9.2
9.1
9.3 | 8.5
8.4
8.2
8.3
8.3 | 8.5
8.5
8.4
8.4
7.8 | | 16
17
18
19
20 | 4.2
5.0
4.7
4.6
e4.5 | 6.2
6.4
6.5
e6.2
e6.0 | e5.2
e5.4
e5.4
e5.6
e5.8 | e6.1
e6.1
e6.1
e6.1 | e9.7
e9.7
e9.7
e9.7
e9.7 | e8.0
e8.0
8.0
e8.0
7.7 | 9.3
9.3
9.3
9.3
8.8 | 13
14
e14
e14
e14 | 9.6
21
47
52
73 | 9.7
10
9.6
9.0
8.7 | 8.6
9.1
9.6
9.0
8.8 | 4.6
4.5
4.5
4.6
4.5 | | 25 | | | | | | | 8.8
8.8
e11
e11 | | | | 8.7
8.6
8.5
8.4
8.6 | 5.4
6.3
4.9
5.1
5.0 | | 26
27
28
29
30
31 | 4.4
4.4
4.5
e4.5
e4.9
e5.8 | e5.0
e4.8
e4.7
e4.6
e4.5 | e6.6
e7.0
e7.4
e7.8
e7.6
e7.6 | e7.0
e7.0
e7.1
e7.2
e7.9
e8.5 | e9.3
e9.3
e9.3
e9.3 | 8.0
8.0
8.4
7.9
7.8
7.8 | e11
e11
e11
e11 | e15
14
e15
34
87
103 | 16
43
58
53
31 | 8.7
8.7
8.5
8.3
8.2
8.2 | 8.4
8.6
9.0
8.8
9.2
11
9.7
9.2 | 4.9
4.8
4.9
4.9 | | TOTAL
MEAN
MAX
MIN
AC-FT | 275.6
8.89
19
4.1
547 | 166.7
5.56
6.5
4.5
331 | 171.9
5.55
7.8
4.0
341 | 217.7
7.02
8.5
6.1
432 | 280.6
9.68
10
9.3
557 | 249.3
8.04
9.3
7.4
494 | 281.5
9.38
11
8.0
558 | 604
19.5
103
11
1200 | 943.6
31.5
95
9.3
1870 | | 271.5
8.76
11
8.1
539 | 202.8
6.76
9.0
4.5
402 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.14
35.1
1962
.66
1965 | 6.70
21.9
1962
1.84
1963 | 5.57
13.4
1962
1.30
1965 | 4.91
10.0
1958
1.28
1965 | 4.60
9.99
1958
.80
1960 | 4.73
9.14
1995
1.02
1965 | 7.63
19.8
1943
2.41
1965 | 27.1
119
1958
2.81
1954 | 68.0
234
1942
.14
1940 | 23.0
177
1983
.34
1956 | 8.22
41.2
1936
.39
1960 | 6.90
27.0
1995
.20
1944 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER Y | EARS 1934 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN C ANNUAL ANNUAL M C DAILY M DAILY ME SEVEN-DA CANEOUS P CANEOUS P | EAN EAN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 7083.6
19.4
186
4.0
e4.2
14050
42
8.6
5.2 | Jun 24
Dec 6
Dec 1 | | 3945.7
10.8
103
4.0
e4.2
158
2.69
7830
15
8.6
4.9 | May 31
Dec 6
Dec 1
May 30
May 30 | | 39.6
2.30
417
a.00
b526
4.14
22
5.9 | | 1936
1963
25 1983
9 1944
9 1944
27 1983
27 1983 | e Estimated. a Also no flow at times in 1946, 1956, 1960, and 1966. b From rating curve extended above 286 ${\rm ft}^3/{\rm s}$. #### 09025010 FRASER RIVER BELOW VASQUEZ CREEK AT WINTER PARK, CO #### WATER-QUALITY RECORDS LOCATION.--Lat 39°55'37", long 105°47'08", $\mathrm{NE}^1/_4\mathrm{SW}^1/_4$ sec.28, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank approximately 1,500 ft downstream from the confluence of Vasquez Creek and the Fraser River. DRAINAGE AREA.--59.1 mi². PERIOD OF RECORD. -- August 1990 to current year. REMARKS.--Nutrient analysis based on low-level methods. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. PH DTS- WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | 1 | TIME | DI
CHAR
INS
CUB
FE
PE
SEC
(000 | GE, SPE T. CIF IC CON ET DUC R ANC OND (US/ | C- W. PIC W I- F TT- (S CE (CM) U | PH ATER HOLE IELD TAND- ARD NITS) 0400) | TEMP
ATU
WAT
(DEG
(000 | RE
ER
C) | OXYGH
DIS
SOLV
(MG, | S-
/ED
/L) | HARD
NESS
TOTA
(MG/:
AS
CACO
0090 | CAL
L DI
L SO
(M
3) AS | CIUM
S-
LVED
G/L
CA)
915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |------------------|------|----------------------------|--|--|--|---|--|----------------------------|---|---------------------------------------|---|--|--|---| | OCT 20 | | 1130 | 20 | 8 | 1 | 7.9 | 1. | 4 | 11.4 | 1 | 29 | 7 | .06 | 2.84 | |
NOV
02 | | 1100 | 9. | 4 8 | 37 | 8.1 | | 8 | 10.8 | 3 | 33 | 8 | . 23 | 3.00 | | DEC
08 | | 1015 | 16 | 8 | 1 | 8.1 | | 1 | 9.6 | 5 | 29 | 7 | . 25 | 2.76 | | JAN
19 | | 1130 | 25 | 9 | 0 | 7.7 | | 1 | 10.8 | 3 | 31 | 7 | .84 | 2.76 | | FEB
15 | | 1500 | 19 | 8 | 19 | 8.4 | | 4 | 11.4 | 1 | 30 | 7 | .86 | 2.56 | | MAR
29 | | 1225 | 16 | 14 | 1 | 8.2 | 2. | 7 | 9.8 | 3 | 42 | 10 | . 2 | 4.12 | | APR 21 | | 1330 | 35 | 13 | 5 | 7.9 | | 9 | 11.3 | L | 38 | 9 | .48 | 3.37 | | MAY
18 | | 1115 | 50 | 7 | 6 | 8.1 | 2. | 3 | 10.5 | 5 | 22 | 6 | .00 | 1.77 | | JUN
14
JUL | | 1050 | 38 | 6 | 3 | 8.2 | 7. | 3 | 8.9 | 9 | 20 | 5 | .31 | 1.69 | | 19 | | 1245 | 47 | 6 | 52 | 8.0 | 11. | 5 | 9.5 | 5 | 23 | 5 | .68 | 2.22 | | 15
SEP | | 1335 | 24 | 7 | '5 | 8.2 | 12. | 6 | 7.9 | 9 | 27 | 6 | .70 | 2.42 | | 11 | | 1220 | 20 | 7 | '6 | 8.4 | 9. | 8 | 8.9 | 9 | 28 | 7 | .41 | 2.30 | | | DATE | RI
DI
SC
(M
AS | ILO-
IDE,
IS-
DLVED
IG/L
IG/L
IG/L | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO
GEN,
NITRIT
DIS-
SOLVE
(MG/L
AS N)
(00613 | E NO2
E D
D SC
(M | TRO-
SEN,
2+NO3
DIS-
DLVED
MG/L
S N) | AMM
D
SO
(M
AS | TRO-
EN,
ONIA
IS-
LVED
G/L
N)
608) | PHOS
PHORU
TOTA
(MG/
AS F | JS
AL
'L | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHONOR'S
DIS | PHO,
S-
/ED
/L
P) | | | 20 | 6 | 5.3 | 4 | <.001 | .1 | .00 | | 005 | E.03 | 31 | .006 | <.(| 001 | | NOV | 2 | 7 | .3 | 2 | <.001 | .1 | .01 | <. | 002 | E.03 | 13 | E.004 | <.(| 001 | | DEC
C
JAN | 18 | 5 | 5.6 | 2 | .001 | .1 | .82 | <. | 002 | .02 | 20 | .012 | <.(| 001 | | | 9 | 6 | 5.5 | 1 | .001 | . 4 | 10 | | 003 | .04 | 12 | .030 | . (| 28 | | | 5 | 6 | 5.5 | 3 | .001 | .5 | 38 | | 002 | .05 | 57 | .040 | . (| 38 | | | 9 | 19 | .2 | 10 | .001 | .7 | 82 | <. | 002 | .08 | 85 | .048 | . (| 045 | | | 21 | 20 | .5 | 6 | .001 | .3 | 868 | | 010 | .05 | 3 | .029 | . (| 023 | | | 8 | 8 | 3.7 | <10 | <.001 | .1 | .01 | ٠ | 009 | .03 | 12 | .017 | . (|)12 | | | 4 | 5 | 5.3 | <10 | .001 | .0 | 185 | | 013 | .01 | .7 | .010 | . (| 010 | | 1
AUG | 9 | 4 | . 8 | <10 | .001 | .0 | 162 | ٠ | 007 | .01 | .6 | .007 | . (| 005 | | SEF | | | .9 | <10 | .002 | | .34 | | 019 | .02 | | .019 | |)16 | | 1 | 1 | 4 | .5 | <10 | .001 | .0 | 179 | ٠ | 003 | .01 | .8 | .011 | . (| 013 | ### 09025300 ELK CREEK AT UPPER STATION NEAR FRASER, CO LOCATION.--Lat 39°53'22", long 105°49'55", (unsurveyed), T.2 S., R.76 W., Grand County, Hydrologic Unit 14010001, on right bank 150 ft downstream from Vasquez ditch, 1,100 ft upstream from aqueduct, and 4.0 mi south of Fraser. DRAINAGE AREA.--1.67 mi². PERIOD OF RECORD. -- October 1996 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,400 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|--------------------------------------|--|--------------------------------------|--|------------------------------------|--------------------------------------|--|--|--------------------------------------|---|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .93
.89
.86
.86 | .00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | .01
.01
.02
.02 | 2.2
2.5
2.8
2.7
3.4 | 2.9
2.7
2.7
2.5
2.3 | 1.0
1.0
1.0
1.0 | .86
.84
.79
.78 | | 6
7
8
9
10 | | | | | | | e.00
e.00
e.00
e.00 | | | | | | | 11
12
13
14
15 | .86
.86
.83
.81 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.56
e.38
e.38
e.38
e.38 | 5.2
5.4
5.8
5.9
5.8 | 2.0
1.9
1.8
1.8 | .89
.90
.84
.84 | .65
.64
.63
.62
.49 | | 16
17
18
19
20 | .79
e.64
e.33
e.15
e.02 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
.00 | e.38
e.22
.01
.01 | 5.4
5.2
4.8
5.0
5.7 | 2.3
2.3
1.9
1.7 | .87
.91
1.0
.93
.87 | .46
.46
.48
.48 | | 21
22
23
24
25 | e.01
e.02
e.03
e.04
e.04 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | .00
.00
.00
.00 | .01
.01
.01
.89
2.5 | 4.7
4.2
3.8
3.6
3.5 | 1.5
1.4
1.3
1.3 | .84
.80
.79
.78 | .78
1.1
.80
.81 | | 26
27
28
29
30
31 | e.05
e.06
e.04
.00
.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00 | e.00
e.00
e.00
e.00
e.00 | .01
.01
.01
.01 | 2.7
2.4
2.4
2.3
2.0
2.4 | 4.2
4.0
3.4
3.2
3.0 | 1.2
1.2
1.1
1.1
1.1 | 1.0
.88
1.1
1.7
1.0 | .82
.81
.80
.83
.80 | | | | | | | | | 0.04
.001
.01
.00 | | | | | | | STATIST | | | | | | 7 - 2000, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | .50
.77
1997
.27
1999 | .17
.68
1997
.000
1998 | .17
.67
1997
.000
1998 | .16
.64
1997
.000
1998 | .12
.47
1997
.000
1998 | .10
.41
1997
.000
1999 | .13
.50
1997
.000
1999 | 1.02
3.02
1998
.17
1997 | 8.83
16.3
1997
4.45
2000 | 2.68
3.29
1998
1.83
2000 | 1.45
2.03
1999
.94
2000 | .92
1.16
1999
.72
2000 | | SUMMARY | Y STATISTI | CS | FOR 1 | 999 CALENI | OAR YEAR | | OR 2000 WA | | | WATER YE | ARS 1997 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN
FANNUAL M
ANNUAL ME | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 416.03
1.14
10
e.00
e.00
e.00 | Jun 23
Jan 1
Jan 1 | | 277.97
.76
5.9
a,e.00
e.00
8.8
5.38
551
2.4
.01 | Jun 14
Oct 29
Oct 29
Jun 12
Jun 12 | | 1.35
2.18
.76
20
b.00
.00
22
5.69
979
3.2
.46 | Jun :
May
May
Jun :
Jun : | 1997
2000
10 1997
7 1997
7 1997
10 1997
10 1997 | e Estimated. a No flow many days. Some values estimated. b No flow many days each year. #### 09026500 ST. LOUIS CREEK NEAR FRASER, CO LOCATION.--Lat $39^{\circ}54^{\circ}36^{\circ}$, long $105^{\circ}52^{\circ}40^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec.34, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 300 ft downstream from West St. Louis Creek, and 4.1 mi southwest of Fraser. DRAINAGE AREA. -- 32.9 mi². PERIOD OF RECORD.--October 1933 to current year. Prior to August 1934, monthly discharge only, published in WSP 1313. Records for May 1956 to September 1959, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,980.17 ft above sea level. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel not known since 1959. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE. CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER
ALUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|---|------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 20
20
19
18
18 | e6.6
e7.1
e6.8
e6.6
e6.4 | 5.8
5.8
5.5
6.2 | 6.2
6.2
6.3
6.5 | e6.5
e6.4
e6.2
e6.2
e6.2 | e6.1
6.5
6.4
7.4
7.6 | 7.9
8.0
7.8
e7.8
7.8 |
18
22
29
35
42 | 168
131
106
106
128 | 21
20
20
19
18 | 15
15
16
16
15 | 13
15
14
14
13 | | 6
7
8
9
10 | 18
22
22
21
20 | e6.2
e6.0
e5.8
e5.8 | 5.8
5.7
5.8
5.8
5.7 | 6.5
6.5
6.5
6.7 | 5.9
e5.7
e5.6
6.0
e5.9 | 7.8
6.7
7.6
e7.4
e7.2 | 8.2
8.0
9.2
e9.0
9.2 | 45
44
37
20
21 | 126
126
102
80
72 | 18
18
18
19 | 15
14
13
13 | 13
13
13
14
12 | | 11
12
13
14
15 | 19
18
17
17 | e5.8
e5.8
e5.8
e5.8
e5.8 | 5.9
5.7
5.7
5.7
5.9 | 6.5
6.0
5.9
5.8
5.7 | e5.9
e5.9
5.9
5.9
6.1 | e7.0
6.9
e6.8
e6.8 | 8.6
8.9
10
11 | 22
20
18
18 | 63
56
54
50
48 | 15
15
15
16
19 | 13
13
13
12
12 | 12
11
11
11
10 | | 16
17
18
19
20 | e15
e14
e14
e14
e15 | e5.8
e5.8
e5.8
e5.8
e5.8 | 5.9
5.9
5.9
5.9 | 5.7
5.7
5.7
6.0
6.0 | e6.0
5.9
5.9
e6.0
e6.0 | e7.0
e7.2
7.3
e7.0
6.9 | 9.8
11
12
11 | 22
25
23
23
25 | 43
56
72
78
93 | 18
26
17
16
16 | 13
14
21
15
14 | 10
11
10
9.4
8.7 | | 21
22
23
24
25 | e15
e13
e14
e13
e13 | e5.8
e5.8
e5.8
e5.8
e5.8 | 6.0
6.2
6.1
5.9
5.9 | 6.0
5.9
6.2
e6.0
e6.0 | e6.2
6.2
6.2
6.4
6.2 | 7.7
7.4
7.0
6.8
6.9 | 11
12
15
11
13 | 24
27
36
46
46 | 72
50
30
23
24 | 15
14
14
14
17 | 14
13
13
12
12 | 11
16
8.7
8.3
7.8 | | 26
27
28
29
30
31 | e13
e13
e13
4.5
e5.0
e6.0 | e5.8
e5.8
5.8
5.7
5.5 | 5.9
5.9
6.1
6.2
6.2 | 6.0
6.0
e6.2
e6.4
6.7
e6.6 | e6.2
e6.2
6.1
6.1 | 6.8
7.1
6.9
6.8
6.7 | 13
16
19
21
21 | 31
32
58
104
145 | 29
29
43
63
46 | 15
15
16
16
15 | 15
15
14
30
21
15 | 8.0
7.5
7.3
7.6
7.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 479.5
15.5
22
4.5
951 | 178.7
5.96
7.1
5.5
354 | 182.9
5.90
6.2
5.5
363 | 191.4
6.17
6.7
5.7
380 | 175.9
6.07
6.5
5.6
349 | 217.2
7.01
7.8
6.1
431 | 339.2
11.3
21
7.8
673 | 1107
35.7
145
18
2200 | 2167
72.2
168
23
4300 | 529
17.1
26
14
1050 | 459
14.8
30
12
910 | 327.9
10.9
16
7.3
650 | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 1934 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 11.9
31.4
1962
2.63
1965 | 9.28
19.7
1996
2.90
1967 | 7.56
14.3
1946
2.28
1968 | 6.79
12.0
1946
2.00
1961 | 6.27
11.0
1946
2.07
1968 | 6.38
12.0
1946
2.35
1968 | 9.43
26.2
1960
3.41
1970 | 37.5
102
1936
8.62
1968 | 117
263
1997
21.6
1989 | 65.4
250
1995
16.2
1994 | 24.1
70.1
1945
11.3
1963 | 14.6
34.1
1938
4.39
1963 | | SUMMAR | Y STATIST | ICS | FOR | 1999 CALEN | IDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1934 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERO 50 PERO | MEAN T ANNUAL M ANNUAL M T DAILY ME DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 7123.2
19.5
196
4.5
5.7
14130
44
9.2
5.8 | Jun 23
Oct 29
Nov 28 | | 168
4.5
5.7
237
2.24
12600
33
11
5.8 | Jun 1
Oct 29
Nov 28
May 31
May 31 | | 26.4
48.9
9.98
418
a1.8
1.8
558
b2.80
19090
62
10
4.8 | Jan
Jan
Jun | 1995
1963
18 1995
25 1968
24 1968
17 1995
17 1995 | e Estimated. a Also occurred Jan 26-30, Feb 1-2, and Feb 14, 1968. b Maximum gage height, 3.21 ft, Jun 10, 1952, backwater from log on control. ### 09027100 FRASER RIVER AT TABERNASH, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}59^{\circ}25^{\circ}$, long $105^{\circ}49^{\circ}44^{\circ}$, $SE^{1}/_{4}NW^{1}/_{4}$ sec.6, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank approximately 100 ft upstream from the bridge over the Fraser River. DRAINAGE AREA.--116 mi². REVISED RECORDS.--WDR CO-93-2: Drainage area. PERIOD OF RECORD. -- August 1990 to current year. REMARKS.--Nutrient analysis based on low-level methods. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. CHARGE, SPE- WATER WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 MAGNE- HARD- | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | WATER WHOLE FIELD (STAND ARD UNITS (00400 | C TEMPI
D- ATUI
WATI
(DEG | RE
ER S
C) (| YGEN,
DIS-
OLVED
MG/L)
0300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIU
DIS-
SOLVE
(MG/L
AS CA | DIS-
D SOLVED
(MG/L
) AS MG) | |--|--|---|--|--|--|---|--
--|--|---| | OCT 20 | 1030 | 40 | 87 | 8.5 | . • | 4 1 | 1.9 | 33 | 9.28 | 2.42 | | NOV
02 | 1000 | 20 | 100 | 8.6 | 1.0 | 0 1 | 1.6 | 38 | 10.8 | 2.64 | | DEC 08 | 0900 | 25 | 107 | 8.1 | .: | 1 1 | 0.0 | 37 | 10.1 | 2.86 | | JAN
19 | 1030 | 34 | 114 | 8.0 | .: | 1 1 | 0.8 | 36 | 10.0 | 2.71 | | FEB 15 | 1240 | 22 | 110 | 8.1 | . (| 0 1 | 0.3 | 37 | 10.4 | 2.77 | | MAR
29 | 1415 | 39 | 135 | 7.7 | . • | 4 1 | 0.8 | 42 | 11.1 | 3.37 | | APR
19
MAY | 1140 | 68 | 120 | 7.8 | .: | 2 1 | 0.7 | 36 | 9.81 | 2.75 | | 18
JUN | 1030 | 71 | 78 | 7.7 | 3. | 3 1 | 0.7 | 27 | 7.62 | 1.83 | | 14
JUL | 0950 | 122 | 64 | 8.3 | 8. | 7 | 9.3 | 25 | 7.31 | 1.59 | | 19
AUG | 1330 | 69 | 75 | 9.0 | 17.8 | В | 8.3 | 28 | 7.66 | 2.18 | | 15
SEP | 1130 | 39 | 86 | 9.1 | 15.0 | 0 | 8.8 | 32 | 9.08 | 2.32 | | 11 | 1330 | 40 | 88 | 9.3 | 13. | В | 9.6 | 34 | 9.90 | 2.30 | | DATE OCT 20 NOV 02 DEC 08 JAN 19 FEB 15 MAR 29 APR 19 MAY | RI DI SOO (MAS) (000 4 5 5 7 6 6 12 13 | LO- TOT. DE, AT S- DEG G/L PEN (CL) (M 940) (00 .3 .2 .7 .1 .3 .6 .4 | AL (105 NI) 105 NI) 107 NI) 108 NI) 109 10 | GEN,
IRITE N
DIS-
OLVED
MG/L
S N) | NITRO-
GEN,
IO2+NO3
DIS-
SOLVED (MG/L
AS N)
00631)
.141
.264
.434
.632
.772
.822
.371 | NITRC GEN, AMMONI DISS-SOLVE (MG/I AS N) (00608 | A PHOPPHORE TO TOTAL | SS- PHO
RUS I I
RUS | HOS- PORUS DIVIS- DIVED S MG/L (A B B B B B B B B B B B B B B B B B B | PHOS-HORUS ORTHO, DIS- OLVED MG/L S P) 00671) .019 .031 .038 .104 .165 .142 .061 | | JUN
14 | | | | 003 | .072 | .016 | .04 | | | .020 | | JUL
19 | | | | 009 | .072 | .022 | .07 | | | .041 | | AUG
15 | | | | 016 | .143 | .024 | .10 | | 089 | .077 | | SEP 11 | | | | 009 | .129 | .012 | .10 | | 079 | .070 | #### 09032000 RANCH CREEK NEAR FRASER, CO LOCATION.--Lat $39^{\circ}57^{\circ}00^{\circ}$, long $105^{\circ}45^{\circ}54^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.22, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on left bank 650 ft downstream from Middle Fork, and 2.7 mi east of Fraser. DRAINAGE AREA. -- 19.9 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1934 to current year. Records for May 26, 1937, to September 1959, equivalent to earlier records if diversion to Moffat water tunnel is added to flow past station. REVISED RECORDS. -- WSP 1243: 1935. GAGE.--Water-stage recorder. Elevation of gage is 8,660 ft above sea level, from topographic map. Prior to Oct. 5, 1995, at site 200 ft upstream, at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversion upstream from station for irrigation of hay meadows along Fraser River. Transmountain diversion upstream from station to Moffat water tunnel not known since 1959. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHA | KGE, CUBI | C FEET PER | | MEAN VA | LUES | 1999 10 |) SEPIEMBE | R 2000 | | | |------------------|--------------------------|----------------------|--------------|------------------------------------|--------------|--------------|------------------------------------|----------------------------|----------------------------|--|--------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 9.3
9.2 | e2.6
e2.4 | e3.2
e3.2 | e3.8
e3.8
e3.8
e3.8 | e4.3
e4.2 | e4.2
e4.2 | e4.8
e4.8 | 14
14
18
22
27 | 155
140 | 4.2
4.3
4.5
4.2
4.2 | 3.4
3.4 | 3.7
3.3 | | 3 | 8.7 | e2.2 | e3.2 | e3.8 | e4.2 | e4.2 | e4.8 | 18 | 108 | 4.5 | 3.3 | 3.0 | | 4
5 | 8.4
8.2 | e2.4
e2.6 | e3.2
e3.2 | e3.8
e3.8 | e4.2
e4.2 | e4.2
e4.2 | e4.8
e5.2 | | 140
108
105
138 | | | 2.9
3.0 | | 6 | 8.2 | e2.7 | e3.2 | e3.8
e3.8
e3.8
e3.8 | e4.2 | e4.2 | e6.0 | 29
28
28
25
23 | 138 | 4.2
4.3
4.4
4.6
4.8 | 3.1 | 3.4 | | 7
8 | 9.8 | e2.7 | e3.5
e3.5 | e3.8 | e4.2 | e4.2 | e5.8
e5.8 | 28 | 130
103 | 4.3 | 2.9 | 3.0
3.1 | | 9 | 9.6 | e2.5 | e3.5 | e3.8 | e4.2 | e4.2 | e5.8
e6.4
e7.0 | 25 | 41 | 4.6 | 2.9 | 3.1 | | 10 | | | | | | | | | | | | 2.9 | | 11
12 | 8.4 | e2.7 | e3.5 | e3.8
e3.8
e3.9
e3.9 | e4.2 | e4.2 | e6.6 | 24 | 52
48
54
59
57 | 4.4
4.3
4.2
4.1
4.1 | 2.9 | 2.8 | | 13 | 7.8 | e2.7 | e3.5 | e3.8 | e4.2 | e4.2 | e7.2 | 21 | 54 | 4.2 | 2.8 | 2.7 | | 14 | 7.7 | e3.2 | e3.5 | e3.9 | e4.2 | e4.2 | e8.4 | 19 | 59 | 4.1 | 2.8 | 2.6 | | | | | | | | | | | | | | 2.6 | | 16
17 | 6.9 | e3.0 | e3.5 | e4.0 | e4.2 | e4.2 | e7.6
e8.0
e9.2
7.4
6.7 | 19 | 53
52 | 4.3 | 2.8
3.1 | 2.5
2.5 | | 18 | e7.2 | e3.0 | e3.5 | e4.1 | e4.2 | e4.2 | e9.2 | 18 | 48 | 4.3 | 3.3 | 2.5 | | 19 | 8.0 | e3.0 | e3.5 | e4.4 | e4.2 | e4.3 | 7.4 | 19 | 44 | 3.9 | 3.3 | 2.5 | | | | | | | | | | | | | | 2.8 | | 21
22 | e8.2 | e3.0 | e3.8 | e4.6 | e4.2 | e4.5 | 7.6
8.1
8.6
7.6
7.1 | 18 | 21 | 3.8 | 3.1 | 3.5 | | 23 | e7.0 | e3.0 | e3.8 | e4.8 | e4.2 | e4.5 | 8.6 | 36 | 10 | 3.9 | 3.0 | 3.5 | | 24 | e7.6 | e3.0 | e3.8 | e4.9 | e4.2 | e4.6 | 7.6 | 64 | 5.3 | 3.8 | 2.9 | 3.7 | | | | | | | | | | | | | | | | 26
27 | e7.4 | e3.0 | e3.8 | e5.0 | e4.2 | e4.6 | 9.1 | 64 | 6.1 | 3.7 | 3.0 | 4.0
3.8 | | 28 | e5.9 | e3.0 | e3.8 | e5.0 | e4.2 | e4.6 | 17 | 84 | 32 | 3.7 | 3.1 | 3.8 | | 29 | e3.6 | e3.2 | e3.8 | e4.7 | e4.2 | e4.8 | 18 | 131 | 30 | 3.5 | 4.6 | 3.8 | | 30
31 | 2.7 | e3.2 | e3.8 | e4.6 | | e4.8 | 9.1
14
17
18
19 | 147
165 | 16 | 3.7
3.7
3.5
3.5
3.4
3.4 | 3.8 | 3.8 | | TOTAL | | | | | | | | | | | | | | MEAN | 7.63 | 2.85 | 3.55 | 131.1
4.23
5.0
3.8
260 | 4.20 | 4.37 | 8.27 | 1290
41.6
165
14 | 58.8 | 125.9
4.06
4.8
3.4
250 | 3.15 | 3.21 | | MAX | 9.9 | 3.2 | 3.8 | 5.0 | 4.3 | 4.8 | 19 | 165 | 155 | 4.8 | 4.6 | 4.9 | | MIN
AC-FT | 2.7 | 2.2 | 3.2 | 3.8 | 4.2 | 4.2 | 4.8 | 14
2560 | 5.0 | 3.4 | 2.7 | 2.5 | | | | | | | | | BY WATER Y | | | 230 | 174 | 171 | | | | | | | | | | • | · | | | | | MEAN
MAX | 4.83
19.6 | 4.17 | 3.43
8.11 | 3.03 | 2.71
4.65 | 2.64
5.34 | 5.31
17.4 | 30.9
99.4 | 77.7
206 | 25.1
136 | 7.47
27.3 | | | (WY) | 1962 | 1962 | 1962 | 5.63
1962
89 | 1966 | 1950 | 1946 | 1936 | 1997 | 1995 | 1945
1.52 | | | MIN | .98 | 1962
1.09
1965 | .87 | .05 | .74 | .65 | 1.61 | 3.69 | 2.68 | 2.40 | | | | (WY) | | | | 1964 | 1964 | 1964 | 1961 | 1954 | 1966 | 1966 | 1960 | 1960 | | SUMMARY | STATISTI | CS. | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | CER YEAR | ₹ | WATER YEA | ARS 1935 | - 2000 | | ANNUAL
ANNUAL | | | | 4338.0
11.9 | | | 4444.0
12.1 | | | | | | | | ANNUAL M | | | | | | | | | 31.4 | | 1983 | | | ANNUAL ME
DAILY ME | AN
AN | | 145
e2.2 | Jun 18 | | 165 | May 31 | | 402 | Jun | 1964
7 1997 | | LOWEST | DAILY MEA | | | e2.2
2.5 | Nov 3 | | e2.2 | Nov 3 | 3 | a.40 | Sep 2 | 1960 | | | SEVEN-DAY
CANEOUS PE | | | 2.5 | Nov 1 | | 165
e2.2
2.5
231 | Nov 1 | L | .42 | Sep 2 | 21 1988 | | | ANEOUS PE | AK STAGE | | | |
 5.94 | May 31 | | 402
a.40
.42
548
6.71 | Jun | 4 1997 | | ANNUAL | RUNOFF (A | C-FT) | | 8600 | | | 8810 | | | | | | | | CENT EXCEE
CENT EXCEE | | | 20
3.6 | | | 23
4.2 | | | 31
4.1 | | | | | CENT EXCEE | | | 2.7 | | | 2.9 | | | 1.8 | | | | | | | | | | | | | | | | | e Estimated. a Also occurred Oct 6, 1960, and Sep 24-26, 1988. ## 09032000 RANCH CREEK NEAR FRASER, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1997 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECON
(00061 | , SE
CI
CC
DU
AN
D (US | ICE
S/CM) | | · AT
WA
(DE | | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | | CHLO-
, RIDE,
DIS-
SOLVED
/ (MG/L
) AS CL) | |------------------|--------------------|--|--|--|--|---|--------------------------|--|---|--| | NOV
04 | 1215 | 2.2 | 5 | 57 | 7.9 | | .1 | 10.8 | K1 | .3 | | JAN
25 | 1030 | 5.3 | 4 | 15 | 8.4 | | .5 | 10.8 | K1 | E.2 | | MAR
23 | 1340 | 4.6 | 4 | 18 | 8.0 | | .8 | 10.7 | K1 | E.2 | | MAY
17 | 1230 | 18 | 4 | 13 | 7.7 | 2 | . 4 | 10.7 | K1 | E.2 | | JUL
20
SEP | 1400 | 4.4 | 4 | 10 | 8.2 | 12 | .1 | 8.5 | K17 | E.2 | | 11 | 1415 | 3.1 | 4 | 19 | 8.3 | 8 | .6 | 9.4 | <1 | E.2 | | DATE | SUS
PEND
(MG | L
.05 NI
C,
:- S
DED (
:/L) A | GEN,
IRITE
DIS-
OLVED
MG/L
S N) | NO2+NO
DIS-
SOLVI
(MG/I
AS N | , (
) AMN
- I
ED S(
L (N
) AS | SEN,
SONIA
DIS-
DLVED
SG/L
SN) | PHOR
TOT
(MG
AS | S- PHOF
US DI
AL SOI
/L (MO | 0S- PHO
RUS OF
SS- DI
LVED SOI
G/L (MO
P) AS | HOS-
DRUS
RTHO,
IS-
LVED
J/L
P)
0671) | | NOV
04
JAN | < | :1 < | .001 | .048 | <. | 002 | <.0 | 50 <.0 | 006 < | .001 | | 25
MAR | | 3 < | .001 | .092 | <. | 002 | <.0 | 50 .0 | 009 | .002 | | 23
MAY | < | 1 < | .001 | .078 | <. | 002 | <.0 | 08 E.O | 003 | .004 | | 17
JUL | <1 | .0 < | .001 | .020 | | 006 | .0 | 24 .0 | 009 | .004 | | 20
SEP | <1 | .0 | .001 | .010 | <. | 002 | E.0 | 06 <.0 | 006 | .002 | | 11 | <1 | .0 < | .001 | .008 | | 007 | - | | | | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | CHARGE,
INST. | SPE-
CIFIC | | | | CHARGE,
INST. | SPE-
CIFIC | | |-----------|------|---|---|---|-----------|------|---|---|---| | DATE | TIME | CUBIC
FEET
PER
SECOND
(00061) | CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | CUBIC
FEET
PER
SECOND
(00061) | CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | | | | | MAY | | | | | | 13
NOV | 1542 | 7.1 | 39 | 4.5 | 16
JUN | 1108 | 17 | 39 | 4.5 | | 03
JAN | 1551 | 2.1 | 54 | .0 | 13
JUL | 1011 | 41 | 28 | 4.5 | | 13
MAR | 1135 | 3.8 | 43 | .0 | 12
AUG | 1022 | 4.4 | 37 | 10.0 | | 07
APR | 1310 | 4.1 | 47 | .5 | 09
SEP | 1130 | 3.1 | 42 | 10.0 | | 18 | 1623 | 9.1 | 44 | 1.5 | 12 | 1424 | 2.6 | 47 | 9.5 | ### 09032100 CABIN CREEK NEAR FRASER, CO LOCATION.--Lat 39°59'09", long $105^{\circ}44'40"$, in $NW^{1}/_{4}SE^{1}/_{4}$ sec.2, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank 200 ft downstream from concrete diversion dam, 2.7 mi upstream from mouth, and 4.6 mi northeast of Fraser. DRAINAGE AREA.--4.87 mi². PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,560 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Moffat water tunnel, amount unknown. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEA | | R 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--------------------------------------|---|--------------------------------------|--------------------------------------|--|---|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3
4
5 | | | | | | | | | | 11
11
9.2
8.6
8.2 | | 2.5
2.4
2.2
2.1
2.4 | | | | | | | | | | | | 7.6
7.4
7.1
7.0
7.0 | | | | 11
12
13
14
15 | 2.6
2.5
2.4
2.3
2.3 | e3.3
e3.3
e3.3
e3.2
e3.2 | e2.4
e2.4
e2.4
e2.4 | e2.4
e2.4
e2.4
e2.4
e2.4 | e1.9
e1.8
e1.7
e1.6
e1.6 | e1.2
e1.2
e1.2
e1.2
e1.2 | e1.6
e1.7
e2.0
e2.0
e2.0 | 1.9
2.3
2.0
1.0
5.3 | 22
19
22
17
17 | 6.3
6.4
6.4
6.5
6.2 | 2.4
2.5
2.4
2.3
2.3 | 2.1
2.2
2.1
2.0
2.0 | | 16
17
18
19
20 | e2.2
e2.3
e2.5
2.7
e2.6 | e3.2
e3.1
e3.1
e3.1
e3.0 | e2.4
e2.4
e2.4
e2.4
e2.4 | e2.4
e2.4
e2.4
e2.4
e2.4 | e1.6
e1.6
e1.6
e1.6 | e1.2
e1.2
e1.2
e1.2
e1.2 | e2.0
e2.0
e2.5
e2.5
e2.5 | 2.6
2.2
.68
1.7 | 15
19
20
20
25 | 6.2
6.8
6.2
5.2
4.8 | 2.5
2.7
2.8
2.4
2.3 | 1.9
1.8
1.9
1.9
2.2 | | 21
22
23
24
25 | e2.5
e2.5
e2.4
e2.3
e2.2 | e3.0
e3.0
e2.9
e2.9
e2.8 | e2.4
e2.4
e2.4
e2.4 | e2.4
e2.4
e2.4
e2.4 | e1.5
e1.4
e1.4
e1.4 | e1.2
e1.2
e1.2
e1.2
e1.2 | e2.5
e2.5
e2.7
e2.9
e3.1 | 2.9
8.6
20
28
33 | 14
10
10
9.6
9.8 | 4.6
4.4
4.2
4.1
4.0 | 2.3
2.2
2.1
2.1
2.0 | 2.8
4.5
3.1
3.3
4.2 | | 26
27
28
29
30
31 | e2.2
e2.1
e2.1
2.1
e2.4
e2.6 | e2.8
e2.8
e2.7
e2.6
e2.5 | e2.4
e2.4
e2.4
e2.4
e2.4 | e2.2
e2.0
e2.0
e2.0
e2.0
e2.0 | e1.4
e1.4
e1.4
e1.4 | e1.2
e1.2
e1.2
e1.2
e1.2 | e3.2
e4.0
e5.8
6.7
6.2 | 25
24
33
50
58
55 | 12
11
12
12
11 | 3.9
3.8
3.7
3.4
3.3 | 2.2
2.0
2.4
3.8
2.8
2.6 | 4.6
4.2
3.6
3.5
3.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | 79.8
2.57
3.3
2.1
158 | 95.6
3.19
3.9
2.5
190 | 74.4
2.40
2.4
2.4
148 | 72.2
2.33
2.4
2.0
143 | 48.5
1.67
2.0
1.4
96 | 37.5
1.21
1.4
1.2
74 | 74.4
2.48
6.7
1.2
148 | | | 187.7
6.05
11
3.2
372 | 79.7
2.57
3.8
2.0
158 | 80.8
2.69
4.6
1.8
160 | | | | | | R WATER YE | | | | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.77
6.11
1997
1.67
1990 | 2.22
3.49
1997
.48
1985 | 1.62
2.40
2000
.47
1985 | 1.34
2.33
2000
.59
1985 | 1.11
1.67
2000
.30
1985 | 1.14
1.60
1997
.12
1985 | 1.82
2.75
1997
.079
1985 | 10.7
25.5
1996
1.60
1985 | 32.7
70.3
1997
9.99
1989 | 13.2
46.6
1995
4.91
1994 | 4.82
8.05
1984
1.91
1994 | 3.10
5.12
1984
1.48
1994 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALENI | OAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YEA | ARS 1984 | - 2000 | | ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC 90 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA | IEAN IAN IAN IN MINIMUM IAK FLOW IAK STAGE C-FT) IDS IDS | | 2460.89
6.74
55
.89
1.1
4880
12
2.4
1.3 | Jun 24
May 14
May 8 | | 1908.6
5.2
58
.6
1.2
79
a1.9
3790
11
2.4
1.2 | May 30
8 May 19
Mar 3
May 30
5 May 30 | | 11.2
3.77
112
.04
.07
162
b2.38
15
2.1
1.0 | Jun
May
Apr :
Jun
Jun | 1997
1989
7 1997
7 1985
12 1985
8 1997
8 1997 | b Maximum gage height, 2.38, April 28, backwater from ice. b Maximum gage height, 2.39 ft, Jun 17, 1995. ## 395947105481000 HURD CREEK BELOW TRAIL CREEK NEAR TABERNASH, CO ### WATER-QUALITY RECORDS LOCATION.--Lat 39°59'47", long 105°48'10", in $NW^1/_4NE^1/_4$ sec.5, T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, just below Trail Creek, and above pond, $^1/_4$ mile above Hurd Creek Fishing Club. DRAINAGE AREA: -- Not determined. PERIOD OF RECORD. -- November 1998 to current year. ${\tt REMARKS:--Nutrient\ analysis\ based\ on\ low-level\ methods.}$ Note: The following remark codes may appear in the data tables below: e,
estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | WHO
FII
(STI
AL
UNI | H
TER
OLE
ELD
AND-
RD
ITS) | ATU
WAT
(DEG | ER
C) | OXYG
DI:
SOL'
(MG
(003 | S-
VED
/L) | COLIFORM FECAL 0.7 UM-MI (COLS 100 MI (3162) | , (
L, 1
F :
./
L) i | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |------------------------|---|---|---|---------------------------------|--|------------------------------------|-----------|------------------------------------|----------------------|--|--|---| | NOV
02
MAR | 1415 | 1.0 | 48 | 8 | .3 | 1. | 6 | 10. | 8 | K1 | | .6 | | 23
MAY | 0900 | 1.8 | 52 | 7 | .7 | | 1 | 10. | 6 | <1 | | .5 | | 17 JUL | 1115 | 44 | 24 | 7 | .9 | 3. | 2 | 10. | 4 | K1 | | E.2 | | 20 | 1215 | 2.0 | 37 | 8 | .0 | 12. | 7 | 7. | 8 | K15 | | <.3 | | DATE | RESI
TOTA
AT 1
DEG.
SUS
PEND.
(MG | L GEI 05 NITR C, DI: - SOL' ED (MG: /L) AS I | N, G
ITE NO2
S- D
VED SC
/L (M | LVED
IG/L
N) | GEI
AMMOI
DIS
SOLY
(MG
AS I | N,
NIA
S-
VED
/L
N) | (MG
AS | US
AL
/L
P) | SOLV
(MG/
AS E | S- PI
JS (
S- I
/ED S(
/L (I
P) A | PHOS-
HORUS
DRTHO
DIS-
DLVED
MG/L
S P) | | | NOV
02
MAR
23 | < | _ | | 005
054 | <.00 | | <.0 | | <.00 | | <.001 | | | MAY
17 | <1 | _ | | 005 | .00 | | .0 | | .00 | | .002 | | | JUL
20 | <1 | 0 <.00 | 01 <. | 005 | .00 | 05 | E.0 | 07 | E.00 | 03 | .001 | | ### 09033100 RANCH CREEK BELOW MEADOW CREEK NEAR TABERNASH, CO LOCATION.--Lat $39^\circ59^\circ57^\circ$, long $105^\circ49^\circ37^\circ$, in NW $^1/_4$ NW $^1/_4$ sec.6. T.1 S., R.75 W., Grand County, Hydrologic Unit 14010001, on right bank about 400 ft downstream from Meadow Creek, 0.75 mi northeast of Tabernash, and 4500 ft above mouth. DRAINAGE AREA.--65.7 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1997 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,350 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversion upstream from station for irrigation of hay meadows in Fraser River Valley. Transmountain diversion upstream from station to Moffat Water Tunnel not known since 1959. | | | DISCHARO | E, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--|-----------------------------------|---|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e44
e36
e28
e23
e20 | e9.2
e9.4
e10
e11
e11 | e11
e11
e11
e11 | e11
e11
e11
e11 | e12
e12
e12
e12
e12 | e9.2
e9.2
e9.2
e9.2
e9.2 | e18
e21
e21
e21
e21 | 86
93
112
132
147 | 315
259
198
158
191 | 20
19
20
18
16 | 8.0
8.3
8.3
8.0
7.4 | 7.4
7.0
6.0
5.8
5.4 | | 6
7
8
9
10 | e20
e25
e25
e22
e20 | el1
el1
el1
el1
el1 | e11
e11
e11
e11 | e11
e11
e11
e11 | e12
e12
e12
e12
e12 | e9.2
e9.2
e9.2
e9.2 | e23
e23
e23
e25
e25 | 141
134
133
123
120 | 192
173
160
103
103 | 15
15
15
15
17 | 7.0
6.4
6.2
5.8
4.8 | 6.0
5.8
6.2
6.8
5.7 | | 11
12
13
14
15 | e15
e13
e12
e11
e11 | el1
el1
el1
el1
el1 | e11
e11
e11
e11 | e11
e11
e11
e11 | e11
e11
e11
e11 | e9.2
e10
e10
e10
e10 | e25
e25
e25
e28
e28 | 134
125
107
107
111 | 101
92
95
100
97 | 14
13
13
13
13 | 4.8
5.1
5.3
4.6
5.0 | 5.2
4.9
4.9
4.8
4.7 | | 16
17
18
19
20 | e10
e10
e11
e12
e12 | el1
el1
el1
el1
el1 | e11
e11
e11
e11 | e11
e11
e11
e11 | e11
e11
e11
e11 | e10
e12
e12
e12
e12 | e28
e30
e32
e38
34 | 122
130
116
112
87 | 92
91
86
84
85 | 13
16
16
12
10 | 5.1
5.2
6.5
5.9
5.4 | 4.5
4.5
4.5
4.6
5.0 | | 21
22
23
24
25 | e12
e11
e11
e11
e12 | el1
el1
el1
el1 | e11
e11
e11
e11 | e12
e12
e12
e12
e12 | e10
e10
e10
e10
e10 | e12
e12
e12
e14
e14 | 39
38
45
42
44 | 77
91
132
201
237 | 58
50
38
27
25 | 9.5
9.4
9.0
9.0 | 5.4
5.1
5.0
4.7
4.6 | 6.4
13
9.4
9.9
9.8 | | 26
27
28
29
30
31 | e11
e10
e11
e8.6
e9.0
e8.8 | ell
ell
ell
ell
 | e11
e11
e11
e11
e11 | e12
e12
e12
e12
e12
e12 | e10
e10
e9.2
e9.2 | e14
e16
e16
e18
e18 | 69
e82
93
92
96 | 210
172
193
296
321
327 | 27
39
57
54
42 | 8.7
8.9
9.0
8.5
8.2 | 5.0
5.6
9.3
20
9.7
9.3 | 10
8.7
7.7
7.4
8.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 495.4
16.0
44
8.6
983 | 325.6
10.9
11
9.2
646 | 341
11.0
11
11
676 | 352
11.4
12
11
698 | 318.4
11.0
12
9.2
632 | 363.2
11.7
18
9.2
720 | 1154
38.5
96
18
2290 | 4629
149
327
77
9180 | 3192
106
315
25
6330 | 400.3
12.9
20
8.0
794 | 206.8
6.67
20
4.6
410 | 200.1
6.67
13
4.5
397 | | | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.1
16.0
2000
12.0
1998 | 12.2
13.8
1999
10.9
2000 | 13.6
15.8
1999
11.0
2000 | 12.5
13.3
1999
11.4
2000 | 9.72
11.0
2000
8.70
1999 | 10.6
11.9
1998
8.19
1999 | 30.6
38.5
2000
25.2
1998 | 128
187
1997
68.1
1999 | 201
429
1997
106
2000 | 29.3
56.2
1997
12.9
2000 | 16.4
23.9
1999
6.67
2000 | 13.1
25.9
1999
6.67
2000 | | SUMMARY | STATIST: | ICS | FOR 1 | 999 CALEN | DAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YE | EARS 1997 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL MANNUAL MANNUAL MANNUAL MANUAL MEANUAL MEA | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 12061.9
33.0
232
5.8
6.0
23920
92
14
8.7 | Jun 18
Mar 11
Mar 7 | | 32.7
32.7
32.7
4.5
4.6
40.4
6.33
23760
102
11
6.3 | May 31
Sep 16
Sep 13
May 30
May 30 | |
32.2
33.6
30.2
718
4.5
4.6
763
7.18
23290
123
14
8.9 | Sep 1
Sep 1
Jun | 1999
1998
7 1997
16 2000
13 2000
9 1997
9 1997 | e Estimated. ## 09033100 RANCH CREEK BELOW MEADOW CREEK NEAR TABERNASH, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1997 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K based on non-ideal colony count. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | |--|--|---|--|--|---|--|---|--| | NOV
02
JAN | 1515 | 9.2 | 74 | 8.1 | 2.2 | 10.3 | K2 | .6 | | 25 | 1120 | 12 | 66 | 7.4 | .3 | 10.6 | K1 | .3 | | MAR
29 | 1320 | 18 | 70 | 7.8 | . 4 | 10.2 | <1 | .7 | | MAY
18 | 0915 | 120 | 33 | 8.0 | 1.7 | 10.4 | К3 | .3 | | JUL
20 | 1250 | 12 | 92 | 8.5 | 20.2 | 7.6 | K15 | .8 | | SEP
11 | 1300 | 5.4 | 120 | 8.4 | 14.0 | 8.6 | <1 | .8 | | | RESIDUE
TOTAL
AT 105 | NITRO-
GEN, | NITRO-
GEN,
NO2+NO3 | NITRO-
GEN,
AMMONIA | NITRO-
GEN,AM- | PHOS- | PHOS- | PHOS-
PHORUS
ORTHO, | | DATE | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | AS N) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED | MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | PHORUS
TOTAL | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
02 | DEG. C,
SUS-
PENDED
(MG/L) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | | NOV
02
JAN
25 | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N)
(00608) | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DIS-
SOLVED
(MG/L
AS P)
(00666) | DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
02
JAN
25
MAR
29 | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N)
(00608) | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | DIS-
SOLVED
(MG/L
AS P)
(00666) | DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
02
JAN
25
MAR
29
MAY | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00613)
<.001 | DIS-
SOLVED
(MG/L
AS N)
(00631)
<.005 | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.002 | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.030 | DIS-
SOLVED
(MG/L
AS P)
(00666) | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.001 | | NOV
02
JAN
25
MAR
29 | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | DIS-
SOLVED
(MG/L
AS N)
(00613)
<.001
<.001 | DIS-
SOLVED
(MG/L
AS N)
(00631)
<.005
.074 | DIS-
SOLVED
(MG/L
AS N)
(00608)
<.002
<.002 | ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.030
<.050 | DIS-
SOLVED
(MG/L
AS P)
(00666)
.006 | DIS-
SOLVED
(MG/L
AS P)
(00671)
<.001
.002 | ### 395612105563700 CROOKED CREEK BELOW PTARMIGAN CREEK NEAR TABERNASH, CO ### WATER-QUALITY RECORDS LOCATION.--Lat 39°56'12", long 105°56'37", $\mathrm{NE}^1/_4\mathrm{NE}^1/_4$ sec.25, T.1 S., R.77 W., Grand County, Hydrologic Unit 14010001, approximately 200 ft below the confluence with Ptarmigan Creek, and 6.5 mi southwest of Tabernash. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- July to September 2000. ${\tt REMARKS:--Nutrient\ analysis\ based\ on\ low-level\ methods.}$ Note:-- The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | WATER
(DEG C) | DIS-
SOLVED
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | DIS-
SOLVED
(MG/L | |------------------------|--|---|--|--|---|-----------------------------|---|---------------------------| | JUL
18
SEP | 1205 | 1.2 | 113 | 8.2 | 13.8 | 7.3 | 80 | <.3 | | 13 | 0900 | .16 | 156 | 8.3 | 7.4 | 8.0 | К8 | . 4 | | DATE | RESI
TOTA
AT 1
DEG.
SUS
PEND
(MG
(005 | L GE 05 NITR C, DI - SOL ED (MG /L) AS | N, GE
ITE NO2+
S- DI
VED SOI
/L (MO | EN, G -NO3 AMM -S- D LVED SO -S/L (M N) AS | ONIA PHO
IS- PHO
LVED TO
G/L (M
N) AS | TAL SOL
G/L (MG
P) AS | US ORT S- DIS VED SOLV | US
HO,
-
ED
L | | JUL
18
SEP
13 | <1
<1 | | | | | | | | | 13 | | .00 | | .00 | .0 | 1-1 .00 | .00 | 7 | ## PLATTE RIVER BASIN 73 ## 395634105532401 CROOKED CREEK BELOW TIPPERARY CREEK NEAR TABERNASH, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $39^\circ56'34"$, long $105^\circ53'24"$, $NE^1/_4SE^1/_4$ sec.21, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, approximately 0.5 mi below the confluence with Tipperary Creek, and 4 mi west of Fraser. PERIOD OF RECORD. -- June 1997 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | |-----------|------|---|--|---|---|--|---|--| | OCT | | | | | | | | | | 20
NOV | 1630 | 1.9 | 174 | 8.0 | 5.0 | 9.7 | K1 | E.3 | | 03
DEC | 1330 | 1.6 | 172 | 8.3 | 4.0 | 10.1 | <1 | .3 | | 08 | 1545 | 1.5 | 181 | 8.3 | .1 | 10.1 | K1 | E.2 | | JAN
19 | 1520 | 1.6 | 179 | 8.8 | .1 | 11.3 | <1 | .5 | | FEB 16 | 0945 | 1.5 | 177 | 8.1 | .1 | 11.7 | K1 | E.3 | | MAR
22 | 1030 | 1.5 | 191 | 7.8 | .1 | 10.6 | <1 | .3 | | APR 20 | 0920 | 6.7 | 148 | 8.0 | .9 | 10.6 | K1 | .5 | | MAY
17 | 0950 | 31 | 95 | 8.0 | 3.2 | 9.6 | <1 | E.3 | | JUN
13 | 1415 | 17 | 108 | 8.0 | 10.5 | 8.4 | К3 | E.2 | | JUL
18 | 1310 | 5.6 | 143 | 8.0 | 16.5 | 7.7 | 20 | E.2 | | AUG
16 | 0930 | 2.0 | 191 | 8.0 | 14.6 | 7.4 | 24 | E.2 | | SEP
13 | 1020 | 1.4 | 193 | 8.2 | 11.3 | 8.0 | K1 | . 4 | | | RES] | IDUE NIT | RO- NIT | RO- NIT | 'RO- | | PHO | S- | | DATE | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) | MITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | MITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | |------------------|--|--|--|--|---|--|--|--| | OCT | | | | | | | | | | 20
NOV | 3 | <.001 | <.005 | <.002 | E.033 | .010 | <.001 | | | 03 | <1 | <.001 | <.005 | <.002 | E.033 | E.003 | <.001 | | | DEC
08
JAN | 2 | <.001 |
<.005 | <.002 | .019 | .006 | <.001 | | | 19 | 1 | <.001 | .026 | .009 | .016 | E.004 | .001 | | | FEB 16 | 2 | <.001 | .022 | .011 | .016 | E.004 | .003 | | | MAR
22 | <1 | <.001 | .024 | .012 | .012 | E.004 | .009 | | | APR 20 | 4 | .001 | .102 | .004 | .041 | .021 | .014 | | | MAY
17 | <10 | <.001 | <.005 | <.002 | .022 | .008 | .004 | | | JUN
13 | <10 | <.001 | <.005 | .008 | .015 | .007 | .006 | | | JUL
18
AUG | <10 | .001 | <.005 | .003 | .031 | .012 | .008 | | | 16 | <10 | .001 | <.005 | .003 | .043 | .011 | .007 | | | SEP
13 | <10 | .001 | <.005 | .012 | .036 | .010 | .008 | | | | | | | | | | | | ## 395927105505700 CROOKED CREEK ABOVE POLE CREEK AT TABERNASH, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}59^{\circ}27^{\circ}$, long $105^{\circ}50^{\circ}57^{\circ}$, SW $^{1}/_{4}$ NW $^{1}/_{4}$ sec.1, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, approximately 0.25 mi above the confluence with Pole Creek, and 4.5 mi west of Fraser. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- October 1999 to September 2000. REMARKS:--Nutrient analysis based on low-level methods. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |-----------|------|---|--|--|---|--|---|---| | OCT | | | | | | | | | | 21
NOV | 0945 | 1.8 | 217 | 7.8 | 1.4 | 10.1 | 24 | 3.3 | | 03 | 1530 | 2.4 | 223 | 8.4 | 2.3 | 10.2 | K7 | 3.2 | | DEC
09 | 1050 | 3.2 | 226 | 8.4 | .1 | 10.0 | K1 | 3.3 | | JAN
19 | 1615 | 2.0 | 211 | 8.0 | .1 | 10.8 | К3 | 4.0 | | FEB
16 | 1120 | 4.5 | 215 | 7.8 | .1 | 11.2 | K1 | 2.1 | | MAR
22 | 1120 | 5.9 | 219 | 7.8 | .0 | 11.0 | K1 | 2.6 | | APR 20 | 1045 | 13 | 173 | 7.9 | 2.0 | 10.4 | K1 | 1.7 | | MAY
17 | 1445 | 39 | 115 | 7.9 | 3.5 | 9.9 | К3 | .7 | | JUN
14 | 0850 | 15 | 191 | 8.2 | 8.9 | 8.1 | >120 | 1.1 | | JUL
18 | 1400 | 8.6 | 222 | 8.4 | 18.9 | 7.2 | >240 | 2.7 | | AUG
16 | 1120 | 4.1 | 241 | 8.2 | 15.9 | 7.0 | 130 | 5.2 | | SEP
13 | 1215 | 1.5 | 240 | 8.1 | 13.0 | 8.9 | K13 | 4.6 | | | | | | | | | | | | DATE | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | |-----------|--|--|-------|-------|---|------|--| | OCT | | | | | | | | | 21 | 4 | <.001 | <.005 | <.002 | E.039 | .012 | <.001 | | NOV | _ | | | | | | | | 03 | 8 | <.001 | <.005 | <.002 | E.043 | .011 | .002 | | DEC
09 | 1 | .001 | .054 | .004 | .026 | .009 | .005 | | JAN | _ | .001 | .031 | .001 | .020 | .005 | .005 | | 19 | 2 | .003 | .191 | .026 | .033 | .015 | .015 | | FEB | _ | | | | | | | | 16
MAR | 2 | .001 | .105 | .021 | .031 | .011 | .009 | | 22 | 9 | <.001 | .069 | .010 | .036 | .008 | .008 | | APR | - | | | | | | | | 20 | 7 | .002 | .099 | .014 | .052 | .020 | .010 | | MAY | 1.0 | . 001 | . 005 | 007 | 025 | 015 | 010 | | 17
JUN | 10 | <.001 | <.005 | .007 | .035 | .015 | .010 | | 14 | <10 | <.001 | <.005 | .009 | .042 | .022 | .018 | | JUL | | | | | | | | | 18 | <10 | .001 | <.005 | .008 | .069 | .031 | .019 | | AUG | <10 | .001 | . 005 | .003 | 072 | .027 | .023 | | 16
SEP | <10 | .001 | <.005 | .003 | .073 | .02/ | .023 | | 13 | <10 | .001 | <.005 | <.002 | .059 | .022 | .016 | ## 395901105550800 POLE CREEK AT UPPER STATION NEAR TABERNASH, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}59^{\circ}01^{\circ}$, long $105^{\circ}55^{\circ}08^{\circ}$, $SE^{1}/_{4}SW^{1}/_{4}$ sec.6, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, approximately 5 mi upstream from confluence with the Fraser River, and 4 mi west of Tabernash. PERIOD OF RECORD.--February 1997 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS
CHARG
INST
CUBI
FEE
PER
SECC
(0006 | EE, SP
CICCCC
T DU
ANOND (US | ICT-
ICE
5/CM) | PH
WATI
WHOI
FIEI
(STAI
ARI
UNII | ER
LE
LD
ND- | AT
WA'
(DE | PER-
URE
FER
G C)
010) | D
SO:
(M | GEN,
IS-
LVED
G/L)
300) | FO
FE
0.
UM
(CO
100 | LI-
RM,
CAL,
7
-MF
LS./
ML)
625) | CHL
RID
DIS
SOL
(MG
AS | E,
-
VED
/L
CL) | |---|--|---|---|---|--|---|--|------------------------------------|-----------------------------------|-------------------------------------|------------------------------------|---|--|-----------------------------| | OCT 21 | 1030 | .8 | 3 1 | .11 | 8.4 | 4 | | .5 | 10 | . 2 | | <1 | | 6 | | NOV
03 | 1130 | . 8 | | .15 | 8. | | | . 4 | 10 | | | <1 | | 4 | | DEC 08 | 1430 | .1 | | .17 | 8. | | | .0 | | . 2 | | <1 | Ε. | | | MAR | | | | | | | | | | | | | | | | 29
APR | 1550 | 1.0 | | .41 | 7.8 | - | | . 4 | | .7 | | <1 | • | | | 19
MAY | 1515 | 5.8 | | .16 | 7.8 | | | . 2 | 10 | | | K8 | | 7 | | 17
JUN | 0850 | 20 | | 65 | 8. | | 3 | .9 | 9 | . 4 | | K2 | Ε. | | | 13
JUL | 1245 | 4.9 | | 71 | 8.3 | 1 | 10 | .1 | 8 | .8 | | к7 | Ε. | 2 | | 20
AUG | 1005 | .3 | 0 1 | 49 | 7.8 | 8 | 11 | .6 | 7 | .7 | >2 | 40 | | 4 | | 16
SEP | 1230 | 8.3 | 1 | .95 | 8. | 3 | 15 | . 2 | 6 | .7 | | 48 | | 5 | | 13 | 1330 | .0 | 7 1 | .39 | 7. | 7 | 11 | . 2 | 8 | .5 | | K2 | | 4 | | DATE OCT 21 NOV 03 DEC 08 MAR 29 APR | TOTA
AT 1
DEG.
SUS
PENL
(MG | L 05 N C, S- (5ED 5/L) (330) (| NITRO-
GEN,
IITRITE
DIS-
SOLVED
(MG/L
AS N)
00613)
<.001
<.001 | GEN
NO2+NO
DIS-
SOLVI
(MG/I
AS N | , 203 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | GEN
AMMON
DIS
SOLV
(MG)
AS N | 1,
JIA
S-
VED
('L
J)
J8) | TOTA
(MG
AS | US
AL
/L
P)
65)
48 | (MG
AS | US
S-
VED
/L
P)
66) | (MG/ | US
HO,
-
ED
L
)
71)
0 | | | 19 | | 6 | .001 | .090 |) | .00 | 7 | .0 | 51 | .01 | 7 | .00 | 8 | | | MAY
17 | <1 | .0 | <.001 | <.00 | 5 | <.00 |)2 | .0 | 33 | .01 | 7 | .01 | 3 | | | JUN
13 | <1 | .0 | <.001 | <.00! | 5 | .00 |)9 | .0 | 35 | .02 | 2 | .02 | 0 | | | JUL
20 | <1 | .0 | .001 | .009 | 9 | . 01 | .0 | .0 | 61 | .02 | 7 | .01 | 9 | | | AUG
16
SEP | <1 | .0 | .001 | <.00! | 5 | .00 |)3 | .0 | 65 | .02 | 7 | .02 | 4 | | | 13 | <1 | .0 | .002 | .005 | 5 | .03 | 30 | .0 | 99 | .05 | 1 | .04 | 5 | | ### 395930105510700 POLE CREEK AT MOUTH NEAR TABERNASH, CO ## WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}59^{\circ}30^{\circ}$, long $105^{\circ}51^{\circ}07^{\circ}$, $SE^{1}/_{4}NE^{1}/_{4}$ sec.2, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, approximately 0.25 mi upstream from the confluence with Crooked Creek, and 0.5 mi west of Tabernash. PERIOD OF RECORD. -- February 1997 to current year. NOV 03... JAN 26... FEB MAR 22... JUN 13... JUL 20... 09... 16... APR 19... MAY 17... AUG 16... SEP 13... <1 <1 2 3 1 7 <10 <10 12 <10 <10 <.001 .002 .004 .003 .001 .002 <.001 .001 .001 .001 <.001 <.005 .130 .240 .270 .237 .101 .010 .009 .021 <.005 .010 <.002 .011 .039 .046 .013 .016 .005 .024 .014 .007 .061 .061 .032 .050 .038 .036 .091 .047 .075 .093 .085 .067 .014 .011 .017 .014 .017 .044 .026 .042 .038 .039 .031 <.001 .007 .011 .013 .015 .029 .020 .035 .027 .032 .027 REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | WATE | R-QUALIT | TY DATA, W | ATER YEAR | R OCTOBER | 1999 TO | SEPTEMBER | 2000 | | |-----------|------|---|---|---|--|---|--|---
--| | DATE | 5 | rime | INST. CUBIC FEET PER SECOND (1 | ANCE
US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | | OCT 21 | (| 0900 | 1.1 | 272 | 8.2 | . 4 | 9.6 | K1 | 2.2 | | NOV
03 | 1 | 1500 | 4.7 | 260 | 8.4 | 2.4 | 10.5 | K1 | 2.4 | | DEC
09 | (| 0925 | .76 | 274 | 7.8 | . 2 | 9.2 | K1 | 2.4 | | JAN
26 | (| 0950 | 2.0 | 255 | 8.1 | .8 | 9.6 | K7 | 1.9 | | FEB
16 | = | 1040 | 1.9 | 264 | 8.0 | .1 | 10.8 | K1 | 1.8 | | MAR
22 | - | 1215 | 2.3 | 268 | 7.8 | .2 | 10.7 | K1 | 2.5 | | APR
19 | - | 1610 | 13 | 175 | 8.3 | .2 | 11.7 | K1 | 2.0 | | MAY
17 | - | 1350 | 40 | 120 | 8.0 | 5.2 | 9.4 | K2 | .8 | | JUN
13 | - | 1545 | 2.6 | 229 | 8.2 | 17.5 | 7.6 | K2 | 1.3 | | JUL
20 | - | 1050 | 1.6 | 287 | 8.2 | 15.1 | 7.7 | 34 | 2.7 | | AUG
16 | - | 1030 | .76 | 322 | 8.0 | 15.1 | 6.8 | 110 | 1.5 | | SEP
13 | 1 | 1115 | .29 | 316 | 8.3 | 11.1 | 8.0 | K1 | 2.1 | | D |)ATE | RESIDU
TOTAL
AT 105
DEG. (C
SUS-
PENDEI
(MG/I
(00530 | GEN, 5 NITRITE C, DIS- SOLVE C (MG/L L) AS N) | GEN,
E NO2+NO
DIS-
D SOLVE
(MG/I
AS N) | GEN AMMON DIS SOLV (MG/) AS N | I, IIA PHOS S- PHORU YED TOTA 'L (MG, I) AS I | JS DIS
AL SOLV
/L (MG/ | JS ORTH
S- DIS-
/ED SOLVI
/L (MG/I
P) AS P | JS
HO,
-
ED
: | | OCT 21. | | 4 | <.001 | .009 | 9 <.00 | 02 E.04 | 16 .017 | 7 .00 |)4 | ## 09033300 FRASER RIVER BELOW CROOKED CREEK AT TABERNASH, CO LOCATION.--Lat $40^{\circ}00^{\circ}21^{\circ}$, long $105^{\circ}50^{\circ}52^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$ sec.36, T.1 N., R.76 W., Grand County, Hydrologic Unit 14010001, on left bank 600 ft downstream from Crooked Creek, and 1 mi north of Tabernash. DRAINAGE AREA.--224 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1998 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,270 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station to Moffat water tunnel, amount unknown. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 1999 то | SEPTEMBE | R 2000 | | | |---|--|--|--|---|--------------------------------------|--|---|--|------------------------------------|--|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 86
83
80
78
77 | e44
e42
e40
e33
e33 | e35
e35
e35
e35
e35 | e35
e35
e34
e34
e33 | e37
e37
e38
e38
e38 | e42
e43
e43
e44
e44 | e70
e80
e90
e100
e110 | 203
218
258
294
331 | 827
663
526
436
510 | 113
106
107
97
87 | 52
54
54
52
51 | 60
55
47
48
49 | | 6
7
8
9
10 | 76
91
95
92
90 | e33
e33
e33
e33 | e35
e35
e35
e35
e35 | e33
e33
e32
e31
e32 | e38
e39
e39
e39
e39 | e45
e46
e46
e47
e47 | e110
102
113
e120
e129 | 335
327
351
311
288 | 472
452
400
276
256 | 82
80
81
86
100 | 51
56
53
49
46 | 54
50
56
67
52 | | 11
12
13
14
15 | 83
67
65
62
61 | e33
e33
e33
e33 | e34
e34
e33
e32
e31 | e34
e34
e35
e35
e35 | e39
e39
e39
e40
e40 | e48
e48
e49
e49
e50 | e120
e118
e116
e115
e116 | 312
294
243
233
234 | 244
215
207
200
188 | 82
77
78
76
85 | 47
47
48
48
46 | 47
44
44
46
44 | | 16
17
18
19
20 | 61
56
e58
e58
e57 | e34
e34
e34
e34 | e31
e32
e32
e32
e33 | e37
e38
e37
e37
e37 | e40
e40
e40
e40
e39 | e50
e51
e51
e52
e52 | 121
144
158
126
114 | 251
279
266
268
237 | 174
188
266
284
434 | 90
128
103
84
76 | 45
53
72
60
50 | 37
35
35
33
35 | | 21
22
23
24
25 | e57
e57
e57
e57
e57 | e34
e34
e34
e34 | e34
e34
e35
e35
e35 | e37
e37
e37
e37
e37 | e39
e40
e40
e42
e41 | e53
e53
e53
e55
e57 | 128
127
143
154
164 | 210
223
290
404
505 | 289
231
157
133
131 | 65
62
60
59
60 | 46
39
39
38
38 | e40
e80
e43
e45
e40 | | 26
27
28
29
30
31 | e57
e58
e58
e58
e51
e46 | e34
e34
e34
e34
 | e35
e35
e35
e35
e35
e35 | e38
e38
e38
e37
e37 | e41
e41
e41
e42 | e59
e60
e61
e63
e64
e66 | 286
262
255
233
243 | 448
410
403
542
724
798 | 147
204
228
239
199 | 59
58
57
54
53
52 | 43
47
58
116
85
75 | e41
e40
e40
e39
e42 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2089
67.4
95
46
4140 | 1032
34.4
44
33
2050 | 1057
34.1
35
31
2100 | 1101
35.5
38
31
2180 | 1145
39.5
42
37
2270 | 1591
51.3
66
42
3160 | 4267
142
286
70
8460 | 10490
338
798
203
20810 | 9176
306
827
131
18200 | 2457
79.3
128
52
4870 | 1658
53.5
116
38
3290 | 1388
46.3
80
33
2750 | | STATIST | CICS OF MC | NTHLY MEA | N DATA FO | OR WATER Y | YEARS 1999 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 55.0
67.4
2000
42.7
1999 | 38.7
43.1
1999
34.4
2000 | 40.4
46.6
1999
34.1
2000 | 37.4
39.2
1999
35.5
2000 | 40.3
41.1
1999
39.5
2000 | 56.9
62.4
1999
51.3
2000 | 121
142
2000
99.1
1999 | 256
338
2000
175
1999 | 447
589
1999
306
2000 | 107
135
1999
79.3
2000 | 94.9
136
1999
53.5
2000 | 61.6
77.0
1999
46.3
2000 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1999 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | CAN CAN AN MINIMUM CAK FLOW CAK STAGE AC-FT) CDS CDS | | 45233
124
894
e29
e31
89720
256
71
34 | Jun 23
Mar 7
Mar 4 | | 37451
102
827
e31
e32
1040
5.33
74280
259
52
34 | Jun 1
Dec 15
Dec 13
Jun 1 | | 113
124
102
894
e29
e31
1040
5.33
81830
258
55
35 | Mar
Mar
Jun | 1999
2000
23 1999
7 1999
4 1999
1 2000
1 2000 | e Estimated. ## 09033300 FRASER RIVER BELOW CROOKED CREEK AT TABERNASH, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1990 to September 1994, published as site number (400009105504600). September 1998 to current year. REMARKS.--Nutrient samples based on low-level methods. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER_CIALITY DATA WATER VEAR OCTORED 1999 TO SERTEMBER 2000 | | | | WATER | -QUALITY | DATA, WAT | ER YEAR O | CTOBER 19 | 99 TO SEP | TEMBER 20 | 00 | | | |------------------------|------|--|--|--|--|--|---|--|---|--|--|--| | DATE | TIME | DISCHARGIONST CUBIC FEET PER SECOL (0006) | E, SPE CIFIC C CON- F DUCT- ANCE ND (US/CI | C WHOL
FIEL
- (STAN
ARD
M) UNIT | E D TEMPE D- ATUR WATE S) (DEG | E DIS
R SOLV
C) (MG/ | - UM-M
ED (COLS
L) 100 M | I, HARD L, NESS TOTA IF (MG/ L./ AS L) CACO | CALCI L DIS- L SOLV (MG/ | DIS
ED SOLV
L (MG/
A) AS M | M, SODIUM
- DIS-
ED SOLVEN
L (MG/1
G) AS NA | SORP-
D TION
L RATIO
A) | | NOV
04 | 1015 | 31 | 130 | 8.5 | .2 | 11.3 | K4 | 56 | 17.9 | 2.75 | 5.1 | .3 | | JAN
20 | 1215 | 37 | 119 | 7.8 | .1 | 10.8 | 17 | 46 | 14.3 | 2.59 | 5.4 | .3 | | MAR
30 | 1030 | 64 | 145 | 8.1 | . 6 | 11.0 | K3 | 53 | 16.1 | 3.06 | 7.0 | .4 | | MAY
16 | 1115 | 244 | 75 | 8.6 | 7.7 | 9.6 | K1 | . 33 | 10.4 | 1.64 | 3.1 | .2 | | JUL
17 | 1140 | 132 | 105 | 8.5 | 16.4 | 8.4 | 120 | 43 | 13.5 | 2.36 | 4.0 | .3 | | SEP
12 |
1000 | 42 | 108 | 8.5 | 9.4 | 9.5 | 19 | 46 | 14.0 | 2.53 | 4.4 | .3 | | DAT | | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | | NOV
04 | | 1.5 | 3.4 | 4.2 | .2 | 15.4 | 92 | 87 | .13 | 7.70 | .005 | .155 | | JAN
20 | | 1.6 | 3.0 | 4.3 | .2 | 14.6 | 81 | 78 | .11 | 8.03 | .006 | .442 | | MAR
30 | | 3.2 | 4.1 | 9.1 | .2 | 14.1 | 96 | 93 | .13 | 16.5 | .006 | .502 | | MAY
16 | | 1.0 | 2.4 | 2.3 | .1 | 10.8 | 66 | 53 | .09 | 43.5 | .001 | .016 | | JUL
17 | | 1.2 | 2.0 | 4.1 | .3 | 11.4 | 76 | 67 | .10 | 27.1 | .006 | .043 | | SEP
12 | | 1.2 | 2.7 | 3.8 | .3 | 11.5 | 71 | 70 | .10 | 8.03 | .006 | .104 | | DAT | E | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | NOV | | 000 | | 0.0 | 7.4 | 0.45 | 005 | 01.0 | 0.0 | 2 | 000 | 4.1 | | 04
JAN | | .030 | .11 | .29 | .14 | .047 | .025 | .013 | 2.2 | .3 | 200 | 41 | | 20
MAR
30 | | .156 | .13 | .33 | . 28 | .094 | .057 | .046 | 1.8 | . 2 | 90
220 | 33
50 | | MAY
16 | | .013 | .20 | .28 | .21 | .041 | .020 | .044 | 6.3 | . 4 | 130 | 15 | | JUL
17 | | .020 | .23 | .38 | .25 | .080 | .043 | .027 | 4.6 | .3 | 210 | 23 | | SEP
12 | | .006 | .17 | .26 | .18 | .064 | .038 | .030 | 3.2 | . 2 | 350 | 36 | | 22 | | | •=/ | .20 | .10 | .001 | .030 | .030 | 3.2 | | 330 | 30 | | DAT | E | MISO | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TS, WATER | YEAR OCT | OBER 1999
DATE | TO SEPTE | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | APR
06
20
JUN | | 1100
1255 | 109
104 | 144
138 | 1.5
5.0 | | AU | G
15 | 1500 | 46 | 108 | 18.0 | | 13 | | 1205 | 207 | 78 | 10.0 | | | | | | | | 09033300 FRASER RIVER BELOW CROOKED CREEK NEAR TABERNASH, CO--Continued SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |------------------------|--------------|---|---|---|---| | NOV
04
JAN
20 | 1015
1215 | 31
37 | .2 | 4 | .33 | | MAR
30
MAY | 1030 | 64 | .6 | 14 | 2.4 | | 16 | 1115 | 244 | 7.7 | 10 | 6.7 | ## 400453105554200 FRASER RIVER AT HWY 40, AT GRANBY, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}04^{\circ}53^{\circ}$, long $105^{\circ}55^{\circ}42^{\circ}$, SW $^{1}/_{4}$ NW $^{1}/_{4}$ sec.6, T.1 N., R.76 W., Grand County, Hydrologic Unit 14010001, approximately 3 mi above the confluence with the Colorado River, and 0.6 mi southeast of Granby. PERIOD OF RECORD. -- November 1999 to September 2000. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM | WA
WH
FI
(ST
A | TER
OLE
ELD
AND-
RD
(ITS)
400) | AT
WA'
(DE | TER
G C) | DIS-
SOLVED
(MG/L) | FEC
0.7
UM-
(COL
100 | M,
AL,
MF
S./
ML) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | |------------------|--------------------|---|--|----------------------------|--|------------------------------------|--------------------------|---|----------------------------------|-------------------------------|--| | NOV
03 | 1010 | 32 | 124 | 8 | .0 | | . 2 | 11.5 | K1 | | | | JAN
25 | 1500 | 31 | 115 | 8 | .0 | | . 2 | 11.0 | К3 | | 3.6 | | MAR
23 | 1215 | 53 | 126 | 7 | .9 | | .0 | 11.8 | K1 | | 6.6 | | MAY
16 | 1320 | 360 | 68 | 8 | .2 | 9 | .7 | 9.6 | K1 | | 2.2 | | JUL
20 | 0910 | 178 | 111 | 8 | .2 | 13 | .7 | 8.2 | 47 | | 4.6 | | SEP
12 | 1215 | 37 | 120 | 8 | .5 | 13 | .3 | 8.9 | к8 | | 3.6 | | DATE | SUS
PEND
(MG | L GE
.05 NITE
C, DI | EN,
RITE NO
ES-
LVED S
E/L (
N) A | SN) | GE
AMMO
DI
SOL
(MG
AS | N,
NIA
S-
VED
/L
N) | PHOR
TOT
(MG
AS | S- PHO
US D
AL SO
/L (M
P) AS | RUS
IS-
LVED
G/L
P) | (MG/L
AS P) | S
O,
D | | NOV
03
JAN | - | (| 005 | .589 | .0 | 73 | .09 | 6 .0 | 62 | .058 | | | 25
MAR | | 2 .0 | 005 | .414 | .1 | 11 | .07 | 6 .0 | 55 | .043 | | | 23
MAY | | 1 .0 | 005 | .589 | .0 | 73 | .09 | 6 .0 | 62 | .058 | | | 16
JUL | <1 | .0 <.0 | 001 < | .005 | .0 | 07 | .04 | 0.0 | 16 | .010 | | | 20
SEP | <1 | .0 .0 | 001 | .006 | <.0 | 02 | .05 | 2 .0 | 28 | .016 | | | 12 | <1 | .0 .0 | 001 | .012 | .0 | 06 | .06 | 0.0 | 39 | .029 | | ## 400207105565900 TEN MILE CREEK ABOVE POND ABOVE EIGHT MILE CREEK NEAR GRANBY, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}02^{\circ}07^{\circ}$, long $105^{\circ}56^{\circ}59^{\circ}$, $SE^{1}/_{4}NE^{1}/_{4}$ sec. 19, T.1 N., R.76 W., Grand County, Hydrologic Unit 14010001, approximately 0.5 mi above the confluence with Eight Mile Creek, and 3.5 mi southeast of Granby. PERIOD OF RECORD. -- November 1999 to September 2000. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM
(00095 | WH
FI
(ST
A
) UN | TER
OLE
ELD
AND-
RD
ITS) | TEMPE
ATUR
WATE
(DEG
(0001 | RE I
ER SO | GEN,
DIS-
DLVED
IG/L)
D300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | |------------------|--|---
--|------------------------------|---|--|--|---|---|--| | NOV
03
JAN | 1630 | 1.5 | 294 | 8 | . 4 | 2.9 |) 11 | .0 | 17 | 2.4 | | 25 | 1330 | .73 | 263 | 8 | .5 | .3 | 3 10 | .4 | К5 | 2.2 | | MAR
23 | 1000 | .92 | 273 | 7 | .9 | . 6 | 5 10 | 0.6 | K1 | 4.6 | | MAY
16 | 1520 | 17 | 156 | 8 | .3 | 13.2 | 2 8 | 3.7 | K1 | 1.8 | | JUL
19 | 1530 | 2.1 | 300 | 8 | .3 | 18.9 | 9 7 | .6 | >240 | 4.0 | | SEP
12 | 1430 | .84 | | 8 | .5 | 15.0 |) 9 | .3 | | 4.2 | | DATE | RESI
TOTA
AT 1
DEG.
SUS
PEND
(MG
(005 | L GE
05 NITF
C, DI
- SOI
ED (MO
/L) AS | EN, CRITE NO IS- STATE S | | GEN
AMMON
DIS
SOLV
(MG/
AS N | 1,
NIA
S- E
/ED
'L
(1) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | SOLY
(MG,
AS) | S- PHO
US OR
S- DI
VED SOL
/L (MG
P) AS | THO,
S-
VED
/L | | NOV
03
JAN | | 5 .(| 001 | .019 | <.00 |)2 | .080 | .03 | 5 .0 | 23 | | 25
MAR | | 1 .0 | 002 | .140 | .06 | 50 | .070 | .030 | 0.0 | 23 | | 23
MAY | | 5 .0 | 001 | .171 | .04 | 12 | .065 | .03 | 1 .0 | 30 | | 16
JUL | 1 | 7 <.0 | 001 | .005 | .00 |)5 | .075 | .038 | .0 | 34 | | 19
SEP | 1 | 4 .0 | 001 | .011 | .01 | .2 | .150 | .078 | в .0 | 59 | | 12 | <1 | 0.0 | 001 < | .005 | .00 |)9 | .107 | .06 | 7 .0 | 54 | 82 PLATTE RIVER BASIN ## 400352105550700 TEN MILE CREEK NEAR GRANBY, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}03^{\circ}21^{\circ}$, long $105^{\circ}55^{\circ}07^{\circ}$, $NE^{1}/_{4}SE^{1}/_{4}$ sec. 8, T.1 S., R.76 W., Grand County, Hydrologic Unit 14010001, approximately 3 mi below the confluence with Nine Mile Creek, and 1 mi east of Granby. PERIOD OF RECORD. -- November 1998 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DIS-
SOLVED | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | |-------------------------------------|--|---|--|--|---|---|---|---| | NOV
03
JAN | 0900 | 2.2 | 344 | 8.4 | 2.7 | 10.2 | <1 | 3.3 | | 25 | 1220 | 2.9 | 279 | 8.3 | 1.0 | 8.9 | К9 | 2.9 | | MAR
23 | 1115 | 3.9 | 316 | 7.7 | 2.7 | 10.2 | <1 | 5.0 | | MAY
16 | 1420 | 33 | 153 | 8.2 | 12.3 | 8.4 | 31 | 1.4 | | JUL
19 | 1435 | 3.9 | 369 | 8.7 | 23.2 | 9.4 | 330 | 7.6 | | SEP
12 | 1345 | .86 | 330 | 9.0 | 19.0 | 12.4 | | 4.3 | | | RESIDUE
TOTAL
AT 105 | NITRO-
GEN,
NITRITE | NITRO-
GEN,
NO2+NO3
DIS- | NITRO-
GEN,
AMMONIA
DIS- | NITRO-
GEN,AM-
MONIA +
ORGANIC | PHOS-
PHORUS | | PHOS-
PHORUS
ORTHO,
DIS- | | DATE | DEG. C,
SUS-
PENDED
(MG/L)
(00530) | SOLVED
(MG/L
AS N) | SOLVED
(MG/L
AS N) | SOLVED
(MG/L
AS N) | TOTAL
(MG/L | (MG/L | (MG/L | SOLVED
(MG/L
AS P)
(00671) | | DATE NOV 03 | SUS-
PENDED
(MG/L) | SOLVED
(MG/L
AS N) | SOLVED
(MG/L
AS N) | SOLVED
(MG/L
AS N) | TOTAL
(MG/L
AS N) | (MG/L
AS P) | (MG/L
AS P) | (MG/L
AS P) | | NOV | SUS-
PENDED
(MG/L)
(00530) | SOLVED
(MG/L
AS N)
(00613) | SOLVED
(MG/L
AS N)
(00631) | SOLVED
(MG/L
AS N)
(00608) | TOTAL
(MG/L
AS N)
(00625) | (MG/L
AS P)
(00665) | (MG/L
AS P)
(00666) | (MG/L
AS P)
(00671) | | NOV
03
JAN
25
MAR
23 | SUS-
PENDED
(MG/L)
(00530) | SOLVED
(MG/L
AS N)
(00613) | SOLVED
(MG/L
AS N)
(00631) | SOLVED
(MG/L
AS N)
(00608) | TOTAL
(MG/L
AS N)
(00625) | (MG/L
AS P)
(00665) | (MG/L
AS P)
(00666) | (MG/L
AS P)
(00671) | | NOV
03
JAN
25
MAR | SUS-
PENDED
(MG/L)
(00530) | SOLVED
(MG/L
AS N)
(00613)
<.001 | SOLVED
(MG/L
AS N)
(00631)
<.005 | SOLVED
(MG/L
AS N)
(00608)
<.002 | TOTAL
(MG/L
AS N)
(00625) | (MG/L
AS P)
(00665)
.063 | (MG/L
AS P)
(00666)
.023 | (MG/L
AS P)
(00671)
.012
.016 | | NOV
03
JAN
25
MAR
23 | SUS-
PENDED
(MG/L)
(00530)
3
5 | SOLVED
(MG/L
AS N)
(00613)
<.001
.005 | SOLVED
(MG/L
AS N)
(00631)
<.005
.128 | SOLVED
(MG/L
AS N)
(00608)
<.002
.119 | TOTAL
(MG/L
AS N)
(00625) | (MG/L
AS P)
(00665)
.063
.101 | (MG/L
AS P)
(00666)
.023
.024 | (MG/L
AS P)
(00671)
.012
.016
.025 | ### COLORADO RIVER MAIN STEM 83 ### 09034250 COLORADO RIVER AT WINDY GAP NEAR GRANBY, CO LOCATION.--Lat $40^{\circ}06'30"$, long $106^{\circ}00'13"$ in $NW^{1}/_{4}$ sec.27, T.2 N., R.77 W., Grand County, Hydrologic Unit 14010001, on right bank 300 ft downstream from county highway bridge, 1.1 mi downstream from Windy Gap diversion dam, 2.4 mi downstream from mouth of Fraser River, and 3.8 mi northwest of Granby. DRAINAGE AREA. -- 789 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1981 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,790 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, and diversions for irrigation. | | | DISCHAR | GE, CUBI | C FEET PE | R SECOND, W | | | 1999 TO | SEPTEMBE | ER 2000 | | | |--|--|--|--|---|-------------------------------------|--|--|---|--------------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 596
592
590
660
742 | 214
185
120
163
171 | 71
91
82
e91
e86 | e75
e89
e79
e84
e84 | e86
e85
e87
e71
e92 | e89
e89
89
95
86 | 112
120
123
113
184 | 670
734
839
962
1100 | 2180
1910
1380
807
851 | 325
293
281
271
239 | 153
141
129
126
111 | 116
97
90
88
87 | | 6
7
8
9
10 | 724
601
610
605
599 | 178
179
181
188
171 | e80
e80
e71
e82
e71 | e86
e80
e84
e84 | e89
e80
e82
e82
e82 | 82
79
76
76 | 276
266
251
283
300 | 1220
1230
1270
1170
977 | 806
616
548
462
392 | 221
226
233
258
289 |
110
110
115
112
95 | 85
85
71
69
70 | | 11
12
13
14
15 | 498
179
187
187
179 | 175
182
180
182
180 | e95
e74
e79
e81
e67 | e77
e83
e86
e82
e82 | e94
e85
e80
e89
e87 | 76
70
67
73
74 | 323
335
346
354
367 | 908
898
810
781
653 | 425
418
515
703
579 | 267
243
236
243
240 | 106
102
95
96
103 | 64
54
54
54
54 | | 16
17
18
19
20 | 187
176
172
212
181 | 130
165
164
100
99 | e88
e83
e76
e87
e82 | e82
e80
e91
e89
e89 | e85
e85
e85
e85
e85 | 84
88
77
70
64 | 300
312
353
321
283 | 429
404
442
417
403 | 508
383
405
459
833 | 266
340
314
269
230 | 109
109
126
129
129 | 54
54
53
46
46 | | 21
22
23
24
25 | 178
178
187
180
171 | 119
95
91
61
63 | e82
e79
e90
e80
e75 | e84
e80
e93
e83
e88 | e83
e83
e87
e88
e89 | 71
87
83
96
99 | 293
299
336
472
416 | 365
350
386
511
721 | 773
628
552
520
493 | 197
230
201
185
232 | 105
111
99
85
85 | 48
79
98
80
74 | | 26
27
28
29
30
31 | 190
176
175
232
212
204 | 66
98
95
82
94 | e78
e82
e82
e91
e76
e70 | e89
e88
e84
e79
e81
e77 | e89
e89
e90
e89 | 109
121
133
133
137
136 | 504
592
625
636
666 | 775
1160
1030
1100
1280
1840 | 462
412
434
396
380 | 194
193
179
174
169
173 | 88
95
104
134
143
130 | 73
60
54
47
63 | | TOTAL
MEAN
MAX
MIN
AC-FT | 10560
341
742
171
20950 | 4171
139
214
61
8270 | 2502
80.7
95
67
4960 | 2589
83.5
93
75
5140 | 2483
85.6
94
71
4930 | 2791
90.0
137
64
5540 | 10161
339
666
112
20150 | 25835
833
1840
350
51240 | 20230
674
2180
380
40130 | 7411
239
340
169
14700 | 3485
112
153
85
6910 | 2067
68.9
116
46
4100 | | STATIST | rics of MC | NTHLY MEA | N DATA F | OR WATER | YEARS 1982 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 116
341
2000
59.9
1982 | 105
188
1986
76.5
1982 | 81.4
120
1985
64.3
1982 | 79.4
110
1985
59.0
1989 | 79.2
110
1985
63.5
1982 | 116
260
1984
75.8
1983 | 312
881
1996
132
1983 | 697
2326
1984
138
1992 | 997
2997
1984
186
1990 | 547
2096
1983
172
1989 | 186
509
1997
106
1989 | 119
384
1999
65.4
1989 | | SUMMARY | Y STATISTI | CS | FOR | 1999 CALE | NDAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YEA | RS 1982 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERO
50 PERO | | AN A | | 115937
318
1920
61
74
230000
790
179
76 | Jun 26
Nov 24
Jan 26 | | 94285
258
2180
46
51
2330
5.63
187000
630
120
74 | Jun 1
Sep 19
Sep 15
Jun 1 | | 287
726
122
4930
38
51
5260
7.34
207800
666
110
70 | Oct
May 2 | 1984
1989
25 1984
20 1995
1 1981
25 1984
25 1984 | e Estimated. ## 09034250 COLORADO RIVER AT WINDY GAP NEAR GRANBY, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- December 1994 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboaratory analysis value; K, based on non-ideal colony count. | | | | ~- | • | | | | | | | | |------------------|---|---|--|--|---|---|--|--|---|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | | OCT
12 | 1220 | 181 | 82 | 8.9 | 8.3 | 10.6 | 35 | 10.7 | 1.93 | 3.5 | .3 | | APR
12 | 1245 | 277 | 140 | 8.5 | 5.0 | 12.0 | 54 | 16.5 | 3.16 | 6.8 | . 4 | | AUG
23 | 1400 | 91 | 126 | 8.9 | 18.0 | 7.5 | 54 | 16.7 | 2.90 | 6.4 | . 4 | | 23 | 1100 | 71 | 120 | 0.5 | 10.0 | 7.5 | 31 | 10.7 | 2.50 | 0.1 | • • | | DATE | SIUM,
DIS-
SOLVED
(MG/L
AS K) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT
12 | 1.0 | 40 | 3.2 | 1.4 | .2 | 7.7 | 54 | .07 | 26.2 | 3 | <.010 | | APR
12 | 3.0 | 60 | 7.3 | 3.7 | .1 | 11.0 | 89 | .12 | 66.2 | 8 | <.010 | | AUG
23 | 1.5 | 62 | 2.9 | 2.7 | .2 | 10.6 | 82 | .11 | 20.1 | <10 | <.010 | | DATE | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | MONIA +
ORGANIC
DIS. | PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | SOLVED
(MG/L
AS P) | DIS-
SOLVED
(UG/L
AS SB) | ARSENIC
TOTAL
(UG/L
AS AS) | SOLVED
(UG/L
AS AS) | | OCT
12
APR | <.050 | <.020 | | .16 | .13 | E.036 | <.050 | .011 | <1 | <3 | <2.0 | | 12 | .148 | .032 | .40 | .54 | .43 | .089 | E.036 | .028 | <1 | <3 | <2.0 | | AUG
23 | <.050 | <.020 | | .27 | .26 | .064 | E.036 | .030 | <1 | <3 | <2.0 | | DATE | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
DIS-
SOLVED
(UG/L
AS BE) | | DIS-
SOLVED
(UG/L | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | MIUM, | ERABLE
(UG/L
AS CU) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS- | | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | | OCT
12 | 10 | <2 | <.1 | <.1 | <1 | <.8 | <1 | <1 | 100 | <1 | <1 | | APR
12 | 20 | <2 | <.1 | <.1 | <1 | <.8 | E1 | E1 | 260 | <1 | <1 | | AUG
23 | 15 | <2 | <.1 | <.1 | | <.8 | <1 | <1 | 260 | <1 | <1 | | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT
12 | 18 | <.3 | <.1 | <2 | <1 | <3 | <2.4 | <1 | <1 | <31 | <20 | | APR
12 | 61 | <.3 | <.2 | <2 | <1 | <3 | <2.4 | <1 | <1 | <31 | <20 | | AUG
23 | 28 | <.3 | <.2 | <1 | <1 | <1 | <.7 | <1 | <1 | <1 | <1 | ## COLORADO RIVER MAIN STEM 85 ## 09034250 COLORADO RIVER AT WINDY GAP NEAR GRANBY, CO--Continued ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---|-----------|------|---|--|---| | NOV
04 | 1254 | 176 | 115 | 4.5 | MAY
18 | 1158 | 423 | 92 | 5.0 | | JAN | 1234 | 170 | 113 | 4.5 | JUN | 1130 | 423 | 22 | 5.0 | | 12 | 1610 | 74 | 118 | .0 | 13 | 1229 | 381 | 99 | 12.1 | | MAR | 0010 | 0.5 | 1.40 | _ | JUL | 1000 | 0.50 | 122 | 10.0 | | 08
APR | 0912 | 86 | 140 | .5 | 11
AUG | 1228 | 268 | 133 | 18.0 | | 19 | 0830 | 317 | 135 | 4.5 | 08 | 0918 | 112 | 133 | 17.5 | ### 09034900 BOBTAIL CREEK NEAR JONES PASS, CO LOCATION.--Lat $39^{\circ}45'37"$, long $105^{\circ}54'21"$, in sec.28, T.3 S., R.76 W., Grand County,
Hydrologic Unit 14010001, on left bank 320 ft upstream from diversion dam and 0.4 mi south of entrance to August P. Gumlick Tunnel. DRAINAGE AREA.--5.49 mi². PERIOD OF RECORD. -- October 1965 to current year. GAGE.--Water-stage recorder. Elevation of gage is 10,430 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--|--------------------------------------|---|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | e1.1
e1.1
e1.2
e1.1 | | | | 4.5
5.3
14
e20
e26 | | | | 9.6
8.1
7.3
6.8
7.5 | | | | | | | | | | e32
40
30
16
19 | | | | | | | | | | e.92
e.92
e.92
e.92
e.92 | | | | 27
28
21
15
17 | | | | 5.2
5.0
4.8
4.5
4.2 | | 16
17
18
19
20 | 2.1
e2.4
e2.6
e2.6
e2.6 | e1.8
e1.8
e1.8
e1.7
e1.8 | e1.2
e1.2
e1.3
e1.3 | e.90
e.90
e.90
e.90 | e.80
e.78
e.76
e.76
e.78 | e.70
e.68
e.70
e.70 | e1.0
e1.1
e1.2
e1.1
e1.0 | 24
22
15
13
13 | 39
34
32
36
40 | 18
23
20
16
14 | 4.1
4.4
5.4
4.7
4.2 | 4.0
3.8
3.9
3.7
4.1 | | 21
22
23
24
25 | e2.6
e2.5
e2.4
e2.3
e2.2 | e1.8
e1.7
e1.6
e1.4
e1.5 | e1.2
e1.2
e1.1
e1.1 | e.84
e.84
e.84
e.84 | e.78
e.76
e.76
e.76
e.72 | e.70
e.70
e.68
e.70
e.70 | e1.1
e1.3
e1.3
e1.2 | 13
22
45
60
59 | | | | | | 26
27
28
29
30
31 | e2.2
e2.2
e2.3
e2.3
e2.1
e2.2 | e1.6
e1.5
e1.5
e1.5
e1.5 | e1.1
e1.1
e1.1
e1.1
e1.1 | e.84
e.84
e.84
e.84
e.84 | e.72
e.74
e.72
e.72 | e.68
e.68
e.68
e.74
e.72 | 1.5
2.9
3.6
4.4
4.7 | 46
40
57
85
95 | 36
34
29
27
26 | 8.4
7.9
7.4
6.9
6.6
6.2 | 5.6
5.1
5.8
13
8.7
9.2 | 5.7
5.1
4.8
4.9
4.8 | | TOTAL
MEAN
MAX
MIN
AC-FT | 72.5
2.34
3.1
1.5
144 | 55.7
1.86
2.3
1.4
110 | 38.8
1.25
1.5
1.1
77 | 29.06
.94
1.2
.84
58 | 23.00
.79
.84
.72
46 | 21.60
.70
.74
.68
43 | 42.01
1.40
4.7
.72
83 | 1011.8
32.6
95
4.5
2010 | 1397
46.6
85
26
2770 | 464.8
15.0
25
6.2
922 | 162.2
5.23
13
3.7
322 | 169.7
5.66
9.6
3.7
337 | | STATIST | | | | | | | | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.00
5.49
1985
1.51
1981 | 1.72
3.33
1984
1.03
1974 | 1.09
1.79
1983
.78
1977 | .87
1.24
1983
.58
1972 | .78
1.15
1995
.48
1972 | .77
1.21
1995
.52
1972 | 1.42
4.30
1969
.68
1973 | 14.9
32.6
2000
1.57
1995 | 57.2
85.8
1997
27.3
1966 | 30.3
75.5
1995
7.08
1977 | 9.67
25.5
1983
4.90
1977 | 4.66
9.74
1983
2.35
1987 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YE | ARS 1966 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME SEVEN-DAY ANEOUS PE | CAN CAN AN MINIMUM CAK FLOW CAK STAGE AC-FT) CDS CDS | | 3717.88
10.2
87
e.60
e.65
7370
33
1.9 | Jun 23
Feb 12
Feb 11 | | 3488.1
9.5
95
e.6
e.6
136
a4.6
6920
30
2.2 | May 30
88 Mar 3
99 Mar 22
May 30
11 May 30 | | 10.5
15.5
6.28
146
44
.46
290
b5.19
7640
33
2.0 | Jun 2
Feb 1
Feb 1
Jun 2 | 1984
1977
25 1983
11 1972
11 1972
28 1988
28 1988 | b Maximum gage height, 5.15 ft, May 5, backwater from ice. b Maximum gage height, 7.57 ft, May 15, 1984, backwater from ice. #### 09035500 WILLIAMS FORK BELOW STEELMAN CREEK, CO $\label{location.--Lat 39^946^44", long 105^55^40", in sec. 20, T.3 S., R.76 W., Grand County, Hydrologic Unit 14010001, on right bank 700 ft downstream from Steelman Creek and 6.5 mi southeast of Leal.$ DRAINAGE AREA.--16.3 mi². PERIOD OF RECORD.--July 1933 to September 1941, published as Williams River below Steelman Creek. October 1965 to current year. Monthly discharge only for some periods, published in WSP 1313. GAGE.--Water-stage recorder. Elevation of gage is 9,800 ft above sea level, from topographic map. Prior to July 21, 1933, nonrecording gage, and July 21, 1933 to Sept. 30, 1941, water-stage recorder at site 600 ft upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station through August P. Gumlick Tunnel (station 09035000) since May 10, 1940. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE
MEAN V | EAR OCTOBER | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--|---|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|---------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.3
8.1
7.7
7.5
7.4 | e6.2
e6.0
e6.2
e6.4
e6.0 | e3.9 | e3.5
e3.5
e3.6
e3.5 | e3.2 | e2.9
e2.9
e3.0
e2.9
e3.0 | e3.2 | 17
20
32
45
63 | 238
208
200
199
191 | 60
57
30
5.2
17 | 1.8
1.6
1.5
1.4 | 1.3
1.2
1.1
1.0
1.0 | | 6
7
8
9
10 | 7.8
9.8
10
9.6
8.7 | e6.0
e6.2
e6.2
e5.9
e5.9 | e3.8
e3.7
e3.8
e3.9
e3.7 | e3.5
e3.5
e3.5
e3.4
e3.4 | e3.2
e3.2
e3.2
e3.2
e3.2 | e3.0
e3.0
e3.0
e2.9
e3.0 | | 80
76
61
46
57 | 194
190
179
169
150 | 3.5
3.2
3.2
3.6
19 | 1.3
7.2
8.8
1.4
1.3 | 1.2
1.1
1.2
1.3 | | 11
12
13
14
15 | 7.9
7.3
6.9
6.6
6.3 | e5.6
e5.4
e5.3
e5.4
e5.4 | e3.6 | e3.4 | e3.2
e3.2 | e2.9
e2.9
e3.0
e2.9
e3.0 | e5.0
e4.8
e5.6
e6.4
e6.3 | 72
63
49
46
49 | 133
125
113
104
106 | 3.1
7.4
2.6
3.0
2.9 | 1.3
1.2
1.2
1.1 | .90
.86
.83
.78
.76 | | 16
17
18
19
20 | e6.6
e6.6
e7.0
e6.6 | e5.2
e5.2
e5.2
e4.8
e5.1 | e3.6
e3.6 | e3.4
e3.4
e3.4
e3.3 | e3.1
e3.2
e3.2
e3.1
e3.1 | e3.0
e2.8
e2.8
e3.0
e3.0 | e5.4
e6.3
e7.4
e6.9
e6.4 | 64
63
47
42
41 | 100
88
e80
e88
e97 | 3.0
16
3.1
2.4
2.1 | 1.3
1.3
1.8
1.4 | .72
.70
.77
.75 | | 21
22
23
24
25 | e6.4
e6.2
e6.2
e6.2
e6.2 | e5.2
e5.0
e4.6
e4.0
e4.2 | e3.7
e3.5
e3.5
e3.5
e3.5 | e3.3
e3.3
e3.3
e3.3 | e3.2
e3.2
e3.2
e3.2
e3.2 | e3.0
e3.0
e2.8
e3.0
e3.0 | e7.2
e6.8
e7.4
e7.4
e6.3 | 42
62
119
165
164 | e85
79
74
71
72 | 2.0
1.9
1.8
8.9
2.2 | 1.2
1.1
.96
.97
1.3 | 1.5
2.3
1.3
1.2
5.6 | | 26
27
28
29
30
31 | e6.2
e6.3
e6.4
e6.4
e6.0
e6.2 | e4.3
e4.2
e4.1
e4.0
e4.0 | e3.5
e3.5
e3.5
e3.5
e3.5 | e3.2 | e3.1
e3.1
e3.0
e3.0 | e2.8
e2.8
e2.9
e3.1
e3.2
e3.1 | 7.9
13
15
17
19 | 128
111
149
223
249
256 | 90
81
71
65
62 | 1.9
1.9
1.8
1.7
1.6
6.2 | 1.6
1.3
1.2
3.2
1.9 | 4.7
1.3
1.2
3.0
1.2 | | TOTAL
MEAN
MAX
MIN
AC-FT
a | 222.0
7.16
10
6.0
440 | 157.2
5.24
6.4
4.0
312 | 113.2
3.65
4.0
3.5
225 | 104.9
3.38
3.6
3.2
208 | 3.17 | 91.6
2.95
3.2
2.8
182
0 | | 2701
87.1
256
17
5360 | 3702
123
238
62
7340
0 | 279.2
9.01
60
1.6
554
1520 | 56.73
1.83
8.8
.96
113
651 | 42.67
1.42
5.6
.70
85
599 | | STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 1933 | - 2000 | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) |
5.63
16.3
1985
.98
1967 | 3.63
8.07
1938
.58
1987 | 2.52
4.85
1996
.39
1987 | 2.10
4.30
1939
.31
1978 | 2.00
4.02
1999
.30
1978 | 2.06
4.99
1985
.35
1987 | 3.88
10.6
1992
.61
1973 | 32.8
89.2
1936
5.45
1991 | 119
213
1938
15.5
1976 | 58.8
200
1995
4.85
1968 | 12.6
44.5
1983
.70
1979 | 7.30
18.4
1984
.70
1979 | | SUMMARY | Y STATIST | CICS | FOR | 1999 CALEN | DAR YEAR | I | FOR 2000 WAS | TER YEAR | | WATER YE | ARS 1933 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN I ANNUAL ANNUAL M I DAILY M DAILY ME SEVEN-DA IANEOUS P | IEAN IEAN IEAN IY MINIMUM IEAK FLOW IEAK STAGE AC-FT) IEDS IEDS | | 9482.7
26.0
214
e3.4
e3.5
18810
86
6.0
3.7 | Jun 25
Feb 2
Dec 22 | | .76
340 | May 31
Sep 17
Sep 13
May 30
May 30 | | c26.7
39.0
4.11
395
.20
.27
d516
f5.64
c19340
70
3.7
.60 | Jul
Mar
Feb
Jul | 1995
1976
12 1995
6 1967
13 1971
11 1995
11 1995 | e Estimated. Diversions in acre-feet, through August P. Gumlick Tunnel, provided by Denver Water Board. Does not include diversions through August P. Gumlick Tunnel. Includes diversions to August P. Gumlick Tunnel. From rating curve extended above 250 ft³/s. Maximum gage height, 6.96 ft, May 15, 1984, backwater from ice. #### 09035700 WILLIAMS FORK ABOVE DARLING CREEK, NEAR LEAL, CO LOCATION.--Lat $39^{\circ}47^{\circ}50^{\circ}$, long $106^{\circ}01^{\circ}32^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.16, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 0.3 mi upstream from Darling Creek, and 1.4 mi southeast of Leal. DRAINAGE AREA.--35.0 mi². PERIOD OF RECORD. -- October 1965 to current year. REVISED RECORDS. -- WDR CO-93-2: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,940 ft above sea level, from topographic map. Prior to Oct. 1, 1972, and May 6, 1981 to Jan. 31, 1983, at site 300 ft upstream at different datum. Prior to Oct. 20, 1992, and Oct. 1, 1972 to May 5, 1981, at site 0.6 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09035000). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAF | KGE, CUBI | C FEET PER | | MEAN V | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|------------------------------------|---|-----------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 14
14
13
13 | 11
11
12
13
11 | e9.0
e9.0
e9.0
e9.0 | | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.4
e8.8 | 40
48
67
83
106 | 339
318
312
316
309 | 100
97
77
40
48 | 15
14
13
13 | 12
12
11
10
11 | | 6
7
8
9 | 13
18
17
18
16 | 9.3
e10
e10
e10
e10 | e9.0
e9.0
e9.0
e9.0 | e9.0
e9.0
e8.8
e8.6
e8.4 | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e9.5
e10
e10
e11
e11 | 128
128
111
89
96 | 311
311
299
285
262 | 34
32
31
33
44 | 12
14
21
12
11 | 11
11
11
12
9.7 | | 11
12
13
14
15 | 14
13
12
12
11 | e10
e10
e10
e10
e10 | e9.0
e9.0
e9.0
e9.0 | e8.3
e8.2
e8.1
e8.1
e8.0 | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e12
e13
e13
e14
12 | 123
112
89
83
86 | 237
222
211
189
190 | 31
32
27
26
27 | 11
11
11
10
11 | 9.0
8.7
8.3
8.0
7.7 | | 16
17
18
19
20 | 9.6
9.4
13
12
12 | e10
e10
e10
e10
e10 | e9.0
e9.0
e9.0
e9.0 | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | 11
13
17
16
15 | 104
111
88
80
80 | 181
164
150
158
186 | 29
47
30
24
22 | 12
12
17
13
12 | 7.7
7.4
7.8
7.8
7.9 | | 21
22
23
24
25 | 11 | e10
e9.8
e9.6
e9.2
e9.0 | e9.0
e9.0
e9.0
e9.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | 15
14
17
15
15 | 78
101
168
242
255 | 147
139
131
124
124 | 20
19
18
23
20 | 11
11
10
9.6 | 10
18
12
11
14 | | 26
27
28
29
30
31 | 10
10
9.9
10
9.5 | e9.0
e9.0
e9.0
e9.0 | e9.0
e9.0
e9.0
e9.0
e9.0 | e8.0
e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | 18
31
41
46
47 | 230
207
237
330
346
350 | 149
148
125
114
106 | 17
17
16
15
14 | 13
12
11
27
15 | 16
12
10
11
11 | | TOTAL
MEAN
MAX
MIN
AC-FT | 383.4 | 299.9 | | 257.5 | 232 0 | 248.0
8.00
8.0
8.0
492 | 487.7
16.3
47
8.0
967 | 4396
142
350
40
8720 | 6257
209
339
106
12410 | 1027
33.1
100
14
2040 | 402.6
13.0
27
9.6
799 | 316.0
10.5
18
7.4
627 | | MEAN | 12.6 | 9.71 | 8.05 | OR WATER Y | 6.14 | 6.63 | 11.7 | 63.3 | 207 | 107 | 27.8 | 16.3 | | MAX
(WY)
MIN
(WY) | 33.5
1996
6.20
1980 | 20.6
1998
4.90
1990 | 15.5
1996
3.87
1975 | 13.4
1996
3.43
1975 | 13.6
1996
3.47
1975 | 17.9
1996
3.21
1980 | 26.0
1996
5.29
1973 | 155
1996
21.3
1975 | 378
1997
63.6
1966 | 320
1995
21.9
1977 | 75.5
1983
10.4
1981 | 40.9
1984
7.09
1966 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | 1 | FOR 2000 W. | ATER YEAR | | WATER YE | ARS 1966 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 15917.8
43.6
297
e7.9
e8.0
31570
141
13
9.0 | Jun 25
Mar 7
Mar 1 | | 14586.1
39.9
350
7.4
7.8
438
a7.4
28930
126
11 | May 31
Sep 17
Sep 14
May 31
3 May 31 | | 40.2
71.3
17.6
555
2.7
2.8
751
b6.94
29130
120
11 | Jul
Apr
Mar
Jun
Jun | 1984
1976
12 1995
5 1977
31 1977
17 1995
17 1995 | e Estimated. b Maximum gage height, 7.45 ft, May 29. b Maximum gage height, 7.45 ft, May 29, 2000, present site and datum. ### 09035800 DARLING CREEK NEAR LEAL, CO LOCATION.--Lat $39^{\circ}48^{\circ}02^{\circ}$, long $106^{\circ}01^{\circ}33^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.9, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 700 ft upstream from mouth, and 1.2 mi southeast of Leal. DRAINAGE AREA.--8.76 mi². PERIOD OF RECORD. -- October 1965 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,940 ft above sea level, from topographic map. Prior to Aug. 23, 1996, at site 2,400 ft upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | J J | DISCHAR | GE, CUBIC | C FEET PER | SECOND, W | | AR OCTOBER | R 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--|---|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.3
4.3
4.2
4.2 | e3.5
e3.4
e3.3
e3.2
e3.1 | e2.6
e2.6
e2.5
e2.5
e2.5 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e1.9 | e2.0
e2.1
e2.1
e2.2
e2.3 | 6.5
8.9
12
16
22 | 77
73
68
68
65 | 14
14
13
12
11 | 4.9
4.6
4.7
4.6
5.1 | 5.0
4.4
4.0
3.8
3.7 | | 6
7
8
9
10 | 4.2
4.6
4.8
4.6
4.4 | e3.0
e3.0
e3.0
e3.0
e3.0 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.5
e2.4
e2.4
e2.4
e2.3 |
e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.4
e2.6
e2.7
e2.8
e2.9 | 24
22
19
16
20 | 68
65
58
53
45 | 11
10
10
11
9.9 | | 4.1
3.8
4.0
3.9
3.4 | | 11
12
13
14
15 | 4.2
4.2
4.1
4.1
4.0 | e3.0
e3.0
e3.0
e3.0
e3.0 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.3
e2.3
e2.3
e2.3
e2.3 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.0 | 3.0
3.2
3.4
3.6
3.5 | 26
22
18
17
17 | 41
38
36
33
32 | 9.0
8.8
8.4
9.9
9.9 | e3.2
e3.1
e3.0
e3.0
e3.9 | 3.3
3.2
3.1
3.1
2.9 | | 16
17
18
19
20 | e3.9
e3.8
e3.8
e3.7
e3.7 | e3.0
e3.0
e3.0
e3.0
e2.9 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.3
e2.3
e2.3
e2.3
e2.3 | e2.0
e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.0 | 3.3
3.6
3.8
3.6
3.4 | 22
21
17
16
16 | 29
27
e26
e25
e24 | 11
12
10
8.5
7.9 | 4.7
5.3
8.1
4.7
4.7 | 2.9
2.8
2.9
2.9
3.7 | | | | | | | | | 3.6
e3.8
e3.9
4.0
4.7 | | | | | | | 26
27
28
29
30
31 | e3.5
e3.5
e3.5
e3.5
e3.5
e3.5 | e2.7
e2.7
e2.7
e2.6
e2.6 | e2.5
e2.5
e2.5
e2.5
e2.5
e2.5 | e2.2
e2.2
e2.2
e2.1
e2.1
e2.0 | e2.0
e2.0
e2.0
e2.0 | e2.0
e2.0
e2.0
e2.0
e2.0 | 4.2
6.2
7.7
7.9
7.4 | 50
45
59
87
88
87 | 22
20
18
17
15 | 6.3
6.2
6.0
5.6
5.4
5.0 | 4.9
4.1
5.9
13
7.5
5.6 | 5.0
4.4
4.2
4.2
4.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 122.2
3.94
4.8
3.5
242 | 88.8
2.96
3.5
2.6
176 | 77.7
2.51
2.6
2.5
154 | 71.8
2.32
2.5
2.0
142 | 58.0
2.00
2.0
2.0
115 | 61.9
2.00
2.0
1.9
123 | 111.9
3.73
7.9
2.0
222 | 966.4
31.2
88
6.5
1920 | 1144
38.1
77
15
2270 | 280.6
9.05
14
5.0
557 | 146.4
4.72
13
3.0
290 | 119.9
4.00
8.2
2.8
238 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.09
7.86
1985
2.55
1979 | 3.15
5.52
1985
1.82
1976 | 2.58
4.33
1985
1.38
1976 | 2.19
3.00
1985
1.20
1976 | 2.01
3.08
1998
1.21
1975 | 2.02
2.90
1998
1.10
1975 | 2.85
6.03
1985
1.49
1975 | 15.1
31.2
2000
4.39
1983 | 47.9
85.1
1984
20.5
1966 | 22.1
91.6
1983
5.32
1977 | 7.37
20.2
1983
3.44
1981 | 4.70
9.64
1984
2.59
1979 | | SUMMAR | Y STATIST | ICS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER Y | EARS 1966 | - 2000 | | LOWEST
HIGHES'
LOWEST
ANNUAL
INSTAN'
INSTAN'
ANNUAL
10 PERO
50 PERO | MEAN I ANNUAL M ANNUAL M I DAILY ME DAILY ME SEVEN-DA IANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 3132.6
8.58
61
e2.5
2.5
6210
26
3.5
2.5 | | | 3249.6
8.88
e1.9
2.0
123
b5.0
6450
22
3.5
2.0 | May 30
Mar 5
Feb 28
May 30
May 30 | | 9.6' 18.1 5.6: 175 1.0 1.1 a241 c4.3 7010 27 3.4 1.9 | Jun 2
Jun 2
Jun 3
Jun 3 | 1983
1977
25 1983
12 1975
24 1975
30 1984
30 1984 | e Estimated. a From rating curve extended above 100 ft³/s. b Maximum gage height, 5.19 ft, May 29. c Maximum gage height, 5.44 ft, Jun 19, 1997, present site and datum. ### 09035900 SOUTH FORK WILLIAMS FORK NEAR LEAL, CO LOCATION.--Lat $39^{\circ}47^{\circ}45^{\circ}$, long $106^{\circ}01^{\circ}48^{\circ}$, in $NE^{1}/_{4}$ sec.17, T.3 S., R.77 W., Grand County, Hydrologic Unit 14010001, on left bank 800 ft upstream from highway bridge, 0.6 mi upstream from mouth, and 1.2 mi southeast of Leal. DRAINAGE AREA.--27.3 mi². PERIOD OF RECORD. -- October 1965 to current year. GAGE.--Water-stage recorder. Elevation of gage is 8,950 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 1999 TO : | SEPTEMBE | R 2000 | | | |---|--|--|--------------------------------------|---|--------------------------------------|--------------------------------------|--|--|------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
13
12
12
12 | 11
11
13
13
11 | e8.4
e8.2
e8.1
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e7.6
e7.6
e7.6
e7.6
e7.6 | e8.0
e8.0
e8.0
e8.0
e8.0 | 27
34
49
63
78 | 237
219
209
210
207 | 60
57
55
51
48 | 21
20
19
19 | 18
17
16
15
15 | | 6
7
8
9
10 | 12
14
14
14
13 | 11 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0 | e7.6 | e8.6
e9.2
e10
e11
e12 | 88
86
73
61
72 | 202
197
185
177
164 | 45
44
42
44
42 | 18
17
17
16
16 | 16
16
16
17
15 | | 11
12
13
14
15 | 13
12
12
11
11 | 12
11
e11
e11
e11 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | e7.8
e7.6
e7.6
e7.6 | e8.0
e8.0
e8.0
e8.0
e8.0 | e11
e11
e10
13
12 | 90
80
66
60
63 | 149
138
127
114
113 | 37
36
35
35
35 | 16
17
16
15
16 | 14
14
13
13 | | 16
17
18
19
20 | 11
15
13
12
12 | e11
11
10
e9.8
e9.4 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | e7.6
e7.6
e7.6
e7.6
e7.4 | e8.0
e8.0
e8.0
e8.0
e8.0 | 11
12
15
14
13 | 76
80
64
60 | 106
97
91
97
109 | 41
55
38
34
33 | 16
17
21
18
17 | 13
13
14
13
14 | | 21
22
23
24
25 | 11
11
11
11
11 | e8.5 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | e7.6
e7.6
e7.6
e7.6 | e8.0
e8.0
e8.0
e8.0
e8.0 | 15
14
19
16
17 | 63
80
121
163
169 | 90
84
80
75
75 | 31
30
29
27
27 | 16
16
15
15
22 | 17
24
18
17
17 | | 26
27
28
29
30
31 | 11
10
10
11
11
11 | e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0 | e8.0
e8.0
e8.0
e8.0
e8.0
e8.0 | e7.6
e7.6
e7.6
e7.6 | e8.0
e8.0
e8.0
e8.0
e8.0 | 15
20
26
31
33 | 160
142
158
211
236
247 | 88
87
74
68
64 | 25
25
24
23
22
21 | 17
17
16
28
19
18 | 18
16
15
15
15 | | TOTAL
MEAN
MAX
MIN
AC-FT | 371
12.0
15
10
736 | 308.3
10.3
13
8.0
612 | 248.7
8.02
8.4
8.0
493 | 248.0
8.00
8.0
8.0
492 | 224.4
7.74
8.0
7.4
445 | 244.9
7.90
8.0
7.6
486 | 418.8
14.0
33
8.0
831 | 3080
99.4
247
27
6110 | 3933
131
237
64
7800 | 1151
37.1
60
21
2280 | 550
17.7
28
15
1090 | 467
15.6
24
13
926 | | STATIST | ICS OF M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 1966 | - 2000, | BY WATER Y | TEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.6
24.0
1985
8.94
1970 | 11.0
16.7
1998
3.71
1967 | 9.31
21.1
1986
3.46
1967 | 7.76
12.8
1998
2.95
1967 | 7.35
11.4
1996
2.90
1967 | 7.39
11.5
1996
3.19
1967 | 11.5
25.0
1971
4.47
1967 | 57.8
118
1996
18.4
1995 | 159
243
1984
78.9
1977 | 73.4
215
1983
24.0
1966 | 26.5
63.3
1983
12.0
1966 | 16.7
32.3
1984
10.1
1966 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | ER YEAR | | WATER YEA | ARS 1966 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ANNUAL M DAILY ME DAILY ME SEVEN-DA ANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 11457.3
31.4
183
e8.0
e8.0
22730
103
12
8.8 | Jun 25
Nov 24
Dec 4 | | 247
e7.4
e7.6
318
3.62
22300
81
12
8.0 | May 31
Feb 20
Feb 14
May 30
May 30 | | 33.4
54.8
20.2
404
2.6
2.8
a574
b4.17
24210
97
13
6.6 | Mar
Feb 2
Jun 1 | 1984
1977
17 1995
6 1967
28 1967
17 1995
17 1995 | a From rating curve extended above 256 $\rm ft^3/s$. b Maximum gage height, 4.22 ft, Nov 22, 1979, backwater from ice. #### 09036000 WILLIAMS FORK NEAR LEAL, CO LOCATION.--Lat $39^{\circ}50^{\circ}02^{\circ}$, long $106^{\circ}03^{\circ}21^{\circ}$, in sec.31, T.2 S., R.77 W., Grand County, Hydrologic Unit 14010001, on right bank at downstream side of bridge, 100 ft downstream from Kinney Creek, and 1.7 mi northwest of Leal. DRAINAGE
AREA. -- 89.5 mi². PERIOD OF RECORD.--July 1933 to current year. Records since May 10, 1940, equivalent to earlier records if diversion to August P. Gumlick Tunnel is added to flow past station. Prior to October 1958, published as Williams River near Leal. REVISED RECORDS.--WSP 1733: 1951. WSP 2124: Drainage area. WRD CO. 1973: 1972. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,790 ft above sea level, from topographic map. Prior to Aug. 16, 1953, at site 15 ft downstream at present datum. REMARKS.--Records good except for estimated daily discharges, which are fair. Transmountain diversion upstream from station through August P. Gumlick Tunnel (see table below for figures of diversion). Diversions for irrigation of about 200 acres of hay meadows upstream from station and about 40 acres downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--|--|--------------------------------------|---|--------------------------------------|--|---|--|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 52
50
50
51
51 | 36
33
35
37
34 | 27
27
26
26
24 | 24
24
24
e24
24 | 21
21
21
21
21 | 19
20
20
19
20 | 19
20
20
20
20
24 | 87
105
155
203
256 | 837
785
737
734
721 | 205
198
177
128
129 | 54
51
50
47
47 | 45
42
37
36
36 | | 6
7
8
9
10 | 54
47
48
51
51 | 34
35
35
36
33 | 26
25
26
e26
25 | 25
e24
22
23
22 | 21
21
21
21
21 | 20
20
20
19
20 | 26
25
26
30
31 | 307
310
275
219
230 | 695
700
668
622
577 | 116
110
110
116
119 | 48
46
53
45
42 | 39
39
38
42
36 | | 11
12
13
14
15 | 51
50
40
42
45 | 35
31
30
31
31 | 25
25
25
25
25
25 | 22
22
22
22
22
22 | 20
20
20
20
20 | 19
19
20
19
20 | 28
29
36
39
37 | 313
287
216
202
210 | 513
477
455
402
396 | 105
98
93
92
100 | 42
42
42
39
41 | 34
27
26
26
26 | | 16
17
18
19
20 | 45
34
50
47
45 | 29
29
29
26
30 | 25
25
25
26
26 | 22
22
22
22
21 | 20
20
20
20
19 | 19
19
20
19
20 | 32
37
45
40
38 | 250
281
221
201
201 | 380
346
311
320
382 | 105
154
112
90
83 | 44
44
60
46
43 | 26
25
25
26
28 | | 21
22
23
24
25 | 38
34
33
32
31 | 30
28
25
22
24 | 26
25
24
24
24 | 21
21
21
21
21 | 20
20
20
20
20 | 20
19
20
20
20 | 42
40
44
44
39 | 198
246
391
541
589 | 302
282
266
250
249 | 77
73
69
70
69 | 42
40
38
36
44 | 33
58
40
37
37 | | 26
27
28
29
30
31 | 32
33
33
38
34
36 | 29
28
27
27
27
 | 24
24
24
24
24
24 | 21
21
21
22
e22
21 | 19
20
20
20
 | 20
20
21
21
21
21
20 | 47
70
94
103
110 | 553
495
529
748
837
871 | 290
308
258
232
217 | 61
62
60
56
54
54 | 43
43
40
85
57
49 | 43
37
33
33
34 | | TOTAL
MEAN
MAX
MIN
AC-FT
a | 1328
42.8
54
31
2630
0 | 916
30.5
37
22
1820
0 | 777
25.1
27
24
1540
0 | 688
22.2
25
21
1360
0 | 587
20.2
21
19
1160
0 | 613
19.8
21
19
1220
0 | 1235
41.2
110
19
2450 | 10527
340
871
87
20880
0 | 13712
457
837
217
27200
0 | 3145
101
205
54
6240
1520 | 1443
46.5
85
36
2860
651 | 1044
34.8
58
25
2070
599 | | STATIST | ICS OF MO | ONTHLY MEA | N DATA FO | R WATER Y | EARS 1934 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 38.5
102
1962
18.5
1964 | 30.0
52.6
1962
18.7
1964 | 24.3
35.1
1985
14.4
1964 | 20.9
28.6
1985
14.1
1964 | 19.3
26.4
1962
14.0
1964 | 19.3
24.5
1946
14.1
1964 | 36.4
91.3
1946
19.8
1944 | 179
392
1996
76.1
1968 | 487
966
1938
119
1954 | 219
765
1983
59.6
1934 | 71.4
198
1983
29.0
1954 | 44.5
98.4
1961
24.2
1964 | | SUMMARY | STATISTI | ICS | FOR 1 | .999 CALEN | DAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YEA | ARS 1934 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN
'ANNUAL M
ANNUAL ME
'DAILY ME
DAILY MEA | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 36664
100
664
19
19
72720
319
36
21 | Jun 25
Feb 15
Feb 15 | | 36015
b102
871
19
19
1040
3.52
b73900
284
35
20 | May 31
Feb 20
Mar 11
May 30
May 30 | | b106
c176
45.4
1430
d13
14
1720
f4.23
b76800
277
34
18 | Dec 2
Dec 2
Jun 1 | 1984
1954
1 1938
1939
3 1939
0 1952
0 1952 | Estimated Diversions in acre-feet, through August P. Gumlick Tunnel, provided by Denver Water Board. Includes diversions through August P. Gumlick Tunnel, since May 10, 1940. Does not include diversions through August P. Gumlick Tunnel. Also occurred at times in 1963, 1964, and 1967. Maximum gage height, 5.46 ft, Jun 29, 1971, backwater from log. NOV DEC JAN FEB #### 09037500 WILLIAMS FORK NEAR PARSHALL, CO LOCATION.--Lat $40^{\circ}00^{\circ}01^{\circ}$, long $106^{\circ}10^{\circ}45^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.31, T.1 N., R.78 W., Grand County, Hydrologic Unit 14010001, on left bank 30 ft downstream from bridge on State Highway 286, 3.7 mi downstream from Skylark Creek, 3.9 mi south of Parshall, and 4.2 mi upstream from Williams Fork Reservoir Dam. DRAINAGE AREA. -- 184 mi². DAY PERIOD OF RECORD.--July 1904 to September 1924, June 1933 to current year. Records since May 10, 1940, equivalent to earlier records if diversion to August P. Gumlick Tunnel is added to flow past station. Published as "near (Hot) Sulphur Springs" 1904-12 and as Williams River near Parshall June 1933 to September 1958. Water-quality data available, April 1986 to September 1987. REVISED RECORDS.--WSP 1243: 1918. WSP 2124: Drainage area. OCT GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,808.95 ft above sea level, (Denver Board of Water Commissioners Datum). See WSP 1733 for history of changes prior to Aug. 9, 1938. Aug. 10, 1938 to Aug. 19, 1983, gage located on right bank at present datum. Aug. 19, 1983 to May 14, 1991, gage located 120 ft downstream of present site on left bank at present datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station MARKS.—Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09035000). Diversions for irrigation of about 1,300 acres upstream from station, and about 2,5000 acres downstream from station. About 150 acres upstream from station irrigated by diversions into the drainage area. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES MAR APR MAY JUN JUL AUG SEP | 1 | 59 | 48 | e40 | e40 | e40 | e38 | e40 | 180 | 841 | e105 | 17 | 21 | |------------------|-------------|--------------|--------------|---------------|--------------|--------------|---------------|-------------|--------------|--------------|-------------|-------------| | 2 | 57 | 43 | e40 | e40 | e40 | e38 | e40 | 196 | 766 | e88 | 16 | 20 | | 3 | 56 | 41 | e40 | e40 | e40 | e38 | e40 | 253 | 680 | e72 | 17 | 20 | | 4 | 54 | 47 | e40 | e40 | e40 | e38 | e40 | 308 | 649 | e50 | 17 | 20 | | 5 | 54 | 46 | e40 | e40 | e40 | e38 | e46 | 372 | 642 | e43 | 16 | 20 | | 6 | 55 | 44 | e40 | e40 | e40 | e38 | e48 | 420 | 594 | e39 | 16 | 20 | | 7 | 62 | 43 | e40 | e40 | e40 | e38 | e50 | 431 | 609 | e35 | 16 | 20 | | 8 | 66 | 44 | e40 | e40 | e40 | e39 | e55 | 418 | 573 | e35 | 15 | 20 | | 9 | 64 | 44 | e40 | e40 | e40 | e40 | e58 | 360 | 520 | e35 | 15 | 19 | | 10 | 61 | 41 | e40 | e40 | e40 | e40 | e60 | 358 | 482 | e34 | 15 | 19 | | 11 | 58 | 45 | e40 | e40 | e38 | e40 | e59 | 444 | 414 | e20 | 15 | 18 | | 12 | 56 | 45 | e40 | e40 | e38 | e40 | e58 | 422 | 377 | e15 | 15 | 18 | | 13 | 54 | 45 | e40 | e40 | e38 | e40 | e72 | 343 | 361 | 15 | 15 | 18 | | 14 | 52 | 46 | e40 | e40 | e38 | e40 | e77 | 322 | 312 | 15 | 15 | 18 | | 15 | 51 | 50 | e40 | e40 | e38 | e40 | e72 | 322 | 299 | 19 |
15 | 18 | | | | | | | | | | | | | | | | 16 | 50 | 50 | e40 | e40 | e38 | e40 | e68 | 348 | 290 | 25 | 15 | 17 | | 17
18 | 40
51 | 49
47 | e40
e40 | e40
e40 | e38
e38 | e40
e40 | e80 | 387
318 | 256
210 | 58
47 | 15
17 | 17
17 | | 19 | 53 | e43 | e40
e40 | e40
e40 | e38 | e40
e40 | e88
e82 | 273 | 202 | 20 | 16 | 17 | | 20 | 49 | e43 | e40 | e40 | e38 | e40 | e80 | 281 | e313 | 20
17 | 15 | 17 | | 20 | 4.2 | 643 | 640 | 640 | 630 | 640 | 600 | 201 | 6313 | Ι/ | 13 | 1/ | | 21 | 50 | e43 | e40 | e40 | e38 | e40 | e80 | 261 | e277 | 16 | 15 | 29 | | 22 | 49 | e42 | e40 | e40 | e37 | e40 | e81 | 289 | e232 | 16 | 15 | 82 | | 23 | 48 | e41 | e40 | e40 | e38 | e40 | e81 | 388 | e209 | 16 | 15 | 66 | | 24 | 47 | e40 | e40 | e40 | e38 | e40 | e81 | 528 | e182 | 16 | 16 | 60 | | 25 | 47 | e40 | e40 | e40 | e38 | e40 | e82 | 616 | e154 | 17 | 20 | 56 | | 26 | 46 | e40 | e40 | e40 | e38 | e40 | e100 | 590 | e198 | 17 | 21 | 66 | | 27 | 46 | e40 | e40 | e40 | e38 | e40 | e140 | 537 | e292 | 17 | 21 | 60 | | 28 | 45 | e40 | e40 | e40 | e38 | e40 | e180 | 495 | e201 | 17 | 20 | 55 | | 29 | 52 | e40 | e40 | e40 | e38 | e40 | e200 | 680 | e136 | 16 | 34 | 54 | | 30 | 46 | e40 | e40 | e40 | | e40 | 212 | 820 | e127 | 17 | 24 | 57 | | 31 | 45 | | e40 | e40 | | e40 | | 872 | | 17 | 22 | | | TOTAL | 1623 | 1310 | 1240 | 1240 | 1121 | 1225 | 2450 | 12832 | 11398 | 969 | 536 | 959 | | MEAN | 52.4 | 43.7 | 40.0 | 40.0 | 38.7 | 39.5 | 81.7 | 414 | 380 | 31.3 | 17.3 | 32.0 | | MAX | 66 | 50 | 40 | 40 | 40 | 40 | 212 | 872 | 841 | 105 | 34 | 82 | | MIN | 40 | 40 | 40 | 40 | 37 | 38 | 40 | 180 | 127 | 15 | 15 | 17 | | AC-FT | 3220 | 2600 | 2460 | 2460 | 2220 | 2430 | 4860 | 25450 | 22610
0 | 1920 | 1060 | 1900 | | a | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | U | 1520 | 651 | 599 | | | | ONTHLY MEAN | | | | | | | | | | | | MEAN | 60.7 | 51.2 | 42.2 | 37.2 | 35.3 | 39.7 | 80.2 | 272 | 560 | 217 | 87.9 | 62.8 | | MAX
(WY) | 151
1962 | 80.9
1985 | 65.6
1985 | 59.5
1910 | 53.9
1912 | 87.8
1910 | 199
1962 | 711
1984 | 1243
1918 | 855 | 245
1984 | 153
1909 | | (WY)
MIN | 17.6 | 32.5 | 26.8 | 22.6 | 22.6 | 21.5 | 29.9 | 28.9 | 38.6 | 1983
19.4 | 13.8 | 1909 | | (WY) | 1956 | 1982 | 1950 | 1964 | 1964 | 1971 | 1981 | 1963 | 1954 | 1963 | 1988 | 1966 | | | | | | 1999 CALEN | | | OR 2000 W | | | WATER YEA | | | | | STATIST | LCS | FOR | 34817 | DAR YEAR | г | | ALER YEAR | | WAIER YEA | JK2 1902 | - 2000 | | ANNUAL
ANNUAL | | | | 34817
95.4 | | | 36903
b105 | | | b134 | | | | | 'ANNUAL I | MEAN | | 23.4 | | | DIOS | | | c248 | | 1984 | | | ANNUAL MI | | | | | | | | | 38.8 | | 1963 | | | DAILY ME | | | 523 | Jun 24 | | 872 | May 31 | | f2520 | Jun 1 | 4 1918 | | LOWEST | DAILY MEA | AN | | 28 | Sep 18 | | 15 | Jul 12 | | d4.8 | | 6 1972 | | ANNUAL | SEVEN-DAY | MINIMUM | | 31 | Sep 13 | | 15 | Aug 8 | | 5.1 | | 6 1972 | | | 'ANEOUS PI | | | | | | 1060 | May 31 | | f2620 | | 4 1918 | | | | EAK STAGE | | | | | 4.7 | 3 May 31 | | 6.05 | Jun 1 | 4 1918 | | | RUNOFF (A | | | 69060 | | | b76070 | | | b97080 | | | | | ENT EXCE | | | 288
51 | | | 314
40 | | | 345
53 | | | | | ENT EXCEI | | | 35 | | | 40
17 | | | 30 | | | | | mated. | بالمد | | رر | | | ±/ | | | 30 | | | | | | n acre-ft t | hrough | August P. | Gumlick Tu | nnel pr | ovided by | Denver Wa | ter Boar | rd. | | | Tunnel provided by Denver Water Board. b Includes diversions through August P. Gumlick Tunnel. Does not include diversions through August P. Gumlick Tunnel. Also occurred May 8-10, 1972. Site and datum then in use, from rating curve extended above $1400 \text{ ft}^3/\text{s}$. #### 09038500 WILLIAMS FORK BELOW WILLIAMS FORK RESERVOIR, CO LOCATION.--Lat $40^{\circ}02^{\circ}07^{\circ}$, long $106^{\circ}12^{\circ}17^{\circ}$, in $NW^{1}/_{4}SE^{1}/_{4}$ sec.23, T.1 N., R.79 W., Grand County, Hydrologic Unit 14010001, on left bank 400 ft downstream from Williams Fork Reservoir, 2.1 mi upstream from mouth, and 2.1 mi southwest of Parshall. DRAINAGE AREA. -- 230 mi². PERIOD OF RECORD.--October 1948 to September 1954, August 1958 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to October 1958, published as Williams River below Williams Fork Reservoir. Water-quality data available, April 1986 to September 1987. REVISED RECORDS .-- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Datum of gage is 7,615.0 ft above sea level, (Denver Board of Water Commissioners Datum). See WSP 1713 or 1733 for history of changes prior to Oct. 21, 1959. REMARKS.--No estimated daily discharges. Records good. Flow completely regulated by Williams Fork Reservoir (station 09038000). Transmountain diversion upstream from station through August P. Gumlick Tunnel (station 09035000). Diversions upstream from station for irrigation of about 3,200 acres and about 100 acres downstream from station. About 450 acres upstream from station irrigated by diversion into the drainage area. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBIC | C FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |-------------|--------------|--------------|--------------|--------------|-----------------|---------------------|--------------------|------------------|--------------|--------------|--------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 112 | 127 | 100 | 98 | 98 | 152 | 119 | 81 | 266 | 198 | 156 | 350 | | 2 | 112 | 103 | 100 | 98 | 98 | 152 | 119 | 82 | 364 | 179 | 230 | 349 | | 3 | 111 | 102
104 | 100
100 | 98
98 | 98
98 | 152
152 | 104
88 | 81 | 413
413 | 179
156 | 271 | 349
349 | | 4
5 | 111
111 | 104 | 100 | 98
98 | 98 | 152 | 84 | 81
81 | 413 | 126 | 270
270 | 349 | | | | | | | | | | | | | | | | 6 | 111 | 100 | 100 | 98 | 98 | 152 | 85 | 81 | 410 | 115 | 270 | 352 | | 7
8 | 111
111 | 100
100 | 100
100 | 98
98 | 97
97 | 152
152 | 85
85 | 81
81 | 411
411 | 115
115 | 270
248 | 289
198 | | 9 | 111 | 100 | 101 | 98 | 97 | 152 | 85 | 81 | 413 | 115 | 177 | 149 | | 10 | 111 | 101 | 100 | 98 | 113 | 152 | 85 | 81 | 413 | 115 | 152 | 151 | | 11 | 111 | 101 | 101 | 98 | 140 | 152 | 87 | 81 | 413 | 115 | 152 | 151 | | 12 | 111 | 101 | 101 | 98 | 150 | 152 | 93 | 81 | 413 | 103 | 152 | 151 | | 13 | 111 | 102 | 102 | 98 | 150 | 152 | 93 | 81 | 369 | 78 | 153 | 126 | | 14 | 111 | 102 | 100 | 98 | 152 | 152 | 93 | 81 | 272 | 66 | 152 | 102 | | 15 | 111 | 102 | 100 | 98 | 152 | 152 | 93 | 81 | 237 | 53 | 152 | 102 | | 16 | 111 | 102 | 100 | 98 | 152 | 152 | 92 | 81 | 280 | 53 | 152 | 102 | | 17 | 109 | 102 | 134 | 98 | 152 | 152 | 91 | 81 | 282 | 52 | 184 | 102 | | 18 | 109 | 102 | 184 | 98 | 152 | 152 | 91 | 90 | 272 | 52 | 202 | 104 | | 19 | 109 | 102 | 200 | 98 | 152 | 152 | 91 | 83 | 274 | 52 | 202 | 104 | | 20 | 109 | 102 | 167 | 98 | 152 | 152 | 86 | 83 | 292 | 73 | 202 | 104 | | 21 | 109 | 101 | 98 | 98 | 152 | 152 | 82 | 83 | 304 | 135 | 202 | 162 | | 22 | 109 | 100 | 98 | 98 | 152 | 152 | 82 | 83 | 281 | 134 | 202 | 213 | | 23 | 109 | 101 | 98 | 98 | 152 | 152 | 79 | 61 | 248 | 134 | 202 | 254 | | 24 | 109 | 101 | 98 | 98 | 152 | 152 | 82 | 50 | 236 | 134 | 201 | 254 | | 25 | 150 | 100 | 98 | 98 | 152 | 152 | 83 | 50 | 219 | 134 | 251 | 206 | | 26 | 234 | 100 | 98 | 93 | 152 | 152 | 83 | 66 | 203 | 120 | 353 | 132 | | 27 | 267 | 101 | 98 | 98 | 152 | 152 | 82 | 84 | 225 | 106 | 354 | 139 | | 28 | 267 | 101 | 98 | 98 | 152 | 152 | 83 | 85 | 268 | 105 | 352 | 176 | | 29
30 | 266
266 | 101
101 | 98
98 | 98
98 | 152 | 151
151 | 81
81 | 85
117 | 275
246 | 104
104 | 352
352 | 176
176 | | 31 | 207 | | 98 | 98 | | 130 | | 180 | 240 | 104 | 351 | | | | | | | | | | | | | | | | | TOTAL | 4307 | 3064 | 3368 | 3033 | 3864 | 4688 | 2667 | 2578 | 9536 | 3424 | 7189 | 5923 | | MEAN
MAX | 139
267 | 102 | 109
200 | 97.8
98 | 133
152 | 151
152 | 88.9
119 | 83.2
180 | 318
413 | 110
198 | 232
354 | 197 | | MIN | 109 | 127
100 | 200
98 | 98 | 97 | 130 | 79 | 50 | 203 | 52 | 152 | 352
102 | | AC-FT | 8540 | 6080 | 6680 | 6020 | 7660 | 9300 | 5290 | 5110 | 18910 | 6790 | 14260 | 11750 | | | | | | | | | | | | | | | | STATIST | ICS OF MC | ONTHLY MEA | N DATA FO | OR WATER Y | EARS 1949 | - 2000, | BY WATER Y | ZEAR (WY) |) | | | | | MEAN | 128 | 133 | 105 | 104 | 92.3 | 94.9 | 77.3 | 117 | 209 | 170 | 154 | 153 | | MAX | 264 | 276 | 251 | 264 | 279 | 265 | 273 | 401 | 1007 | 782 | 352 | 342 | | (WY) | 1979 | 1979 | 1966 | 1984 | 1966 | 1966 | 1986 | 1952 | 1952 | 1983 | 1981 | 1981 | | MIN
(WY) | 23.5
1988 | 36.7
1995 | 13.5
1983 | 14.7
1983 | 7.88
1995 | 14.1
1983 | 6.04
1960 | 6.29
1960 | 10.8
1961 | 7.97
1963 | 19.2
1986 | 17.1
1986 | | (WY) | 1988 | 1995 | 1983 | 1983 | 1995 | 1983 | 1960 | 1900 | 1901 | 1963 | 1986 | 1986 | | SUMMARY | STATISTI | ICS | FOR 1 | 1999 CALEN | IDAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YE | ARS 1949 | - 2000 | | ANNUAL | TOTAL | | | 42750 | | | 53641 | | | | | | | ANNUAL | | | | 117 | | | a122 | | | a130 | | | | | 'ANNUAL N | | | | | | | | | b254 | | 1984 | | | ANNUAL ME | | | | | | | | | 39.1 | | 1959 | | | DAILY ME | | | 348
15 | Jul 3 | | 413
50 | Jun 3 | | 1860 | Jun | 28 1983 | | | DAILY MEA | MINIMUM | | 16 | May 2
Apr 27 | | 50
57 | May 24
Jul 14 | | c.30 | May . | 14 1963
27 1959 | | | 'ANEOUS PE | | | 10 | 1101 21 | | 418 | Jun 6 | | d2640 | Jun | 20 1953 | | | ANEOUS PE | | | | | | 2.92 | | | 8.50 | | 20 1953 | | ANNUAL | RUNOFF (A | AC-FT) | | 84790 | | | a88390 | |
 a94180 | | | | | ENT EXCE | | | 220 | | | 270 | | | 252 | | | | | ENT EXCEE | | | 102 | | | 111 | | | 110 | | | | 90 PERC | ENT EXCEE | SUS | | 59 | | | 83 | | | 16 | | | a Adjusted for storage at Williams Fork Reservoir.b Not adjusted for storage at Williams Fork Reservoir.c No flow for part of Apr 29, 1975. c No flow for part of Apr 29, 1975. d Site and datum then in use, from rating curve extended above 1500 ${\rm ft}^3/{\rm s}$. ## 09041090 MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO LOCATION.--Lat $40^{\circ}12^{\circ}09^{\circ}$, long $106^{\circ}25^{\circ}19^{\circ}$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec.23, T.3 N., R.81 W., Grand County, Hydrologic Unit 14010001, on left bank at upstream side of box culverts on U.S. Highway 40, 10.9 mi north of Kremmling, on U.S. Highway 40. DRAINAGE AREA.--145 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- April 1990 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,520 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER Y | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--|---|--------------------------------------|--|---|--|------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e7.0
e8.0
e7.0
e6.0
e5.0 | e6.0
e6.0
e6.0
e6.0
e6.0 | e9.0
e9.0
e12
e12
e12 | e7.0
e7.0
e7.0
e7.0
e6.0 | ۵7 ۸ | e9.0
e10
e10
e10
e10 | e60
e62
e64
e66
e68 | 412
483
569
601
645 | 323
285
246
225
199 | 13
12
12
13
10 | 9.1
e9.1
9.2
9.8
9.8 | e6.0
e6.0
e6.0
e6.0 | | 6
7
8
9
10 | e4.5
e8.0
e9.0
e8.0
e7.0 | e6.0
e6.0
e6.0
e7.0
e7.0 | e12
e13
e14
e15
e15 | e6.0
e6.0
e6.0
e6.0
e5.0 | e7.0
e7.0
e7.0
e7.0 | e10
e11
e11
e11
e11 | e70
e70
e70
e72
e72 | 676
643
589
458
457 | 170
146
128
109
94 | 9.1
8.5
7.9
e8.0
e10 | 11
12
e10
e9.0
8.0 | e6.0
e6.0
e6.0
e6.0 | | 11
12
13
14
15 | e4.7 | | e10
e8.0
e7.0 | e5.0
e5.0
e4.9
e6.0 | e7.0
e7.0
e8.0
e8.0 | e11
e12
e12
e12
e12 | e74
e85
e110
e100
e120 | 563
428
333
291
283 | 78
63
63
60
42 | e10
e11
e11
e7.4
e7.4 | 9.8
8.0
8.5
10
9.3 | e6.0
e6.0
e5.0
e5.0 | | 16
17
18
19
20 | e5.0
e5.0
e5.0 | e9.0
e10
e9.0 | | e6.0
e6.0
e6.0
e6.0 | | e14
e16
e18
e20
e25 | e130
e110
e120
e125
e115 | 287
361
303
279
289 | 32
27
27
34
80 | e8.0
e10
e14
e10
e9.0 | 11
11
12
11
e10 | 4.3
4.1
4.4
4.4
4.5 | | 21
22
23
24
25 | e5.0
e5.0
e5.0
e5.0 | e10
e16
e11
e12
e13 | e10
e10
e9.0
e9.0
e9.0 | e6.0
e7.0
e7.0
e7.0
e7.0 | e8.0
e8.0 | e30
e35
e40
e42
e44 | e130
e150
e175
e210
220 | 319
373
454
579
594 | 42
26
23
23
24 | e8.0
e8.0
e8.0
e8.0
e7.6 | e10
e10
e9.0
e9.0
e8.0 | 5.6
37
23
11
9.1 | | 26
27
28
29
30
31 | e5.0
e5.0
e5.0
e6.0
e5.0 | e12
e12
e12
e10
e10 | e9.0
e8.0
e8.0
e8.0
e8.0
e7.0 | e7.0
e7.0
e7.0
e7.0
e7.0 | e8.0
e9.0
e9.0 | e46
e48
e50
e52
e54
e56 | 259
328
415
471
440 | 703
571
508
521
466
379 | 25
18
15
15
14 | 11
10
8.8
8.5
9.3
9.1 | e8.0
e7.0
e7.0
e6.0
e6.0 | 7.5
6.4
5.6
5.5
5.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 175.3
5.65
9.0
4.5
348 | 256.0
8.53
16
6.0
508 | 316.0
10.2
15
7.0
627 | 194.9
6.29
7.0
4.9
387 | 220.5
7.60
9.0
7.0
437 | 752.0
24.3
56
9.0
1490 | 4561
152
471
60
9050 | 14417
465
703
279
28600 | 2656
88.5
323
14
5270 | 297.6
9.60
14
7.4
590 | | 224.4
7.48
37
4.1
445 | | STATIST | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.2
38.2
1998
4.32
1993 | 10.1
26.4
1998
4.36
1995 | 9.02
21.8
1998
2.82
1991 | 8.56
20.3
1998
2.68
1991 | 9.02
18.7
1998
3.00
1991 | 20.8
53.4
1998
9.92
1991 | 98.8
152
2000
40.8
1995 | 393
659
1997
190
1992 | 172
366
1995
32.2
1992 | 16.5
52.2
1995
2.69
1994 | 12.5
27.5
1997
5.14
1994 | 10.3
45.2
1997
3.51
1994 | | SUMMARY | Y STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | 1 | FOR 2000 WA | TER YEAR | | WATER Y | EARS 1990 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME SEVEN-DA FANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 21086.3
57.8
572
4.5
5.0
41820
205
13
7.0 | May 25
Oct 6
Oct 11 | | 24354.3
66.5
703
4.1
4.5
842
7.15
48310
280
9.1
5.6 | May 26
Sep 17
Sep 14
May 26
May 26 | | 66.9
109
29.0
908
.9(
1.2
955
a7.3(
48490
223
11
4.3 | May 1
5 Jul 2
Jun 2
5 Jun 2 | 1997
1992
18 1996
25 1994
22 1994
20 1994
20 1994 | e Estimated. a Maximum gage height, 7.43 ft, May 18, 1996 and May 17, 1997. #### 09041090 MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1990 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: April 1990 to current year. בפדת WATER TEMPERATURE: April 1990 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1990 to September 1993 (revised). INSTRUMENTATION.--Water-quality monitor from April 1990 to current year. REMARKS.--Records for specific conductance are rated good. Records for water temperature are rated good. Daily data that are not published are either missing or of unacceptable quality. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,010 microsiemens, Aug. 19, 1997; minimum, 88 microsiemens, May 20, 1994. WATER TEMPERATURE: Maximum, 26.7°C, July 7, 1999; minimum, 0.0°C, on many days during winter. #### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 800 microsiemens, July 11; minimum, 102 microsiemens, May 31. WATER TEMPERATURE: Maximum, 26.2 $^{\circ}$ C, July 14; minimum, 0.0 $^{\circ}$ C, on many days during winter. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |---|--|--|--|---|---|--|--|--|--|--|--|---| | OCT
13
NOV | 1500 | 4.6 | 573 | 8.6 | 11.1 | 2.8 | 9.3 | | | 250 | 63.1 | 22.0 | | 09
DEC | 1545 | 6.6 | 503 | 8.6 | 4.5 | 3.5 | 10.6 | | | 230 | 59.6 | 19.6 | | 15
JAN | 1400 | 6.2 | 573 | 8.2 | .1 | 3.1 | 10.6 | K5 | | 260 | 69.2 | 21.5 | | 13 |
0930 | 4.1 | 466 | 8.4 | .3 | 3.0 | 9.2 | <1 | | 200 | 53.6 | 16.7 | | FEB
24
MAR | 0915 | 7.5 | 465 | 7.7 | .2 | 4.6 | 9.9 | 41 | | 200 | 53.9 | 16.2 | | 14
APR | 1435 | 11 | 507 | 8.3 | .1 | 2.6 | 10.7 | 65 | 33 | 220 | 57.3 | 18.4 | | 11
MAY | 1145 | 73 | 559 | 8.0 | 3.0 | 30 | 11.5 | 21 | <1 | 230 | 60.3 | 19.3 | | 09
JUN | 1425 | 409 | 195 | 8.4 | 7.3 | 47 | 8.9 | 30 | <1 | 86 | 25.1 | 5.63 | | 06 | 1505 | 184 | 236 | 8.3 | 17.0 | 5.4 | 7.3 | | <1 | 100 | 29.6 | 7.51 | | JUL
07 | 1145 | 7.2 | 694 | 8.4 | 19.0 | 2.3 | 6.7 | >120 | 49 | 320 | 89.2 | 24.8 | | AUG
22
SEP | 1400 | 21 | 499 | 8.4 | 18.0 | 6.0 | 7.8 | 130 | <1 | 230 | 63.9 | 16.5 | | 06 | 1430 | 5.9 | 456 | 8.6 | 17.5 | .6 | 7.3 | 100 | 39 | 200 | 54.2 | 15.2 | | | | | | ANC | | | | | SOLIDS, | SOLIDS, | | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | DATE OCT 13 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | | OCT
13
NOV
09 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
13
NOV | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
13
NOV
09
DEC | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.4
9.2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
13
NOV
09
DEC
15
JAN | DIS-
SOLVED
(MG/L
AS NA)
(00930)
25.9
21.5 | AD-
SORP-
TION
RATIO
(00931)
.7
.6 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | UNFLTRD
TIT 4.5
LAB (MG/L
AS CACO3)
(90410)
157
150 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
149
122
136 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
2.2
2.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.4
9.2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
367
327
375 | DIS-
SOLVED
(TOMS)
PER
AC-FT)
(70303)
.53
.47 | DIS-
SOLVED (TONS PER DAY) (70302)
4.81
6.14 | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR | DIS-
SOLVED (MG/L
AS NA) (00930)
25.9
21.5
24.9 | AD-
SORP-
TION
RATIO
(00931)
.7
.6 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.2
2.2 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410)
157
150
179
153 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
149
122
136
98.4 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
2.2
2.2
2.1 | RIDE,
DIS-
SOLVED (MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.4
9.2
11.8
12.0 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388
311 | SUM OF CONSTI-
TUENTS, DIS-
SOLVED (MG/L) (70301) 367 327 375 297 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.47
.53 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
4.81
6.14
6.52
3.43 | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR | DIS-
SOLVED (MG/L
AS NA) (00930)
25.9
21.5
24.9
19.6 | AD-
SORP-
TION
RATIO
(00931)
.7
.6
.7 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.2
2.2
2.2 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410)
157
150
179
153
153 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
149
122
136
98.4
96.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
2.2
2.2
2.1
2.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.2
.2
.2
.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.4
9.2
11.8
12.0 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388
311
314 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 367 327 375 297 294 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.47
.53
.42 | DIS-
SOLVED (TONS PER DAY) (70302) 4.81 6.14 6.52 3.43 6.34 | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
25.9
21.5
24.9
19.6
19.6 | AD-
SORP-
TION
RATIO
(00931)
.7
.6
.7
.6 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.2
2.2
2.2
2.2 | UNFLTRD
TIT 4.5
LAB (MG/L
AS CACO3) (90410)
157
150
179
153
153 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
149
122
136
98.4
96.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
2.2
2.2
2.1
2.2
1.8
3.4 | RIDE,
DIS-
SOLVED (MG/L
AS F)
(00950)
.2
.2
.2
.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.4
9.2
11.8
12.0
11.2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388
311
314
343 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 367 327 375 297 294 326 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.47
.53
.42
.43 | DIS-
SOLVED (TONS PER DAY) (70302)
4.81
6.14
6.52
3.43
6.34 | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14
APR
11
MAY
09
JUN
06 | DIS-
SOLVED (MG/L
AS NA) (00930)
25.9
21.5
24.9
19.6
23.7
24.6 | AD-
SORP-
TION
RATIO
(00931)
.7
.6
.7
.6
.7 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.2
2.2
2.2
2.2
5.0 | UNFLTRD
TIT 4.5
LAB (MG/L
AS CACO3) (90410)
157
150
179
153
153
153
143 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
149
122
136
98.4
96.9
117 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
2.2
2.2
2.1
2.2
1.8
3.4
4.3 | RIDE,
DIS-
SOLVED (MG/L
AS F)
(00950)
.2
.2
.2
.2
.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.4
9.2
11.8
12.0
11.2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388
311
314
343
386 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 367 327 375 297 294 326 359 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.47
.53
.42
.43 | DIS-
SOLVED (TONS PER DAY) (70302) 4.81 6.14 6.52 3.43 6.34 10.5 76.3 | | OCT
13
NOV
09
DEC
15
JAN
13. FEB
24
MAR
14
APR
11
MAY
09
JUN
06
JUL
07 | DIS-
SOLVED (MG/L
AS NA) (00930)
25.9
21.5
24.9
19.6
23.7
24.6
6.6 | AD-
SORP-
TION
RATIO
(00931)
.7
.6
.7
.6
.7
.6
.7 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.2
2.2
2.2
1.9
2.1
5.0 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410)
157
150
179
153
153
153
143
77 | DIS-
SOLVED
(MG/L
AS
SO4)
(00945)
149
122
136
98.4
96.9
117
150
27.8 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
2.2
2.2
2.1
2.2
1.8
3.4
4.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.2
.2
.2
.2
.1
.2 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
7.4
9.2
11.8
12.0
11.2
11.0
8.4
9.2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388
311
314
343
386
137 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 367 327 375 297 294 326 359 124 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.47
.53
.42
.43
.47 | DIS-
SOLVED (TONS PER DAY) (70302) 4.81 6.14 6.52 3.43 6.34 10.5 76.3 | | OCT
13
NOV
09
JEC
15
JAN
13
FEB
24
MAR
14
APR
11
MAY
09
JUIN
06
JUIL
07
AUG | DIS-
SOLVED
(MG/L
AS NA)
(00930)
25.9
21.5
24.9
19.6
19.6
23.7
24.6
6.6 | AD-SORP-TION RATIO (00931) .7 .6 .7 .6 .7 .6 .7 .3 .3 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.2
2.2
2.2
1.9
2.1
5.0
1.4 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410)
157
150
179
153
153
153
143
77
84 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
149
122
136
98.4
96.9
117
150
27.8
37.8 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
2.2
2.2
2.1
2.2
1.8
3.4
4.3
1.0 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.2
.2
.2
.2
.1
.2
.1 | DIS-
SOLVED (MG/L
AS SIO2) (00955)
7.4
9.2
11.8
12.0
11.2
11.0
8.4
9.2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388
311
314
343
386
137 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 367 327 375 297 294 326 359 124 146 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.47
.53
.42
.43
.47
.52
.19 | DIS-
SOLVED (TONS PER DAY) (70302) 4.81 6.14 6.52 3.43 6.34 10.5 76.3 151 82.5 | | OCT 13 NOV 09 DEC 15 JAN 13 FEB 24 MAR 14 APR 11 MAY 09 JUN 06 JUL OT AUG | DIS-
SOLVED (MG/L
AS NA) (00930)
25.9
21.5
24.9
19.6
23.7
24.6
6.6
8.2
29.4 | AD-SORP-TION RATIO (00931) .7 .6 .7 .6 .7 .6 .7 .3 .3 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.2
2.2
2.2
1.9
2.1
5.0
1.4
1.3
2.0 | UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410)
157
150
179
153
153
153
143
77
84
250 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
149
122
136
98.4
96.9
117
150
27.8
37.8
133 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
2.2
2.2
2.1
2.2
1.8
3.4
4.3
1.0
1.0 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.2
.2
.2
.2
.1
.2
.1
.1
.1 | DIS-
SOLVED (MG/L
AS SIO2) (00955)
7.4
9.2
11.8
12.0
11.2
11.0
8.4
9.2
10.1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
390
343
388
311
314
343
386
137
166
459 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 367 327 375 297 294 326 359 124 146 441 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.47
.53
.42
.43
.47
.52
.19
.23 | DIS-
SOLVED (TONS PER DAY) (70302) 4.81 6.14 6.52 3.43 6.34 10.5 76.3 151 82.5 8.92 | ## 09041090 MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO--Continued | DATE | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | |--|--|--|--|--|--|---|--|--|--|---|---|--| | OCT
13 | 2 | <.010 | <.050 | <.020 | | .25 | .21 | <.050 | <.050 | <.010 | 4.4 | . 2 | | NOV
09 | | <.010 | <.050 | <.020 | | .18 | .17 | <.050 | <.050 | <.010 | | | | DEC
15 | 2 | <.010 | <.050 | <.020 | | .25 | .15 | <.050 | <.050 | <.010 | 3.6 | . 2 | | JAN
13 | | <.010 | .086 | .030 | | .24 | E.10 | <.050 | <.050 | <.010 | | | | FEB 24 | | <.010 | .111 | .055 | .19 | .30 | .24 | <.050 | <.050 | <.010 | | | | MAR
14 | | <.010 | .131 | .034 | | | | <.050 | <.050 | <.010 | | | | APR | | | | | | | | | | | | | | 11
MAY | | <.010 | .146 | . 253 | .49 | .95 | .74 | .205 | .065 | .050 | | | | 09
JUN | 139 | <.010 | .059 | <.020 | | .68 | .32 | .231 | <.050 | <.010 | 7.3 | 2.4 | | 06
JUL | | <.010 | <.050 | <.020 | | .53 | .38 | .073 | E.045 | .022 | | | | 07
AUG | | <.010 | <.050 | <.020 | | .49 | .45 | <.050 | <.050 | <.010 | | | | 22 | 22 | <.010 | <.050 | <.020 | | .44 | .35 | E.037 | <.050 | <.010 | 5.8 | . 4 | | SEP
06 | | <.010 | <.050 | <.020 | | .29 | .23 | <.050 | <.050 | <.010 | | | | | | | | | | | | | | | | | | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | OCT | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | TOTAL
(UG/L
AS AS) | DIS-
SOLVED
(UG/L
AS AS) | TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | DIS-
SOLVED
(UG/L
AS B) | WATER
UNFLTRD
TOTAL
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | MIUM,
DIS-
SOLVED
(UG/L
AS CR) | TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | OCT
13
NOV | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | TOTAL
(UG/L
AS AS)
(01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER
UNFLTRD
TOTAL
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | MIUM,
DIS-
SOLVED
(UG/L
AS CR) | TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | OCT
13
NOV
09
DEC | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | TOTAL
(UG/L
AS AS)
(01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER
UNFLTRD
TOTAL
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- ERABLE (UG/L AS CO) (01037) | | OCT
13
NOV
09
DEC
15
JAN | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | TOTAL
(UG/L
AS AS)
(01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER
UNFLTRD
TOTAL
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | MIUM,
DIS-
SOLVED
(UG/L
AS CR) | TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | | OCT
13
NOV
09
DEC
15
JAN
13 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS
AL)
(01105) | TOTAL
(UG/L
AS AS)
(01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER
UNFLTRD
TOTAL
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- ERABLE (UG/L AS CO) (01037) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24 | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | TOTAL
(UG/L
AS AS)
(01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- ERABLE (UG/L AS CO) (01037) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR | INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | TOTAL (UG/L AS AS) (01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER UNFLTRD TOTAL (UG/L AS CD) (01027) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- ERABLE (UG/L AS CO) (01037) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14
APR | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) | TOTAL (UG/L AS AS) (01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- ERABLE (UG/L AS CO) (01037) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14
APR
11
MAY | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) | TOTAL (UG/L AS AS) (01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- ERABLE (UG/L AS CO) (01037) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14
APR
11
MAY
09
JUN | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) | TOTAL (UG/L AS AS) (01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- ERABLE (UG/L AS CO) (01037) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14
APR
11
MAY
09
JUN
06
JUN | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) | TOTAL (UG/L AS AS) (01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- REABLE (UG/L AS CO) (01037) 2 | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14
APR
11
MAY
09
JUN
06
JUL | INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 1590 | TOTAL (UG/L AS AS) (01002) | DIS-
SOLVED
(UG/L
AS AS)
(01000) | TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 78.6 | DIS-
SOLVED
(UG/L
AS BA)
(01005) | LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <-5 | DIS-
SOLVED
(UG/L
AS B)
(01020) | WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) | MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | TOTAL RECOV- REABLE (UG/L AS CO) (01037) | 97 # 09041090 $\,$ MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO--Continued | DATE | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI)
(01132) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | |---|---|--|--|---|--|---|--|--|---|--|---| | OCT
13 | | | 270 | 20 | | | | 25 | 22 | | | | NOV
09 | | | 300 | E10 | | | | 24 | 20 | | | | DEC 15 | | | 310 | E10 | | | | 24 | 20 | | | | JAN
13 | | | 340 | 10 | | | | 23 | 18 | | | | FEB 24 | | | 390 | 10 | | | | 26 | 19 | | | | MAR
14 | | | 430 | 20 | | | | 38 | 33 | | | | APR 11 | | | 1840 | 70 | | | | 143 | 97 | | | | MAY
09 | 10 | 2 | 3400 | 50 | 11 | <1 | 8.2 | 90 | 17 | <.3 | <.2 | | JUN
06 | | | 650 | 110 | | | | 27 | 13 | | | | JUL
07 | | | 310 | 30 | | | | 46 | 40 | | | | AUG
22 | 2 | E1 | 560 | E10 | <1 | <1 | 23.5 | 50 | 21 | <.3 | <.2 | | SEP
06 | | | 330 | 20 | | | | 38 | 22 | | | | 00 | | | 330 | 20 | | | | 30 | 22 | | | | | | | | | | | | | | | | | DATE | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
13
NOV | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
13
NOV
09
DEC | DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | TOTAL
RECOV-
ERABLE
(UG/L
AS
ZN)
(01092) | DIS-
SOLVED
(UG/L
AS ZN) | | OCT
13
NOV
09
DEC
15
JAN | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT
13
NOV
09
DEC
15
JAN
13 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT
13
NOV
09
DEC
15
JAN
13
FEB
24
MAR
14 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM, DIS- SOLVED (UG/L AS MO) (01060) | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM, DIS- SOLVED (UG/L AS SR) (01080) | TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 13 NOV 09 15 JAN 13 FEB 24 MAR 14 APR 11 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM, DIS- SOLVED (UG/L AS MO) (01060) | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM, DIS- SOLVED (UG/L AS SR) (01080) | TOTAL RECOV- RERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 13 NOV 09 DEC 15 JAN 13 FEB 24 MAR 14 APR 11 MAY 09 JUN | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM, DIS- SOLVED (UG/L AS MO) (01060) | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM, DIS- SOLVED (UG/L AS SR) (01080) | TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 13 NOV 09 JEC 15 JAN 13 FEB 24 MAR 14 APR 11 MAY 09 JUN 06 JUL | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM, DIS- SOLVED (UG/L AS MO) (01060) | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM, DIS- SOLVED (UG/L AS SR) (01080) | TOTAL RECOV- RERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 13 NOV 09 15 JAN 13 FEB 24 MAR 14 APR 11 MAY 09 JUN 06 JUL 07 AUG | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) 1 | DENUM, DIS- SOLVED (UG/L AS MO) (01060) 2 2 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 7 | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM, DIS- SOLVED (UG/L AS SR) (01080) | TOTAL RECOV- RERABLE (UG/L AS ZN) (01092) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 13 NOV 09 DEC 15 JAN 13 FEB 24 MAR 14 APR 11 MAY 09 JUN 06 JUL 07 | DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) | DENUM, DIS- SOLVED (UG/L AS MO) (01060) 2 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 7 | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)

 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM, DIS- SOLVED (UG/L AS SR) (01080) 205 | TOTAL RECOV- ERABLE (UG/L AS ZN) (01092) E21 | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | 09041090 MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO--Continued SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | | | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SUS-
PENDED
(T/DAY) | |------------------|----------------------|------------------|----------------------|---|---------------------------| | OCT | 1510 | 4.6 | 11 1 | 1.4 | 1.0 | | 13
NOV | 1510 | 4.6 | 11.1 | 14 | .17 | | 09
DEC | 1550 | 6.6 | 4.5 | 9 | .17 | | 05
JAN | 1400 | 6.2 | .1 | 26 | .43 | | 12
FEB | 0930 | 22 | 2.7 | 4 | .26 | | 24
MAR | 0916 | 7.5 | .2 | 18 | .35 | | 14
APR | 1436 | 11 | .1 | 9 | .27 | | 11
MAY | 1150 | 73 | 3.0 | 98 | 19 | | 09
JUN | 1620 | 409 | 7.3 | 378 | 417 | | 06
16
20 | 1500
1200
1130 | 184
34
105 | 17.0
14.0
13.5 | 28
15
81 | 14
1.3
23 | | JUL
05
07 | 1345
1200 | 8.7
7.2 | 19.2
19.0 | 33
18 | .78
.34 | | AUG
22
SEP | 1415 | 21 | 18.0 | 12 | .70 | | 06 | 1445 | 5.9 | 17.5 | 7 | .11 | | | | | | | | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|---------|------|-----|---------|------|-----|---------|------| | | | OCTOBER | | NO | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1 | 459 | 445 | 453 | 531 | 499 | 515 | | | | | | | | 2 | 450 | 442 | 446 | 540 | 501 | 516 | | | | | | | | 3 | 453 | 440 | 446 | 548 | 504 | 523 | | | | | | | | 4 | 462 | 447 | 454 | 545 | 506 | 522 | | | | | | | | 5 | 469 | 453 | 462 | 540 | 505 | 518 | | | | | | | | 6 | 483 | 465 | 473 | 532 | 504 | 512 | | | | | | | | 7 | 497 | 475 | 485 | 534 | 507 | 518 | | | | | | | | 8 | 493 | 486 | 489 | 533 | 499 | 517 | | | | | | | | 9 | 492 | 482 | 487 | 531 | 490 | 508 | | | | | | | | 10 | 502 | 485 | 494 | | | | | | | | | | | 11 | 543 | 501 | 519 | | | | | | | | | | | 12 | 569 | 543 | 554 | | | | | | | | | | | 13 | 591 | 559 | 573 | | | | | | | | | | | 14 | 605 | 587 | 595 | | | | | | | | | | | 15 | 607 | 597 | 602 | | | | | | | | | | | 16 | 617 | 582 | 602 | | | | | | | | | | | 17 | 625 | 594 | 613 | | | | | | | | | | | 18 | 667 | 586 | 613 | | | | | | | | | | | 19 | 606 | 566 | 584 | | | | | | | | | | | 20 | 609 | 556 | 572 | | | | | | | | | | | 21 | 579 | 538 | 555 | | | | | | | | | | | 22 | 567 | 534 | 546 | | | | | | | | | | | 23 | 548 | 523 | 536 | | | | | | | | | | | 24 | 548 | 525 | 537 | | | | | | | | | | | 25 | 555 | 534 | 543 | | | | | | | | | | | 26 | 556 | 535 | 543 | | | | | | | | | | | 27 | 547 | 532 | 539 | | | | | | | | | | | 28 | 554 | 529 | 539 | | | | | | | | | | | 29 | 548 | 511 | 528 | | | | | | | | | | | 30 | 562 | 519 | 537 | | | | | | | | | | | 31 | 536 | 504 | 520 | | | | | | | | | | | MONTH | 667 | 440 | 530 | 548 | 490 | 517 | | | | | | | 09041090 MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DI. | ECIPIC | CONDUCTA | IVCE (FIECE | (CDILI-ILINO) | JI 111 2J | DBG. C// | WAIEK IER | nt octor | DERC IDDD | 10 SEFIEMB | ER 2000 | | |---|--|---|---|---|---|--
---|---|---|---|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | | | I DDICOTHCI | | | THECH | | | THICLE | | | 1.11.1 | | | 1 | | | | | | | | | | 228 | 196 | 212 | | 2 | | | | | | | | | | 218
205 | 186
187 | 200
195 | | 4 | | | | | | | | | | 190 | 172 | 181 | | 5 | | | | | | | | | | 181 | 167 | 173 | | 6 | | | | | | | | | | 174 | 157 | 164 | | 7 | | | | | | | | | | 161 | 150 | 156 | | 8
9 | | | | | | | | | | 174
199 | 157
174 | 167
190 | | 10 | | | | | | | | | | 188 | 163 | 181 | | | | | | | | | | | | | | | | 11
12 | | | | | | |
561 | 420 |
517 | 163
181 | 145
150 | 150
165 | | 13 | | | | | | | 508 | 411 | 477 | 203 | 179 | 190 | | 14 | | | | | | | 463 | 345 | 419 | 211 | 191 | 201 | | 15 | | | | | | | 510 | 396 | 438 | 202 | 176 | 183 | | 16 | | | | | | | 502 | 461 | 477 | 192 | 169 | 182 | | 17 | | | | | | | 462 | 421 | 447 | 169 | 130 | 143 | | 18
19 | | | | | | | 421
384 | 370
361 | 386
374 | 182
196 | 161
175 | 177
190 | | 20 | | | | | | | 378 | 363 | 373 | 188 | 169 | 178 | | 0.7 | | | | | | | 251 | 200 | 224 | 100 | 1.40 | 150 | | 21
22 | | | | | | | 371
359 | 322
307 | 334
316 | 175
161 | 148
132 | 158
145 | | 23 | | | | | | | 422 | 339 | 383 | 143 | 118 | 128 | | 24 | | | | | | | 381 | 316 | 349 | 130 | 110 | 119 | | 25 | | | | | | | 347 | 275 | 307 | 161 | 126 | 134 | | 26 | | | | | | | 346 | 268 | 323 | 164 | 134 | 147 | | 27 | | | | | | | 318 | 281 | 293 | 160 | 135 | 145 | | 28
29 | | | | | | | 298
244 | 233
212 | 258
226 | 144
133 | 117
107 | 130
116 | | 30 | | | | | | | 222 | 198 | 214 | 126 | 104 | 114 | | 31 | | | | | | | | | | 154 | 102 | 124 | | MONTH | | | | | | | 561 | 198 | 364 | 228 | 102 | 163 | DAV | MAY | MIN | MEAN | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R | | DAY
1
2 | MAX
167
190 | | MEAN
149
172 | MAX
655
679 | | MEAN
643
668 | | | MEAN
527
512 | | | | | 1
2
3 | 167
190
205 | JUNE
135
160
167 | 149
172
184 | 655
679
750 | JULY
632
655
673 | 643
668
688 | 542
517
506 | 511
502
488 | 527
512
498 | 451
419
439 | SEPTEMBE
418
411
419 | 437
417
428 | | 1
2
3
4 | 167
190
205
216 | JUNE
135
160
167
189 | 149
172
184
202 | 655
679
750
691 | JULY 632 655 673 678 | 643
668
688
684 | 542
517
506
501 | 511
502
488
487 | 527
512
498
494 | 451
419
439
456 | SEPTEMBE
418
411
419
439 | 437
417
428
444 | | 1
2
3
4
5 | 167
190
205
216
219 | JUNE
135
160
167 | 149
172
184
202
209 | 655
679
750 | JULY
632
655
673
678
680 | 643
668
688 | 542
517
506 | 511
502
488
487
488 | 527
512
498 | 451
419
439 | 418
411
419
439
450 | 437
417
428 | | 1
2
3
4
5 | 167
190
205
216
219 | JUNE 135 160 167 189 202 | 149
172
184
202
209 | 655
679
750
691
708 | JULY 632 655 673 678 680 706 | 643
668
688
684
689 | 542
517
506
501
521 | 511
502
488
487
488 | 527
512
498
494
507 | 451
419
439
456
458 | 418
411
419
439
450
457 | 437
417
428
444
454 | | 1
2
3
4
5 | 167
190
205
216
219
256
249 | JUNE 135 160 167 189 202 219 226 | 149
172
184
202
209
230
235 | 655
679
750
691
708
726
727 | JULY 632 655 673 678 680 706 689 | 643
668
688
684
689
716
705 | 542
517
506
501
521
517
497 | 511
502
488
487
488
494
492 | 527
512
498
494
507
505
494 | 451
419
439
456
458
465
467 | 418
411
419
439
450
457
459 | 437
417
428
444
454
461
463 | | 1
2
3
4
5 | 167
190
205
216
219 | JUNE 135 160 167 189 202 | 149
172
184
202
209 | 655
679
750
691
708 | JULY 632 655 673 678 680 706 | 643
668
688
684
689 | 542
517
506
501
521 | 511
502
488
487
488 | 527
512
498
494
507 | 451
419
439
456
458 | 418
411
419
439
450
457 | 437
417
428
444
454 | | 1
2
3
4
5 | 167
190
205
216
219
256
249
316 | JUNE 135 160 167 189 202 219 226 244 | 149
172
184
202
209
230
235
270 | 655
679
750
691
708
726
727
707 | JULY 632 655 673 678 680 706 689 690 | 643
668
688
684
689
716
705
698 | 542
517
506
501
521
517
497
506 | 511
502
488
487
488
494
492
491 | 527
512
498
494
507
505
494
497 | 451
419
439
456
458
465
467
466 | 418
411
419
439
450
457
459
461 | 437
417
428
444
454
461
463
464 | | 1
2
3
4
5
6
7
8
9 | 167
190
205
216
219
256
249
316
321 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313 | 655
679
750
691
708
726
727
707
789
736 | JULY 632 655 673 678 680 706 689 690 686 696 | 643
668
688
684
689
716
705
698
735
711 | 542
517
506
501
521
517
497
506
511
513 | 511
502
488
487
488
494
492
491
500
503 | 527
512
498
494
507
505
494
497
506
509 | 451
419
439
456
458
465
467
466
479
483 | 418
411
419
439
450
457
459
461
465
479 | 437
417
428
444
454
461
463
464
474
481 | | 1
2
3
4
5
6
7
8
9 | 167
190
205
216
219
256
249
316
321 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313 | 655
679
750
691
708
726
727
707
789 | JULY 632 655 673 678 680 706 689 690 686 | 643
668
688
684
689
716
705
698
735 | 542
517
506
501
521
517
497
506
511 | 511
502
488
487
488
494
492
491
500 | 527
512
498
494
507
505
494
497
506 | 451
419
439
456
458
465
467
466
479 | 418
411
419
439
450
457
459
461
465 | 437
417
428
444
454
461
463
464
474 | | 1
2
3
4
5
6
7
8
9
10 | 167
190
205
216
219
256
249
316
321 | JUNE 135
160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 | 643
668
688
684
689
716
705
698
735
711
740
689
687 | 542
517
506
501
521
517
497
506
511
513
513
551
569 | 511
502
488
487
488
494
492
491
500
503
499
507
543 | 527
512
498
494
507
505
494
497
506
509
507
529
552 | 451
419
439
456
458
465
467
466
479
483
486
491
494 | \$EPTEMBE 418 411 419 439 450 457 459 461 465 479 481 484 488 | 437
417
428
444
454
461
463
464
474
481
488
490 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 167
190
205
216
219
256
249
316
321
 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 687 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573 | AUGUST
511
502
488
487
488
494
492
491
500
503
499
507
543
544 | 527
512
498
494
507
505
494
497
506
509
507
529
552
561 | 451
419
439
456
458
465
467
466
479
483
486
491
494 | \$EPTEMBE 418 411 419 439 450 457 459 461 465 479 481 484 488 491 | 437
417
428
444
454
461
463
464
474
481
484
488
490
494 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 167
190
205
216
219
256
249
316
321 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 697 680 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 | 527
512
498
494
507
505
494
497
506
509
507
529
552
561
540 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501 | \$\$\text{418}\$\$411\$\$419\$\$439\$\$450\$\$457\$\$465\$\$479\$\$481\$\$488\$\$491\$\$496\$\$\$ | 437
417
428
444
454
461
463
464
474
481
484
488
490
494
499 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 167
190
205
216
219
256
249
316
321
 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 687 680 677 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 | 527
512
498
494
507
505
494
497
506
509
507
529
552
561
540 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501 | 418
411
419
439
450
457
459
461
465
479
481
484
488
491
496 | 437
417
428
444
454
461
463
464
474
481
484
490
494
499 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 167
190
205
216
219
256
249
316
321
 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710 | JULY 6322 655 673 678 680 706 689 690 686 696 700 684 670 689 697 680 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 | 527
512
498
494
507
505
494
497
506
509
507
529
552
561
540
530
513 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501 | \$\$\text{418}\$\$411\$\$419\$\$439\$\$450\$\$457\$\$465\$\$479\$\$481\$\$484\$\$491\$\$496\$\$497\$\$500\$\$\$ | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 167
190
205
216
219
256
249
316
321
 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 687 680 677 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 | 527
512
498
494
507
505
494
497
506
509
507
529
552
561
540 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501 | 418
411
419
439
450
457
459
461
465
479
481
484
488
491
496 | 437
417
428
444
454
461
463
464
474
481
484
490
494
499 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 167
190
205
216
219
256
249
316
321
 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 697 680 677 680 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544
538
521
557 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 506 | 527
512
498
494
507
505
494
497
506
509
507
529
552
561
540
530
513
537 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
506
509 | \$EPTEMBE\$ 418 411 419 439 450 457 459 461 465 479 481 484 488 491 496 497 500 502 | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503
506 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 167
190
205
216
219
256
249
316
321
 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
230
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 697 680 677 680 677 638 636 602 590 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 506 554 542 | 527
512
498
494
507
505
494
497
506
509
552
561
540
530
513
537
563
553 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
506
509
512
507 | \$EPTEMBE\$ 418 411 419 439 450 457 459 461 465 479 481 484 488 491 496 497 500 502 497 497 | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503
506
505
503 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 167 190 205 216 219 256 249 316 321 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
235
270
313
 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 687 680 677 638 636 602 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 506 554 | 527
512
498
494
507
505
494
497
506
509
507
529
552
561
540
530
513
537
563 | 451
419
439
456
458
467
466
479
483
486
491
494
498
501
504
506
509
512 |
418
411
419
439
450
457
459
461
465
479
481
484
488
491
496
497
500
502
497 | 437
417
428
444
454
461
463
464
474
481
484
499
499
503
506
505 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 167
190
205
216
219
256
249
316
321

530
567
579 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 | 149
172
184
202
209
230
235
270
313

468
546
573 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 670 697 680 677 638 636 602 590 587 598 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
661
661
661
661
661
661
660
604
616
609 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567
567 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 506 5542 462 477 484 | 527
512
498
494
507
505
494
497
506
509
552
561
540
530
513
537
563
553 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
506
509
512
507 | \$EPTEMBE\$ 418 411 419 439 450 457 459 461 465 479 481 484 488 491 496 497 500 502 497 497 480 309 240 | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503
505
505
503 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 167 190 205 216 219 256 249 316 321 530 567 579 | JUNE 135 160 167 189 202 219 226 244 298 | 149
172
184
202
209
235
270
313

468
546
573
581 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615 | JULY 632 655 673 678 680 706 689 690 686 696 700 684 677 680 677 638 636 602 590 587 598 603 583 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
661
661
662
610
604
616
609
600 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567
567
567 | \$11 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 502 477 484 491 | 527
512
498
494
507
505
494
497
506
509
507
525
561
540
530
513
537
563
553
488
501
496 | 451
419
439
456
458
467
466
479
483
486
491
494
498
501
504
506
509
512
507 | 418 411 419 439 450 457 459 461 465 479 481 484 488 491 496 497 500 502 497 497 480 309 240 263 | 437
417
428
444
454
461
463
464
474
481
484
499
499
503
506
505
503
504
412
256
282 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 167
190
205
216
219
256
249
316
321

530
567
579
599
579 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 | 149
172
184
202
209
230
235
270
313

468
546
573
581
573 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603 | JULY 632 655 673 678 680 706 689 690 684 670 684 670 697 680 677 638 636 602 590 587 598 603 583 570 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
685
661
661
661
661
661
609
600
586 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567
567 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 506 554 462 477 484 491 504 | 527
512
498
494
507
505
494
497
506
509
552
561
540
530
513
537
563
553
488
501
490
496
511 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
506
509
512
507 | \$\$\text{418}\$\$411\$\$419\$\$439\$\$450\$\$457\$\$459\$\$465\$\$479\$\$481\$\$496\$\$497\$\$500\$\$502\$\$497\$\$480\$\$309\$\$240\$\$263\$\$301\$\$\$ | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
499
503
506
505
503
504
412
226
282
319 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 167 190 205 216 219 256 249 316 321 530 567 579 579 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 573 568 | 149
172
184
202
209
235
270
313

468
546
573
581
573 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603 | JULY 6322 655 673 678 680 706 689 690 686 696 700 684 677 638 636 6677 638 636 602 590 587 598 603 587 598 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
685
661
661
662
610
604
616
609
600
586 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567
567
567
551
514
496
504
514 | \$11, 502, 488, 487, 488, 494, 492, 491, 500, 503, 499, 507, 543, 544, 534, 519, 501, 506, 554, 542, 462, 477, 484, 491, 504, 458, 458, 458, 458, 588, 588, 588, 58 | 527
517
518
498
494
507
505
494
497
506
509
552
561
540
530
513
563
553
488
501
496
511 | 451
419
439
456
458
467
466
479
483
486
491
494
498
501
504
506
509
512
507
514
480
309
301
338 | 418 411 419 439 450 457 459 461 465 479 481 484 488 491 496 497 500 502 497 497 480 309 240 309 240 301 338 | 437
417
428
444
454
461
463
464
474
481
484
490
494
499
503
505
503
504
412
225
6282
319
352 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 167 190 205 216 219 256 249 316 321 530 567 579 599 579 680 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 573 568 568 579 | 149
172
184
202
209
235
270
313

468
546
573
573
573
629 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603 | JULY 6322 655 673 678 680 706 689 690 686 696 700 684 677 680 677 638 636 636 697 638 636 570 550 570 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
661
661
661
662
610
604
616
609
600
586 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544
538
521
557
567
567
567
551
496
504
514 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 506 544 542 462 477 484 491 504 | 527
5127
5128
498
494
507
505
494
497
506
509
5529
5529
5561
540
513
537
563
553
488
501
490
496
511 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
506
509
512
507 | ### SEPTEMBE ### 418 ### 419 ### 439 ### 450 ### 457 ### 455 ### 479 ### 484 ### 484 ### 496 ### 497 ### 500 502 ### 500 502 ### 497 ### 497 ### 497 ### 480 ### 309 ### 240 ### 309 ### 300 ###
300 ### 300 ### 300 ### 300 ### 300 ### 300 ### 30 | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503
506
505
503
504
412
256
282
319 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 167
190
205
216
219
256
249
316
321

530
567
579
599
579
680
692 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 573 568 568 579 673 | 149
172
184
202
209
230
235
270
313

468
546
573
581
573
573
629
684 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603 | JULY 6322 655 673 678 680 706 689 690 684 670 684 670 688 636 602 590 587 598 603 583 570 550 572 602 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
681
661
661
629
610
604
616
609
600
586
574
581
632 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544
538
521
557
567
567
567
551
544
514
496
504
514 | AUGUST 511 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 506 5542 462 477 484 491 504 458 454 467 | 527
5127
5128
498
494
507
505
494
497
506
509
552
561
540
530
513
537
553
488
501
490
496
511 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
509
512
507
514
480
309
301
338
368
402
425 | \$\$\text{418}\$\$411\$\$419\$\$439\$\$450\$\$457\$\$459\$\$465\$\$479\$\$481\$\$484\$\$491\$\$496\$\$497\$\$500\$\$502\$\$497\$\$497\$\$480\$\$309\$\$240\$\$263\$\$301\$\$338\$\$368\$\$402\$\$\$492\$\$ | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503
506
505
503
504
412
256
282
319
352
387
413 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 167 190 205 216 219 256 249 316 321 530 567 579 599 579 680 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 573 568 568 579 673 626 621 | 149
172
184
202
209
235
270
313

468
546
573
573
573
629
684
658
625 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603 | JULY 6322 655 673 678 680 706 689 690 686 696 700 684 677 680 677 638 636 636 690 587 598 603 587 598 603 587 598 603 587 598 603 587 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
661
661
661
662
610
604
616
609
600
586
574
581
632
631
591 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544
538
521
557
567
567
551
514
496
514
496
514
513
498
484
485
483 | AUGUST 511 502 488 487 488 494 492 500 503 499 507 543 534 519 501 506 554 542 462 477 484 491 504 458 454 467 467 464 | 527
5127
5128
498
494
507
505
494
497
506
509
552
552
5561
540
513
537
563
553
488
501
490
496
511 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
506
509
512
507 | \$\$\text{418}\$\$411\$\$419\$\$439\$\$450\$\$457\$\$461\$\$465\$\$479\$\$481\$\$484\$\$491\$\$496\$\$497\$\$500\$\$502\$\$497\$\$497\$\$480\$\$309\$\$240\$\$2422\$\$431\$\$\$ | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503
506
505
503
504
412
256
282
319 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 167 190 205 216 219 256 249 316 321 530 567 579 579 579 680 692 673 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 573 568 568 579 673 626 | 149
172
184
202
209
235
270
313

468
546
573
581
573
573
629
684
658 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603 | JULY 6322 655 673 678 680 706 689 690 686 696 700 684 677 638 637 638 637 638 637 638 637 638 637 638 637 638 636 602 590 587 598 603 587 598 603 587 598 603 603 603 603 603 603 603 603 603 603 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
685
661
661
6629
610
604
616
609
600
586
574
581
632
631 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567
567
567
567
551
514
496
504
514 | \$11 502 488 487 488 494 492 491 500 503 499 507 543 544 534 519 501 502 477 484 491 504 458 454 467 467 | 527
517
518
498
494
507
505
494
497
506
509
507
552
561
540
530
513
537
563
553
488
501
496
511 | 451
419
439
456
458
467
466
479
483
486
491
498
501
504
509
512
507
514
480
309
301
338
368
402
425
431 | 418 411 419 439 450 457 459 461 465 479 481 484 488 491 496 497 500 502 497 497 480 309 240 309 240 301 338 368 402 422 | 437
417
428
444
454
461
463
464
474
481
484
499
499
503
506
505
503
504
412
256
282
319
352
387
413
425 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 167 190 205 216 219 256 249 316 321 530 567 579 579 579 680 692 673 632 | JUNE 135 160 167 189 202 219 226 244 298 | 149 172 184 202 209 230 235 270 313 468 546 573 581 573 573 629 684 658 625 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603
598
602
654
651
609
565 | JULY 6322 655 673 678 680 706 689 690 686 696 700 684 677 680 677 638 636 636 690 587 598 603 587 598 603 587 598 603 587 598 603 587 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
661
661
661
662
610
604
616
609
600
586
574
581
632
631
591 | 542
517
506
501
521
517
497
506
511
513
551
569
573
544
538
521
557
567
567
551
514
496
514
496
514
513
498
484
485
483 | \$11, 502, 488, 487, 488, 494, 492, 491, 500, 503, 499, 507, 543, 544, 534, 519, 501, 506, 554, 542, 462, 477, 484, 491, 504, 458, 454, 467, 464, 451, 504, 504, 504, 504, 504, 504, 504, 504 | 527
5127
5128
498
494
507
505
494
497
506
509
552
552
5561
540
513
537
563
553
488
501
490
496
511 | 451
419
439
456
458
467
466
479
483
486
491
498
501
504
509
512
507
514
480
309
301
338
402
425
431
452 | ### SEPTEMBE ### 418 ### 419 ### 439 ### 450 ### 457 ### 465 ### 479 ### 488 ### 491 ### 496 ### 497 ### 500 ### 500 ### 497 ### 480 ### 309 ### 240 ### 243 ### 338 | 437
417
428
444
454
461
463
464
474
481
484
499
499
503
506
505
503
504
412
256
282
319
352
387
413
425
442
 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 167 190 205 216 219 256 249 316 321 530 567 579 579 579 680 692 673 632 | JUNE 135 160 167 189 202 219 226 244 298 417 530 567 573 568 568 579 673 626 621 | 149
172
184
202
209
235
270
313

468
546
573
573
573
629
684
658
625 | 655
679
750
691
708
726
727
707
789
736
800
700
715
721
710
695
682
691
668
624
616
630
622
615
603 | JULY 632 655 673 678 680 706 689 686 696 700 684 677 638 637 638 637 598 602 590 587 598 603 570 550 572 602 606 563 542 | 643
668
688
684
689
716
705
698
735
711
740
689
687
706
695
661
661
661
662
661
661
661
661
661
661 | 542
517
506
501
521
517
497
506
511
513
513
551
569
573
544
538
521
557
567
567
567
551
514
496
504
514
513
498
485
483
471 | AUGUST 511 502 488 487 488 494 492 500 503 499 507 543 534 519 501 506 554 542 462 477 484 491 504 458 454 467 467 464 | 527
512
498
494
507
505
494
497
506
509
507
552
561
540
530
513
537
563
553
488
501
496
511
479
469
477
480
474
459 | 451
419
439
456
458
465
467
466
479
483
486
491
494
498
501
504
506
509
507
512
507
514
480
309
301
338 | \$\$\text{418}\$\$411\$\$419\$\$439\$\$450\$\$457\$\$461\$\$465\$\$479\$\$481\$\$484\$\$491\$\$496\$\$497\$\$500\$\$502\$\$497\$\$497\$\$480\$\$309\$\$240\$\$2422\$\$431\$\$\$ | 437
417
428
444
454
461
463
464
474
481
488
490
494
499
503
506
505
503
504
412
256
282
319
352
387
412
425
442 | # 09041090 MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |---|--------------|-----------------|------------|----------------------------------|--------------|------------|---|------------------------------|---|--|---|---| | | | OCTOBER | | N | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | 9.7 | 5.2 | 7.3 | 5.0 | .6 | 2.7 | | | | | | | | 2 | 9.2 | 4.0 | 6.5 | 3.8 | .0 | 1.6 | | | | | | | | 3
4 | 10.4
11.0 | 3.7
3.5 | 6.8
6.9 | 3.3
3.4 | .0 | 1.2
1.3 | | | | | | | | 5 | 11.0 | 3.5 | 7.0 | 3.9 | .0 | 1.5 | | | | | | | | | 10.1 | | | 2 0 | | | | | | | | | | 6
7 | 10.1
9.9 | 6.0
5.9 | 7.8
7.7 | 3.9
3.4 | .0 | 1.5
1.3 | | | | | | | | 8 | 11.4 | 4.4 | 7.7 | 3.9 | .0 | 1.5 | | | | | | | | 9 | 12.3 | 5.2 | 8.4 | 4.7 | .0 | 1.8 | | | | | | | | 10 | 12.5 | 5.5 | 8.8 | | | | | | | | | | | 11 | 12.4 | 5.2 | 8.7 | | | | | | | | | | | 12 | 11.8 | 5.0 | 8.4 | | | | | | | | | | | 13
14 | 11.9
11.2 | 4.5
4.2 | 8.1
7.7 | | | | | | | | | | | 15 | 8.5 | 3.6 | 6.3 | | | | | | | | | | | 1.0 | г о | 1 - | 2 7 | | | | | | | | | | | 16
17 | 5.9
4.8 | 1.5
.0 | 3.7
2.0 | | | | | | | | | | | 18 | 3.9 | .6 | 2.0 | | | | | | | | | | | 19 | 4.9 | .0 | 2.1 | | | | | | | | | | | 20 | 6.2 | .0 | 2.7 | | | | | | | | | | | 21 | 6.9 | .2 | 3.3 | | | | | | | | | | | 22 | 7.2 | .5 | 3.6 | | | | | | | | | | | 23
24 | 7.2
6.8 | .5
.4 | 3.7
3.4 | | | | | | | | | | | 25 | 6.6 | . 2 | 3.3 | | | | | | | | | | | 26 | <i>c</i> 0 | _ | 2 - | | | | | | | | | | | 26
27 | 6.8
6.3 | .5
.3 | 3.5
3.1 | | | | | | | | | | | 28 | 4.6 | .3 | 2.6 | | | | | | | | | | | 29 | 4.5 | 1.3 | 3.1 | | | | | | | | | | | 30
31 | 6.2
6.2 | 1.2 | 3.3
3.0 | MONTH | 12.5 | .0 | 5.2 | 5.0 | .0 | 1.6 | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | | | | | MEAN | MAX | | MEAN | | MAY | | | 1
2 | | FEBRUARY | | | MARCH | | | APRIL | | MAX
9.6
10.4 | | MEAN
6.0
6.9 | | 1
2
3 | | FEBRUARY | |
 | MARCH |
 |
 | APRIL |
 | 9.6
10.4
10.5 | MAY
1.9
2.9
3.2 | 6.0
6.9
7.1 | | 1
2
3
4 | | FEBRUARY | | | MARCH | | | APRIL | | 9.6
10.4
10.5
10.7 | MAY
1.9
2.9
3.2
3.2 | 6.0
6.9
7.1
7.2 | | 1
2
3
4
5 |

 | FEBRUARY |

 |

 | MARCH |

 |

 | APRIL |

 | 9.6
10.4
10.5
10.7
10.8 | MAY
1.9
2.9
3.2
3.2 | 6.0
6.9
7.1
7.2
7.2 | | 1
2
3
4
5 | | FEBRUARY | |

 | MARCH |

 |

 | APRIL | | 9.6
10.4
10.5
10.7
10.8 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 | 6.0
6.9
7.1
7.2
7.2 | | 1
2
3
4
5 |

 | FEBRUARY |

 |

 | MARCH |

 |

 | APRIL |

 | 9.6
10.4
10.5
10.7
10.8 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | |

 | MARCH | |

 | APRIL | | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3 | | 1
2
3
4
5
6
7
8 |

 | FEBRUARY | |

 | MARCH | |

 | APRIL | | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | |

 | MARCH | |

 | APRIL | | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | |

7.8 | APRIL |

2.8 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH | |

7.8 | APRIL |

2.8
2.9 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 .6 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | |

7.8 | APRIL |

2.8 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | |

 | MARCH | |

7.8
7.0
7.4 | APRIL |

2.8
2.9
3.0
1.8 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 6 4.3 5.9 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6
7.4
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0 | APRIL 0 0 0 1 |

2.8
2.9
3.0
1.8 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 .6 4.3 5.9 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6
7.4
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | |

 | MARCH | |

7.8
7.0
7.4 | APRIL |

2.8
2.9
3.0
1.8 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 6 4.3 5.9 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6
7.4
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2 | APRIL 0 0 0 1 1.4 2.8 1.7 .6 |

2.8
2.9
3.0
1.8
4.7
6.5
4.1 |
9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 64.3 5.9 5.1 3.6 2.6 4.0 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6
7.4
7.6
8.5
5.6
4.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | |

 | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7 | MAY 1.9 2.9 3.2 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 64.3 5.9 5.1 3.6 2.6 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6
7.4
7.4
8.5
5.5
4.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
1.9
5.3 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 6.4 3.5 9 5.1 3.6 4.0 6.4 5.4 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6
7.4
7.6
8.5
5.6
5.7
9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4 | APRIL |

2.8
2.9
1.8
4.7
6.5
4.1
1.9
5.3 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 6.3 5.9 5.1 3.6 2.6 4.0 6.4 5.5 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
8.2
6.6
4.6
4.7
7.6
8.5
7.6
8.5
7.6
9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4
7.0 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
1.9
5.3 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8
11.3
11.3 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 6.4 5.9 5.1 3.6 4.0 6.4 5.5 5.7 | 6.0
6.9
7.1
7.2
7.0
6.3
5.1
6.6
4.6
7.4
8.5
5.6
4.5
7.6
9.3
8.7
9.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4 | APRIL |

2.8
2.9
1.8
4.7
6.5
4.1
1.9
5.3 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.0 3.4 5.0 4.6 2.7 6.3 5.9 5.1 3.6 2.6 4.0 6.4 5.5 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
8.2
6.6
4.6
4.7
7.6
8.5
7.6
8.5
7.6
9.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4
7.0
7.6
8.9 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
1.9
5.3
5.7
3.4
4.3
4.7
5.4 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8
11.3
11.7
13.0
11.4
9.0 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.0 5.0 4.6 2.7 6.4 5.9 5.1 3.6 4.0 6.4 5.5 5.7 6.1 5.7 | 6.0
6.9
7.1
7.2
7.0
6.3
5.1
6.6
4.6
7.4
8.5
7.6
8.5
7.6
9.7
7.9
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4
7.0
7.6
8.9 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
1.9
5.3
5.7
3.4
4.3
4.7
5.4 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8
11.3
11.7
11.8
11.3
11.7 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 3.4 5.0 4.6 2.7 6.3 5.9 5.1 3.6 4.0 6.4 5.5 5.7 6.1 5.7 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.3
8.2
6.6
4.6
7.4
7.6
8.5
5.5
5.6
9.3
8.7
9.9
7.9
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4
7.0
7.6
8.9
9.9 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
1.9
5.3
5.7
3.4
4.3
4.3
4.7
5.4 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8
11.3
11.7
13.0
11.4
9.0
8.9
10.9 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.6 5.0 4.6 5.7 6.1 5.7 6.1 5.7 6.6 6.2 | 6.0
6.9
7.1
7.2
7.0
6.3
5.1
8.2
6.6
4.6
4.7
7.6
8.5
7.6
8.7
7.9
7.9
7.9
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4
7.0
7.6
8.9
9.9 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
1.9
5.3
5.7
3.4
4.3
4.7
5.4 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8
11.3
11.7
11.8
11.3
11.7
11.8
11.3
11.7
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0 | MAY 1.99 2.92 3.22 3.2 3.4 4.00 3.4 5.0 4.6 2.7 6.3 5.9 5.1 6.6 4.0 6.4 5.5 7 6.1 5.7 6.1 5.7 6.2 8.1 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.6
4.6
7.4
7.6
8.5
5.5
5.5
9.3
8.7
9.9
7.9
7.9
7.9
7.9
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4
7.0
7.6
8.9
9.9 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
1.9
5.3
5.7
3.4
4.3
4.3
4.7
5.4 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8
11.3
11.7
13.0
11.4
9.0
8.9
10.9
12.0
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10 | MAY 1.9 2.9 3.2 3.2 3.4 4.0 4.6 2.7 4.3 5.0 4.6 2.7 6.4 5.5 5.7 5.6 4.6 6.2 8.1 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.6
4.6
4.6
4.7
7.6
8.5
6.6
4.6
4.7
7.7
7.0
9.3
8.7
9.7
7.7
7.0
9.4
10.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29 | | FEBRUARY | | | MARCH | |

7.8
7.0
7.4
3.0
9.0
10.5
7.0
3.2
9.8
7.9
6.4
7.0
7.6
8.9
9.9
10.4
9.4
7.9
8.2 | APRIL |

2.8
2.9
3.0
1.8
4.7
6.5
4.1
9
5.3
5.7
3.4
4.3
4.7
5.4 | 9.6
10.4
10.5
10.7
10.8
10.0
8.5
6.6
9.6
11.1
9.2
6.6
8.6
9.9
9.1
11.8
10.6
6.7
11.7
11.8
11.3
11.7
11.8
11.3
11.7
11.8
11.3
11.7
12.0
12.0
12.0
12.0
12.0
12.0
12.0
12.0 | MAY 1.99 2.92 3.22 3.2 3.4 4.00 3.4 5.0 4.6 2.7 6.3 5.9 5.1 6.6 4.0 6.4 5.5 7 6.1 5.7 6.1 5.7 6.2 8.1 | 6.0
6.9
7.1
7.2
7.2
7.0
6.3
5.1
6.6
4.6
7.4
7.6
8.5
5.6
5.7
9.3
8.7
9.7
7.9
7.9
7.9
7.9 | # 09041090 MUDDY CREEK ABOVE ANTELOPE CREEK NEAR KREMMLING, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5 | 14.6
14.3
16.1
17.5
16.2 | 9.0
9.3
8.9
10.0
10.7 |
11.8
11.8
12.6
13.8
13.9 | 21.3
21.5
22.9
22.6
22.2 | 14.4
13.9
15.2
14.0
13.2 | 17.8
18.0
18.7
18.2
17.8 | 24.1
24.9
22.7
21.9
21.7 | 15.8
16.4
17.4
17.1
16.0 | 19.7
20.4
19.9
19.4
18.8 | 17.3
19.2
18.7
19.9 | 14.4
12.5
12.1
12.2
13.5 | 15.7
15.7
15.4
15.9
16.4 | | 6
7
8
9
10 | 18.3
19.8
18.8
19.3 | 10.9
11.5
12.5
12.8 | 14.8
15.8
15.8
15.8 | 23.0
22.2
21.5
21.9
23.0 | 14.4
15.4
15.8
16.0
14.8 | 18.7
18.7
18.5
18.5 | 23.5
22.6
24.2
25.4
25.0 | 15.3
14.8
14.0
15.0 | 19.0
18.5
18.9
19.9
20.7 | 18.5
18.2
17.9
16.7
18.3 | 12.5
11.3
12.7
11.1
10.2 | 15.1
14.8
15.1
13.9
14.1 | | 11
12
13
14
15 | |

 |

 | 22.5
20.9
23.4
26.2
24.6 | 15.4
15.6
15.3
15.9 | 19.1
18.5
19.3
20.3
19.8 | 22.1
22.1
23.2
21.4
21.9 | 16.7
15.3
14.6
14.7 | 19.6
18.3
18.7
18.2
18.5 | 17.6
18.6
17.6
18.9
19.4 | 9.9
9.5
9.9
9.6
10.6 | 13.8
14.1
14.1
14.4
15.2 | | 16
17
18
19
20 | 19.2
19.4
16.9
15.8 | 11.5
10.5
10.1
12.3 | 15.3
15.0
13.9
14.1 | 23.9
20.5
21.8
21.1
21.3 | 16.3
17.0
14.0
13.9
13.7 | 19.6
18.7
17.9
17.8
17.7 | 21.2
19.6
19.7
22.0
20.9 | 15.7
14.6
14.2
14.6
15.0 | 18.3
17.1
16.6
18.0
17.7 | 19.6
17.8
19.3
16.4
16.8 | 10.6
11.4
12.4
11.3
9.8 | 15.3
14.9
15.5
14.1
13.3 | | 21
22
23
24
25 | 20.9
20.8
18.2
21.0
18.2 | 11.0
12.0
12.2
12.2
13.9 | 15.7
16.6
15.7
16.7
15.9 | 22.3
23.3
22.4
21.9
23.2 | 14.1
14.3
14.8
15.6
14.5 | 18.3
18.7
18.6
18.4
18.5 | 20.3
18.8
19.9
19.5
21.2 | 14.4
13.9
13.7
14.3 | 17.3
16.4
16.4
16.8
17.2 | 12.8
12.7
11.4
9.3
11.2 | 8.6
8.6
7.4
5.4
4.0 | 10.1
10.4
9.4
6.9
7.5 | | 26
27
28
29
30
31 | 15.9
18.7
20.6
20.9
21.5 | 12.9
11.6
12.4
13.7
13.2 | 14.5
15.1
16.7
17.4
17.5 | 20.4
19.2
22.7
22.8
23.4
23.8 | 15.7
14.6
13.3
15.1
15.2
15.0 | 18.2
16.9
17.8
19.1
19.2
19.4 | 19.7
18.9
19.9
21.1
19.1 | 15.4
14.4
15.7
14.9
16.2
13.8 | 17.0
17.0
17.4
17.5
17.4
16.3 | 12.8
14.3
13.2
13.3
13.4 | 6.4
7.5
7.6
8.5
8.6 | 9.4
10.4
10.2
10.5
10.6 | | MONTH | 21.5 | 8.9 | 15.1 | 26.2 | 13.2 | 18.6 | 25.4 | 13.7 | 18.2 | 19.9 | 4.0 | 13.1 | | YEAR | 26.2 | .0 | 11.6 | | | | | | | | | | # 401110106244800 WOLFORD MOUNTAIN RESERVOIR AT INFLOW NEAR KREMMLING, CO # WATER-QUALITY RECORDS LOCATION.--Lat. $40^{\circ}11^{\circ}10^{\circ}$, long $106^{\circ}24^{\circ}48^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.18, T.2 N, R.81 W., Grand County, Hydrologic Unit 14010001, 5 mi north of Kremmling. DRAINAGE AREA.--270 mi². PERIOD OF RECORD. -- July 1995 to current year. REMARKS.--Samples were collected at mid-depth at the upper inflow. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DA | TE 1 | PI
CIME DE
(1 | AM- C
LING D
EPTH A
FEET) (U | NCE
S/CM) | PH
WATE
WHOL
FIEL
(STAN
ARD
UNIT
(0040 | LE LD TEM ND- AT D WA TS) (DE | TER SC | DIS-
DLVED
IG/L) | | | |------------------|--|--|------------------------------|--|---------------------------------------|--|---|--|--|--|--|-----------------------------------| | | | OCT
22
22
22
22
JUN | . 1 | 121 5
122 10 | 5.00
).0 | 626
626
625
627 | 8.2
8.2
8.2 | 2 8
2 8
2 8 | .9 7
.8 7
.6 7 | 7.4
7.4
7.4 | | | | | | 08
08
08
08
JUL | . 1 | 1107 5
1108 10
1109 15
1110 18 | 5.00
0.0
5.0
3.0 | 331
366
364
348
401 | | 1 16
1 15
1 14
0 13
0 13 | | 2
6
0
6 | | | | | | 06
06
06
06
AUG | . 1 | | .10
5.00
0.0
1.0 | | | 2 20
3 18
3 18
2 18 | | 7.1
7.2
7.0
5.9 | | | | | | 24
24
24 | . 1 | 1115
1116 5
1117 10 | .10
5.00
).0 | 642
637 | 8.2
8.2
8.2 | 2 19
2 18
2 18 | .6 7
.2 6 | 7.0
7.0
5.7 | | | | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | ITY
(NTU) | TRAN
PAR
ENC
(SECC
DISK
(IN | !-
!Y C
!HI
!) | DXYGEN,
DIS-
SOLVED
(MG/L) | TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA) | SOLVED
(MG/L | DIS-
SOLVED
(MG/L
AS NA) | | OCT 22 | 1145 | 626 | 8.2 | 8.9 | 1.9 | 110 | | 7.4 | 270 | 66.5 | 24.7 | 25.4 | | JUN
08
JUL | 1115 | 364 | 8.1 | 14.1 | | 52. | 0 | 7.0 | 160 | 39.3 | 14.3 | 15.5 | | 06
AUG | 1140 | 557 | 8.3 | 18.9 | 2.8 | 85. | 0 | 7.1 | 250 | 60.3 | 23.0 | 24.0 | | 24 | 1130 | 642 | 8.2 | 18.6 | 2.0 | 65. | 0 | 7.0 | 280 | 69.6 | 26.3 | 28.0 | | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | SOLVED
(MG/L
AS CL) | RIDE
DIS
SOLV
(MG/
AS F | ;,
ED
L | DIS-
SOLVED
(MG/L
AS
SIO2) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(MG/L
AS N) | | OCT 22 | .7 | 2.2 | 131 | 193 | 2.1 | . 2 | | 7.3 | 427 | 400 | .58 | <.010 | | JUN
08 | .5 | 1.4 | 85 | 95.9 | 1.5 | .1 | | 8.9 | 248 | 228 | .34 | <.010 | | JUL
06 | .7 | 1.9 | 122 | 158 | 1.8 | .2 | | 7.6 | 376 | 351 | .51 | <.010 | | AUG
24 | .7 | 2.1 | 133 | 198 | 2.7 | .1 | | 7.5 | 434 | 414 | .59 | <.010 | # 401110106244800 WOLFORD MOUNTAIN RESERVOIR AT INFLOW NEAR KREMMLING, CO--Continued | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | MONIA + | | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS- | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | |------------------|---|--|--|--|---|--|--|--|--|---| | OCT
22 | <.050 | <.020 | | .35 | .35 | E.031 | <.050 | <.010 | 6.2 | <.2 | | JUN
08 | <.050 | <.020 | | .44 | .31 | E.041 | <.050 | <.010 | 7.3 | <.2 | | JUL
06 | <.050 | .031 | .32 | .42 | .35 | <.050 | <.050 | <.010 | | <.2 | | AUG
24 | <.050 | <.020 | | .51 | .34 | .051 | <.050 | <.010 | 15 | <.2 | | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | RECOV- | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | | OCT 22 | 59 | <3 | <2.0 | 61.6 | 62 | <5 | <.1 | <.1 | <1 | <.8 | | JUN
08 | 120 | <3 | <2.0 | 42.4 | 44 | <5 | <.1 | <.1 | <1 | <.8 | | JUL
06
AUG | 117 | E2 | <2.0 | 62.1 | 57 | <15 | <.1 | <.1 | <1 | <.8 | | 24 | 60 | <3 | <2.0 | 62.7 | 61 | <5 | <.1 | <.1 | | <.8 | | DATE | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | DIS- | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI)
(01132) | | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | OCT 22 | <2 | E1 | E1 | 70 | <10 | <1 | <1 | 23.9 | 15 | 8 | | JUN
08 | <2 | E1 | E1 | 220 | 50 | <1 | <1 | 13.8 | 15 | 6 | | JUL
06
AUG | <2 | 1 | E1 | 140 | E20 | <1 | <1 | 23.6 | 37 | 24 | | 24 | <1 | 3 | 2 | 130 | <10 | <1 | <1 | 25.4 | 31 | 21 | | DATE | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | TOTAL
RECOV-
ERABLE
(UG/L
AS
MO) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 22 | <.3 | <.2 | 1 | 2 | E2 | 2.7 | <1 | <1 | <31 | 29 | | JUN
08 | <.3 | <.2 | 1 | E1 | <3 | E1.8 | <1 | <1 | <31 | <20 | | JUL
06 | <.3 | <.2 | 2 | E1 | E2 | E2.3 | <1 | <1 | 215 | <60 | | AUG
24 | <.3 | <.2 | 2 | 2 | 2 | 1.9 | <1 | <1 | 1 | <1 | # 400841106240600 WOLFORD MOUNTAIN RESERVOIR AT MIDLAKE NEAR KREMMLING, CO # WATER-QUALITY RECORDS LOCATION.--Lat. $40^{\circ}08'41"$, long $106^{\circ}24'06"$, in $\mathrm{NW}^{1}/_{4}\mathrm{NW}^{1}/_{4}$ sec.18, T.2 N, R.80 W., Grand County, Hydrologic Unit 14010001, 5 mi north of Kremmling. DRAINAGE AREA.--270 mi². PERIOD OF RECORD. -- July 1995 to current year. REMARKS.--Samples were collected at mid-depth at the upper inflow. Note: The following remark codes may appear in the data tables below: e estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | OCT 22 1040 | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |---|--|--|--|--|--|---|---| | 22 1041 5.00 620 8.0 9.8 6.6 22 1042 10.0 620 8.0 9.7 6.6 22 1043 15.0 621 8.0 9.7 6.6 22 1044 20.0 622 8.0 9.7 6.5 22 1044 20.0 622 8.0 9.7 6.5 22 1045 25.0 622 8.0 9.6 6.3 22 1046 30.0 622 8.0 9.6 6.3 22 1047 40.0 623 8.0 9.6 6.3 22 1048 50.0 627 8.0 9.5 6.4 22 1049 55.0 656 7.7 9.3 3.4 JUN 08 1030 10 423 8.3 17.5 8.1 08 1031 5.00 423 8.3 16.1 8.6 08 1032 10.0 423 8.3 16.1 8.6 08 1033 15.0 429 8.3 14.6 7.7 08 1034 20.0 448 8.2 14.1 7.4 08 1035 25.0 475 8.2 13.0 7.0 08 1036 30.0 495 8.1 11.6 6.8 08 1037 40.0 534 8.1 10.3 6.5 08 1038 50.0 579 8.0 8.7 6.3 08 1039 60.0 634 8.0 7.9 5.6 08 1039 60.0 634 8.0 7.9 5.6 08 1010 10 488 8.4 18.5 7.7 06 1010 10 488 8.4 17.9 7.6 06 1011 5.00 487 8.4 17.9 7.6 06 1012 10.0 487 8.4 17.9 7.7 06 1014 20.0 495 8.3 16.2 6.6 06 1015 25.0 497 8.2 15.7 6.3 06 1014 20.0 495 8.3 16.2 6.6 06 1015 25.0 497 8.2 15.7 6.3 06 1016 30.0 516 8.1 14.6 5.3 06 1017 40.0 545 8.0 12.8 4.6 06 1018 50.0 570 8.3 18.6 6.5 06 1019 60.0 639 7.9 8.2 3.8 06 1018 50.0 570 8.3 18.6 6.5 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 639 7.9 8.2 3.8 06 1019 60.0 570 8.3 18.2 6.4 04 1033 15.0 570 8.3 18.2 6.4 04 1034 20.0 571 8.3 18.1 6.4 04 1035 25.0 571 8.3 18.1 6.4 04 1035 25.0 571 8.3 18.1 6.4 04 1035 25.0 571 8.3 18.1 6.4 | | 1040 | 10 | 600 | 0.0 | 0.0 | | | 08 | 22
22
22
22
22
22
22 | 1041
1042
1043
1044
1045
1046
1047
1048 | 5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0 | 620
620
621
622
622
622
623
627 | 8.0
8.0
8.0
8.0
8.0
8.0 | 9.8
9.7
9.7
9.6
9.6
9.6 | 6.6
6.6
6.5
6.3
6.3
6.4 | | 06 1010 | 08 08 08 08 08 08 08 08 08 08 08 | 1031
1032
1033
1034
1035
1036
1037
1038
1039 | 5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0 | 423
432
429
448
475
495
534
579
634 | 8.3
8.3
8.2
8.2
8.1
8.1
8.0 | 16.1
15.3
14.6
14.1
13.0
11.6
10.3
8.7
7.9 | 8.6
8.3
7.7
7.4
7.0
6.8
6.5
6.3
5.6 | | 24 1030 .10 570 8.3 18.6 6.5 24 1031 5.00 570 8.3 18.3 6.5 24 1032 10.0 570 8.3 18.2 6.4 24 1033 15.0 570 8.3 18.2 6.4 24 1034 20.0 571 8.3 18.1 6.4 24 1035 25.0 571 8.3 18.1 6.4 24 1036 30.0 585 8.2 17.7 5.2 24 1037 40.0 591 7.9 14.8 .8 24 1038 50.0 597 7.8 12.2 .7 | 06
06
06
06
06
06
06
06
06 | 1011
1012
1013
1014
1015
1016
1017
1018
1019 | 5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0 | 487
487
487
495
497
516
545
581
639 | 8.4
8.3
8.3
8.2
8.1
8.0
7.9
7.9 | 17.9
17.8
17.7
16.2
15.7
14.6
12.8
10.1
8.2 | 7.7
7.6
7.6
6.6
6.3
5.3
4.6
4.3
3.8 | | | 24
24
24
24
24
24
24 | 1031
1032
1033
1034
1035
1036
1037
1038 | 5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0 | 570
570
570
571
571
585
591
597 | 8.3
8.3
8.3
8.3
8.3
8.2
7.9 | 18.3
18.2
18.2
18.1
18.1
17.7
14.8 | 6.5
6.4
6.4
6.4
5.2
.8 | | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN)
(00077) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------|------|--|---|---|---|---|--|---|--|--|---| | OCT | | | | | | | | | | | | | 22 | 1100 | 620 | 8.0 | 9.8 | 1.4 | 135 | 6.6 | <1 | | 260 | 65.1 | | 22 | 1115 | 656 | 7.7 | 9.3 | 2.2 | | 3.4 | | | 260 | 65.9 | | JUN | | | | | | | | | | | | | 08 | 1045 | 423 | 8.3 | 17.5 | | 80.0 | 8.1 | K1 | K1 | 180 | 44.1 | | 08 | 1100 | 658 | 7.9 | 7.6 | | | 5.3 | | | 260 | 63.6 | | JUL | | | | | | | | | | | | | 06 | 1030 | 488 | 8.4 | 18.5 | 1.6 | 118 | 7.7 | K6 | K1 | 210 | 52.9 | | 06 | 1045 | 675 | 7.8 | 7.6 | 5.1 | | 3.2 | | | 280 | 66.3 | | AUG | | | | | | | | | | | | | 24 | 1045 | 570 | 8.3 | 18.6 | . 4 | 109 | 6.5 | <1 | <1 | 250 | 63.1 | | 24 | 1100 | 638 | 7.8 | 10.0 | .5 | | . 4 | | | 260 | 65.6 | ${\tt 400841106240600} \quad {\tt WOLFORD} \;\; {\tt MOUNTAIN} \;\; {\tt RESERVOIR} \;\; {\tt AT} \;\; {\tt MIDLAKE} \;\; {\tt NEAR} \;\; {\tt KREMMLING}, \;\; {\tt CO--Continued}$ | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LAB
(MG/L
AS
CACO3) | (MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | |--|--
--|--|---|---|--|---|--|--|---|---| | OCT
22
22
JUN | 24.2
24.4 | 25.6
25.7 | .7 | 2.3 | 131
131 | 192
193 | 2.2 | .2 | 7.9
7.5 | 424
424 | 398
400 | | 08
08 | 16.1
25.6 | 17.9
28.1 | .6
.8 | 1.5
2.1 | 92
121 | 117
194 | 1.9
3.3 | .1
.1 | 8.2
8.4 | 283
425 | 263
399 | | JUL
06
06 | 19.4
27.3 | 20.5 | .6
.8 | 1.9
2.3 | 104
124 | 139
204 | 2.1
3.2 | .1 | 7.5
8.4 | 329
445 | 306
417 | | AUG
24
24 | 22.0
23.3 | 22.3
23.9 | .6
.6 | 2.0 | 120
120 | 168
178 | 2.2 | .1
<.1 | 7.6
8.9 | 380
396 | 360
377 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | TOTAL
(MG/L
AS P) | (MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | FLUOROM
(UG/L) | | OCT 22 22 | .58
.58 | <.010
<.010 | .059
<.050 | <.020
.027 | .33 | .38 | .35
.36 | <.050
<.050 | <.050
<.050 | <.010
<.010 | .8 | | JUN
08
08 | .38 | <.010
<.010 | <.050
.195 | <.020
.023 | .31 | .43 | .29 | <.050
E.034 | <.050
<.050 | <.010
<.010 | .7 | | JUL
06
06 | .45
.61 | <.010
<.010 | <.050
.261 | <.020
<.020 | | .38 | .29 | <.050
<.050 | <.050
<.050 | <.010
<.010 | .7 | | AUG
24
24 | .52 | <.010 | <.050 | <.020 | | .39 | .31 | <.050 | <.050 | <.010 | .6 | | 24 | .54 | <.010 | .173 | <.020 | | .33 | .31 | E.031 | <.050 | <.010 | | | DATE | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | ALUM-
INUM,
TOTAL | ARSENIC
TOTAL | ARSENIC
DIS-
SOLVED | BARIUM,
TOTAL | BARIUM,
DIS-
SOLVED | BERYL-
LIUM,
TOTAL | | | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | | DATE OCT 22 22 | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR) | | DATE OCT 22 22 JUN 08 08 | CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | | DATE OCT 22 22 JUN 08 08 JUL 06 06 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC TOTAL (UG/L AS AS) (01002) | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) E1.5 <2.0 | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007)
62.4
61.7
43.8
57.9 | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005)
61
61
45
58 | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CADMIUM WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) <1 <1 <1 | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) | | DATE OCT 22 22 JUN 08 08 JUL 06 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 | ALUM-INUM, TOTAL RECOV-ERABLE (UG/L AS AL) (01105) 59 83 94 137 | ARSENIC TOTAL (UG/L AS AS) (01002) | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) E1.5 <2.0 <2.0 <2.0 <2.0 | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007)
62.4
61.7
43.8
57.9
50.1 | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005)
61
61
45
58 | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CADMIUM WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 | CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034) | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 | | DATE OCT 22 22 JUN 08 08 JUL 06 AUG 24 24 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 59 83 94 137 69 163 39 68 ALIT, COE STAL TO TOTAL TOTA | ARSENIC TOTAL (UG/L AS AS) (01002) <3 <3 <3 <3 <3 <3 <3 <3 <3 CPER, OTAL COPER, DIAL COPER, DIAL COV DI ABBLE SO IG/L IG/L (US CU) AS | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) E1.5 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 LOBERT TO S- RE LIVED ER G/L (U) AS | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007)
62.4
61.7
43.8
57.9
50.1
60.8
57.1
55.8 | BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 61 61 61 45 58 51 60 54 54 54 50N, TC DIS- RE DLVED EN RG/L S FE) AS | BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <5 <5 <5 <5 <5 <5 <5 <5 <65 <65 <65 <6 | CADMIUM WATER UNFLITED TOTAL (UG/L AS CD) (01027) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 <1 <1 <1 <1 <1 <1 <recov- as<="" l="" map="" mn)="" otal="" rable="" rese,="" s="" sc="" sc,="" td=""
ug=""><td>CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.</td></recov-> | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <. | | DATE OCT 22 22 JUN 08 06 AUG 24 24 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 59 83 94 137 69 163 39 68 ALIT, COE TAL TCOV- REABLE EFG/L (UCOV- REA | ARSENIC TOTAL (UG/L AS AS) (01002) <3 <3 <3 <3 <3 <3 <3 <3 <3 CPER, OTAL COPER, DIAL COPER, DIAL COV DI ABBLE SO IG/L IG/L (US CU) AS | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) E1.5 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 <1.0 <2.0 <2.0 <2.0 <1.0 <2.0 <2.0 <1.0 <2.0 <1.0 <2.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1 | BARIUM,
TOTAL
RECOV-
ERABLE (UG/L
AS BA) (01007)
62.4
61.7
43.8
57.9
50.1
60.8
57.1
55.8 | BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 61 61 61 45 58 51 60 54 54 54 CON, TC DIS- REDLVED EF G/L (US/L) S FE) AS 046) (01 | BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | CADMIUM WATER UNFLITRD TOTAL (UG/L AS CD) (01027) <.1 | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 <1 <1 <1 <1 <1 <recov- as<="" dotal="" ecov-="" l="" mar="" mn)="" rable="" reecov-="" s="" scug="" see,="" td=""><td>CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 LSB LSB LSB LSB LSB LSB LSB LSB LSB LSB</td></recov-> | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 LSB | | DATE OCT 22 22 JUN 08 06 AUG 24 24 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 59 83 94 137 69 163 39 68 ALT, COE TAL TOTAL TOT | ARSENIC TOTAL (UG/L AS AS) (01002) <3 <3 <3 <3 <3 <3 <3 <3 <3 <5 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) E1.5 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 C2.0 <1.0 C2.0 C2.0 C2.0 C2.0 C2.0 C2.0 C2.0 C2 | BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 62.4 61.7 43.8 57.9 50.1 60.8 57.1 55.8 CON, OTAL IR COV- EABLE SC G/L (UG/L AS BA) (01007) | BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 61 61 61 45 58 51 60 54 54 54 CON, TC DIS- RE DLVED ER G/L (US/L) (S FE) AS 046) (01 | BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 | CADMIUM WATER UNFLITED TOTAL (UG/L AS CD) (01027) <.1 | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 <1 <1 <1 <thomstyle="color: red;"=""> <1 (1 (1 (1 (2 (1 (2 (1 (2 (1 (2 (1 (2 (1 (2 (1 (1 (2 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1</thomstyle="color:> | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <. | | DATE OCT 22 22 08 08 JUL 06 AUG 24 24 OCT 22 22 JUN 08 08 08 JUL 06 06 | CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70954) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105) 59 83 94 137 69 163 39 68 AALT, COE TAL TCOV- REABLE ERG/L (COV- REABL | ARSENIC TOTAL (UG/L AS AS) (01002) <3 | ARSENIC DIS- SOLVED (UG/L AS AS) (01000) E1.5 <2.0 <2.0 <2.0 <2.0 <2.0 <2.0 C2.0 <1.0 C2.0 C2.0 C2.0 C2.0 C2.0 C2.0 C2.0 C2 | BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007) 62.4 61.7 43.8 57.9 50.1 60.8 57.1 55.8 CON, OTAL IR COV- LABLE SC G/L (UG/L AS BA) (01007) | BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 61 61 61 45 58 51 60 54 54 54 CON, TO IS- RE DLVED EF IG/L (XS 046) (01 10 10 10 10 10 | BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <5 <5 <5 <5 <5 <5 <5 <65 <1000 | CADMIUM WATER UNFLITD TOTAL (UG/L AS CD) (01027) <.1 | CADMIUM DIS- SOLVED (UG/L AS CD) (01025) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034) <1 <1 <1 <1 <1 <1 <thomstyle="color: red;"=""> <1 (1 (1 (1 (2 (1 (2 (1 (2 (1 (2 (1 (2 (1 (2 (1 (1 (2 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1</thomstyle="color:> | CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <. | # 400841106240600 WOLFORD MOUNTAIN RESERVOIR AT MIDLAKE NEAR KREMMLING, CO--Continued | DATE | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |------|--|---|---|--|---|--|--|---|--|---| | OCT | | | | | | | | | | | | 22 | <.3 | <.2 | 2 | 2 | E2 | 3.2 | <1 | <1 | <31 | E12 | | 22 | <.3 | <.2 | 1 | E2 | E2 | E2.1 | <1 | <1 | <31 | <20 | | JUN | | | | | | | | | | | | 08 | <.3 | <.2 | 1 | E1 | E2 | E1.8 | <1 | <1 | <31 | <20 | | 08 | <.3 | <.2 | 2 | 2 | E2 | 2.6 | <1 | <1 | E15 | <20 | | JUL | | | | | | | | | | | | 06 | <.3 | <.2 | 2 | <2 | <3 | E1.9 | <1 | <1 | <31 | <20 | | 06 | <.3 | <.2 | 2 | E1 | 3 | 2.5 | <1 | <1 | <31 | <20 | | AUG | | | | | | | | | | | | 24 | <.3 | <.2 | 2 | 1 | 2 | 2.1 | <1 | <1 | 1 | <1 | | 24 | < 3 | < 2 | 2 | 2 | 2 | 2 0 | ~ 1 | ~ 1 | 2 | 2 | # 400812106254800 ALKALI SLOUGH #2 AT WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO # WATER-QUALITY RECORDS LOCATION.--Lat $40^\circ08^\circ12^\circ$, long $106^\circ25^\circ48^\circ$, $NW^1/_4NW^1/_4$ sec.18, T.2 N., R.81 W., Grand County, Hydrologic Unit 14010001, 5 mi north of Kremmling. PERIOD OF RECORD.--July 1996 to current year. REMARKS.--Samples were collected approximately 100 yards from mouth. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIM | CHAR
INS
CUE
FE
PE | T. (IC (ET I | SPE-
CIFIC
CON-
DUCT-
ANCE
JS/CM
)0095 | FIEL
(STAN
ARD
) UNIT | E D TEMPI D- ATUR WATR | RE
ER
C) | TUR-
BID-
ITY
(NTU) | DIS
SOLV | S-
ÆD
'L) | HARD-
NESS
TOTAL
(MG/I
AS
CACO: | CALCI
L DIS-
L SOLV
(MG/
3) AS C | DI
ED SOL
L (MG
A) AS | UM,
S-
VED
/L
MG) | SODIUM
DIS-
SOLVEI
(MG/1
AS NA | M,
O
(A) | SODIUM
AD-
SORP-
TION
RATIO | |-----------|--------------------------------------|--|--|--|--
--|---|--|---|------------------------------------|---|--|---|-------------------------------|--|--|---| | OCT
13 | 130 | 0 .5 | 0 : | 2700 | 7.6 | 10.3 | 3 | 2.9 | 8.3 | 3 | 1800 | 548 | 98. | 1 | 29.3 | | .3 | | JUL
12 | 104 | 5 .5 | 0 | 2400 | 7.8 | 12.2 | 2 | 2.0 | 9.0 |) | 1700 | 571 | 77. | 2 | 24.5 | | .3 | | DATE | SIUI
DIS
SOLV
(MG/I
AS K | - LA
ED (MG
L AS
) CAC | TRD 4.5 SI B 1 (/L) | DIS-
SOLVEI
(MG/L
S SO4 | (MG/ | RIDION DISTRIBUTION OF THE COLUMN TECHNOLOGY IN COL | E,
S-
ÆD
/L
F) | DIS-
SOLVE
(MG/L
AS
SIO2) | AT 18
AT 18
D DEG.
DIS
SOLV | OUE
30
C
S-
7ED
'L) | CONST:
TUENTS
DIS-
SOLVI
(MG/I | F SOLID I- DIS S, SOLV - (TON ED PER L) AC-F | - DI
ED SOL
S (TC | S-
VED
NS
R
Y) | AT 105
DEG. 0
SUS-
PENDEI
(MG/I | 5 N
C,
O | NITRO-
GEN,
IITRITE
DIS-
SOLVED
(MG/L
AS N)
00613) | | OCT
13 | 5.8 | 18 | 8 | L580 | 6.4 | .9 | | 9.9 | 2550 |) | 2390 | 3.47 | 3.4 | 4 | 11 | | <.010 | | JUL
12 | 4.4 | 23 | 9 | L480 | 5.3 | .9 | | 10.2 | 2540 |) | 2320 | 3.46 | 3.4 | 3 | 13 | | <.010 | | D# | ATE | DIS-
SOLVED
(MG/L
AS N) | GEI
AMMOI
DI:
SOL'
(MG
AS 1 | 1,
NIA (
3-
/ED
/L
1) | DIS-
SOLVED
(MG/L
AS N) | TOTAL
(MG/L
AS N) | GEN
MONI
ORGA
DIS
(MO
AS | ANIC
S.
G/L
N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PH
S
(1 | ORUS
DIS-
OLVED
MG/L
S P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | OR
PA
UL
T
(
A | RTIC-
ATE
OTAL
MG/L
S C) | ERA
(UG
AS | M,
PAL
POV-
BLE
F/L
AL) | | OCT
13 | | <.050 | .03 |) | .25 | . 28 | . 2 | 28 | <.050 | < | .050 | <.010 | 6.9 | | . 2 | 73 | i | | JUL
12 | | <.050 | .02 | 3 | .37 | .45 | .4 | 40 | <.050 | < | .050 | .024 | 7.3 | | <.2 | 83 | | | D# | \TE | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | SOL'
(UG
AS | NIC
S-
/ED
/L
AS) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | DIS-
SOLVED | LIU
TOT
REC
ERA
(UC
AS | RYL-
UM,
FAL
COV-
ABLE
G/L
BE) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | W.
UN:
T(| FLTRD
OTAL
UG/L
S CD) | DIS-
SOLVED
(UG/L
AS CD) | CHRO-MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | M
D
S
(| HRO-
IUM,
IS-
OLVED
UG/L
S CR)
1030) | COBA
TOT
REC
ERA
(UG
AS | CAL
COV-
BLE
F/L
CO) | | OCT
13 | | <3 | <2. |) | 20.3 | 18 | <5 | ō | 224 | | <.1 | <.1 | 2 | < | 1.0 | <2 | ! | | JUL
12 | | <3 | <2. |) | 20.6 | 20 | < 5 | 5 | 199 | | E.1 | <.1 | 3 | < | 1.0 | <2 | | | D# | \TE | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | DIS
SOL
(UG
AS | -
/ED
/L
CU) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | REC
ERA
(UC
AS | TAL
COV-
ABLE
G/L
PB) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | T
R
E
() | THIUM
OTAL
ECOV-
RABLE
UG/L
S LI)
1132) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | T
R
E
(
A | | MERC
DI
SOL
(UG
AS | S-
VED
(/L
HG) | | OCT
13 | | 1 | E1 | | 400 | <30 | <] | 1 | <1 | 8 | 1.1 | 47 | 33 | | <.3 | <. | 1 | | JUL
12 | | 2 | E1 | | 460 | <10 | <1 | 1 | <1 | 5 | 8.4 | 35 | 37 | | <.3 | <. | 2 | # 400812106254800 ALKALI SLOUGH #2 AT WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | |-----------|---|--|--|---|---|--|--|---|---|--|---|--| | OCT
13 | 10 | 10 | 14 | 14 | 11 | 7.6 | <1 | <1 | 5550 | <31 | <60 | | | JUL
12 | 8 | 8 | 16 | 16 | 40 | 24 1 | <1 | <1 | 5180 | <31 | <60 | | ### 09041395 WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO LOCATION.--Lat. $40^{\circ}06'46"$, long $106^{\circ}24'52"$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.25, T.2 N, R.81 W., Grand County, Hydrologic Unit 14010001, in outlet tower at dam, 5 mi north of Kremmling. #### RESERVOIR ELEVATIONS AND CONTENTS RECORDS DRAINAGE AREA.--270 mi². PERIOD OF RECORD. -- May 1995 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,500.00 ft above sea level; gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by an earth-filled dam. Storage began May 1995; dam completed May 1995. Usable capacity, 65,870 acre-ft, at elevation 7,489 ft, crest of spillway. No dead storage. Figures given represent total contents. Water-quality sampling at three sites in reservoir. COOPERATION. -- Colorado River Water Conservation District. EXTREMES FOR PERIOD OF RECORD.--Maximum contents 68,160 acre-ft, June 3, 1997, elevation, 7,490.62 ft; minimum observed since appreciable storage was first obtained, 27,750 acre-ft, Nov. 10, 17, 1995, elevation 7,455.90 ft. EXTREMES (AT 2400) FOR CURRENT YEAR.--Maximum contents, 67,700 acre-ft, May 26, elevation, 7,490.21 ft; minimum, 47,400 acre ft, Sept. 30, elevation 7,475.46 ft. MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation
(feet) | Contents
(acre-feet) | Change in
contents
(acre-feet) | |--|--|--|--| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 7,483.89
7,478.11
7,477.31
7,476.80 | 58,400
50,700
49,700
49,100 | -7,700
-1,000
-600 | | CAL YR 1999 | - | - |
+700 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 7,476.50
7,476.24
7,476.54
7,483.61
7,489.65
7,488.77
7,485.89
7,475.27
7,475.46 | 48,700
48,400
48,700
58,000
66,900
65,500
61,300
52,200
47,400 | -400
-300
+9,300
+8,900
-1,400
-4,200
-9,100
-4,800 | | WTR YR 2000 | _ | - | -11,000 | # 09041395 WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1995 to current year. ${\tt REMARKS.--Samples\ were\ collected\ near-surface\ and\ near-bottom,\ near\ dam.}$ Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. | DATE | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | |---|--|---|--|---|--|---| | OCT 22 22 22 22 22 22 22 22 22 22 22 22 22 22 | 0945
0946
0947
0948
0949
0950
0951
0952
0953
0954
0955
0956 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0 | 616
616
616
616
616
616
624
632
647
678
721 | 8.0
8.0
8.0
8.0
8.0
7.9
7.9
7.6
7.5
7.5 | 9.8
9.8
9.7
9.7
9.7
9.7
9.6
9.4
9.2
8.3
8.1 | 7.0
6.9
6.8
6.8
6.8
5.9
5.5
2.2
.2 | | JUN | 0940
0941
0942
0943
0944
0945
0947
0948
0949
0950
0951 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0 | 441
440
436
437
456
495
511
543
598
637
652
733
763
799 | 8.3
8.3
8.3
8.2
8.1
8.1
8.0
8.0
7.9
7.8
7.8 | 16.8
16.6
16.4
16.2
14.6
12.3
11.5
10.0
8.5
8.0
7.1
6.7
6.5
6.3 | 7.9
8.0
8.0
7.5
7.0
6.9
6.7
6.6
6.0
5.4
4.8 | | JUL 06 0 | 0915
0916
0917
0918
0919
0920
0921
0922
0923
0924
0925
0926
0927 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0 | 482
482
481
481
481
501
523
591
633
676
712
743
777 | 8.3
8.3
8.3
8.3
8.3
8.1
8.0
8.0
8.0
7.9
7.9 | 17.4
17.0
16.7
16.6
16.5
16.4
14.4
12.4
9.1
8.2
7.5
7.1
6.9
6.9 | 7.6
7.6
7.5
7.5
7.4
5.4
4.5
4.6
4.1
3.7
3.4 | | 24
24
24
24
24
24
24
24
24
24
24
24
24 | 0935
0936
0937
0938
0939
0940
0941
0942
0943
0944
0945
0946 | .10
5.00
10.0
15.0
20.0
25.0
30.0
40.0
50.0
60.0
70.0
88.0 | 563
563
563
564
564
574
576
605
654
700
736 | 8.2
8.2
8.2
8.2
8.2
8.2
8.7
7.8
7.8
7.7 | 18.0
18.0
17.9
17.9
17.8
17.3
15.6
10.7
9.1
8.0
7.7
7.7 | 6.4
6.4
7.0
7.0
6.0
3.9
1.4
1.6
1.3
.9 | # 09041395 WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued | | | WAIEN | QUALIII | DAIA, WAI | EK IEAK O | CIODER IS | JJ 10 BEF | IDIIDDIC 20 | 00 | | | |--|--|--|--|---|---|--|---|--|--
--|---| | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | ITY
(NTU) | TRANS-
PAR-
ENCY
(SECCHI
DISK)
(IN)
(00077) | DIS- | | WATER
WHOLE
TOTAL
UREASE | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | OCT
22
22
JUN | 1005
1020 | 616
892 | 8.0
7.3 | 9.8
8.1 | 6.4
1.4 | 141 | 7.0 | <1 | | 260
310 | 65.0
78.9 | | 08
08 | 1000
1015 | 441
799 | 8.3
7.8 | 16.8
6.3 | | 136
 | 7.9
4.3 | K1
 | K1
 | 190
330 | 46.3
77.3 | | JUL
06
06 | 0935
0950 | 482
777 | 8.3
7.8 | 17.4
6.9 | 1.9
3.5 | 103 | 7.6
3.3 | K4
 | K1
 | 210
340 | 51.8
81.1 | | AUG
24
24 | 1000
1015 | 563
773 | 8.2
7.7 | 18.0
7.7 | .4
1.6 | 108 | 6.4 | K1
 | K1
 | 250
320 | 63.3
77.0 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LAB
(MG/L
AS
CACO3) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS-
SOLVED
(MG/L
AS CL) | SOLVED
(MG/L
AS F) | (MG/L
AS
SIO2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | OCT
22
22 | 24.0
28.1 | 24.9
28.7 | .7 | 2.2 | 139
130 | 189
239 | 2.2 | .2 | 7.7
10.2 | 419
497 | 399
469 | | JUN
08
08 | 17.1
33.5 | 18.8
37.0 | .6
.9 | 1.6
2.3 | 95
134 | 124
258 | 2.4
3.9 | .1 | 8.1 | 296
538 | 275
494 | | JUL
06
06 | 19.1
32.5 | 20.4
34.2 | .6
.8 | 1.9
2.5 | 103
132 | 138
257 | 2.2 | .1 | 7.4
8.5 | 324
534 | 303
500 | | AUG
24 | 22.0 | 22.6 | .6 | 1.9 | 119
132 | 167
242 | 2.3 | .1
<.1 | 7.6 | 374
507 | 359
478 | | 24 | 30.3 | 33.3 | .8 | 2.4 | 132 | 242 | 3.5 | <.1 | 9.2 | 307 | 170 | | 24
DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN, | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN, | NITRO-
GEN,
ORGANIC
DIS- | NITRO-
GEN,AM-
MONIA + | NITRO-
GEN,AM- | PHOS- | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS- | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | | DATE OCT 22 22 | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | CHLOR-A
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L) | | DATE OCT 22 22 JUN 08 08 | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) | | DATE OCT 22 22 JUN 08 08 JUL 06 06 | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | NITROGEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.056
.207
<.050
.268 | NITROGEN, AMMONIA DISSOLVED (MG/L AS N) (00608) <.020 .078 | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.034
<.050 | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.050
<.050 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 | | DATE OCT 22 22 JUN 08 08 JUL 06 | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.57
.68
.40
.73 | NITRO-
GEN,
NITRITE
DIS-
SOLVED (MG/L
AS N)
(00613)
<.010
<.010
<.010
<.010 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.056
.207
<.050
.268 | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
<.020
.078
.021
.021 | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.43
.37
.35
.34 | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665)
E.034
<.050
<.050 | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.050
<.050
<.050 | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010
<.010 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 1.4 | | DATE OCT 22 22 JUN 08 08 JUL 06 06 AUG 24 | SOLIDS,
DIS-
SOLVED (TONS
PER
AC-FT) (70303)
.57
.68
.40
.73
.44
.73 | NITRO-
GEN,
NITRITE
DIS-
SOLVED (MG/L
AS N)
(00613)
<.010
<.010
<.010
<.010
<.010 | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.056
.207
<.050
.268
<.050
.359 | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
<.020
.078
.021
.021
<.020
.020 | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.43
.37
.35
.34
.38
.38 | NITRO-
GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.34
.48
.30
.34
.30 | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.034 <.050 <.050 <.050 <.050 <.050 | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
<.050
<.050
<.050
<.050
<.050 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
<.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </010 </td | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 1.4 1.1 | | DATE OCT 22 22 JUN 08 JUL 06 06 AUG 24 24 DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.57
.68
.40
.73
.44
.73
.51
.69
CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 < | NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 .207 <.050 .268 <.050 .359 <.050 .304 ARSENIC TOTAL (UG/L AS AS) (01002) | NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .021 .021 <.020 .020 <.020 <.020 <.020 C.020 ARSENIC DIS- SOLVED (UG/L AS AS) (01000) <2.0 | NITROGEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 40 .28 .3228 BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTTAL
(MG/L
AS N)
(00625)
.43
.37
.35
.34
.38
.38
.38
.34
.39
.30
.34
.39
.30
.30
.31
.31
.32
.33
.34 | NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .34 .48 .30 .34 .31 .30 .30 .32 .31 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.034 <.050 <.050 <.050 <.050 <.050 CADMIUM WATER UNFLIRD TOTAL (UG/L AS CD) (01027) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.05 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.0 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 1.1 CHRO- MIUM, DIS- SOLVED (UG/L) AS CR) (01030) <.8 | | DATE OCT 22 22 JUN 08 06 AUG 24 24 DATE OCT 22 22 JUN | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.57
.68
.40
.73
.44
.73
.51
.69
CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.1010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010
<.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 .207 <.050 .268 <.050 .359 <.050 .304 ARSENIC TOTAL (UG/L AS AS) (01002) <3 <3 <3 <3 | NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .021 .021 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | NITROGEN, ORGANIC DISSOLVED (MG/L AS N) (00607) 40 .28 .322828 (28 (10 MG/L AS N) (01007) 63.6 61.3 45.5 | NITRO- GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) (00625) .43 .37 .35 .34 .38 .38 .36 .34 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) | NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .34 .48 .30 .34 .31 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.034 <.050 <.050 <.050 <.050 <.050 CADMIUM WATER UNFLIRD TOTAL (UG/L AS CD) (01027) .1 <.1 <.1 | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.051 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.05 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.100 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.0 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 1.4 1.1 CHRO- MIUM, DIS- SOLVED (UG/L) (01030) <.8 <.8 <.8 | | DATE OCT 22 22 JUN 08 06 AUG 24 24 DATE OCT 22 22 JUN 08 06 | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.57
.68
.40
.73
.44
.73
.51
.69
CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | NITROGEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.1010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <. | NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 .207 <.050 .268 <.050 .359 <.050 .304 ARSENIC TOTAL (UG/L AS AS) (01002) <3 <3 <3 <3 <3 <3 | NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .021 .021 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | NITROGEN, ORGANIC DISSOLVED (MG/L AS N) (00607) 40 .28 .32282828281 61.1 50.1 | NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .43 .37 .35 .34 .38 .38 .36 .34 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 61 61 47 63 50 | NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .34 .48 .30 .34 .31 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <5 <5 <5 <5 |
PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.034 <.050 <.050 <.050 <.050 <.050 CADMIUM WATER UNFLIRD TOTAL (UG/L AS CD) (01027) .1 <.1 <.1 <.1 <.1 | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.1050 <.050 <.050 <.050 <.051 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.0 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.1010 <.010 <.1010 <.010 <.1010 <.010 <.1010 <.010 <.010 <.0110 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.01 | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 1.4 1.1 CHRO- MIUM, DIS- SOLVED (UG/L) (XS/CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 | | DATE OCT 22 JUN 08 06 AUG 24 24 DATE OCT 22 JUN 08 06 DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.57
.68
.40
.73
.51
.69
CHLOR-B
PHYTO-
PLANK-
TON
CHROMO
FLUOROM
(UG/L)
(70954) | NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.1010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .056 .207 <.050 .268 <.050 .359 <.050 .304 ARSENIC TOTAL (UG/L AS AS) (01002) <3 <3 <3 <3 <3 | NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .021 .021 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 <.020 | NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 40 .28 .3228 BARIUM, TOTAL RECOV- ERABLE ERABLE ERABLE 61.3 45.5 61.1 | NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .43 .37 .35 .34 .38 .38 .36 .34 BARIUM, DIS- SOLVED (UG/L AS BA) (01005) 61 61 61 47 63 | NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .34 .48 .30 .34 .30 .32 .31 BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012) <5 <5 <5 <5 | PHOS-PHORUS TOTAL (MG/L AS P) (00665) E.034 <.050 <.050 <.050 <.050 <.050 <.050 (.050) <.050 <.050 .050 <.100 (.01027) .1 <.1 <.1 <.1 | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.100 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.05 | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.1010 <.010 <.1010
<.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 <.1010 .1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.1010 </.</td <td>CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 1.4 1.1 CHRO- MIUM, DIS- SOLVED (UG/L) (UG/L) (XS CR) (01030) <.8 <.8 <.8 E.4</td> | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) (70953) .8 1.4 1.4 1.1 CHRO- MIUM, DIS- SOLVED (UG/L) (UG/L) (XS CR) (01030) <.8 <.8 <.8 E.4 | # 09041395 WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued | DATE | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI)
(01132) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | |------------------------|--|--|---|--|---|--|--|--|--|---| | OCT
22
22
JUN | <2
<2 | E1
E1 | E1
E1 | 230
50 | <10
E10 | <1
<1 | <1
<1 | 25.8
24.7 |
 | | | 08
08
JUL | <2
<2 | 1
1 | E1
E1 | 90
150 | 10
<10 | <1
<1 | <1
<1 | 17.1
32.6 | 4
27 | 3
E2 | | 06
06 | E1 <2 | 1
E1 | <1
<1 | 70
110 | 20
<10 | <1
<1 | <1
<1 | 18.5
30.5 | 6
65 | 4
4 | | AUG
24
24 | <1
<1 | 3 | 2
2 | 50
80 | <10
<10 | <1
<1 | <1
<1 | 21.9
28.0 | 3
65 | <1
2 | | DATE | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 22 22 | <.3
<.3 | <.2
<.2 | 2
1 | 3
2 | 4
E2 | E2.3
3.9 | <1
<1 | <1
<1 | <31
<31 | <20
<20 | | JUN
08
08
JUL | <.3
<.3 | <.2
E.1 | 2
2 | E1
2 | 3
5 | E2.0
3.2 | <1
<1 | <1
<1 | <31
<31 | <20
<20 | | 06
06
AUG | <.3
<.3 | <.2
<.2 | <1
3 | E1
E2 | E2
3 | E1.7
3.5 | <1
<1 | <1
<1 | <31
<31 | <20
<20 | | 24 | | | | | | | | | | | # 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO LOCATION.--Lat $40^{\circ}06'31"$, long $106^{\circ}24'48"$, in $NW^{1}/_{4}SE^{1}/_{4}$ sec. 25, T.2 N., R.81 W., Grand County, Hydrologic Unit 14010001, on left bank 1,500 ft downstream from Wolford Mountain Reservoir, and 4 mi northwest of Kremmling. DRAINAGE AREA.--270 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1995 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,380 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Flow is entirely regulated by Wolford Mountain Reservoir. | | | DISCHAR | GE, CUBIC | FEET PEF | R SECOND, W | WATER YE | | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|----------------------------------|--|--------------------------|----------------------------------|---|---|--------------------------------|---|----------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 79 | 67 | 25 | 23 | 22 | 21 | 33 | 59 | 381 | 78 | 203 | 33 | | 2 | 47 | 41 | 24 | 23 | 22 | 21 | 33 | 83 | 353 | 78 | 234 | 74 | | 3 | 47 | 30 | 23 | 23 | 22 | 21 | 33 | 83 | 338 | 77 | 234 | 141 | | 4 | 47 | 30 | 23 | 22 | 22 | 21 | 32 | 85 | 307 | 77 | 233 | 140 | | 5 | 46 | 17 | 23 | 22 | 22 | 21 | 29 | 87 | 275 | 78 | 233 | 99 | | 6 | 46 | 23 | 23 | 22 | 22 | 21 | 50 | 106 | 239 | 77 | 231 | 35 | | 7 | 46 | 29 | 23 | 22 | 22 | 21 | 87 | 164 | 235 | 77 | 231 | 39 | | 8 | 46 | 29 | 23 | 22 | 22 | 21 | 109 | 199 | 215 | 78 | 230 | 81 | | 9 | 45 | 30 | 23 | 22 | 21 | 21 | 108 | 239 | 180 | 79 | 223 | 115 | | 10 | 45 | 31 | 23 | 22 | 21 | 21 | 88 | 272 | 174 | 78 | 190 | 114 | | 11 | 63 | 29 | 23 | 22 | 21 | 21 | 43 | 558 | 158 | 78 | 157 | 114 | | 12 | 134 | 29 | 23 | 22 | 21 | 21 | 27 | 782 | 152 | 78 | 157 | 115 | | 13 | 171 | 30 | 23 | 22 | 21 | 21 | 26 | 672 | 138 | 77 | 157 | 116 | | 14 | 198 | 29 | 23 | 22 | 21 | 21 | 27 | 617 | 115 | 77 | 157 | 116 | | 15 | 201 | 29 | 23 | 22 | 21 | 22 | 27 | 478 | 111 | 77 | 157 | 115 | | 16 | 203 | 30 | 23 | 22 | 21 | 22 | 27 | 314 | 138 | 77 | 157 | 115 | | 17 | 204 | 30 | 23 | 22 | 21 | 22 | 26 | 267 | 129 | 50 | 157 | 115 | | 18 | 203 | 30 | 23 | 22 | 21 | 22 | 27 | 268 | 128 | 33 | 157 | 115 | | 19 | 202 | 30 | 23 | 22 | 21 | 21 | 28 | 196 | 138 | 32 | 156 | 115 | | 20 | 201 | 30 | 23 | 22 | 21 | 21 | 27 | 144 | 143 | 40 | 157 | 116 | | 21 | 201 | 29 | 23 | 22 | 21 | 21 | 27 | 192 | 134 | 59 | 125 | 97 | | 22 | 200 | 30 | 23 | 22 | 21 | 21 | 28 | 226 | 122 | 86 | 85 | 53 | | 23 | 201 | 29 | 23 | 22 | 21 | 21 | 28 | 341 | 111 | 134 | 82 | 30 | | 24 | 202 | 22 | 23 | 22 | 21 | 21 | 27 | 473 | 105 | 162 | 78 | 31 | | 25 | 202 | 28 | 23 | 22 | 21 | 21 | 27 | 591 | 102 | 162 | 77 | 29 | | 26
27
28
29
30
31 | 177
107
107
108
108
109 | 27
27
27
27
26 | 23
23
23
23
23
23 | 22
22
22
22
22
22 | 21
21
21
21
 | 21
21
21
19
19
27 | 27
26
26
27
27 | 699
720
644
597
561
485 | 113
118
117
119
91 | 174
184
184
183
183 | 76
75
77
76
49
32 | 28
27
22
38
22 | | TOTAL | 3996 | 895 | 716 | 685 | 617 | 657 | 1157 | 11202 | 5179 | 3089 | 4643 | 2400 | | MEAN | 129 | 29.8 | 23.1 | 22.1 | 21.3 | 21.2 | 38.6 | 361 | 173 | 99.6 | 150 | 80.0 | | MAX | 204 | 67 | 25 | 23 | 22 | 27 | 109 | 782 | 381 | 184 | 234 | 141 | | MIN | 45 | 17 | 23 | 22 | 21 | 19 | 26 | 59 | 91 | 32 | 32 | 22 | | AC-FT | 7930 | 1780 | 1420 | 1360 | 1220 | 1300 | 2290 | 22220 | 10270 | 6130 | 9210 | 4760 | | STATIST: | ICS OF MC
87.7 | NTHLY MEA | N DATA FO | R WATER 1 | ZEARS 1995
26.0 | - 2000,
44.3 | BY WATER | YEAR (WY) |)
263 | 81.1 | 93.6 | 112 | | MAX | 172 | 46.5 | 32.7 | 32.3 | 34.4 | 75.8 | 249 | 454 | 492 | 99.6 | 153 | 189 | | (WY) | 1998 | 1998 | 1998 | 1998 | 1998 | 1997 | 1996 | 1998 | 1997 | 2000 | 1996 | 1998 | | MIN | 35.3 | 23.7 | 7.07 | 15.8 | 21.0 | 21.2 | 38.6 | 113 | 164 | 60.4 | 39.3 | 51.2 | | (WY) | 1997 | 1997 | 1996 | 1996 | 1996 | 2000 | 2000 | 1999 | 1996 | 1996 | 1995 | 1995 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALEN | IDAR YEAR | F | OR
2000 WA | TER YEAR | | WATER YEA | ARS 1995 | - 2000 | | LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA ANNUAL I 10 PERCI 50 PERCI | | AN A | | 28996
79.4
496
17
22
57510
197
56
23 | Jun 1
Nov 5
Jan 12 | | 35236
96.3
782
17
20
889
7.83
69890
207
33
21 | May 12
Nov 5
Mar 24
May 12
May 12 | | 104
129
73.2
992
2.8
3.4
1030
8.39
75330
226
53
22 | Dec
Dec
Jun | 1997
1999
3 1997
3 1995
2 1995
2 1997
2 1997 | ### 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1995 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: October 1995 to current year. WATER TEMPERATURE: October 1995 to current year. DISSOLVED OXYGEN: October 1995 to current year. INSTRUMENTATION.--Water-quality monitor from Oct. 1995 to current year. REMARKS.--Water temperature records are rated good. Specific conductance record is rated good except for the periods: Mar. 15 to Apr. 11 and June 7 to July 5 which are rated fair. Dissolved oxygen records are rated fair except for the periods: Dec. 21 to Mar. 14, May 10 to July. 5, and July 13 to Aug. 22 which are rated poor. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. EXTREMES FOR PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Maximum 1,910 microsiemens, Oct. 20, 1996; minimum, 281 microsiemens, June 10, 1997. WATER TEMPERATURE: Maximum 19.2°C, June 24, 1997; minimum 1.1°C, Feb. 2, 1996. DISSOLVED OXYGEN: Maximum, 11.9 mg/L, July 3, 1998; minimum, 4.9 mg/L, July 31, 1996. EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 1450 microsiemens, Nov. 6; minimum, 445 microsiemens, June 15. WATER TEMPERATURE: Maximum, 17.4°C, June 14-15; minimum, 1.4°C, Dec. 15, 25-27. DISSOLVED OXYGEN: Maximum, 11.4 mg/L, Dec. 15; minimum, 5.4 mg/L, Nov. 4. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |-----------|------|---|--|--|---|---|--|---|---|--|---|---| | OCT
13 | 1200 | 150 | 600 | 8.3 | 11.4 | 1.3 | 8.6 | | | 270 | 68.2 | 24.1 | | NOV | 1200 | 150 | 000 | 0.5 | 11.1 | 1.5 | 0.0 | | | 270 | 00.2 | 21.1 | | 16
DEC | 1015 | 28 | 639 | 8.3 | 7.0 | 1.7 | 7.5 | | | 290 | 71.7 | 26.8 | | 16
JAN | 1115 | 24 | 656 | 8.4 | 2.1 | .8 | 9.1 | <1 | | 300 | 75.2 | 26.8 | | 12
FEB | 1250 | 22 | 666 | 8.2 | 2.7 | .7 | 8.8 | <1 | | 290 | 71.9 | 27.4 | | 23
MAR | 1245 | 22 | 682 | 8.1 | 3.4 | .7 | 9.0 | <1 | <1 | 300 | 74.7 | 28.0 | | 14
APR | 1215 | 20 | 676 | 8.3 | 3.4 | . 4 | 8.7 | <1 | <1 | 300 | 74.0 | 28.2 | | 11
MAY | 1440 | 28 | 713 | 8.1 | 5.8 | .6 | 10.3 | <1 | <1 | 310 | 74.5 | 29.4 | | 09
JUN | 1300 | 252 | 648 | 8.6 | 7.5 | | 9.5 | <1 | <1 | 290 | 69.6 | 27.3 | | 06
JUL | 1220 | 254 | 445 | 8.4 | 15.1 | 3.3 | 8.4 | | <1 | 190 | 46.4 | 16.9 | | 12
AUG | 1225 | 78 | 667 | 8.2 | 9.2 | 3.1 | 9.4 | <1 | <1 | 290 | 70.6 | 27.5 | | 22
SEP | 1100 | 90 | 604 | 8.4 | 12.8 | .9 | 8.5 | <1 | | 270 | 66.5 | 24.3 | | 06 | 1120 | 37 | 625 | 8.3 | 12.8 | 1.5 | 8.3 | <1 | <1 | 260 | 64.5 | 25.0 | # 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |--|--|---|---|--|---|---|---|---|---|---|---|--| | OCT
13 | 24.6 | .7 | 2.0 | 129 | 187 | 2.0 | .2 | 7.4 | 420 | 393 | .57 | 170 | | NOV
16 | 28.1 | .7 | 2.2 | 133 | 210 | 2.5 | .2 | 7.6 | 455 | 430 | .62 | 34.5 | | DEC
16 | 28.9 | .7 | 2.2 | 136 | 217 | 2.5 | .2 | 7.7 | 467 | 442 | .64 | 29.8 | | JAN
12 | 28.8 | .7 | 2.5 | 137 | 223 | 3.0 | .2 | 7.6 | 479 | 447 | .65 | 28.8 | | FEB
23 | 29.7 | .7 | 2.2 | 138 | 218 | 2.9 | .2 | 7.4 | 466 | 446 | .63 | 27.9 | | MAR
14
APR | 30.2 | .8 | 2.3 | 136 | 224 | 3.6 | .2 | 7.5 | 482 | 453 | .66 | 26.5 | | 11 | 31.1 | .8 | 2.5 | 138 | 244 | 3.1 | .1 | 7.3 | 515 | 476 | .70 | 38.4 | | MAY
09 | 31.0 | .8 | 2.5 | 132 | 212 | 3.1 | .2 | 7.8 | 463 | 434 | .63 | 315 | | JUN
06 | 18.6 | .6 | 1.8 | 97 | 128 | 1.9 | .1 | 8.0 | 299 | 280 | .41 | 205 | | JUL
12 | 30.6 | .8 | 2.3 | 125 | 214 | 3.5 | .2 | 8.1 | 465 | 433 | .63 | 97.6 | | AUG
22 | 26.8 | .7 | 2.2 | 122 | 191 | 2.9 | .2 | 8.3 | 420 | 397 | .57 | 102 | | SEP
06 | 27.0 | .7 | 2.2 | 125 | 197 | 2.9 | .2 | 8.2 | 438 | 403 | .60 | 43.8 | | | | | | | | | | | | | | | | DATE | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | | OCT | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | | OCT
13
NOV | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) |
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | | OCT
13
NOV
16
DEC | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613)
<.010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
<.050 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.050 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
E.036 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | | OCT
13
NOV
16
DEC
16
JAN | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 <1 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613)
<.010
<.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .29 .34 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .39 .40 .54 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.050
<.050 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
E.036
<.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
7.0 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.22 | | OCT
13
NOV
16
DEC
16
JAN
12
FEB | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 .058 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.31
.36
.32 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.050
<.050
<.050 | PHORUS DIS-
SOLVED (MG/L AS P) (00666) E.036 <.050 <.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | | OCT
13
NOV
16
DEC
16
JAN
12 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 <1 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613)
<.010
<.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .29 .34 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .39 .40 .54 | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.050
<.050 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
E.036
<.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
7.0 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.22 | | OCT
13
NOV
16
DEC
16
JAN
12
FEB
23
MAR
14 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)(00530) 3 <1 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 .058 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607)
.29
.34 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.31
.36
.32 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
<.050
<.050
<.050 | PHORUS DIS-
SOLVED (MG/L AS P) (00666) E.036 <.050 <.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
7.0 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.22 | | OCT
13
NOV
16
DEC
16
JAN
12
FEB
23 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 <1 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 .058 .084 .121 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 .028 <.020 | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607)
.29
.34

.29 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .39 .40 .54 .49 | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
.31
.36
.32
.32 | PHORUS TOTAL (MG/L AS P) (00665) <.050 <.050 <.050 <.050 <.050 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
E.036
<.050
<.050 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 .016 <.010 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 7.0 6.4 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.22 | | OCT
13
NOV
16
DEC
16
JAN
12
FEB
23
MAR
14
APR
11
MAY | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 <1 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 .058 .084 .121 .147 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 .028 <.020 <.020 | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607)
.29
.34

.29 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .39 .40 .54 .49 .39 .36 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .31 .36 .32 .32 .32 | PHORUS TOTAL (MG/L AS P) (00665) <.050 <.050 <.050 <.050 <.050 <.050 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.036 <.050 <.050 <.050 <.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010
<.016
<.010
<.010 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 7.0 6.4 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.22 | | OCT
13
NOV
16
DEC
16
JAN
12
FEB
23
MAR
14
APR
11
MAY
09
JUN
06 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)(00530) 3 <1 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 .058 .084 .121 .147 .223 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 .028 <.020 <.020 <.020 | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607)
.29
.34

.29 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .39 .40 .54 .49 .39 .36 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .31 .36 .32 .32 .32 .32 .39 | PHORUS TOTAL (MG/L AS P) (00665) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.036 <.050 <.050 <.050 <.050 <.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010
<.010
<.010
<.010
<.010 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 7.0 6.4 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.222 | | OCT
13
NOV
16
DEC
16
JAN
12
FEB
23
MAR
14
APR
11
MAY
09
JUN
06
JUL
12 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 <1 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 .058 .084 .121 .147 .223 .160 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 .028 <.020 <.020 <.020 <.020 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .29 .3429 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .39 .40 .54 .49 .39 .36 .36 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .31 .36 .32 .32 .32 .59 .32 | PHORUS TOTAL (MG/L AS P) (00665) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.036 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 7.0 6.4 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.222 | | OCT
13
NOV
16
DEC
16
JAN
12
FEB
23
MAR
14
APR
11
MAY
09
JUN
06
JUL | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 3 <1 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.050 .082 .058 .084 .121 .147 .223 .160 .056 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .020 .025 <.020 .028 <.020 <.020 <.020 .024 | GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .29 .342929 | GEN,AM-MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .39 .40 .54 .49 .39 .36 .40 .38 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .31 .36 .32 .32 .32 .59 .32 .26 | PHORUS TOTAL (MG/L AS P) (00665) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PHORUS DIS- SOLVED (MG/L AS P) (00666) E.036 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010
<.010
<.010
<.010
<.010
<.010
<.010
<.010 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 7.0 6.4 | ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689) <.22 | # 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLI
(UG/L
AS AL
(01105 | - ARSENI
E TOTAI
(UG/I
) AS AS | SOLVE (UG/LS) AS AS | RECOV-
D ERABLE
(UG/L
) AS BA) | BARIUM DIS- SOLVED (UG/L) AS BA | RECOV
ERABL
(UG/L
) AS BE | BORON - DIS- E SOLVE (UG/I) AS B) | UNFLTR D TOTAL L (UG/L
AS CD | CADMIUI
D DIS-
SOLVE
(UG/L
) AS CD | RECOV
D ERABI
(UG/I
) AS CR | CHRO-
MIUM,
C- DIS-
E SOLVE
(UG/L
1) AS CR | TOTAL RECOV- D ERABLE (UG/L) AS CO) | |------------------|---|--|---|--|---|--|---|--|--|---|---|---| | OCT
13
NOV | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 16
JAN | | | | | | | | | | | | | | 12
FEB | | | | | | | | | | | | | | 23
MAR | | | | | | | | | | | | | | 14
APR | | | | | | | | | | | | | | 11
MAY | | | | | | | | | | | | | | 09
JUN | | | | | | | | | | | | | | 06
JUL | | | | | | | | | | | | | | 12
AUG | 77 | <3 | <2.0 | 58.0 | 58 | <5 | 53 | <.1 | <.1 | <1 | <.8 | <2 | | 22
SEP | 55 | <3 | <2.0 | 56.6 | 57 | <5 | 63 | <.1 | <.1 | | <.8 | <1 | | 06 | | | | | | | | | | | | | | 1 | DATE | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) (| IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI)
(01132) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | RECOV-
ERABLE
(UG/L
AS HG) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | | | | | | 60 | <10 | | | | 7 | 3 | | | | | | | | 70 | <10 | | | | 14 | 7 | | | | | | | | 20 | E10 | | | | 17 | 14 | | | | JAN
12 | | | | 20 | <10 | | | | 13 | 10 | | | | FEB
23
MAR | | | | <20 | E10 | | | | 7 | 7 | | | | 14 | | | | <20 | E10 | | | | 6 | 4 | | | | | | | | 120 | <10 | | | | 5 | 4 | | | | MAY
09
JUN | | | | 240 | <10 | | | | 13 | E1 | | | | | | | | 110 | 10 | | | | 5 | 4 | | | | JUL
12
AUG | | 1 | E1 | 100 | <10 | <1 | <1 | 26.1 | 14 | E2 | <.3 | <.2 | | | | 2 | E1 | 90 | <10 | <1 | <1 | 25.5 | 17 | 6 | <.3 | <.2 | | | | | | 80 | E10 | | | | 19 | 5 | | | # 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |-----------|---|--|--|---|---|--|--|---|---|--|---| | OCT | | | | | | | | | | | | | 13 | | | | | | | | | | | | | NOV | | | | | | | | | | | | | 16
DEC | | | | | | | | | | | | | 16 | | | | | | | | | | | | | JAN | | | | | | | | | | | | | 12 | | | | | | | | | | | | | FEB | | | | | | | | | | | | | 23
MAR | | | | | | | | | | | | | 14 | | | | | | | | | | | | | APR | | | | | | | | | | | | | 11 | | | | | | | | | | | | | MAY | | | | | | | | | | | | | 09
JUN | | | | | | | | | | | | | 06 | | | | | | | | | | | | | JUL | | | | | | | | | | | | | 12 | 3 | 1 | 2 | 2 | E2 | E2.3 | <1 | <1 | 606 | <3 | <20 | | AUG | | _ | | _ | | | _ | _ | | | | | 22
SEP | 2 | 2 | 2 | 2 | 2 | E1.9 | <1 | <1 | 581 | 3 | <20 | | SEP | | | | | | | | | | | | | 22
SEP | 2 | | 2 | 2 | 2 | 2 | E1.9 | <1 | <1 | 581 | 3 | <20 | |----------------------------------|-------------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|---------------------------------| | 06 | - | - | | | | | | | | | | | | | | OXY | GEN DISS | SOLVED (MG/ | L), WATE | R YEAR | OCTOBER 19 | 99 TO SEI | PTEMBER 2 | 2000 | | | | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 7.9
7.5
7.3
7.4
7.6 | 6.8
6.7
6.6
6.6 | 7.3
7.0
6.9
6.9
7.1 | 9.2
9.2
8.0
6.8 | 8.3
6.2
5.7
5.4 | 8.7
8.1
6.4
5.9 | 8.9
9.0
9.2
9.2
9.2 | 6.8
6.9
6.9
7.3
7.4 | 7.5
7.5
7.7
7.9
8.0 | 9.3
9.2
9.2
9.4
9.4 | 8.5
8.4
8.6
8.7
8.5 | 8.8
8.8
8.9
8.8 | | 6
7
8
9
10 | 7.5
7.4
7.6
7.6
7.6 | 6.8
6.6
6.8
6.7 | 7.0
6.9
7.1
7.1
7.0 | 9.0
8.9
8.8
 | 6.5
7.7
7.7
 | 7.8
8.1
8.0
 | 9.4
9.0
9.3
9.5
9.4 | 7.4
7.4
7.5
7.8
7.7 | 8.0
7.9
8.2
8.3
8.3 | 9.2
9.2
9.0
9.1
8.9 | 8.5
8.3
8.4
8.5
8.1 | 8.8
8.7
8.7
8.7
8.5 | | 11
12
13
14
15 | 7.8
8.3

8.6 | 6.8
7.4

8.4 | 7.4
7.9

8.5 |

7.3
7.9 |

5.5
5.5 |

5.5
5.5 | 9.5
9.7
9.7
9.6
9.8 | 7.9
8.2
8.2
8.1
8.2 | 8.5
8.7
8.7
8.6
8.8 | 8.7
9.2
8.8
8.9
8.9 | 8.0
7.9
8.2
8.2
8.3 | 8.3
8.3
8.4
8.5
8.5 | | 16
17
18
19
20 | 8.7
8.9
8.8
8.9 | 8.5
8.6
8.7
8.7 | 8.6
8.8
8.7
8.8
8.8 | 7.7
8.0
8.1
8.2 | 5.6
5.6
5.9
5.9 | 6.2
6.4
6.6
6.5 |

9.2 |

7.8 |

8.3 | 8.8
8.9
8.7
8.7 | 8.2
8.2
8.2
8.0
7.8 | 8.4
8.4
8.3
8.1 | | 21
22
23
24
25 | 8.9
9.0
9.0
9.0
9.1 | 8.8
8.8
8.8
8.9 | 8.8
8.9
8.9
8.9
9.0 | 8.3
8.3
8.4

8.7 | 5.9
6.0
6.2

6.7 | 6.6
6.8
6.9

7.2 | 9.2
9.1
9.0
9.0 | 8.2
8.1
8.0
8.0 | 8.6
8.5
8.5
8.4
8.4 | 8.3
8.4
8.4
8.5
8.4 | 7.6
7.5
7.6
7.7
7.7 | 7.9
7.9
8.0
8.0 | | 26
27
28
29
30
31 | 9.1

8.9
8.8
9.0
9.1 | 8.5

8.3
8.3
8.7
8.7 | 8.9

8.6
8.6
8.8 | 8.7
8.8
8.9
8.8
8.9 | 6.6
6.6
6.7
6.8
6.8 | 7.3
7.3
7.4
7.4
7.5 | 9.1
9.2
9.2
9.3
9.3 | 8.0
8.4
8.5
8.5 | 8.5
8.6
8.7
8.8
8.8 | 8.5
8.9
8.7
8.8
8.7
8.6 | 7.7
7.8
8.0
8.0
7.9
7.8 | 8.0
8.3
8.3
8.3
8.3 | | MONTH | 9.1 | 6.6 | 8.1 | 9.2 | 5.4 | 7.0 | 9.8 | 6.8 | 8.4 | 9.4 | 7.5 | 8.4 | # 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | OXY | GEN DISSO | JLVED (MG/. | u), WAIE | K IEAK O | CTOBER 199 | J 10 DEF | TEMBER 2 | 300 | | | |---|---|---|---|--|---|---|--
---|--|--|--|---| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 8.5
8.3
8.2
8.2
8.3 | 7.9
7.8
7.6
7.6
7.4 | 8.2
8.0
7.8
7.8 | 8.5
8.7
8.8
8.8
9.1 | 7.6
7.5
7.7
7.9
7.8 | 8.0
8.1
8.2
8.2
8.3 | 10.6
10.2
10.4
10.3
10.0 | 9.9
9.7
9.8
9.6
9.2 | 10.2
10.0
10.1
9.9
9.6 | 9.4
9.5
9.7
9.6
9.5 | 7.9
9.2
9.3
9.4
9.2 | 8.9
9.4
9.5
9.5
9.4 | | 6
7
8
9
10 | 8.4
8.2
8.2
8.2
8.2 | 7.6
7.6
7.5
7.6
7.6 | 7.8
7.8
7.8
7.9 | 8.9
9.0
9.2
9.4
9.3 | 7.8
7.8
7.7
8.0
8.2 | 8.3
8.2
8.4
8.6
8.7 | 10.5
10.7
10.8
10.7 | 9.5
10.3
10.5
10.4
10.4 | 9.9
10.5
10.7
10.5 | 9.6
9.6
9.7
9.7 | 9.1
9.1
9.2
9.2
8.9 | 9.3
9.4
9.5
9.5
9.1 | | 11
12
13
14
15 | 8.3
8.3
8.3
8.3 | 7.7
7.6
7.4
7.6
7.4 | 7.9
7.9
7.8
7.9
7.7 | 9.6
9.7
9.3
9.1
8.9 | 8.3
8.2
8.1
8.2
8.1 | 8.9
8.9
8.6
8.6
8.5 | 10.6
10.4
10.3
10.2 | 9.7
9.7
9.6
9.4
9.5 | 10.2
10.0
10.0
9.8
9.8 | 9.8
9.7
9.9
9.9 | 9.2
9.5
9.7
9.7 | 9.5
9.6
9.8
9.8 | | 16
17
18
19
20 | 8.1
8.1
8.1
8.1
8.2 | 7.3
7.2
7.4
7.4
7.5 | 7.7
7.6
7.7
7.7 | 9.0
9.1
8.9
8.8
8.9 | 8.1
8.2
8.1
7.9 | 8.5
8.5
8.5
8.4
8.2 | 10.2
10.1
10.0
10.2
10.1 | 9.4
9.2
9.3
9.4
9.1 | 9.8
9.7
9.6
9.6
9.6 | 9.8
9.7
9.8
9.9 | 9.5
9.4
9.6
9.3
9.2 | 9.7
9.5
9.7
9.6
9.4 | | 21
22
23
24
25 | 8.1
8.3
8.2
8.5 | 7.4
7.5
7.4
7.5
7.6 | 7.7
7.7
7.7
7.9
8.0 | 8.7
8.5
8.6
8.4
8.5 | 7.9
7.8
7.7
7.7
7.7 | 8.2
8.1
8.1
8.0
8.1 | 9.8
9.7
9.8
9.7
9.5 | 9.0
9.0
9.0
8.9
8.7 | 9.4
9.2
9.3
9.3
9.1 | 9.4
9.4
9.3
9.4
9.7 | 9.1
9.1
9.0
9.0
9.3 | 9.3
9.2
9.1
9.2
9.5 | | 26
27
28
29
30
31 | 8.3
8.4
8.3
8.5 | 7.5
7.4
7.5
7.6 | 7.8
7.8
7.8
7.9
 | 8.4
8.4
8.0
9.6
10.0
10.8 | 7.6
7.5
7.0
6.9
9.3
9.3 | 7.9
7.8
7.5
8.2
9.5
10.0 | 9.4
9.1
9.1
9.0
8.7 | 8.4
8.3
8.3
8.0
7.9 | 8.9
8.7
8.6
8.6
8.3 |

9.9 |

9.3 |

9.6 | | MONTH | 8.5 | 7.2 | 7.8 | 10.8 | 6.9 | 8.4 | 10.8 | 7.9 | 9.6 | 9.9 | 7.9 | 9.4 | | | | | | | | | | | | | | | | DAV | MAY | MTN | MEAN | млч | MTN | MEAN | MAY | MTN | MEAN | MAY | MTN | MEAN | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | ; | SEPTEMBE | R | | DAY 1 2 3 4 5 | 9.7
9.2
8.9
8.6
8.5 | | 9.2
8.9
8.7
8.3
8.2 | 9.8
10.0
10.0
10.2 | | MEAN
8.7
9.0
9.0
9.1
9.2 | | | MEAN
8.3
8.2
8.0
8.3
8.5 | | | | | 1
2
3
4 | 9.7
9.2
8.9
8.6 | JUNE 8.6 8.7 8.3 7.8 | 9.2
8.9
8.7
8.3 | 9.8
10.0
10.0
10.2
10.6 | JULY 8.0 8.2 8.2 8.3 | 8.7
9.0
9.0
9.1 | 8.8
8.4
8.3
9.0 | 7.9
7.9
7.6
7.8 | 8.3
8.2
8.0
8.3 | 7.9
9.1
8.8
8.6 | 6.8
6.8
6.8
8.3
8.2 | 7.2
7.9
8.6
8.4 | | 1
2
3
4
5
6
7
8
9 | 9.7
9.2
8.9
8.6
8.5 | JUNE 8.6 8.7 8.3 7.8 7.9 8.1 7.9 7.8 | 9.2
8.9
8.7
8.3
8.2 | 9.8
10.0
10.0
10.2
10.6
10.1
10.1
9.7 | JULY 8.0 8.2 8.2 8.3 8.3 8.3 8.2 8.2 8.2 7.7 | 8.7
9.0
9.0
9.1
9.2
9.1
8.9
8.9
8.8 | 8.8
8.4
8.3
9.0
8.7
9.1
8.7
8.8
9.4 | 7.9
7.9
7.6
7.8
8.2
8.5
8.2
7.9
7.1
8.7 | 8.3
8.2
8.0
8.3
8.5
8.6
8.6
8.4 | 7.9
9.1
8.8
8.6
8.6
8.6
8.3 | 6.8
6.8
6.8
8.3
8.2
7.3
7.2
7.6
8.0
7.9 | 7.2
7.9
8.6
8.4
8.1
7.8
7.9
8.0
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 9.7
9.2
8.9
8.6
8.5

8.7
8.5
8.4
8.3
7.7 | JUNE 8.6 8.7 8.3 7.8 7.9 8.1 7.9 7.8 7.0 6.3 | 9.2
8.9
8.7
8.3
8.2

8.4
8.2
7.9 | 9.8
10.0
10.0
10.2
10.6
10.1
10.1
10.0
9.7
9.5
9.5
9.2
9.1 | B.0
8.2
8.2
8.3
8.3
8.3
8.2
8.2
8.2
7.7
7.7 | 8.7
9.0
9.1
9.2
9.1
8.9
8.8
8.7
8.7
8.4
8.4 | 8.8
8.4
8.3
9.0
8.7
9.1
9.1
8.7
8.8
9.4 | 7.9
7.9
7.6
7.8
8.2
8.5
8.2
7.9
7.1
8.7
8.3
8.1
7.9 | 8.3
8.2
8.0
8.3
8.5
8.6
8.4
9.1
8.6
8.5
8.5 | 7.9
9.1
8.8
8.6
8.6
8.4
8.3
8.3
8.3
8.3 | 6.8
6.8
6.8
8.3
8.2
7.3
7.2
7.6
8.0
7.9
7.9
7.9 | 7.2
7.9
8.6
8.4
8.1
7.8
7.9
8.0
8.1
8.1
8.0
8.2
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 9.7
9.2
8.9
8.6
8.5

8.7
8.5
8.4
7.7
7.3 | JUNE 8.6 8.7 8.3 7.8 7.9 8.1 7.9 7.0 6.3 6.3 7.0 6.8 7.1 | 9.2
8.9
8.7
8.3
8.2

8.4
8.2
7.1
6.7
7.1
7.4
7.3 | 9.8
10.0
10.0
10.2
10.6
10.1
10.1
10.0
9.7
9.5
9.5
9.2
9.1
9.0
8.9 | B.0
8.2
8.3
8.3
8.3
8.2
8.2
8.2
8.2
7.7
7.7
7.8
7.8
7.7
6.7
6.7 | 8.7
9.0
9.1
9.2
9.1
8.9
8.8
8.7
8.4
8.4
8.4
8.2
7.8
7.6 | 8.8
8.4
8.3
9.0
8.7
9.1
9.1
8.8
9.4
9.0
9.0
9.0
8.9
8.7 | 7.9 7.9 7.6 7.8 8.2 8.5 8.2 7.9 7.1 8.7 8.3 8.1 7.9 8.2 8.1 8.5 8.3 8.3 | 8.3
8.2
8.3
8.5
8.8
8.4
9.1
8.65
8.5
8.4
9.1
8.5
8.6
8.5
8.6
8.6
8.6 | 7.9
9.1
8.8
8.6
8.6
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 6.8
6.8
6.8
8.3
8.2
7.3
7.2
7.6
7.6
8.0
7.9
7.9
7.9
7.9
7.9
7.9 | 7.2
7.9
8.6
8.4
8.1
7.8
7.9
8.0
8.1
8.1
8.1
8.1
8.1
8.1
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 9.7
9.2
8.9
8.6
8.5

8.7
8.5
8.4
7.7
7.3
7.7
7.9
7.9
7.9
7.9
8.2
8.5 | JUNE 8.6 8.7 8.3 7.8 7.9 8.1 7.9 7.0 6.3 6.3 7.0 6.3 6.3 7.0 6.5 6.7 7.0 7.5 | 9.2
8.9
8.7
8.3
8.2

8.4
8.2
7.1
6.7
7.1
7.4
7.3
7.4
7.3
7.4
7.3 | 9.8
10.0
10.0
10.2
10.6
10.1
10.1
10.0
9.7
9.5
9.5
9.2
9.1
9.0
8.9
8.6
8.6
8.7
8.4
8.8
8.8
8.8
8.8 | B.0
8.2
8.3
8.3
8.3
8.2
8.2
8.2
8.2
7.7
7.7
7.8
7.8
7.7
6.7
6.7
6.7
6.7
6.7 | 8.7
9.0
9.1
9.2
9.1
8.9
8.8
8.7
8.4
8.4
8.4
8.2
7.6
7.5
7.7
9.8
8.1 | 8.8
8.4
8.3
9.0
8.7
9.1
9.1
8.8
9.4
9.0
9.0
9.0
8.9
8.7
9.4
9.2
8.8
9.2 | 7.9 7.9 7.6 7.8 8.2 8.5 8.2 7.1 8.7 8.3 8.1 8.5 8.3 8.1 8.5 8.3 8.1 8.2 8.3 8.3 | 8.3
8.3
8.0
8.3
8.5
8.6
8.4
9.1
8.5
55
8.4
8.9
8.6
8.9
8.4
8.9
8.4
8.4
8.4
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 7.9
9.1
8.8
8.6
8.6
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 6.8
6.8
6.8
8.3
8.2
7.3
7.2
7.6
8.0
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9 | 7.2
7.9
8.6
8.4
8.1
7.8
7.9
8.0
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 9.7
9.2
8.9
8.6
8.5

8.7
8.5
8.4
8.3
7.7
7.3
7.7
9.9
7.9
7.9
7.9
8.2
8.5
8.7 | JUNE 8.6 8.7 8.3 7.8 7.9 8.1 7.9 7.8 6.3 6.3 6.3 7.0 6.8 7.0 6.7 7.0 7.5 7.5 7.9 7.8 8.1 7.9 | 9.2
8.9
8.7
8.3
8.2

8.4
8.2
7.1
6.7
7.1
7.4
7.3
7.4
7.6
7.9
8.0
8.3
8.5
8.7
8.7
8.8 | 9.8
10.0
10.2
10.6
10.1
10.1
10.0
9.7
9.5
9.5
9.2
9.1
9.0
8.8
8.6
8.6
8.8
8.8
8.8
8.8
8.8
8.8
8.8 | JULY 8.0 8.2 8.2 8.3 8.3 8.3 8.2 8.2 8.2 7.7 7.7 8.7 6.7 6.7 6.7 6.7 6.7 7.8 7.8 7.8 7.8 7.7 6.7 6.7 6.7 6.7 6.7 6.8 7.1 7.2 7.7 7.8 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8 | 8.7
9.0
9.1
9.2
9.1
8.9
8.8
8.7
8.4
8.4
8.2
8.2
7.5
6
7.5
7.7
9.2
8.1
8.0
8.3
8.5
7.5
8.4
8.4
8.2
8.3
8.4
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 |
8.8
8.4
8.3
9.0
8.7
9.1
8.7
8.8
9.4
9.0
9.0
9.0
9.9
8.7
9.4
9.2
8.9
8.9
8.9
9.1
8.8
8.8
8.8
8.8
8.8
8.8
8.8
8 | 7.9 7.9 7.9 7.6 7.8 8.2 8.5 8.2 7.9 7.1 8.7 8.3 8.1 7.9 8.3 8.1 8.2 8.1 8.5 8.3 8.1 8.2 8.2 8.1 8.5 8.7 8.3 8.1 8.5 8.7 8.3 8.1 8.5 8.7 8.3 8.6 8.7 8.3 8.7 8.3 8.7 8.7 8.3 8.7 8.7 8.3 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 | 8.3
8.3
8.3
8.3
8.6
8.4
9.1
8.5
5.5
8.4
9.6
6.9
8.4
8.5
8.6
8.9
8.6
8.9
8.6
8.7
7.6 | 7.9
9.1
8.8
8.6
8.6
8.4
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.3 | 5EPTEMBE 6.8 6.8 6.8 8.3 8.2 7.3 7.2 7.6 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | 7.2
7.9
8.6
8.4
8.1
7.8
7.9
8.0
8.1
8.1
8.1
8.1
8.1
8.1
8.1
7.7
7.4
7.7
7.6
7.6
7.7 | MUDDY CREEK BASIN 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 119 | S | PECIFIC | CONDUCTA | INCE (PIECE | KOSTEMENS/ | CII AI 23 | DEG. C), | , WATER YEA | IC OCTOR | ER IJJJ | IO SEPIEMO | EK 2000 | | |---|---|--|---|--|--|--|--|--|---|--|---|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 607
607
608
607
612 | 599
603
604
604
604 | 603
605
606
605
607 | 637
649
645
649
1300 | 631
636
642
644 | 634
641
644
646 | 662
663
662
662 | 659
660
660
660 | 661
661
661
661 | 672
672
671
670
670 | 670
670
669
669
668 | 671
671
670
670
669 | | 6
7
8
9 | 616
614
610
609
610 | 607
606
605
605
605 | 610
609
608
607
607 | 1450
1130
846
 | 1130
846
671
 | 1350
942
778
 | 662
662
661
661 | 660
659
659
658
659 | 661
660
660
660 | 670
672
672
671
669 | 668
669
670
668
667 | 669
671
671
670
668 | | 11
12
13
14
15 | 611
606
609
613
614 | 606
599
599
608
607 | 608
604
605
610 |

656
666 |

653
654 |

654
657 | 660
660
661
664
664 | 659
659
659
660
662 | 660
660
662
663 | 668
676
677
679 | 667
667
675
677 | 668
672
676
678
678 | | 16
17
18
19
20 | 610
611
613
614
615 | 607
608
610
610 | 608
610
611
612
613 | 658
658
659
659 | 655
653
657
657
657 | 657
657
658
658 | 666
665
666
667 | 662
664
660
664
665 | 665
665
664
665
666 | 679
677
677
680
682 | 676
675
675
672
675 | 677
676
676
677
676 | | 21
22
23
24
25 | 620
624
626
627
629 | 614
620
621
624
623 | 616
622
623
625
626 | 659
658
659

660 | 655
655
656

657 | 658
657
658

659 | 668
666
666
667 | 665
664
664
664 | 666
665
665
665 | 675
674
676
676
677 | 670
673
673
674
675 | 674
674
674
675
676 | | 26
27
28
29
30
31 | 630

651
647
632
634 | 626

628
629
629
630 | 629

636
633
631
632 | 660
661
660
661 | 658
658
658
658
659 | 659
660
660
659
660 | 667
668
668
670
670 | 665
665
665
667
667
668 | 666
666
667
669
669 | 677
676
677
678
681
683 | 675
674
674
676
678
680 | 676
675
675
677
679 | | MONTH | 651 | 599 | 614 | 1450 | 631 | 703 | 672 | 658 | 664 | 683 | 667 | 674 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | | | MAX
682
681
681
681
681 | | MEAN 681 680 680 680 680 | | | MEAN
685
682
685
685
690 | MAX
679
669
667
677
682 | | MEAN
669
662
661
666
664 | | 1
2
3
4 | 683
682
681
682 | FEBRUARY
681
680
679
679 | 682
681
680
681 | 682
681
681
681 | MARCH
680
679
679
679 | 681
680
680
680 | 686
687
687
689 | APRIL
682
678
682
682 | 685
682
685
685 | 679
669
667
677 | MAY
659
659
658
658 | 669
662
661
666 | | 1
2
3
4
5
6
7
8
9 | 683
682
681
682
682
681
682
682
682 | 681
680
679
679
680
679
679
680
681 | 682
681
680
681
681
681
681
682 | 682
681
681
681
682
684
684
684 | MARCH 680 679 679 679 676 679 669 681 678 | 681
680
680
680
680
681
682
682
680 | 686
687
687
689
706
710
708
711
713 | 682
678
682
682
683
700
695
701
700 | 685
682
685
685
690
705
701
707
707 | 679
669
667
677
682
696
689
689
676 | MAY 659 658 658 652 650 645 640 655 | 669
662
661
666
664
669
667
666 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 683
682
681
682
682
682
682
682
682
680
680 | 681
680
679
679
680
679
679
680
681
680
678
678 | 682
681
680
681
681
681
682
681
682
679
679 | 682
681
681
681
682
684
681
681
681 | MARCH 680 679 679 676 679 669 681 678 679 679 680 680 680 | 681
680
680
680
680
681
682
682
680
680
681
680
682 | 686
687
689
706
710
708
711
713
716
721
721
720
782 | 682
678
682
682
683
700
695
701
700
705
711
712
704
693 | 685
682
685
685
690
705
707
707
712
717
714
711
726 | 679
669
667
677
682
696
689
676
710
732
658
670
671 | MAY
659
658
658
652
650
645
640
655
628
611
612
640
648 | 669
662
661
666
667
666
661
665
667
635
655 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 683
682
681
682
682
682
682
682
682
680
680
680
681
681 | 681
679
679
679
680
679
680
681
680
678
678
676
676
676 | 682
681
680
681
681
681
682
681
682
681
689
679
679
679
679
680
680
680 | 682
681
681
681
682
684
684
681
681
683
681
685
685
685 | MARCH 680 679 679 676 679 669 681 678 679 680 680 680 678 682 683 684 | 681
680
680
680
680
681
682
680
680
681
682
683
684
684
685 | 686
687
689
706
710
708
711
713
716
721
720
782
778
708
728
750
751 | APRIL 682 678 682 683 700 695 701 700 705 711 712 704 693 708 683 684 715 719 | 685
682
685
685
690
705
701
707
712
717
714
711
726
733
691
705
726
734 | 679
669
667
677
682
696
689
676
710
732
658
670
671

694
658
640
634 | MAY 659 658 658 652 650 645 640 655 628 611 612 640 648 629 608 629 610 | 669
662
661
666
664
669
667
665
665
655
655
651
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 683
682
681
682
682
682
682
682
682
681
680
680
681
681
681
681
681
681
681 | 681
679
679
679
680
679
680
681
680
678
676
676
676
679
678
678
678
679
678
679 | 682
681
680
681
681
681
682
681
682
679
679
679
679
680
680
680
681
681
681
681
682 |
682
681
681
681
681
682
684
684
681
681
683
685
685
685
687
686
687
688 | MARCH 680 679 679 676 679 669 681 678 679 680 680 680 680 688 682 683 684 685 685 | 681
680
680
680
680
681
682
680
680
681
682
683
684
684
685
685
686
686
686
686
686
688 | 686
687
689
706
710
708
711
713
716
721
720
782
778
708
728
750
751
719 | APRIL 682 678 682 683 700 695 701 700 705 711 712 704 693 708 683 684 693 701 719 696 | 685
682
685
685
690
705
707
707
712
717
714
711
726
733
691
705
726
734
707 | 679
669
667
677
682
696
689
676
710
732
658
670
671

694
658
640
634
635 | MAY 659 659 658 658 652 650 645 640 655 628 611 612 640 648 629 608 629 610 606 585 583 570 558 | 669
662
661
666
664
667
665
665
655
655
661

651
623
624
623
599
596
586 | 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |--|--|---|---|--|---|---|--|---|---|--|--|--| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 541
470
465
459
476 | 469
464
459
450
447 | 495
467
462
452
453 |

 |

 |

 | 662
620
620
620
620 | 601
596
590
588
596 | 634
609
609
606
604 | 602
622
618
616
627 | 580
573
597
595
600 | 591
588
609
609
614 | | 6
7
8
9 |

512 |

455 |

466 | 680
674
679
668
678 | 648
654
631
647
653 | 667
667
660
657
667 | 620
621
618
611
614 | 597
598
581
587
598 | 606
604
605
606 | 640
634
635
630
631 | 616
617
614
616
613 | 626
626
625
624
622 | | 11
12
13
14
15 | 465
508
496
457
470 | 454
451
455
450
445 | 458
469
470
453
451 | 679
668
676
678
677 | 652
658
659
646
658 | | 616
616
617
611
611 | 589
592
591
593
596 | 604
603
603
604
605 | 629
632
632
629
630 | 609
618
623
621
624 | 622
622
627
625
626 | | 16
17
18
19
20 | 554
557
571
589
566 | 469
532
538
541
538 | 491
547
556
570
551 | 672
673
687
668
654 | 645
656
655
637
633 | 664
666
664
653
644 | 821
610
613
614
614 | 591
601
595
594
602 | 623
605
604
605
607 | 631
633
633
633
636 | 624
624
620
625
625 | 627
629
628
629
630 | | 21
22
23
24
25 | 554
557
639
655
663 | 530
531
546
614
633 | 543
546
591
643
647 | 649
642
649
641
641 | 622
616
617
607
605 | 637
629
628
627
627 | 612
615
610
616
620 | 603
603
599
605
597 | 609
609
604
610
607 | 633
648
646
636
637 | 625
630
628
623
634 | 630
638
637
629
636 | | 26
27
28
29
30
31 | 666
670
662
667
 | 641
626
645
637
 | 657
653
653
655
 | 638
634
632
626
646
673 | 601
598
609
599
611
614 | 624
622
622
616
626
652 | 617
616
621
614
622
618 | 605
601
605
601
604
591 | 611
607
613
608
615
609 | 639
638

626
626 | 634
624

616
623 | 636
631

620
625 | | MONTH | 670 | 445 | 536 | 687 | 598 | | 821 | | 608 | 648 | 573 | 623 | | | 1450 | 445 | 649 | | | | | | | | | | | YEAR | 1430 | 443 | 049 | | | | | | | | | | | YEAR | 1450 | | | WATER (DEG | . C), WA | TER YEAR | OCTOBER 1 | 999 TO S | SEPTEMBER | 2000 | | | | YEAR
DAY | MAX | | | WATER (DEG | . C), WA | | OCTOBER 1 | 999 TO S | SEPTEMBER
MEAN | 2000
MAX | MIN | MEAN | | DAY | MAX | TEMPEI
MIN
OCTOBER | RATURE,
MEAN | MAX
N | MIN | MEAN | MAX
D | MIN
ECEMBER | MEAN | MAX | JANUARY | | | | | TEMPE) | RATURE,
MEAN | MAX | MIN | | MAX | MIN
ECEMBER | MEAN | | | | | DAY 1 2 3 4 | MAX
12.9
12.8
12.6
12.6 | TEMPE
MIN
OCTOBER
11.9
11.6
11.4
11.2 | MEAN 12.3 12.2 12.0 11.8 | MAX
N
8.9
9.3
9.0
8.9 | MIN OVEMBER 7.8 7.4 7.7 7.7 | MEAN
8.2
8.0
8.1
8.1 | MAX
D
5.4
5.3
4.6
4.8 | MIN
ECEMBER
4.3
4.3
3.8
3.7 | MEAN 4.7 4.6 4.2 4.0 | 2.8
2.7
2.8
2.9 | JANUARY
1.6
1.9
1.8
1.6 | 2.1
2.1
2.0
2.1 | | DAY 1 2 3 4 5 6 7 8 9 | MAX
12.9
12.8
12.6
12.6
12.3
12.2
11.7
11.9
12.0 | TEMPE
MIN
OCTOBER
11.9
11.6
11.4
11.2
11.0 | MEAN 12.3 12.2 12.0 11.8 11.5 11.4 11.3 11.3 11.3 | MAX
8.9
9.3
9.0
8.9

8.2
8.2
8.3
 | MIN OVEMBER 7.8 7.4 7.7 7.7 6.6 6.8 6.8 | 8.2
8.0
8.1
8.1
7.3
7.4
7.4 | MAX D 5.4 5.3 4.6 4.8 4.4 4.5 3.8 3.6 3.3 | MIN ECEMBER 4.3 4.3 3.8 3.7 3.4 3.2 2.6 2.4 | 4.7
4.6
4.2
4.0
3.7
3.6
3.4
3.2
2.7 | MAX 2.8 2.7 2.8 2.9 2.6 2.7 2.8 2.9 2.6 | JANUARY 1.6 1.9 1.8 1.6 1.8 1.5 1.5 1.8 1.8 | 2.1
2.1
2.0
2.1
2.1
1.9
1.9
2.2
2.2 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MAX 12.9 12.8 12.6 12.6 12.3 12.2 11.7 11.9 12.0 12.1 11.8 11.5 11.5 11.5 | TEMPE
MIN
OCTOBER
11.9
11.6
11.4
11.2
11.0
11.1
11.0
10.9
10.7
10.7 | MEAN 12.3 12.2 12.0 11.8 11.5 11.4 11.3 11.2 11.2 11.1 | MAX N 8.9 9.3 9.0 8.9 8.2 8.2 8.3 8.1 7.8 | MIN OVEMBER 7.8 7.4 7.7 7.7 6.6 6.8 6.8 6.6 6.6 6.8 6.8 6.8 | 8.2
8.0
8.1
8.1

7.3
7.4
7.4

7.0 | MAX D 5.4 5.3 4.6 4.8 4.4 4.5 3.8 3.6 3.3 3.2 2.9 2.8 2.9 2.8 2.5 2.4 | MIN ECEMBER 4.3 4.3 3.8 3.7 3.4 3.2 2.6 2.4 2.3 2.0 1.7 1.5 1.5 | MEAN 4.7 4.6 4.2 4.0 3.7 3.6 3.4 3.2 2.7 2.6 2.3 2.1 2.0 1.8 | MAX 2.8 2.7 2.8 2.9 2.6 2.7 2.8 2.8 2.8 2.8 3.1 3.1 | JANUARY 1.6 1.9 1.8 1.6 1.8 1.5 1.5 1.9 2.0 1.9 1.8 1.9 | 2.1
2.1
2.0
2.1
2.1
1.9
1.9
2.2
2.2
2.2
2.2
2.4
2.4
2.3 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | MAX 12.9 12.8 12.6 12.6 12.7 11.9 12.0 12.1 11.8 11.5 11.3 11.3 11.0 10.5 10.4 | TEMPER MIN OCTOBER 11.9 11.6 11.4 11.2 11.0 11.1 11.0 10.9 10.7 10.6 10.9 11.0 10.8 10.8 10.8 | RATURE, MEAN 12.3 12.2 12.0 11.8 11.5 11.4 11.3 11.2 11.1 11.2 11.1 11.1 10.8 10.3 10.2 10.0 | MAX N 8.9 9.3 9.0 8.9 8.2 8.2 8.3 7.8 7.9 7.6 7.6 6.8 6.9 | MIN OVEMBER 7.8 7.4 7.7 7.7 6.6 6.8 6.8 6.6 6.4 6.5 6.3 6.0 5.9 | 8.2
8.0
8.1
8.1
7.3
7.4
7.4

7.0
6.9
6.8
6.8
6.4
6.2 | MAX D 5.4 5.3 4.6 4.8 4.4 4.5 3.8 3.6 3.3 3.2 2.9 2.8 2.5 2.4 2.5 2.4 2.5 3.0 | MIN ECEMBER 4.3 4.3 3.8 3.7 3.4 3.2 2.6 2.4 2.3 2.0 1.7 1.5 1.5 1.4 1.9 1.9 1.8 2.1 | MEAN 4.7 4.6 4.2 4.0 3.7 3.6 3.4 3.2 2.7 2.6 2.3 2.1 2.0 1.8 1.9 2.1 2.2 2.4 | MAX 2.8 2.7 2.8 2.9 2.6 2.7 2.8 2.8 2.8 2.3 3.1 3.1 3.3 3.0 3.3 3.0 3.3 3.6 | JANUARY 1.6 1.9 1.8 1.6 1.8 1.5 1.5 1.8 1.9 2.0 1.9 1.9 2.4 2.3 2.4 2.2 | 2.1
2.1
2.0
2.1
2.1
1.9
1.9
2.2
2.2
2.2
2.4
2.4
2.2
2.3
2.4
2.5
2.6
2.7 | MONTH 12.9 8.2 10.5 9.3 4.5 6.4 5.4 1.4 2.6 3.9 1.5 2.3 # 09041400 MUDDY CREEK BELOW WOLFORD MOUNTAIN RESERVOIR NEAR KREMMLING, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | WAIER (DEG. | | | | | | | | | |---|--|---|--|---|---|---
--|---|---|--|--|--| | DAY | MAX | MIN | MEAN | | | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | 1 | | FEBRUARY | | | MARCH | 0.4 | | APRIL | 2 1 | | MAY
6.6 | 7.3 | | 1
2
3 | 3.1 | 1.8 | 2.1 | 3.7 | 2.3 | 2.4
2.8
2.7 | 3.6 | 2.7 | 3.1
3.0
3.1 | 7.5 | 6.4
6.2 | 6.8
6.8 | | 4 5 | 3.1 | 1.6
1.8
1.8
1.9 | 2.1
2.3
2.3
2.3
2.3 | 3.3
3.7
3.9
3.9
3.9 | 1.9 | 2.7 | 4.1
3.6
4.1
4.6
5.1 | 2.5 | 3.4
4.0 | 7.8
7.5
7.5
7.4
7.9 | 6.2
6.0 | 6.7 | | 6 | | | | | | | | | | | | 6.7 | | 7
8 | 3.5
3.1 | 1.9
1.9
1.8 | 2.4 | 4.3 | 2.3 | 2.8 | 4.2 | 3.6 | 3.8 | 7.8 | 6.0 | 6.8
7.2 | | 9
10 | 2.8 | 1.8
1.9
2.2 | 2.4
2.4
2.3
2.3
2.6 | 3.9
4.3
3.4
3.4
3.6 | 2.1
2.3
2.3
2.3
2.1 | 2.7 | 5.0
4.2
4.4
4.7
4.9 | 3.6
3.7 | 4.1
4.2 | 7.9
7.8
8.2
7.7
9.0 | 6.5 | 7.2 | | 11 | | | | | | | | | | | 5.7 | 7.4 | | 12
13 | 3.3 | 2.3 | 2.5 | 3.9 | 2.3 | 2.8 | 5.5 | 3.5 | 4.3 | 8.7
8.5 | 7.8 | 8.3 | | 14 | 3.5 | 2.3
2.3
2.2
2.3
2.1 | 2.6
2.5
2.6
2.6
2.7 | 3.6
3.9
3.9
3.7
3.0 | 2.0
2.3
2.3
2.1
2.1 | 2.8 | 5.8
5.5
5.6
5.4
4.4 | 3.3 | 4.2
3.9 | 8.9
8.7
8.5
8.3 | 7.7 | 7.9 | | | | | | | | | | | | | | 7.9 | | 17
18 | 3.2 | 2.2
2.1 | 2.5
2.6
2.6
2.4 | 4.0 | 2.0 | 2.6
2.7 | 6.0
5.5 | 3.9
3.6 | 4.7
4.2 | 8.4
8.6
8.3
8.8 | 7.7
8.1 | 8.3
8.2 | | 19
20 | 3.5
3.2 | 1.9
2.2
2.1
1.8
1.6 | 2.4 | 4.0
4.0
4.0
4.0
3.4 | 1.7
2.0
2.0
1.9
2.3 | 2.7
2.6 | 5.9
6.0
5.5
4.3
6.2 | 3.5
4.1 | 4.6
4.7
4.2
3.9
4.9 | 8.4
8.6
8.3
8.8
9.5 | 8.1
8.2 | 8.5
8.8 | | 21 | | | 2.5 | | | | | | 5.0 | | 8.7 | 9.5 | | 22
23 | 2.6
3.7 | 1.9
2.1 | 2.3 | 3.3
4.1 | 2.0 | 2.6
2.8 | 4.8
5.6 | 4.1
4.3 | 4.5
4.7 | 10.7
11.8 | 9.6
10.2 | 10.0
10.9 | | 24
25 | 3.7
3.1 | 1.9
1.9
2.1
2.0
2.0 | 2.5
2.3
2.7
2.5
2.4 | 4.1
3.3
4.1
4.0
3.9 | 2.4 | 2.7
2.6
2.8
2.9
2.9 | 6.2
4.8
5.6
6.0 | 4.1
4.7 | 4.9
5.6 | 10.2
10.7
11.8
11.8 | 10.9 | 11.4
10.7 | | 26 | | | 2.5 | | | | | | | | | | | 27
28 | 3.8
3.7 | 2.0
2.0
2.1
2.1 | 2.6
2.6 | 4.6
4.2 | 2.4 | 3.3
3.4 | 7.6
7.5 | 5.5
5.1 | 6.4
6.1 | | | | | 29
30 | 3.7 | 2.1 | 2.7 | 4.3
4.6
4.2
5.1
4.2 | 2.5
2.4
2.8
2.8
2.6
2.5 | 3.5
3.1 | 7.3
7.6
7.5
7.7
9.2 | 4.9
7.2 | 6.3
8.0 | 11.9 | | | | 31 | | | | 3.5 | | 3.0 | | | | 12.2 | 9.3 | 10.8 | | MONTH | 3.8 | 1.6 | 2.5 | 5.1 | 1.7 | 2.8 | 9.2 | 2.4 | 4.6 | 12.2 | 5.7 | 8.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | | JULY | | | AUGUST | | | MIN
SEPTEMBE | | | 1 | 15.4 | JUNE | 13.3 | | JULY | | | AUGUST | | | SEPTEMBE | 12.4 | | 1
2
3 | 15.4
15.5
16.1 | JUNE
10.3
14.0
14.5 | 13.3
14.8
15.3 | 9.5
9.2
9.1 | JULY | | | AUGUST | | 13.4
13.3
13.4 | SEPTEMBE
11.9
11.9
12.4 | 12.4
12.4
13.0 | | 1
2 | 15.4
15.5 | JUNE 10.3 14.0 14.5 14.9 | 13.3
14.8 | 9.5
9.2
9.1 | JULY | 8.4
8.3
8.5
8.5 | | AUGUST | | | 11.9
11.9
11.9
12.4
12.6 | 12.4
12.4
13.0
13.1 | | 1
2
3
4
5 | 15.4
15.5
16.1
17.0
16.5 | JUNE 10.3 14.0 14.5 14.9 13.3 | 13.3
14.8
15.3
16.0
15.5 | 9.5
9.2
9.1
9.8
9.1 | 7.7
7.8
8.1
7.9
7.6 | 8.4
8.3
8.5
8.5
8.4 | 10.9
11.2
11.5
11.7 | 8.8
10.6
10.6
10.7
10.9 | 9.7
10.9
11.0
11.2 | 13.4
13.3
13.4
13.5
13.4 | 11.9
11.9
12.4
12.6
12.1 | 12.4
12.4
13.0
13.1
13.0 | | 1
2
3
4
5 | 15.4
15.5
16.1
17.0
16.5 | JUNE 10.3 14.0 14.5 14.9 13.3 | 13.3
14.8
15.3
16.0
15.5 | 9.5
9.2
9.1
9.8
9.1 | 7.7
7.8
8.1
7.9
7.6 | 8.4
8.3
8.5
8.5
8.4
8.4 | 10.9
11.2
11.5
11.7 | 8.8
10.6
10.6
10.7
10.9 | 9.7
10.9
11.0
11.2
11.3
11.2 | 13.4
13.3
13.4
13.5
13.4
13.8
13.5 | 11.9
11.9
12.4
12.6
12.1
11.8
11.9
12.2 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7 | | 1
2
3
4
5 | 15.4
15.5
16.1
17.0
16.5 | JUNE 10.3 14.0 14.5 14.9 13.3 | 13.3
14.8
15.3
16.0
15.5 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3 | 8.4
8.3
8.5
8.5
8.4
8.4 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
11.8 | 8.8
10.6
10.6
10.7
10.9
10.5
10.6
10.8
11.2 | 9.7
10.9
11.0
11.2 | 13.4
13.3
13.4
13.5
13.4 | 11.9
11.9
12.4
12.6
12.1
11.8
11.9
12.2 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7 | | 1
2
3
4
5
6
7
8
9
10 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 | 13.3
14.8
15.3
16.0
15.5 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3 | 8.4
8.3
8.5
8.5
8.4
8.4
8.7
8.7
8.5 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
11.8 | 8.8
10.6
10.6
10.7
10.9
10.5
10.6
10.8
11.2 | 9.7
10.9
11.0
11.2
11.3
11.2
11.3
11.5
11.5 | 13.4
13.3
13.4
13.5
13.4
13.8
13.5
13.4
13.1
13.2 | 11.9
11.9
12.4
12.6
12.1
11.8
11.9
12.2
12.5
12.5 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9 | | 1
2
3
4
5
6
7
8
9
10 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
16.4 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 | 13.3
14.8
15.3
16.0
15.5

14.1
14.9
14.7
14.7 | 9.5
9.2
9.1
9.8
9.1
9.1
9.3
9.2
9.1
9.4
9.3 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3
7.9 | 8.4
8.3
8.5
8.5
8.4
8.7
8.7
8.5
8.6 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
11.8
11.9 | 8.8
10.6
10.6
10.7
10.9
10.5
10.6
10.8
11.2
11.1
11.2 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6 | 13.4
13.3
13.4
13.5
13.4
13.5
13.4
13.1
13.2 | 11.9
11.9
12.4
12.6
12.1
11.8
11.9
12.2
12.5
12.5
12.5 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.7
12.9 | | 1
2
3
4
5
6
7
8
9
10 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 | 13.3
14.8
15.3
16.0
15.5 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3
7.9 | 8.4
8.3
8.5
8.5
8.4
8.4
8.7
8.7
8.5 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
11.8
11.9 | 8.8
10.6
10.6
10.7
10.9
10.5
10.6
10.8
11.2
11.1 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6 | 13.4
13.3
13.4
13.5
13.4
13.8
13.5
13.4
13.1
13.2 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.5 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.7
12.9
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
17.4
17.4 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 | 13.3
14.8
15.3
16.0
15.5

14.1
14.9
14.7
16.2
16.3 | 9.5
9.2
9.1
9.8
9.1
9.1
8.8
9.1
9.3
9.2
9.1
9.4
9.5 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3
7.9
8.1
8.1
8.1
8.3
8.2 | 8.4
8.3
8.5
8.5
8.4
8.4
8.7
8.7
8.5
8.6
8.7
8.6 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
11.8
11.9
12.1
12.7 | 8.8
10.6
10.6
10.7
10.9
10.5
10.6
11.2
11.1
11.2
11.1
11.5
11.5 | 9.7
10.9
11.0
11.2
11.3
11.2
11.3
11.5
11.5
11.6 | 13.4
13.3
13.4
13.5
13.4
13.8
13.5
13.4
13.1
13.2
13.3
13.7
13.6
13.5 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.5 12.7 12.6 12.7 12.6 |
12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.1
13.0
13.0 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
16.4
17.4
17.4
14.7
12.8
12.1 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 | 13.3
14.8
15.3
16.0
15.5

14.1
14.9
14.7
14.7
16.2
16.3
14.0
12.0
11.3 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.4
9.3
9.5
9.4 | 7.7 7.8 8.1 7.9 7.6 7.9 8.3 8.3 7.9 8.1 8.1 8.3 8.2 8.5 8.4 8.4 | 8.4
8.3
8.5
8.4
8.4
8.7
8.5
8.6
8.6
8.6
8.6
8.9
9.0 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
12.1
12.7
12.8
12.3
12.5 | 8.8
10.6
10.6
10.7
10.9
10.5
10.6
10.8
11.2
11.1
11.5
11.5
11.6 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1 | 13.4
13.3
13.4
13.5
13.4
13.5
13.4
13.5
13.4
13.2
13.3
13.7
13.4
13.6
13.5 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.5 12.6 12.6 12.7 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.7
12.9
13.0
13.1
13.0
13.0
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
16.4
17.4
14.7 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 | 13.3
14.8
15.3
16.0
15.5

14.1
14.9
14.7
14.7
16.2
16.3
14.0
12.0 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.4
9.3
9.5
9.4 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3
7.9
8.1
8.1
8.1
8.3
8.2
8.5
8.4 | 8.4
8.3
8.5
8.5
8.4
8.4
8.7
8.5
8.6
8.6
8.6
8.9 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
12.1
12.7
12.8
12.3
12.5 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 10.8 11.2 11.1 11.5 11.5 11.6 11.4 11.8 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1 | 13.4
13.3
13.4
13.5
13.4
13.5
13.4
13.5
13.1
13.2
13.3
13.7
13.4
13.6
13.5 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.5 12.6 12.7 12.6 12.7 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.1
13.0
13.0
13.0 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
17.4
17.4
17.4
11.2
12.1
13.3 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 | 13.3
14.8
15.3
16.0
15.5

14.1
14.9
14.7
16.2
16.3
14.0
12.0 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.4
9.5
9.5
9.4
9.5
10.2
10.2 | 7.7 7.8 8.1 7.9 7.6 7.9 7.9 8.3 8.3 7.9 8.1 8.1 8.1 8.3 8.2 8.5 8.4 8.4 8.0 8.0 | 8.4
8.3
8.5
8.4
8.4
8.7
8.7
8.5
8.6
8.6
8.7
8.9
9.0
9.0
9.0
8.9 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.8
11.9
12.1
12.7
12.8
12.3
12.5
12.5
12.8
13.2
12.8 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 11.2 11.1 11.5 11.5 11.6 11.4 11.8 11.6 12.1 | 9.7
10.9
11.0
11.2
11.3
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4 | 13.4
13.3
13.4
13.5
13.4
13.8
13.5
13.4
13.1
13.2
13.3
13.7
13.6
13.5
13.6
13.5
13.7
13.7 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.6 12.6 12.7 12.6 12.8 13.0 12.9 12.9 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.1
13.0
13.0
13.0
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
16.4
17.4
17.4
14.7
12.8
12.1
11.2
12.1
11.2
13.3
12.5
11.3 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 11.2 9.0 | 13.3
14.8
15.3
16.0
15.5

14.1
14.9
14.7
14.7
16.3
14.0
11.3
10.5
11.3 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.3
9.5
9.4
9.5
10.2
10.7
10.2
10.2 | 7.7 7.8 8.1 7.9 7.6 7.9 7.9 8.3 7.9 8.1 8.1 8.1 8.1 8.3 8.2 8.5 8.4 8.0 8.0 8.0 8.0 8.0 | 8.4
8.3
8.5
8.4
8.4
8.7
8.5
8.6
8.6
8.6
8.9
9.2
9.9
8.8
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
12.1
12.7
12.8
12.3
12.5
12.5
12.8
13.2
12.8 | 8.8
10.6
10.6
10.7
10.9
10.5
10.6
10.8
11.2
11.1
11.5
11.5
11.6
11.6
11.4
11.8
11.6
11.6 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4
12.5 | 13.4
13.3
13.4
13.5
13.4
13.5
13.4
13.1
13.2
13.3
13.7
13.4
13.5
13.5
13.6
13.5
13.5
13.6
13.5 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.6 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.9 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.7
12.9
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
16.4
17.4
14.7
12.8
12.1
11.2
12.1 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 11.2 | 13.3 14.8 15.3 16.0 15.5 14.1 14.9 14.7 14.7 16.2 16.3 14.0 11.3 10.5 11.3 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.3
9.2
9.1
9.5
10.2
10.7
10.2 | 7.7 7.8 8.1 7.9 7.6 7.9 7.9 8.3 8.3 7.9 8.1 8.1 8.1 8.3 8.2 8.4 8.4 8.0 8.0 8.0 | 8.4
8.3
8.5
8.4
8.4
8.7
8.5
8.6
8.7
8.6
8.9
9.0
9.0
9.0
8.9 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.8
11.9
12.1
12.7
12.8
12.3
12.5
12.5
12.8 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 10.8 11.2 11.1 11.5 11.6 11.4 11.8 11.6 11.6 12.1 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4
12.4 | 13.4
13.3
13.4
13.5
13.4
13.5
13.4
13.1
13.2
13.3
13.7
13.6
13.5
13.6
13.5
13.7 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.6 12.7 12.6 12.7 12.6 12.9 12.9 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.1
13.0
13.0
13.0
13.1
13.2
12.2
12.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
17.4
17.4
17.4
11.2
12.1
11.2
12.1
13.3
12.5
11.3
9.7 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 11.2 9.0 8.2 | 13.3 14.8 15.3 16.0 15.5 14.1 14.9 14.7 16.2 16.3 14.0 12.0 11.3 12.0 11.9 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.3
9.5
9.4
9.5
10.2
10.7
10.2
10.2 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3
7.9
8.1
8.1
8.1
8.3
8.2
8.5
8.4
8.0
8.0
8.0
8.0
8.0
8.2 | 8.4
8.3
8.5
8.4
8.4
8.7
8.5
8.6
8.6
8.9
9.0
9.0
9.0
8.7
8.6
8.7
8.6
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.8
11.9
12.1
12.7
12.8
12.3
12.5
12.5
12.8
13.2
12.8
13.2
13.2 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 11.2 11.1 11.5 11.5 11.6 11.4 11.8 11.6 12.1 12.1 12.1 12.1 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4
12.4
12.5
12.7
12.5 | 13.4
13.3
13.4
13.5
13.4
13.8
13.5
13.4
13.1
13.2
13.3
13.7
13.6
13.5
13.6
13.5
13.6
13.5 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.6 12.6 12.7 12.6 12.8 13.0 12.9 12.9 12.7 12.2 11.6 11.9 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.1
13.0
13.0
13.0
13.0
13.0
13.0 | | 1 2 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
16.4
17.4
14.7
12.8
12.1
11.2
12.1
13.3
12.5
11.3
9.7
8.9
8.6
8.7 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 11.2 9.0 8.2 8.3 7.9 7.7 | 13.3 14.8 15.3 16.0 15.5 14.1 14.9 14.7 14.7 14.7 16.2 16.3 14.0 11.3 10.5 11.3 12.0 11.9 10.1 9.0 8.6 8.2 8.2 8.2 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.4
9.5
9.4
9.5
10.2
10.7
10.2
10.2
10.2
9.1
9.1
9.2 | 7.7
7.8
8.1
7.9
7.6
7.9
7.9
8.3
8.3
7.9
8.1
8.1
8.1
8.2
8.5
8.4
8.0
8.0
8.0
8.0
8.2
8.2
 8.4
8.3
8.5
8.4
8.4
8.7
8.5
8.6
8.6
8.6
8.9
9.2
9.9
8.8
8.6
8.6
8.7
8.8
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
12.1
12.7
12.8
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 10.8 11.2 11.1 11.5 11.5 11.6 11.4 11.8 11.6 11.6 12.1 12.1 12.1 12.1 12.1 12.1 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4
12.4
12.5
12.7
12.5
12.8 | 13.4
13.3
13.4
13.5
13.4
13.5
13.4
13.5
13.1
13.2
13.3
13.7
13.4
13.5
13.5
13.6
13.5
13.5
13.7
13.4
13.3
14.0
13.0
13.0 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.6 12.6 12.7 12.6 12.8 13.0 12.9 12.9 12.7 12.2 11.6 11.9 11.4 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
17.4
14.7
12.8
12.1
12.1
13.3
12.5
11.3
9.7
8.9
8.4
8.6 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 11.2 9.0 8.2 8.3 7.9 7.9 | 13.3 14.8 15.3 16.0 15.5 14.1 14.9 14.7 14.7 16.2 16.3 14.0 12.0 11.3 10.5 11.3 12.0 8.6 8.2 8.2 | 9.5
9.2
9.1
9.8
9.1
9.1
8.8
9.1
9.3
9.2
9.1
9.3
9.5
9.4
9.5
10.2
10.2
10.2
10.2
10.2
10.2
9.1
9.1
9.3
9.4
9.5
9.4 | 7.7 7.8 8.1 7.9 7.6 7.9 7.9 8.3 8.3 7.9 8.1 8.1 8.3 8.2 8.5 8.4 8.4 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | 8.4
8.5
8.5
8.4
8.4
8.7
8.5
8.6
8.7
8.9
9.0
9.0
8.7
8.6
8.7
8.8
8.9
9.0
9.0 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.9
11.8
11.9
12.1
12.7
12.8
12.3
12.5
12.5
12.8
13.0
13.3
13.2
13.6
13.6
13.3
13.6 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 10.8 11.2 11.1 11.5 11.6 11.4 11.8 11.6 11.6 12.1 12.1 12.1 12.1 12.1 12.1 | 9.7
10.9
11.0
11.2
11.3
11.2
11.3
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4
12.5
12.7
12.5
12.6
12.8
12.8
12.8
12.8
12.8
12.8
12.7 | 13.4
13.3
13.4
13.5
13.4
13.5
13.1
13.2
13.3
13.7
13.4
13.6
13.5
13.6
13.5
13.7
13.7
13.4
13.3
13.7
13.7
13.4
13.5
13.7
13.6
13.5
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.5 12.6 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.7 12.6 12.9 11.1 11.7 11.5 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.7
17.4
17.4
17.4
12.8
12.1
11.2
12.1
13.3
12.5
11.3
9.7
8.9
8.4
8.6
8.7
9.9 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 11.2 9.0 8.2 8.3 7.9 7.7 7.6 | 13.3 14.8 15.3 16.0 15.5 14.1 14.9 14.7 14.7 16.2 16.3 14.0 12.0 11.3 10.5 11.3 12.0 8.6 8.2 8.2 8.1 8.5 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.3
9.5
9.4
9.5
10.2
10.7
10.2
10.2
10.2
10.2 | 7.7 7.8 8.1 7.9 7.6 7.9 7.9 8.3 8.3 7.9 8.1 8.1 8.1 8.3 8.2 8.5 8.4 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | 8.4
8.5
8.5
8.6
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 10.9
11.2
11.5
11.7
11.7
11.6
11.6
11.8
11.9
12.1
12.7
12.3
12.5
12.3
12.5
12.3
12.5
12.3
12.5
12.6
13.2
13.6
13.6
13.6
13.6 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 10.8 11.2 11.1 11.5 11.6 11.4 11.8 11.6 11.6 11.1 12.1 12.1 12.1 12.1 12.1 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4
12.4
12.5
12.7
12.5
12.8
12.8
12.8
12.8
13.1 | 13.4
13.3
13.4
13.5
13.4
13.1
13.2
13.3
13.7
13.6
13.5
13.6
13.5
13.7
13.7
13.7
13.7
13.7
13.7
13.7
13.7 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.6 12.6 12.7 12.6 12.8 13.0 12.9 12.9 12.7 12.1 11.6 11.7 11.5 13.0 12.8 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.1
13.0
13.0
13.0
13.1
13.2
13.2
12.9
12.9
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | 15.4
15.5
16.1
17.0
16.5

14.8
15.4
16.1
16.4
17.4
17.4
12.1
11.2
12.1
13.3
12.5
11.3
9.7
8.9
8.4
8.6
8.7
8.9
9.9
9.9 | JUNE 10.3 14.0 14.5 14.9 13.3 11.5 13.8 12.4 12.7 15.1 14.6 11.7 11.2 10.6 9.9 10.3 10.8 11.2 9.0 8.2 8.3 7.9 7.7 7.6 | 13.3 14.8 15.3 16.0 15.5 14.1 14.9 14.7 16.2 16.3 14.0 11.3 10.5 11.3 12.0 11.9 10.1 9.0 8.6 8.2 8.2 8.2 8.2 8.1 8.5 | 9.5
9.2
9.1
9.8
9.1
8.8
9.1
9.3
9.2
9.1
9.3
9.5
9.4
9.5
10.2
10.7
10.2
10.2
10.2
10.2
9.1
9.1
9.3
9.1
9.3 | 7.7 7.8 8.1 7.9 7.6 7.9 7.9 8.3 8.3 7.9 8.1 8.1 8.1 8.3 8.2 8.5 8.4 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 | 8.4
8.5
8.5
8.6
8.7
8.6
8.7
8.6
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7
8.7 | 10.9 11.2 11.5 11.7 11.7 11.6 11.6 11.8 11.9 12.1 12.7 12.8 12.3 12.5 12.7 12.5 12.8 13.2 12.8 13.2 13.6 13.5 13.6 13.5 13.6 13.5 | AUGUST 8.8 10.6 10.6 10.7 10.9 10.5 10.6 11.2 11.1 11.5 11.5 11.6 11.4 11.8 11.6 11.6 12.1 12.1 12.1 12.1 12.1 12.1 | 9.7
10.9
11.0
11.2
11.3
11.5
11.5
11.6
11.8
11.7
12.0
11.9
12.1
12.1
12.2
12.4
12.4
12.4
12.5
12.7
12.5
12.8
12.8
12.8
12.8
13.1
12.7 | 13.4
13.3
13.4
13.5
13.4
13.8
13.5
13.4
13.1
13.2
13.3
13.7
13.6
13.5
13.6
13.5
13.6
13.5
13.6
13.5
13.7
13.7
13.5
13.4
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | SEPTEMBE 11.9 11.9 12.4 12.6 12.1 11.8 11.9 12.2 12.5 12.5 12.7 12.6 12.6 12.7 12.6 12.8 13.0 12.9 12.9 11.4 11.7 11.5 13.0 12.8 | 12.4
12.4
13.0
13.1
13.0
12.4
12.7
12.7
12.7
12.9
13.0
13.0
13.0
13.0
13.0
13.0
13.0
13.0 | ### 09041900 MONTE CRISTO DIVERSION NEAR HOOSIER PASS, CO LOCATION.--Lat $39^{\circ}22^{\circ}51^{\circ}$, long $106^{\circ}04^{\circ}15^{\circ}$, in $NE^{1}/_{4}SE^{1}/_{4}$ sec.2, T.8 S., R.78W., Summit County, Hydrologic Unit 14010002, on left bank at entrance to Hoosier Pass tunnel, 2,200 ft downstream from diversion point, 1.4 mi northwest of Hoosier Pass, and 7 mi southwest of Breckenridge. PERIOD OF RECORD. -- October 1957 to current year (seasonal records only). GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Elevation of gage is 10,986 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. This is a transmountain diversion from Monte Cristo Creek in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion point is in $SW^1/_4NE^1/_4$ sec.2, T.8 S., R.78 W. The entire flow is regulated by diversion gates. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 COOPERATION.--Gage-height record collected in cooperation with city of Colorado Springs. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 73 ft³/s, Sept. 29, 1994; no flow for most of each year. | | DAILY MEAN VALUES | | | | | | | | | | | | | | |-------|-------------------|-----|-----|-----|-----|-----|-----|--------|------|--------|--------|------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 34 | | | | | | | e.00 | 6.9 | 1.6 | 33 | e.00 | | | | 2 | 32 | | | | | | | e.00 | 6.5 | e.50 | 33 | e.00 | | | | 3 | 35 | | | | | | | e.00 | 6.1 | e.00 | e34 | e.00 | | | | 4 | 38 | | | | | | | e.00 | 5.5 | e.00 | 34 | e.00 | | | | 5 | 37 | | | | | | | e.00 | 5.1 | e1.2 | 33 | e.00 | | | | 6 | 36 | | | | | | | e.00 | 4.9 | 6.5 | 33 | e.00 | | | | 7 | 35 | | | | | | | e6.9 | 4.8 | 8.1 | 32 | e.00 | | | | 8 | 34 | | | | | | | 7.0 | 4.7 | 8.8 | 32 | e.00 | | | | 9 | 33 | | | | | | | 4.4 | 4.3 | 9.4 | 31 | e.00 | | | | 10 | 32 | | | | | | | 5.1 | 3.5 | 4.7 | 31 | e.00 | | | | 11 | 30 | | | | | | | 6.3 | 3.1 | 9.2 | 32 | e.00 | | | | 12 | 28 | | | | | | | 4.8 | 2.8 | 12 | 35 | e.00 | | | | 13 | 27 | | | | | | | 3.2 | 2.7 | 11 | 35 | e.00 | | | | 14 | 25 | | | | | | | 2.9 | 2.3 | 11 | 34 | e.00 | | | | 15 | 23 | | | | | | | 3.0 | 2.1 | 11 | 33 | e.00 | | | | 16 | 21 | | | | | | | 4.2 | 2.0 | 3.2 | 32 | e.00 | | | | 17 | 25 | | | | | | | 3.9 | 2.0 | 1.1 | 34 | e.00 | | | | 18 | 27 | | | | | | | 2.8 | 1.8 | .60 | 36 | e.00 | | | | 19 | e6.4 | | | | | | | 2.6 | 2.2 | 5.1 | 34 | e.00 | | | | 20 | e.00 | | | | | | | 2.8 | 3.5 | e6.4 | 32 | e.00 | | | | 21 | e.00 | | | | | | | 3.4 | 2.8 | e.00 | 31 | e.00 | | | | 22 | e.00 | | | | | | | 5.7 | 2.4 | e.00 | 22 | e.00 | | | | 23 | e.00 | | | | | | | 8.5 | 2.0 | e.00 | 13 | e.00 | | | | 24 | e.00 | | | | | | | 9.3 | 1.8 | e16 | 9.7 |
e.00 | | | | 25 | e.00 | | | | | | | 8.5 | 1.7 | 40 | 4.4 | e.00 | | | | 26 | e.00 | | | | | | | 6.3 | 1.9 | 39 | e2.0 | e.00 | | | | 27 | e.00 | | | | | | | 4.7 | 2.0 | 36 | e.00 | e.00 | | | | 28 | e.00 | | | | | | | 6.5 | 2.0 | 35 | e.00 | e.00 | | | | 29 | e.00 | | | | | | | 10 | 1.8 | 35 | e.00 | e.00 | | | | 30 | e.00 | | | | | | | 9.6 | 1.7 | 34 | e.00 | e.00 | | | | 31 | e.00 | | | | | | | 8.3 | | 34 | e.00 | | | | | TOTAL | 558.40 | | | | | | | 140.70 | 96.9 | 380.40 | 745.10 | 0.00 | | | | MEAN | 18.0 | | | | | | | 4.54 | 3.23 | 12.3 | 24.0 | .000 | | | | MAX | 38 | | | | | | | 10 | 6.9 | 40 | 36 | .00 | | | | MIN | .00 | | | | | | | .00 | 1.7 | .00 | .00 | .00 | | | | AC-FT | 1110 | | | | | | | 279 | 192 | 755 | 1480 | .00 | | | e Estimated. ### 09044300 BEMROSE-HOOSIER DIVERSION NEAR HOOSIER PASS, CO LOCATION.--Lat $39^{\circ}22^{\circ}50^{\circ}$, long $106^{\circ}04^{\circ}13^{\circ}$, in NE $^{1}/_{4}$ SE $^{1}/_{4}$ sec.2, T.8 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank at entrance to Hoosier Pass tunnel, 1.4 mi northwest of Hoosier Pass, 1.6 mi downstream from diversion point on Bemrose Creek, and 7 mi southwest of Breckenridge. PERIOD OF RECORD.--October 1957 to current year (seasonal records only). GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Elevation of gage is 10,986 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. This is a transmountain diversion from Bemrose and Hoosier Creeks in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion points are in SW $^1/_4$ SW $^1/_4$ sec.6, T.8 S., R.77 W., and in sec.12, T.8 S., R.78 W. The entire flow is regulated by diversion gates. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 COOPERATION.--Gage-height record collected in cooperation with City of Colorado Springs. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 44 ft³/s, June 21, 1965; no flow for most of each year. | | | DISCHAR | GE, CUBIC | FEEL PER | | MAIER YEA
MEAN VAL | | LR 1999 10 | SEPIEMBE | R 2000 | | | |-------|------|---------|-----------|----------|-----|-----------------------|------|------------|----------|--------|-------|------| | D.111 | 0.00 | 37077 | DEG | 7777 | FFF | | 3.00 | 147.77 | | | 3.770 | CEE | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | e.00 | 20 | 6.3 | 1.4 | e.00 | | 2 | | | | | | | | e.00 | 19 | 6.2 | 1.4 | e.00 | | 3 | | | | | | | | e.00 | 18 | 6.4 | e.50 | e.00 | | 4 | | | | | | | | e.00 | 17 | 5.9 | e.00 | e.00 | | 5 | | | | | | | | e.00 | 16 | 5.2 | e.00 | e.00 | | 6 | | | | | | | | e.00 | 16 | 5.3 | e.00 | e.00 | | 7 | | | | | | | | 4.0 | 15 | 5.6 | e.00 | e.00 | | 8 | | | | | | | | 4.9 | 14 | 5.3 | e.00 | e.00 | | 9 | | | | | | | | 3.8 | 13 | 4.3 | e.00 | e.00 | | 10 | | | | | | | | 5.7 | 12 | 3.9 | e.00 | e.00 | | 10 | | | | | | | | | 12 | 3.7 | C.00 | C.00 | | 11 | | | | | | | | 6.8 | 11 | 3.7 | e.00 | e.00 | | 12 | | | | | | | | 5.0 | 10 | e1.5 | e.00 | e.00 | | 13 | | | | | | | | 3.9 | 10 | e.20 | e.00 | e.00 | | 14 | | | | | | | | 4.2 | 9.1 | e.80 | e.00 | e.00 | | 15 | | | | | | | | 4.5 | 9.1 | e.00 | e.00 | e.00 | | 16 | | | | | | | | 5.8 | 8.7 | e.00 | e.00 | e.00 | | 17 | | | | | | | | 4.7 | 8.1 | e.00 | e.00 | e.00 | | 18 | | | | | | | | 3.7 | | e.00 | | | | | | | | | | | | | 7.5 | | e.00 | e.00 | | 19 | | | | | | | | 4.0 | 8.0 | e.00 | e.00 | e.00 | | 20 | | | | | | | | 4.2 | 8.4 | e.00 | e.00 | e.00 | | 21 | | | | | | | | 5.0 | 7.1 | e.00 | e.00 | e.00 | | 22 | | | | | | | | 7.3 | 6.8 | e.00 | e.00 | e.00 | | 23 | | | | | | | | 12 | 7.2 | e.00 | e.00 | e.00 | | 24 | | | | | | | | 17 | 7.5 | e.80 | e.00 | e.00 | | 25 | | | | | | | | 15 | 7.4 | 1.7 | e.00 | e.00 | | 26 | | | | | | | | 12 | 7.2 | 1.6 | e.00 | e.00 | | 27 | | | | | | | | 11 | 7.5 | 1.7 | e.00 | e.00 | | 28 | | | | | | | | 15 | 7.0 | 1.7 | e.00 | e.00 | | 29 | | | | | | | | 22 | 6.6 | 1.6 | e.00 | e.00 | | 30 | | | | | | | | 23 | 6.3 | 1.5 | e.00 | e.00 | | 31 | | | | | | | | 21 | | 1.5 | | | | 31 | | | | | | | | 21 | | 1.5 | e.00 | | | TOTAL | | | | | | | | 225.50 | 320.5 | 72.70 | 3.30 | 0.00 | | MEAN | | | | | | | | 7.27 | 10.7 | 2.35 | .11 | .000 | | MAX | | | | | | | | 23 | 20 | 6.4 | 1.4 | .00 | | MIN | | | | | | | | .00 | 6.3 | .00 | .00 | .00 | | AC-FT | | | | | | | | 447 | 636 | 144 | 6.5 | .00 | e Estimated. ### 09044800 MCCULLOUGH-SPRUCE-CRYSTAL DIVERSION NEAR HOOSIER PASS, CO LOCATION.--Lat $39^{\circ}22'51"$, long $106^{\circ}04'14"$, in $NE^{1}/_{4}SE^{1}/_{4}$ sec.2, T.8 S., R.78 W., Summit County, Hydrologic Unit 14010002, on left bank at entrance to Hoosier Pass tunnel, 1.4 mi northwest of Hoosier Pass, 1.6 mi downstream from diversion point on McCullough Gulch, and 7 mi southwest of Breckenridge. PERIOD OF RECORD.--October 1957 to current year (seasonal records only). Prior to October 1961, published as McCullough Diversion near Hoosier Pass. GAGE.--Water-stage recorder with satellite telemetry, and Parshall flume. Elevation of gage is 10,986 ft, above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. This is a transmountain diversion from McCullough Gulch and Spruce and Crystal Creeks in Blue River basin through Hoosier Pass tunnel to South Platte River basin from which it is again diverted to South Catamount Creek in the Arkansas River basin. Water is for municipal use by city of Colorado Springs. Diversion points are in secs.14, 23, and 26, T.7 S., R.78 W. The entire flow is regulated by diversion gates. COOPERATION.--Gage-height record collected in cooperation with City of Colorado Springs. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 132 ft³/s, June 22, 1996; no flow for most of each year. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-----|-----|-----|-----|-----|----------|------|--------|------|------| | 1 | | | | | | | | e.00 | 77 | 25 | e.00 | e.00 | | 2 | | | | | | | | e.00 | 75 | 26 | e.00 | e.00 | | 3 | | | | | | | | e.00 | 75 | 26 | e.00 | e.00 | | 4 | | | | | | | | e.00 | 73 | 21 | e.00 | e.00 | | 5 | | | | | | | | e.00 | 72 | 18 | e.00 | e.00 | | 3 | | | | | | | | C.00 | 72 | 10 | C.00 | C.00 | | 6 | | | | | | | | e.00 | 70 | 19 | e.00 | e.00 | | 7 | | | | | | | | e.00 | 75 | 19 | e.00 | e.00 | | 8 | | | | | | | | e4.6 | 76 | 21 | e.00 | e.00 | | 9 | | | | | | | | 8.0 | 69 | 28 | e.00 | e.00 | | 10 | | | | | | | | 13 | 56 | 21 | e.00 | e.00 | | 10 | | | | | | | | 13 | 30 | 21 | e.00 | e.00 | | 11 | | | | | | | | 20 | 50 | 18 | e.00 | e.00 | | 12 | | | | | | | | 17 | 50 | 17 | e.00 | e.00 | | 13 | | | | | | | | 12 | 45 | 15 | e.00 | e.00 | | 14 | | | | | | | | 11 | 35 | 16 | e.00 | e.00 | | 15 | | | | | | | | 12 | 42 | 16 | e.00 | e.00 | | 13 | | | | | | | | 12 | 42 | 10 | e.00 | e.00 | | 16 | | | | | | | | 17 | 44 | 20 | e.00 | e.00 | | 17 | | | | | | | | 20 | 37 | 24 | e.00 | e.00 | | 18 | | | | | | | | 11 | 35 | 11 | e.00 | e.00 | | 19 | | | | | | | | 9.1 | 47 | 14 | | | | | | | | | | | | | | | e.00 | e.00 | | 20 | | | | | | | | 9.1 | 47 | e10 | e.00 | e.00 | | 21 | | | | | | | | 11 | 37 | - 00 | - 00 | - 00 | | | | | | | | | | 11
22 | | e.00 | e.00 | e.00 | | 22 | | | | | | | | | 38 | e.00 | e.00 | e.00 | | 23 | | | | | | | | 47 | 38 | e.00 | e.00 | e.00 | | 24 | | | | | | | | 69 | 37 | e.00 | e.00 | e.00 | | 25 | | | | | | | | 63 | 42 | e.00 | e.00 | e.00 | | 26 | | | | | | | | 45 | 49 | e.00 | e.00 | e.00 | | 27 | | | | | | | | 32 | 39 | | | | | | | | | | | | | | | e.00 | e.00 | e.00 | | 28 | | | | | | | | 50 | 22 | e.00 | e.00 | e.00 | | 29 | | | | | | | | 95 | 23 | e.00 | e.00 | e.00 | | 30 | | | | | | | | 98 | 24 | e.00 | e.00 | e.00 | | 31 | | | | | | | | 89 | | e.00 | e.00 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | 784.80 | 1499 | 385.00 | 0.00 | 0.00 | | MEAN | | | | | | | | 25.3 | 50.0 | 12.4 | .000 | .000 | | MAX | | | | | | | | 98 | 77 | 28 | .00 | .00 | | MIN | | | | | | | | .00 | 22 | .00 | .00 | .00 | | AC-FT | | | | | | | | 1560 | 2970 | 764 | .00 | .00 | | | | | | | | | | | | | | | # 09046490 BLUE RIVER AT BLUE RIVER, CO LOCATION.--Lat $39^{\circ}27^{\circ}21^{\circ}$, long $106^{\circ}01^{\circ}52^{\circ}$, in $NE^{1}/_{4}SE^{1}/_{4}$ sec.7, T.7 S, R.77 W., Summit County, Hydrologic Unit 14010002 on left bank, 350 ft downstream from spillway of Goose Pasture Tarn Dam and 2.0 mi southeast of Breckenridge. DRAINAGE AREA.--42.4 mi² . PERIOD OF RECORD. -- October 1983 to current year. REVISED RECORDS.--WDR CO-95-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry and concrete control. Elevation of gage is 9,835 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Transmountain diversions upstream from station by Boreas Pass ditch and Hoosier Pass tunnel. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAF | RGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--|---|--------------------------------------|--------------------------------------|--|--
------------------------------------|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
20
19
18
19 | 14
13
13
12 | 9.9
9.8
11
12
12 | 5.5
6.0
6.3
6.4
6.3 | 6.7
6.7
6.4
6.2
6.1 | 9.8
19
21
20
20 | 4.4
5.0
5.5
5.8
5.9 | 71
61
62
81
101 | 116
107
101
93
87 | 40
40
47
56
51 | 28
28
28
29
28 | 66
61
54
49
45 | | 6
7
8
9
10 | 19
23
22
22
21 | 11
11
11
11 | 11
11
10
12
12 | 6.2
6.3
6.3
6.4
6.6 | 6.2
6.4
6.2
6.4
6.3 | 20
19
18
16
9.7 | 5.9
6.8
6.9
7.0
5.1 | 29
54
83
59
51 | 82
77
72
68
63 | 46
44
49
58
57 | 26
24
23
22
21 | 45
46
41
39
33 | | 11
12
13
14
15 | 19
18
17
17
16 | 11
10
10
9.9
9.9 | 13
13
13
13 | 6.3
6.5
6.4
6.4 | | | 2 2 | 61
60
49
52
49 | 58
53
52
49
45 | 48
39
38
37
37 | 21
23
23
21
21 | 28
26
23
22
21 | | 16
17
18
19
20 | 16
17
20
18
23 | 9.9
10
9.9
12
11 | 12
13
12
12
12 | 6.2
6.4
6.7
7.0
6.9 | 4.6
4.6
4.2
3.8
3.6 | 3.6
3.6
3.7
3.9
3.8 | 3.0
3.1
3.2
3.3
3.3 | 50
59
51
48
48 | 42
40
38
39
48 | 47
64
86
57
39 | 24
29
30
29
27 | 20
19
19
19
19 | | 21
22
23
24
25 | 24
19
16
15
15 | 12
13
14
14 | | 6.5
6.4
6.6
6.6 | | | 3.4
3.4
3.3
3.6
3.7 | 45
51
67
93
104 | 37
32
30
29
29 | 41
42
39
38
38 | 29
35
34
37
43 | 21
36
29
31
28 | | 26
27
28
29
30
31 | 14
14
14
15
14 | 13
11
9.9
10
10 | 7.8
7.0
6.5
6.1
5.7
5.5 | 6.7
6.6
6.5
6.3
6.4
6.6 | 5.4
5.3
5.3
5.6 | 4.0
4.0
4.1
4.1
4.1 | 3.7
3.7
35
67
76 | 100
90
88
112
126
123 | 31
35
45
43
41 | 37
37
34
32
30
29 | 57
75
58
80
85
69 | 27
25
23
22
22 | | TOTAL
MEAN
MAX
MIN
AC-FT | | 343.5
11.4
14
9.9
681 | 325.8
10.5
13
5.5
646 | 199.0
6.42
7.0
5.5
395 | | 257.7
8.31
21
3.5
511 | 293.1
9.77
76
3.0
581 | 2178
70.3
126
29
4320 | 1682
56.1
116
29
3340 | 1377
44.4
86
29
2730 | 1107
35.7
85
21
2200 | 959
32.0
66
19
1900 | | | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 19.5
32.2
1985
13.5
1992 | 13.3
26.5
1985
8.62
1992 | 9.96
18.9
1985
6.96
1995 | 7.12
14.3
1985
4.67
1995 | 5.66
8.11
1985
4.12
1991 | 5.40
8.31
2000
3.66
1999 | 11.3
21.9
1989
5.53
1993 | 61.7
128
1996
26.0
1995 | 125
276
1995
56.1
2000 | 88.1
327
1995
23.0
1991 | 46.0
120
1995
18.0
1986 | 26.8
44.3
1984
14.2
1986 | | SUMMARY | STATIST | ICS | FOR 3 | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YEA | ARS 1984 | - 2000 | | LOWEST HIGHEST LOWEST : ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MANNUAL ME DAILY ME DAILY ME SEVEN-DAY ANEOUS PE | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 14583.1
40.0
306
3.0
3.2
28930
123
13
4.0 | Jun 25
Mar 16
Mar 14 | | 9435.7
25.8
126
3.0
3.2
141
1.86
18720
60
16
4.1 | May 30
Apr 16
Apr 11
May 29
May 29 | | 35.1
70.4
20.5
578
a3.0
3.2
681
3.23
25420
88
15
5.1 | Jul 1
Mar 1
Mar 1
Jun 1
Jun 1 | 1995
1990
.2 1995
.6 1999
.4 1999
.8 1995
.8 1995 | a Also occurred many times many years. ### 09046530 FRENCH GULCH AT BRECKENRIDGE, CO LOCATION.--Lat. $39^{\circ}29^{\circ}35^{\circ}$, long. $106^{\circ}02^{\circ}39^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$, sec.30, T.6 S, R.77 W, Summit County, Hydrologic Unit 14010002, on left bank, 300 ft south of Summit Co. Rd. 450, 200 ft upstream from bridge on Hwy. 9, in Breckenridge. DRAINAGE AREA. -- 10.9 mi². PERIOD OF RECORD.--October 1995 to current year. Water-quality data available, October 1995 to September 1999. Daily water temperature record available, October 1996 to September 1998. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,510 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion or regulation upstream from gage. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | ~ | | DISCHAR | RGE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--------------------------------------|---|--------------------------------------|--|--|--|--------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.2
5.1
5.0
4.9
4.8 | 3.9
3.6
3.5
3.5 | 2.8
2.8
2.8
e2.6
e2.5 | 1.9
1.9
2.0
e1.9 | e1.6
e1.5
e1.5
e1.6
e1.6 | e1.6
1.6
1.7
e1.7 | 1.9
1.8
1.9
1.9 | 7.7
8.4
10
13
16 | 66
61
58
53
49 | 14
14
14
13
12 | 6.7
6.6
6.4
6.3
6.2 | 6.9
6.5
6.3
6.1
5.9 | | 6
7
8
9
10 | 4.8
5.5
5.4
5.4 | 3.3
3.3
3.4
3.4
3.1 | 2.8
e2.6
e2.5
e2.5
e2.3 | 1.7
e1.6
1.7
1.7
e1.7 | 1.7
e1.6
e1.7
1.8
1.7 | 1.7
1.8
1.7
1.7 | 2.6
2.6
2.6
3.2
3.4 | 20
22
21
18
18 | 45
44
41
38
35 | 12
12
12
13
12 | 6.0
5.8
5.7
5.5
5.4 | 5.8
5.8
5.6
5.5
5.2 | | 11
12
13
14
15 | | | | | | | 3.4
3.5
3.8
4.1
4.0 | 23
22
18
17
16 | 32
29
28
26
25 | 11
11
11
10
10 | 5.4
5.5
6.0
5.8
5.9 | 5.0
4.8
4.6
4.3
4.3 | | 16
17
18
19
20 | 4.8
4.4
4.6
4.6
4.4 | 3.0
3.1
3.1
2.6
2.6 | e2.2
2.3
e2.1
e2.1
e2.2 | 1.6
1.6
1.6
1.7 | e1.6
1.6
1.6
e1.6
e1.6 | e1.6
e1.7
e1.7
e1.6
1.7 | 3.8
4.0
4.3
4.4
4.0 | 17
20
17
16
16 | 24
22
20
20
21 | 10
12
11
10
9.9 | 5.8
6.1
6.6
6.4
6.1 | 4.2
4.0
4.2
4.2
4.3 | | | | | | | | | 4.2
4.4
4.3
4.4
4.2 | | | | | | | 26
27
28
29
30
31 | 3.8
3.7
3.7
3.9
3.8
3.8 | 2.6
2.7
2.9
2.9
2.9 | 2.1
2.0
2.0
2.0
1.9 | 1.8
1.7
e1.6
e1.5
e1.6 | e1.6
e1.6
1.7
1.7 | 2.0
2.0
2.1
2.1
2.0
2.0 | 4.7
5.5
6.4
7.6
8.3 | 43
38
39
57
70 | 17
18
16
15
15 | 7.8
8.0
7.7
7.4
7.1
6.9 | 6.4
6.5
6.2
7.7
7.4
7.2 | 4.3
4.2
4.1
4.1
4.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 143.7
4.64
5.6
3.7
285 | 90.6
3.02
3.9
2.2
180 | 70.7
2.28
2.8
1.9
140 | 52.4
1.69
2.0
1.5
104 | 47.3
1.63
1.8
1.5
94 | 55.0
1.77
2.1
1.6
109 | 117.5
3.92
8.3
1.8
233 | 70
70
800.1
25.8
70
7.7
1590 | 906
30.2
66
15
1800 | 321.8
10.4
14
6.9
638 | 192.0
6.19
7.7
5.4
381 | 147.2
4.91
6.9
4.0
292 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.90
5.15
1996
4.64
2000 | 3.31
3.78
1999
3.02
2000 | 2.50
2.74
1996
2.28
2000 | 1.90
2.10
1998
1.69
2000 | 1.86
2.04
1996
1.63
2000 | 1.94
2.09
1997
1.77
2000 | 3.36
4.07
1997
2.48
1998 | 22.0
38.8
1996
10.8
1998 | 49.9
75.0
1997
22.0
1998 | 19.4
27.3
1999
10.4
2000 | 9.84
12.4
1997
6.19
2000 | 6.20
7.05
1999
4.91
2000 | | SUMMARY | Y STATISTI | CS | FOR 1 | 999 CALEN | DAR YEAR | F | OR 2000 WA | ATER YEAR | | WATER YE | ARS 1996 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERCO 50 PERCO | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 91
e1.5
1.6
8670
41
3.7
1.9 | Jun 25
Mar 3
Feb 28 | | 2944.3
8.04
70
e1.5
e1.6
83
6.75
5840
18
4.2
1.6 | | | 10.6
13.0
7.23
115
e1.3
1.4
7.00
7680
26
4.2
1.8 | | 1997
1998
5 1997
7 1997
2 1997
5 1997
5 1997 | e Estimated. ### 09046600 BLUE RIVER NEAR DILLON, CO LOCATION.--Lat 39°34'00", long $106^\circ02'56$ ", in $SW^1/_4SE^1/_4$ sec.31, T.5 S., R.77 W., Summit County, Hydrologic Unit 14010002, on left bank 0.3 mi upstream from Dillon Reservoir, and 5.0 mi south of Dillon. DRAINAGE AREA.--121
mi². PERIOD OF RECORD.--October 1957 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. WDR CO-95-2: 1994. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,020 ft above sea level, from topographic map. Prior to Aug. 6, 1992, at site 1.4 mi upstream at different datum. Aug. 6, 1992 to Oct. 20, 1994, at site 200 ft upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station by Boreas Pass ditch and Hoosier Pass tunnel (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBI | C FEET PE | | VATER YE
MEAN V | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | ER 2000 | | | |----------|------------------------|---------------------|------------|-------------|------------|--------------------|----------------------|-------------------|------------|--|----------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 54 | 39 | e29 | e23 | e24 | e28 | e27 | 171 | 457 | 133 | 69 | 112 | | 2 | 53 | 39 | e29 | e23 | e24 | e33 | e26 | 168 | 444 | 129 | 68 | 106 | | 3 | 53 | 39 | e29 | e24 | e24 | e37 | e27 | 178 | e429 | 133 | 67 | 97 | | 4 | 53 | 38 | e29 | e24 | e24 | e37 | e27 | 217 | e398 | 136 | 67 | 88 | | 5 | 52 | 37 | e29 | e24 | e24 | e37 | e29 | 276 | e368 | 134 | 67 | 81 | | 6 | 52 | 36 | e29 | e24 | e24 | e37 | 32 | 285 | e344 | 125 | 65 | 79 | | 7 | 54 | 35 | e29 | e24 | e24 | e37 | 34 | 249 | e327 | 120 | 62 | 78 | | 8 | 58 | 35 | e29 | e24 | e24 | e35 | 35 | 286 | e311 | 121 | 59 | 76 | | 9 | 61 | 35 | e29 | e24 | e24 | e33 | 38 | 259 | e295 | 132 | 57 | 75 | | 10 | 60 | 34 | e29 | e24 | e24 | e29 | 42 | 233 | 279 | 133 | 55 | 71 | | 11
12 | 58
55 | 34
33 | e29
e29 | e24
e24 | e23
e22 | e28
e27 | 44
44 | 260
261 | 262
245 | 125
121 | 55
56 | 65 | | 13 | 53 | 33 | e29
e29 | e24
e24 | e22
e22 | e27
e27 | 44 | 224 | 234 | 112 | 50
57 | 61
57 | | 14 | 53
51 | 33 | e29 | e24
e24 | e22 | e27 | 49 | 205 | 234 | 108 | 57
57 | 55 | | 15 | 49 | 32 | e29 | e24 | e21 | e27 | 51 | 198 | 208 | 106 | 56 | 53 | | 16 | 48 | 31 | e29 | e24 | e21 | e27 | 49 | 203 | 199 | 112 | 57 | 51 | | 17 | 46 | 31 | e28 | e24 | e21 | e27 | 49 | 203
231
212 | 189 | 129 | 59 | 48 | | 18 | 43 | 31 | e28 | e24 | e21 | e27 | 52 | 212 | 178 | 157 | 65 | 47 | | 19 | 44 | 31 | e28 | e24 | e21 | e27 | 54 | 199 | 179 | 139 | 72 | 47 | | 20 | 46 | 29 | e28 | e24 | e19 | e27 | 51 | 195 | 209 | 115 | 69 | 47 | | 21 | 46 | 30 | e28 | e24 | e20 | e27 | 52 | 182 | 181 | 103 | 65 | 49 | | 22 | 48 | 30 | e28 | e24 | e21 | e27 | 54 | 192 | 161 | 99 | 65 | 56 | | 23 | 48 | e29 | e28 | e24 | e22 | e27 | 52 | 237 | 150 | 96 | 74 | 68 | | 24 | 46 | e29 | e27 | e24 | e22 | e27 | 50 | 326 | 142 | 90 | 72 | 65 | | 25 | 43 | e29 | e26 | e24 | e23 | e27 | 50 | 381 | 140 | 87 | 72 | 64 | | 26
27 | 42
40 | e29
e29 | e26
e24 | e24
e24 | e23
e23 | e27 | 53
58 | 374
342 | 143
150 | 86
86 | 75
98 | 63
61 | | 28 | 40 | e29
e29 | e24
e23 | e24
e24 | e23
e23 | e27
e28
e28 | | | 148 | 83 | 104 | 57 | | 29 | 40 | e29 | e23 | e24 | e23 | e20
e28 | 110 | 334 | 143 | 80 | 112 | 55 | | 30 | 40 | e29 | e22 | e24 | | e28 | 176 | 332
386
464 | 137 | 76 | 130 | 54 | | 31 | 39 | | e23 | e24 | | e27 | | 468 | | 73 | 122 | | | TOTAL | 1515 | 976 | 853 | 742 | 653 | 914 | 1533 | 8194 | 7271 | 3479 | 2228 | 1986 | | MEAN | 48.9 | 32.5 | 27.5 | 742
23.9 | 22.5 | 29.5 | | 264 | 242 | 112 | 71.9 | 66.2 | | MAX | 61 | 39 | 29 | 24 | 24 | 37 | 176 | 468 | 457 | 157 | 130 | 112 | | MIN | 39 | 29 | 22 | 23 | 19 | 27 | 26 | 168 | 137 | 73 | 55 | 47 | | AC-FT | 3010 | 1940 | 1690 | 1470 | 1300 | 1810 | 3040 | 16250 | 14420 | 6900 | 4420 | 3940 | | STATIST | CICS OF MC | NTHLY MEA | N DATA FO | OR WATER | YEARS 1958 | - 2000 | , BY WATER | YEAR (WY) | | | | | | MEAN | 52.2 | 38.9 | 31.3 | 26.3 | 24.3 | 23.8 | 40.2 | 179 | 343 | 205 | 106 | 68.0 | | MAX | 101 | 74.4 | 54.0 | 40.3 | 36.0 | 32.5 | 77.7 | 461 | 661 | 644 | 241 | 143 | | (WY) | 1985 | 1985 | 1984 | 1984 | 1983 | 1983 | 1985 | 1996 | 1995 | 1995 | 1984 | 1983 | | MIN | 30.6 | 23.8 | 21.7 | 17.0 | 17.2 | 17.0 | 23.0 | 65.1 | 72.0 | 73.7 | 55.1 | 40.5 | | (WY) | 1978 | 1978 | 1978 | 1995 | 1992 | 1995 | 1964 | 1981 | 1963 | 1966 | 1977 | 1962 | | SUMMARY | STATISTI | CS. | FOR : | 1999 CALEI | NDAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1958 | - 2000 | | ANNUAL | TOTAL | | | 39081 | | | 30344 | | | | | | | ANNUAL | MEAN | | | 107 | | | 82.9 | | | a108 | | | | HIGHEST | 'ANNUAL M | IEAN | | | | | | | | 168 | | 1984 | | | ANNUAL ME | | | _ | | | | | | 45.8 | | 1963 | | | DAILY ME | | | 593 | Jun 24 | | 468 | May 31 | | b1160 | Jun 2 | 6 1983 | | | DAILY MEA | | | e17
e19 | Mar 17 | | e19 | Feb 20 | | c16 | Feb 1 | | | | SEVEN-DAY
ANEOUS PE | MINIMUM | | e19 | Mar 13 | | e21
485 | rep 15 | | 45.8
b1160
c16
16
1390
6.91
a78250 | Mar | 3 1995
8 1995 | | | | AK FLOW
AK STAGE | | | | | #05
6 16 | May 21 | | ±390 | Juli 1 | 8 1995 | | | RUNOFF (A | | | 77520 | | | 60190 | nay Ji | | a78250 | Juni | J 1773 | | | ENT EXCEE | | | 371 | | | 208 | | | 247 | | | | | ENT EXCEE | | | 42 | | | 48 | | | 45 | | | | 90 PERC | ENT EXCEE | DS | | 26 | | | 24 | | | 23 | | | e Estimated. a Adjusted for diversions to Hoosier Pass tunnel. b Also occurred Jun 18, 1995. c Also occurred Feb 13-14, 1993, Jan 9, and Mar 3-21, 1995. ### 09047500 SNAKE RIVER NEAR MONTEZUMA, CO LOCATION.--Lat $39^\circ36^\circ20^\circ$, long $105^\circ56^\circ33^\circ$, in $NW^1/_4$ sec.19, T.5 S., R.76 W. (projected), Summit County, Hydrologic Unit 14010002, on right bank 200 ft downstream from North Fork and 4.5 mi northwest of Montezuma. DRAINAGE AREA.--57.7 mi². PERIOD OF RECORD.--July 1942 to September 1946, October 1951 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,320 ft above sea level, from topographic map. Prior to Oct. 14, 1943, nonrecording gage at present site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Small diversions upstream from station for irrigation and domestic use. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHARO | GE, CUBIC | C FEET PER | | NATER YE.
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--|---|--|------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 39
38
37
36
36 | 28
24
23
24
26 | e17
e17
e16
e16
e15 | e14
e14
e14
e14 | e11
e11
e11
e11 | e11
e11
e11
e11 | e12
e12
e12
e12
e14 | 50
67
91
114
141 | 407
371
352
339
320 | 112
110
107
101
96 | 42
41
46
47
43 | 51
46
43
41
41 | | 6
7
8
9
10 | 36
42
42
42
40 | 24
24
24
23
21 | e15
e15
e15
e15
e15 | e13
e13
e12
e12
e12 | ell
ell
ell
ell | e11
e11
e11
e11 | e14
e14
e15
e16
e17 | 166
173
153
123
139 | 307
289
276
258
238 | 93
91
93
97
92 | 40
38
37
36
35 | 43
41
41
41
38 | | 11
12
13
14
15 | 38
35
34
34
33 | 22
22
19
21
20 | e15
e15
e15
e15
e15 | e12
e12
e12
e12
e12 | ell
ell
ell
ell | e11
e11
e11
e11 | e17
e17
e19
e21
e21 | 170
148
124
112
115 | 221
213
205
185
185 | 86
86
84
84
83 | 34
34
34
33
36 | 36
34
34
33
31 | | 16
17
18
19
20 | 31
34
33
32
32 | 23
26
e24
e23
e22 | e15
e15
e15
e15
e15 | e12
e12
e12
e12
e12 | e11
e11
e11
e11 | e11
e12
e12
e12
e12 | e21
e19
e26
e26
e26 | 143
147
117
107
110 | 175
162
151
165
183 | 89
99
78
72
68 | 36
36
49
43
39 | 29
30
31
30
30 | | 21
22
23
24
25 | 31
30
29
29
28 | e21
e19
e18
e17
e17 | e14
e14
e14
e14
e14 | e12
e12
e12
e12
e12 | e11
e11
e11
e11 | e12
e12
e12
e12
e12 | e26
e27
e28
e28
e25 | 119
159
247
318
307 | 147
142
137
131 | 64
60
57
55
53 | 39
40
44
44
50 | 35
44
35
36
36 | | 26
27
28
29
30
31 | 28
28
27
28
26
29 | e19
e19
e18
e17
e17 |
e14
e14
e14
e14
e14 | e12
e12
e11
e11
e11
e11 | e11
e11
e11
 | e12
e12
e12
e12
e12
e12 | e31
e37
e46
54
53 | 262
235
287
393
443
438 | 138
138
126
120
116 | 54
54
51
47
45
43 | 47
45
44
66
55
53 | 36
34
33
33
33 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1037
33.5
42
26
2060 | 645
21.5
28
17
1280 | 460
14.8
17
14
912 | 380
12.3
14
11
754 | 319
11.0
11
11
633 | 355
11.5
12
11
704 | 706
23.5
54
12
1400 | 5718
184
443
50
11340 | 6328
211
407
116
12550 | 2404
77.5
112
43
4770 | 1306
42.1
66
33
2590 | 1099
36.6
51
29
2180 | | STATIST | ICS OF MC | NTHLY MEAI | N DATA FO | OR WATER Y | EARS 1943 | - 2000, | BY WATER | YEAR (WY) | 1 | | | | | MEAN
MAX
(WY)
MIN
(WY) | 27.6
66.9
1985
16.1
1945 | 19.8
39.5
1985
11.8
1965 | 15.5
25.9
1985
9.90
1978 | 12.1
18.0
1985
7.03
1963 | 10.7
16.4
1997
7.00
1946 | 10.7
17.0
1997
7.40
1973 | 18.1
35.4
1946
8.34
1973 | 99.8
216
1958
28.7
1995 | 287
520
1997
101
1966 | 148
385
1995
50.9
1977 | 66.8
177
1984
24.4
1977 | 38.2
90.7
1984
18.0
1977 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1943 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 28289.5
77.5
499
e9.0
e9.1
56110
250
24
9.4 | Jun 24
Feb 12
Feb 12 | | 20757
56.7
443
e11
e11
560
3.00
41170
147
28 | May 30
Jan 28
Jan 28
May 29
May 29 | | 62.9
95.8
35.1
870
5.0
6.0
1250
a3.51
45580
176
23 | Feb 2
Jan
Jun 1 | 1997
1954
22 1995
26 1964
9 1963
10 1952
10 1952 | e Estimated a Maximum gage height, 3.88 ft, Jun 6, 1972. # 09047700 KEYSTONE GULCH NEAR DILLON, CO LOCATION.--Lat $39^{\circ}35'40"$, long $105^{\circ}58'19"$, in $NE^{1}/_{4}NE^{1}/_{4}$ sec.26, T.5 S., R.77 W., Summit County, Hydrologic Unit 14010002, on right bank 0.7 mi upstream from mouth, and 4.7 mi southeast of Dillon. DRAINAGE AREA.--9.10 mi². PERIOD OF RECORD.--October 1957 to current year. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 9,350 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No known diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--|--------------------------------------|---|--|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.8
3.9
3.8
3.8
3.7 | e4.9
e5.2
e5.2
e5.2
e5.2 | e3.4
e3.4
e3.4
e3.4
e3.1 | e2.8
e2.8
e2.8
e2.8 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.7
e2.7
e2.7
e2.7
e3.0 | e14
e13
14
18
23 | 35
31
28
25
24 | 7.3
7.2
7.3
6.8
6.5 | 3.8
3.7
3.7
3.8
3.6 | 3.7
3.3
3.1
3.0
3.0 | | 6
7
8
9
10 | 3.9
4.3
4.2
4.3
4.2 | e5.2
e5.2
e5.2
e5.0
e5.0 | e3.1
e3.1
e3.1
e3.1
e3.1 | e2.8
e2.8
e2.8
e2.8 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.5
e2.5
e2.5
e2.5
e2.5 | e3.1
e3.0
e3.0
e3.2
e3.4 | 25
23
21
19
24 | 22
21
20
19
17 | 6.4
6.3
6.3
6.6
6.2 | 3.4
3.2
3.1
3.0
2.9 | 3.2
3.1
3.0
2.9
2.7 | | 11
12
13
14
15 | 4.1
3.9
3.8
3.8
3.7 | e5.0
e4.8
e4.8
e4.8
e4.8 | e3.1
e3.1
e3.1
e3.1
e2.8 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.5
e2.5
e2.5
e2.5
e2.5 | e3.6
e3.6
e4.0
e4.4
e4.2 | 28
23
21
20
21 | 16
14
13
12
12 | 6.0
6.0
5.9
6.1
6.6 | 2.9
3.2
3.3
3.0
3.1 | 2.6
2.5
2.5
2.4
2.3 | | 16
17
18
19
20 | 3.7
3.5
2.8
2.1
2.1 | e4.8
e4.5
e4.3
e4.0
e3.8 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.5
e2.5
e2.6
e2.7
e2.7 | e4.0
e4.7
e5.2
e4.8
e4.5 | 25
22
19
19 | 11
11
10
11
12 | 6.8
7.1
6.0
5.5
5.2 | 3.3
3.7
6.2
5.3
4.3 | 2.5
2.4
2.7
2.6
2.7 | | 21
22
23
24
25 | 2.1
2.6
3.9
3.8
3.8 | e3.7
e3.5
e3.4
e3.4 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.5
e2.5
e2.5
e2.5
e2.5 | e2.7
e2.7
e2.7
e2.7
e2.7 | e4.7
e4.8
e4.8
e4.9
e5.0 | 19
24
35
37
34 | 9.7
9.1
8.7
8.4
8.3 | 5.0
4.7
4.5
4.4
4.3 | 3.9
4.8
5.7
4.6
4.3 | 3.2
4.3
3.1
3.3
3.7 | | 26
27
28
29
30
31 | 3.8
3.7
3.5
3.7
e3.8
e4.5 | e3.4
e3.4
e3.4
e3.4 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.8
e2.8
e2.6
e2.6
e2.6 | e2.5
e2.5
e2.5
e2.5 | e2.7
e2.7
e2.7
e2.7
e2.7
e2.7 | e6.0
e7.0
e8.6
e13
e15 | 31
32
35
41
39
38 | 8.9
8.8
8.0
7.6
7.6 | 5.2
5.8
4.8
4.3
4.1
3.9 | 4.2
4.0
3.8
5.0
4.2
4.0 | 3.6
3.2
3.1
3.0
2.9 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3.63
4.5
2.1
223 | 3.4
260 | 183 | 2.6
171 | 2.5
144 | 2.59
2.7
2.5
159 | 4.88 | 25.0
41
13
1540 | 35
7.6
891 | 179.1
5.78
7.3
3.9
355 | 121.0
3.90
6.2
2.9
240 | 89.6
2.99
4.3
2.3
178 | | MEAN
MAX
(WY)
MIN
(WY) | 3.38
6.12
1985
2.02
1982 | 3.01
4.38
2000
1.77
1964 | 2.56
3.68
1966
1.37
1964 | 2.23
2.89
1997
1.39
1964 | 2.08
2.90
1997
1.40
1961 | 2.10
3.00
1986
1.40
1973 | 3.13
6.19
1986
1.44
1973 | 12.9
40.8
1996
5.49
1981 | 24.8
58.8
1995
4.49
1963 | 10.3
31.2
1995
2.55
1963 | 5.34
15.5
1984
2.19
1977 | 3.79
7.97
1984
1.83
1977 | | SUMMARY | STATIST | ICS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER Y | EARS 1958 | - 2000 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN MANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 2332.6
6.39
29
e1.8
e2.1
4630
17
3.8
2.3 | Jun 17
Apr 9
Apr 7 | | 2335.9
6.38
41
2.1
2.5
62
2.77
4630
18
3.5
2.5 | May 29
Oct 19
Sep 11
May 23
May 23 | | 6.31
13.1
3.10
153
1.1
1.3
3.41
4570
15
3.1
1.9 | 1 | 1984
1963
18 1995
26 1964
28 1963
17 1995
17 1995 | | e Estimated. a From rating curve extended above 65 ft³/s. ### 09050100 TENMILE CREEK BELOW NORTH TENMILE CREEK AT FRISCO, CO LOCATION.--Lat $39^{\circ}34'31"$, long $106^{\circ}06'36"$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.34, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 220 ft upstream from bridge on U.S. Highway 6, 160 ft downstream from North Tenmile Creek, and 0.6 mi west of Frisco. DRAINAGE AREA.--93.3 mi². PERIOD OF RECORD. --October 1957 to current year. Prior to October 1971, published as "below North Fork, at Frisco." GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,100 ft above sea level, from topographic map. Prior to Apr. 21, 1981 at site 720 ft downstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by a few small diversions upstream from station for irrigation and municipal use, and transbasin diversion from Robinson Reservoir, capacity, 2,520 acre-ft, in Eagle River basin. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | E, CUBIC | C FEET PER | | | YEAR OCTOBE
VALUES | R 1999 TO | SEPTEMBE | R 2000 | | | |---------------|------------------------|---------------------|--------------|--------------
--------------|--------------|-----------------------|------------------|--------------|--------------|--------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 52
51 | 39
36 | e26
e26 | e25
e25 | e25
e25 | e27
e27 | e26 | e130
e160 | 770
698 | 157
149 | 46
46 | 71
64 | | 3
4 | 49
47 | 36
35 | e26
e26 | e25
e25 | e25
e25 | e27
e27 | | e200
282 | 668
626 | 145
137 | 47
50 | 58
54 | | 5 | 45 | 34 | e26 | e25 | e25 | e27 | e28 | 370 | 592 | 128 | 45 | 52 | | 6
7 | 44
54 | 33
33 | e26
e26 | e25
e25 | e25
e25 | e27
e27 | | 415
406 | 564
545 | 122
118 | 43
41 | 55
57 | | 8 | 56 | 33 | e26 | e25 | e25 | e27 | e32 | 359 | 509 | 123 | 39 | 54 | | 9
10 | 56
54 | 32
30 | e25
e25 | e25
e25 | e26
e27 | e27
e27 | | 275
329 | 460
409 | 153
152 | 36
34 | 59
51 | | | | | | | | | | | | | | | | 11
12 | 51
49 | 30
29 | e25
e25 | e25
e25 | e27
e27 | e27
e27 | | 449
395 | 364
338 | 127
121 | 36
41 | 48
46 | | 13 | 47 | 29 | e25 | e25 | e27 | e27 | | 296 | 303 | 120 | 45 | 44 | | 14 | 45 | 30 | e25 | e25 | e27 | e27 | | 277 | 277 | 116 | 41 | 42 | | 15 | 44 | 28 | e25 | e25 | e27 | e27 | e45 | 283 | 283 | 118 | 44 | 41 | | 16 | 41 | 28 | e25 | e25
e25 | e27 | e27 | | 357
377 | 271 | 143 | 52 | 39 | | 17
18 | 43
44 | 28
28 | e25
e25 | e25
e25 | e27
e27 | e27
e27 | | 288 | 242
229 | 185
152 | 56
61 | 38
38 | | 19 | 42 | e26 | e25 | e25 | e27 | e26 | e54 | 259 | 263 | 126 | 61 | 38 | | 20 | 41 | e26 | e25 | e25 | e27 | e26 | e50 | 260 | 308 | 111 | 54 | 38 | | 21 | 41 | e26 | e25 | e25 | e27 | e26 | | 274 | 244 | 100 | 52 | 46 | | 22
23 | 40
40 | e26
e26 | e25
e25 | e25
e25 | e27
e27 | e26
e26 | | 362
566 | 224
209 | 91
83 | 54
62 | 73
56 | | 24 | 39 | e26 | e25 | e25 | e27 | e26 | | 697 | 198 | 77 | 63 | 54 | | 25 | 38 | e26 | e25 | e25 | e27 | e26 | e50 | 683 | 193 | 73 | 71 | 51 | | 26 | 36 | e26 | e25 | e25 | e27 | e26 | | 544 | 201 | 67 | 68 | 52 | | 27
28 | 38
37 | e26
e26 | e25
e25 | e25
e25 | e27
e27 | e26
e26 | | 473
572 | 211
187 | 62
56 | 66
60 | 48
47 | | 29 | 40 | e26 | e25 | e25 | e27 | e26 | | 819 | 174 | 53 | 95 | 47 | | 30 | 37 | e26 | e25 | e24 | | e26 | | 944 | 166 | 51 | 87 | 47 | | 31 | 39 | | e25 | e23 | | e26 | | 863 | | 49 | 78 | | | TOTAL
MEAN | 1380
44.5 | 883
29.4 | 783
25.3 | 772
24.9 | 766
26.4 | 824
26.6 | | 12964
418 | 10726
358 | 3465
112 | 1674
54.0 | 1508
50.3 | | MAX | 56 | 39 | 25.3 | 25 | 27 | 20.0 | | 944 | 770 | 185 | 95 | 73 | | MIN | 36 | 26 | 25 | 23 | 25 | 26 | 26 | 130 | 166 | 49 | 34 | 38 | | AC-FT | 2740 | 1750 | 1550 | 1530 | 1520 | 1630 | 2990 | 25710 | 21280 | 6870 | 3320 | 2990 | | STATIST | ICS OF MC | NTHLY MEAN | I DATA FO | OR WATER Y | EARS 1958 | - 200 | 0, BY WATER | YEAR (WY) |) | | | | | MEAN | 32.6 | 25.1 | 19.7 | 17.1 | 17.4 | 19.4 | | 255 | 482 | 196 | 74.7 | 44.8 | | MAX
(WY) | 77.7
1985 | 76.2
1985 | 34.5
1994 | 34.0
1994 | 33.8
1983 | 46.0
1983 | | 493
1996 | 818
1997 | 607
1995 | 251
1984 | 127
1984 | | MIN | 13.0 | 9.83 | 11.7 | 11.0 | 9.55 | 9.20 | | 96.5 | 156 | 44.9 | 25.3 | 21.8 | | (WY) | 1978 | 1978 | 1978 | 1963 | 1978 | 1976 | 1973 | 1995 | 1963 | 1977 | 1977 | 1977 | | SUMMARY | STATISTI | CS. | FOR 1 | 1999 CALEN | DAR YEAR | | FOR 2000 W | ATER YEAR | | WATER YEA | ARS 1958 | - 2000 | | ANNUAL 7 | | | | 42416 | | | 37252 | | | | | | | ANNUAL I | | | | 116 | | | 102 | | | 102
183 | | 1004 | | | ANNUAL M
ANNUAL ME | | | | | | | | | 47.0 | | 1984
1977 | | HIGHEST | DAILY ME | AN | | 728 | Jun 17 | | 944 | May 30 | | 1480 | | 17 1965 | | | DAILY MEA | | | e17 | Feb 12 | | e23 | Jan 31 | | 5.3 | | 14 1994 | | | SEVEN-DAY
ANEOUS PE | MINIMUM
CAK FLOW | | e18 | Feb 6 | | e25
1160 | Jan 25
May 29 | | 7.9
a1910 | | 8 1960
16 1965 | | INSTANT | ANEOUS PE | CAK STAGE | | | | | 4.5 | 3 May 29 | | 6.15 | | 16 1965 | | | RUNOFF (A | | | 84130 | | | 73890
283 | | | 73880 | | | | | ENT EXCEE | | | 406
39 | | | ∠83
40 | | | 320
31 | | | | | ENT EXCEE | | | 19 | | | 25 | | | 14 | | | e Estimated. a From rating curve extended above 750 ft³/s. ### 09050700 BLUE RIVER BELOW DILLON, CO LOCATION.--Lat 39°37'32", long $106^{\circ}03'57$ ", in $SE^{1}/_{4}SE^{1}/_{4}$ sec.12, T.5 S., R.78 W., Summit County, Hydrologic Unit 14010002, on right bank 0.3 mi downstream from Dillon Dam, 0.1 mi upstream from Straight Creek, and 1.1 mi west of Dillon. DRAINAGE AREA. -- 335 mi². PERIOD OF RECORD.--January 1960 to current year. Statistical summary computed for 1963 to current year. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Elevation of gage is 8,760 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Flow regulated since Sept. 3, 1963, by Dillon Reservoir, 0.3 mi upstream (station 09050600). Natural flow of stream affected by transmountain diversions, transbasin diversions, and diversions upstream from station for irrigation of about 400 acres of hay meadows. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | C FEET PER | | NATER Y
MEAN V | TEAR OCTOBER | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--|--|--|---|-------------------------------------|--|--|---|--------------------------------------|--|------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 156
153
149
146
143 | 126
110
110
110
110 | 110
110
110
110
110 | 106
104
104
104
104 | 104
104
104
104
104 | 102
103
102
103
101 | 101
101
101
101
102 | 115
92
68
106
124 | 1400
1400
1340
1190
1060 | 287
250
226
202
183 | 113
113
113
112
110 | 75
75
75
74
75 | | 6
7
8
9
10 | 162
208
305
357
359 | 110
110
110
110
110 | 110
109
107
106
108 | 105
104
104
104
106 | 104
104
104
104
104 | 101
101
100
101
101 | 101
101
101
101 | 121
122
124
121
119 | 945
897
879
816
750 | 162
139
127
123
122 | 109
107
107
107
107 | 75
73
71
75
75 | | 11
12
13
14
15 | 358
369
366
359
359 | 110
110
110
110
110 | 107
107
107
107 | 105
106
101
103
104 | 104
104
104
104
103 | 101
101
101
99
101 | 101
101
105
110 | 117
113
113
113
112 | 668
581
503
434
384 | 121
123
110
69
57 | 107
107
107
107
93 | 75
75
75
73
74 | | 16
17
18
19
20 | 359
359
359
359
358 | 110
110
110
110
109 | 107
107
107
107 | 104
104
104
104 | 104
104
104
104
102 | 101
102
104
103
102 | 110
110
101
110
111 | 112
113
113
113
113 | 343
308
318
388
522 | 58
89
118
145
174 | 81
82
82
82
83 | 74
74
72
72
72 | | 21
22
23
24
25 | 359
359
359
359
359 | 110
110
110
110
110 | 107
107
107
107 | 104
103
104
104 | 102
104
104
104
104 | 103
102
103
102
102 | 111
112
112
111
112 | 113
113
113
113
152 | 557
501
448
398
339 | 193
206
213
214
211 | 82
78
74
73
75 | 72
72
72
72
72 | | 26
27
28
29
30
31 | 359
357
359
368
276
187 | 110
108
108
110
110 | 106
107
107
103
107
107 | 104
104
104
104
104
104 | 104
103
102
103 | 102
102
102
102
101
101 | 113
115
114
113
113 | 272
437
564
865
1270
1370 | 309
335
359
364
336 | 193
176
151
134
120
113 | 74
76
75
75
75 | 73
72
71
71
68 | | TOTAL
MEAN
MAX
MIN
AC-FT | 9444
305
369
143
18730 | 3311
110
126
108
6570 | 3332
107
110
103
6610 | 3227
104
106
101
6400 | 3007
104
104
102
5960 | 3152
102
104
99
6250 | 3206
107
115
101
6360 | 7626
246
1370
68
15130 | 19072
636
1400
308
37830 | 4809
155
287
57
9540 | 2861
92.3
113
73
5670 | 2194
73.1
75
68
4350 | | STATIST | rics of MC | NTHLY MEA | N DATA FO | OR WATER Y | EARS 1963 | - 2000 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 122
305
2000
.000
1964 | 101
268
1985
23.2
1964 | 86.3
193
1985
44.6
1989 | 76.9
158
1966
31.0
1984 | 79.6
155
1997
47.6
1986 | 84.5
269
1996
48.6
1986 | 128
742
1996
39.3
1965 | 320
1101
1984
24.0
1965 | 737
1813
1984
32.3
1965 | 445
1476
1984
51.5
1981 |
255
999
1984
51.7
1981 | 161
348
1983
18.6
1963 | | SUMMAR | Y STATISTI | CS | FOR I | .999 CALEN | DAR YEAR | | FOR 2000 WA | TER YEAR | | WATER YEA | RS 1963 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERO 50 PERO | | CAN CAN IN CAN CAN CAN CAK FLOW CAK STAGE CC-FT) CDS CDS | | 111088
304
1810
50
52
220300
914
110
69 | Jun 24
Mar 28
Apr 22 | | 65241
178
1400
57
71
1500
3.31
129400
359
107
75 | Jun 1
Jul 15
Sep 24
May 31
May 31 | | 217
538
65.5
1940
a.00
.00
2010
b3.88
157000
484
104
51 | May 2
Sep
Sep
May 2 | 1984
1981
24 1984
4 1963
4 1963
25 1984
25 1984 | a Also occurred Sept 5 to Nov 19, 1963. b Maximum gage height for period of record, 3.95 ft, Jun 22, 1983. ### 09051050 STRAIGHT CREEK BELOW LASKEY GULCH, NEAR DILLON, CO LOCATION.--Lat 39°38'23", long $106^{\circ}02'23$ ", in $SW^{1}/_{4}SW^{1}/_{4}$ sec.5, T.5 S., R.77 W., Summit County, Hydrologic Unit 14010002, on right bank, 120 ft upstream from culverts on Deer Trail Drive, in the community of Dillon Valley, 0.9 mi north of Dillon, 1.1 mi downstream of Laskey Gulch, and 1.8 mi upstream from mouth. DRAINAGE AREA.--18.3 mi². PERIOD OF RECORD. -- October 1986 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,070 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversion upstream from station for municipal purposes downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBIO | C FEET PER | SECOND, DAILY | | YEAR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |--|---|--|--------------------------------------|--|--------------------------------------|---|--|--|-------------------------------------|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.7
7.3
7.2
7.2
7.0 | 7.0
6.4
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0 | | | 3.7
3.8
3.6
4.2
4.5 | | 114
108
107
104
97 | 21
20
20
e18
e16 | 10
9.7
9.6
9.6
8.8 | 10
8.6
8.1
7.9
8.1 | | 6
7
8
9
10 | 7.6
10
9.9
9.4
8.6 | e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | e4.7
e4.7
e4.7
e4.7 | e4.7
e4.7
e4.5
e4.4
e4.0 | 4.5
4.5
5.6
6.4
6.1 | 29
26
24
20
24 | | | e7.9
e7.0
e6.5
6.0 | 9.0
8.7
8.9
8.5
7.7 | | 11
12
13
14
15 | 8.3
7.7
7.4
7.2
7.2 | e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | | | 5.4
6.7
7.7
7.4
6.8 | | 57
52
47
44
42 | e14
e14
e14
e15
e16 | 6.1
6.2
6.1
6.3
7.5 | 7.4
7.0
6.9
6.7 | | 16
17
18
19
20 | 6.2
6.5
8.0
8.0 | e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | e4.7
e4.7
e4.7
e4.7 | e3.7
e3.5
e3.4
e3.4
e3.4 | 6.3
8.0
8.3
7.2
7.4 | 24
23
20
19
19 | 38
35
33
37
40 | e18
e19
e15
e15
e14 | 7.8
8.3
10
8.9
8.3 | 6.3
5.4
4.8
4.3
4.0 | | 21
22
23
24
25 | 7.8
7.2
7.2
7.1
6.9 | e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | e4.7
e4.7
e4.7
e4.7
e4.7 | e3.4
e3.4
e3.4
e3.4 | 7.6
6.9
7.4
7.0
7.6 | 19
24
44
63
69 | 31
28
26
25
26 | e13
e12
e11
e11
e12 | 8.2
8.0
7.4
14
13 | 5.7
7.7
5.3
5.7
5.8 | | 26
27
28
29
30
31 | 6.7
6.8
6.6
6.4
6.9
7.9 | e5.0
e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e5.0
e5.0
e5.0 | e5.0
e5.0
e4.9
e4.8
e4.7 | e4.7
e4.7
e4.7
e4.7 | e3.4
e3.4
e3.4
e3.4
3.7
e3.5 | 9.3
12
13
13
12 | 58
50
69
100
118
122 | 30
28
24
23
22 | e12
10
10
11
11
11 | 9.3
8.8
8.9
14
9.5
9.9 | 5.5
5.2
5.1
4.9
4.7 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | 136 3 | 120 4 | | | 1602
53.4
114 | 448 | 267.6 | 200.6
6.69 | | STATIST | | | | | | |), BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 7.47
12.2
1996
4.08
1990 | 5.92
8.77
1996
3.86
1990 | 4.69
6.99
1996
3.71
1995 | 4.03
5.54
1996
2.43
1992 | 3.91
6.40
1996
2.39
1992 | 4.08
7.32
1996
3.14
1992 | 9.99
1989
3.55 | 26.6
63.1
1996
9.45
1995 | 67.2
119
1996
36.2
1987 | 31.8
89.0
1995
11.7
1994 | 13.0
23.6
1995
8.63
2000 | 8.32
13.3
1995
4.31
1989 | | SUMMAR | Y STATIST | ICS | FOR 1 | 1999 CALEN | DAR YEAR | | FOR 2000 WAT | ER YEAR | | WATER YE | ARS 1987 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT | MEAN F ANNUAL M ANNUAL M F DAILY ME DAILY ME SEVEN-DA | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 5692.8
15.6
110
e3.3
e3.4
11290
42
6.0
3.4 | Jun 23
Feb 12
Feb 12 | | 4861.4
13.3
122
e3.4
e3.4
177
5.27
9640
26
6.4
4.7 | May 31
Mar 18
Mar 18
May 30
May 30 | | 15.3
25.5
10.9
226
1.8
1.9
a416
5.78
11070
40.6
3.5 | Jun 1
Jan 3
Jan 2
Jun 1
Jun 1 | 1996
1987
17 1995
31 1992
6 1992
17 1995 | e Estimated. a From rating curve extended above 150 ft³/s. ### 09057500 BLUE RIVER BELOW GREEN MOUNTAIN RESERVOIR, CO LOCATION.--Lat $39^{\circ}52^{\circ}49^{\circ}$, long $106^{\circ}20^{\circ}00^{\circ}$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.15, T.2 S., R.80 W., Summit County, Hydrologic Unit 14010002, on left bank 0.3 mi upstream from Elliott Creek, 0.3 mi downstream from Green Mountain Dam, and 13 mi southeast of Kremmling. DRAINAGE AREA.--599 mi², includes 15.3 mi² of Elliott Creek above diversion for Elliott Creek feeder canal. PERIOD OF RECORD.--October 1937 to current year. Prior to October 1943, published as Blue River below Green Mountain Reservoir, near Kremmling. Statistical summary computed for 1943 to current year. Water-quality data available, January 1986 to September 1987. Daily specific conductance and water temperature record available, October 1986 to September 1987 and October 1995 to September 1999. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,682.66 ft above sea level, (levels by U.S. Bureau of Reclamation). Prior to Oct. 1, 1951, water-stage recorder at site 3.7 mi downstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated by Green Mountain Reservoir since November 1942 (station 09057000). Diversions for irrigation of about 5,000 acres upstream from station. Transmountain diversions upstream from station (see elsewhere in this report). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|------------|--|--|------------------------------|--|---|--|---------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 569 | 758 | 284 | e280 | 277 | 302 | 286 | 213 | 106 | 679 | 577 | 501 | | 2 | 568 | 697 | 281 | e280 | 276 | 299 | 286 | 213 | 103 | 679 | 609 | 630 | | 3 | 567 | 599 | 280 | e280 | 276 | 295 | 312 | 209 | 103 | 717 | 671 | 722 | | 4 | 246 | 501 | 278 | e280 | 275 | 295 | 381 | 211 | 102 | 681 | 663 | 719 | | 5 | 224 | 345 | 278 | 284 | 275 | 295 | 370 | 212 | 96 | 590 | 655 | 690 | | 6 | 410 | 277 | 279 | 282 | 275 | 294 | 367 | 213 | 110 | 538 | 674 | 639 | | 7 | 665 | 278 | 278 | 283 | 275 | 292 | 336 | 214 | 109 | 497 | 693 | e634 | | 8 | 662 | 280 | 276 | 283 | 275 | 290 | 292 | 215 | 102 | 474 | 696 | 630 | | 9 | 660 | 281 | 281 | 283 | 276 | 293 | 291 | 217 | 102 | 475 | 770 | 631 | | 10 | 660 | 280 | e280 | 286 | 276 | 292 | 240 | 217 | 100 | 443 | 863 | 627 | | 11 | 658 | 280 | e280 | 283 | 276 | 291 |
203 | 218 | 102 | 355 | 916 | 626 | | 12 | 658 | 279 | e280 | 281 | 276 | 291 | 207 | 218 | 101 | 398 | 907 | 641 | | 13 | 660 | 280 | e281 | 281 | 276 | 290 | 215 | 219 | 142 | 380 | 912 | 684 | | 14 | 693 | 281 | e279 | 280 | 279 | 288 | 217 | 218 | 314 | 380 | 888 | 726 | | 15 | 721 | 281 | e280 | 280 | 282 | 287 | 209 | 216 | 478 | 380 | 826 | 813 | | 16 | 771 | 284 | e280 | 279 | 276 | 287 | 211 | 215 | 595 | 382 | 878 | 901 | | 17 | 772 | 283 | e278 | 279 | 283 | 286 | 215 | 209 | 765 | 352 | 870 | e897 | | 18 | 766 | 284 | e279 | 279 | 287 | 285 | 216 | 204 | 766 | 334 | 832 | e914 | | 19 | 764 | 281 | e278 | 279 | 287 | 283 | 216 | 204 | 726 | 333 | 798 | e921 | | 20 | 768 | 282 | e280 | 279 | 286 | 282 | 216 | 213 | 1290 | 332 | 648 | e904 | | 21 | 757 | 282 | e281 | 279 | 285 | 279 | 215 | 217 | 1080 | 334 | 629 | 864 | | 22 | 758 | 282 | e281 | 279 | 289 | 279 | 215 | 217 | 1010 | 380 | 638 | 760 | | 23 | 755 | 283 | e280 | 278 | 295 | 278 | 216 | 218 | 1020 | 416 | 640 | 625 | | 24 | 756 | 283 | e280 | 278 | 294 | 276 | 218 | 174 | 884 | 417 | 619 | 625 | | 25 | 754 | 283 | e280 | 277 | 292 | 276 | 217 | 102 | 851 | 453 | 645 | 526 | | 26
27
28
29
30
31 | 758
757
773
773
764
762 | 283 | e280
e280
e280
e280
e280
e280 | 276
277
276
276
276
277 | 291
295
293
292
 | 276
274
283
286
286
286 | 211
207
210
209
210 | 102
103
103
104
105
107 | 857
975
961
809
713 | 479
478
475
496
587
582 | 640
636
679
756
634
492 | 397
413
e386
e388
e389 | | TOTAL | 20829 | 9940 | 8672 | 8670 | 8190 | 8896 | 7414 | 5820 | 15472 | 14496 | 22354 | 19823 | | MEAN | 672 | 331 | 280 | 280 | 282 | 287 | 247 | 188 | 516 | 468 | 721 | 661 | | MAX | 773 | 758 | 284 | 286 | 295 | 302 | 381 | 219 | 1290 | 717 | 916 | 921 | | MIN | 224 | 277 | 276 | 276 | 275 | 274 | 203 | 102 | 96 | 332 | 492 | 386 | | AC-FT | 41310 | 19720 | 17200 | 17200 | 16240 | 17650 | 14710 | 11540 | 30690 | 28750 | 44340 | 39320 | | STATIST | TICS OF M | ONTHLY MEA | AN DATA F | FOR WATER | YEARS 1943 | - 2000 | , BY WATER | YEAR (WY) |) | | | | | MEAN | 383 | 296 | 315 | 309 | 296 | 319 | 394 | 528 | 752 | 806 | 626 | 501 | | MAX | 1258 | 800 | 580 | 566 | 559 | 864 | 1286 | 1557 | 2134 | 2536 | 1547 | 846 | | (WY) | 1963 | 1963 | 1947 | 1948 | 1962 | 1962 | 1996 | 1952 | 1984 | 1984 | 1984 | 1990 | | MIN | 144 | 82.5 | .72 | .46 | .19 | .61 | 47.2 | 55.7 | 54.4 | 131 | 270 | 192 | | (WY) | 1950 | 1943 | 1943 | 1943 | 1943 | 1943 | 1943 | 1969 | 1981 | 1981 | 1964 | 1946 | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1943 - 2000 | | | | | | | | | | - 2000 | | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 171045
469
1740
97
98
339300
880
281
100 | Jul 3
Mar 17
Mar 14 | | 150576
411
1290
96
103
1420
7.10
298700
764
286
213 | Jun 20
Jun 5
Jun 4
Jun 21
Jun 21 | | 946
200
4010
a,b.00
.00
4040
10.85
854
371
126 | Dec
Jan
Jul | 1984
1964
12 1995
6 1942
5 1943
12 1995
12 1995 | e Estimated. No flow at times in 1943. a No flow at times in 1943. b Minimum daily discharge (prior to Green Mountain Reservoir), 80 ft³/s, Feb 18-24, 1938, Feb 18-19, 1940. ### 09058000 COLORADO RIVER NEAR KREMMLING, CO LOCATION.--Lat $40^{\circ}02^{\circ}12^{\circ}$, long $106^{\circ}26^{\circ}22^{\circ}$, in $NE^{1}/_{4}SW^{1}/_{4}$ sec.23, T.1 N., R.81 W., Grand County, Hydrologic Unit 14010001, on right bank at upstream end of Gore Canyon, 3.0 mi southwest of Kremmling and 3.8 mi downstream from Blue River. DRAINAGE AREA. -- 2,382 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1904 to September 1918 (published as Grand River near Kremmling), October 1961 to September 1970, October 1971 to current year. Statistical summary computed for 1962 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,320 ft above sea level, from topographic map. See WSP 1313 for history of changes prior to Oct. 1, 1961. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation of about 40,000 acres upstream from station, and return flow from irrigated areas. DISCULARGE CURTS EVER DED CECOND MATER VEAD OCTOBER 1000 TO CERTEMBER 2000 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|---------------------------------|--|--|------------------------------|--|---|--|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1410 | 1280 | 577 | e575 | e550 | 600 | 670 | 1230 | 2990 | 1410 | 1140 | 1090 | | 2 | 1350 | 1150 | 572 | e570 | e550 | 617 | 655 | 1310 | 3040 | 1310 | 1250 | 1130 | | 3 | 1340 | 1010 | 572 | e570 | e540 | 607 | 655 | 1430 | 2790 | 1390 | 1380 | 1320 | | 4 | 1200 | 885 | 550 | e560 | e540 | 606 | 725 | 1590 | 2050 | 1370 | 1370 | 1340 | | 5 | 1030 | 804 | 539 | e570 | 540 | 620 | 743 | 1760 | 1790 | 1220 | 1360 | 1330 | | 6 | 1220 | 656 | 535 | e550 | 549 | 627 | 859 | 1950 | 1780 | 1080 | 1360 | 1200 | | 7 | 1480 | 663 | 527 | e540 | 547 | 624 | 925 | 2100 | 1630 | 1030 | 1360 | 1140 | | 8 | 1460 | 660 | 539 | e560 | 538 | 622 | 860 | 2190 | 1470 | 1020 | 1340 | 1060 | | 9 | 1460 | 668 | 529 | 573 | 536 | 620 | 869 | 2180 | 1390 | 1060 | 1340 | 1020 | | 10 | 1450 | 668 | 552 | 558 | 543 | 616 | 918 | 1970 | 1270 | 1060 | 1330 | 1010 | | 11 | 1440 | 650 | 553 | 558 | 565 | 613 | 783 | 1910 | 1220 | 1000 | 1340 | 1010 | | 12 | 1290 | 672 | 559 | 557 | 595 | 622 | 801 | 2140 | 1210 | 967 | 1330 | 1020 | | 13 | 1190 | 652 | 542 | 558 | 591 | 611 | 787 | 2160 | 1140 | 904 | 1350 | 1020 | | 14 | 1250 | 662 | e540 | 560 | 589 | 614 | 807 | 2000 | 1450 | 890 | 1320 | 1050 | | 15 | 1280 | 665 | e546 | 560 | 615 | 631 | 827 | 1860 | 1570 | 877 | 1270 | 1070 | | 16 | 1330 | 655 | 555 | 561 | 602 | 613 | 796 | 1380 | 1560 | 888 | 1290 | 1200 | | 17 | 1340 | 633 | 561 | 566 | 613 | 603 | 758 | 1160 | 1710 | 942 | 1360 | 1210 | | 18 | 1320 | 667 | 598 | 573 | 608 | 605 | 775 | 1190 | 1620 | 931 | 1350 | 1230 | | 19 | 1320 | 642 | 634 | 602 | 597 | 601 | 796 | 1170 | 1660 | 839 | 1360 | 1240 | | 20 | 1350 | 604 | 656 | 590 | 593 | 610 | 768 | 1020 | 2260 | 799 | 1250 | 1240 | | 21 | 1320 | 600 | 596 | 580 | 601 | 597 | 736 | 1010 | 2560 | 808 | 1200 | 1230 | | 22 | 1310 | 633 | 557 | 565 | 607 | 610 | 760 | 1020 | 2000 | 843 | 1090 | 1300 | | 23 | 1310 | 578 | 572 | 556 | 605 | 622 | 835 | 1080 | 2040 | 979 | 1090 | 1120 | | 24 | 1310 | 541 | 572 | 556 | 597 | 631 | 927 | 1340 | 1780 | 1010 | 1050 | 1120 | | 25 | 1310 | 526 | e560 | 552 | 595 | 647 | 947 | 1720 | 1710 | 1020 | 1070 | 1080 | | 26
27
28
29
30
31 | 1380
1390
1330
1350
1430
1380 | 584
593
592
585
573 | e540
e540
e560
e570
e575
e570 | 563
565
e540
e540
e540
e540 | 593
596
595
597
 | 665
681
712
718
715
704 | 914
1040
1060
1160
1180 | 1980
2250
2210
2110
2210
2540 | 1710
1750
1880
1710
1550 | 1110
1070
1060
1040
1120
1130 | 1190
1250
1240
1350
1340
1100 | 785
755
748
757
752 | | TOTAL | 41330 | 20751 | 17448 | 17408 | 16787 | 19584 | 25336 | 53170 | 54290 | 32177 | 39420 | 32577 | | MEAN | 1333 | 692 | 563 | 562 | 579 | 632 | 845 | 1715 | 1810 | 1038 | 1272 | 1086 | | MAX | 1480 | 1280 | 656 | 602 | 615 | 718 | 1180 | 2540 | 3040 | 1410 | 1380 | 1340 | | MIN | 1030 | 526 | 527 | 540 | 536 | 597 | 655 | 1010 | 1140 | 799 | 1050 | 748 | | AC-FT | 81980 | 41160 | 34610 | 34530 | 33300 | 38840 | 50250 | 105500 | 107700 | 63820 | 78190 | 64620 | | STATIS | TICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1962 | - 2000 | , BY WATER | YEAR (WY | .) | | | | | MEAN | 759 | 651 | 582 | 561 | 553 | 656 | 1033 | 1916 | 2211 | 1591 | 1096 | 872 | | MAX | 1413 | 1030 | 1067 | 1000 | 1025 | 1394 | 3297 | 6200 | 7160 | 5840 | 2321 | 1366 | | (WY) | 1963 | 1985 | 1985 | 1985 | 1962 | 1962 | 1962 | 1984 | 1984 | 1983 | 1984 | 1984 | | MIN | 547 | 352 | 277 | 278 | 294 | 331 | 536 | 477 | 379 | 539 | 630 | 733 | | (WY) | 1989 | 1978 | 1964 | 1964 | 1964 | 1977 | 1964 | 1977 | 1966 | 1963 | 1963 | 1969 | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1962 - 2000 | | | | | | | | | | | | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | |
397802
1090
3950
391
405
789000
2250
668
507 | Jun 5
Mar 9
Mar 6 | | 370278
1012
3040
526
539
3110
9.4
734400
1640
909
557 | Jun 2
Nov 25
Dec 4
Jun 1 | | 1042
2378
568
a12700
b250
264
c13600
16.60
755000
1910
769
430 | Dec :
Dec :
May : | 1984
1964
26 1984
13 1963
20 1963
26 1984
26 1984 | Maximum daily discharge for period of record, 20000 ft 3 /s, Jun 7, 1912. Minimum discharge observed for period of record, 166 ft 3 /s, Dec 19, 1907. Maximum discharge observed for period of record, 21500 ft 3 /s, Jun 7, 1912, gage height, 21.8 ft, datum then in use, from rating curve extended above 14000 ft 3 /s. # COLORADO RIVER MAIN STEM 135 # 09058000 COLORADO RIVER NEAR KREMMLING, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- April 1989 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | CHA
IN
CU
F
F
SE | PIS-
RGE,
IST.
IBIC
PET
PER
COND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM | FIELI
(STANI
ARD
1) UNITS | E TEMPEI
D- ATURI
WATEI
S) (DEG (| E DIS
R SOLV
C) (MG/ | - UM-M
ED (COLS
L) 100 M | M, TOCOC
AL, FECA
KF AG
MF (COLS
S./ PER
ML) 100 M | CI HARD-
L, NESS
AR TOTAI
. (MG/1
AS
L) CACO | CALCIU DIS- SOLVE (MG/L) AS CA | DIS-
D SOLVE
(MG/I
A) AS MG | I, SODIUM, DIS- D SOLVED (MG/L B) AS NA) | |------------------|--|--|--|--|--|---|--|--|---|---|---|---|---| | OCT
14
NOV | 0920 |) 12 | :50 | 233 | 8.4 | 8.5 | 8.7 | К3 | 19 | 96 | 28.9 | 5.62 | 7.2 | | 09 | 1200 |) 6 | 17 | 222 | 8.3 | 6.0 | 9.4 | <1 | K1 | 90 | 27.9 | 4.90 | 7.8 | | APR
12 | 0945 | 5 8 | 18 | 215 | 8.2 | 6.0 | 9.0 | 14 | <1 | 83 | 25.0 | 5.01 | 9.3 | | MAY
10 | 1015 | 5 19 | 90 | 235 | 8.2 | 8.8 | 8.4 | 24 | K14 | 77 | 22.0 | 5.38 | 8.5 | | JUN
07 | 1050 |) 16 | 50 | 201 | 8.0 | 12.6 | 7.1 | | - 25 | 82 | 23.9 | 5.34 | 8.6 | | AUG
23 | 1000 |) 11 | .20 | 212 | 8.3 | 14.5 | 7.4 | К8 | 25 | 94 | 28.5 | 5.41 | 7.6 | | DATE | SODIU
AD-
SORP-
TION
RATIO | - S
- D
N SC
) (M | OTAS-
SIUM,
DIS-
DLVED
IG/L
S K) | ANC UNFLTF TIT 4. LAB (MG/I AS CACO3 | 5 SULFATE DIS-
SOLVI (MG/I | DIS-
ED SOLVI
L (MG/I
A) AS CI | , RIDE
DIS
ED SOLV
L (MG/
L) AS F | , DIS-
- SOLV
ED (MG/
L AS
) SIO2 | AT 18 VED DEG. L DIS SOLV (1) (MG/ | UE SUM OF CONSTRUCT C TUENTS - DIS- ED SOLVE L) (MG/1 | F SOLIDS I- DIS- S, SOLVE - (TONS ED PER L) AC-FT | DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS- | NITRITE D DIS- SOLVED (MG/L AS N) | | OCT
14 | .3 | 1 | .6 | 63 | 48.0 | 3.5 | .3 | 6.4 | 148 | 140 | .20 | 500 | <.010 | | NOV
09 | . 4 | 1 | .7 | 67 | 40.1 | 3.0 | . 4 | 8.5 | 5 145 | 135 | .20 | 242 | <.010 | | APR | | | | | | | | | | | | | | | 12
MAY | . 4 | 2 | .3 | 73 | 30.6 | 3.7 | . 2 | 9.6 | 5 143 | 130 | .19 | 316 | <.010 | | 10
JUN | . 4 | 1 | .5 | 59 | 35.1 | 2.5 | . 2 | 10.9 | 133 | 122 | .18 | 715 | <.010 | | 07
AUG | .4 | 1 | .4 | 69 | 27.8 | 1.7 | .2 | 11.5 | 130 | 122 | .18 | 579 | <.010 | | 23 | .3 | 1 | .6 | 66 | 35.0 | 3.3 | .3 | 6.8 | 3 135 | 129 | .18 | 410 | .001 | | r | DATE | NITRO
GEN,
NO2+NO
DIS-
SOLVE
(MG/I
AS N) | 3 AM
D S | GEN,
MMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS- | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | | OCT | | .073 | | <.020 | .14 | <.050 | <.050 | <.010 | 38 | <2 | <8.0 | <14.0 | <13 | | NOV
09. | | .054 | : < | <.020 | .11 | <.050 | <.050 | <.010 | 35 | <2 | <8.0 | <14.0 | E6 | | APR
12. | | .068 | · < | <.020 | .41 | .054 | <.050 | .015 | 30 | <2 | | <14.0 | <13 | | MAY
10. | | .054 | . < | <.020 | .36 | .075 | .014 | <.010 | 28 | <2 | | <14.0 | <13 | | JUN
07. | | <.050 | | <.020 | .31 | .048 | .017 | .011 | 31 | <2 | | <14.0 | <13 | | AUG
23. | | .060 | ı | .003 | .22 | .028 | .007 | .002 | 38 | <2 | <.1 | <.8 | <1 | 136 COLORADO RIVER MAIN STEM # 09058000 COLORADO RIVER NEAR KREMMLING, CO--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |-----------|---|---|--|---|---|--|---|---|---|---|---| | OCT | | | | | | | | | | | | | 14 | <10 | 10 | <100 | 7.9 | 11 | E21 | <40 | <7 | 170 | <10 | <20 | | NOV | | | | | | | | | | | | | 09 | <10 | 30 | <100 | 8.9 | 49 | E33 | <40 | <7 | 176 | <10 | <20 | | APR
12 | <10 | 110 | <100 | 7.7 | 31 | <34 | <40 | <7 | 167 | <10 | E13 | | MAY | ~10 | 110 | <t00< td=""><td>7.7</td><td>31</td><td><2ª</td><td>V40</td><td>~ /</td><td>107</td><td><±0</td><td>ETO</td></t00<> | 7.7 | 31 | <2ª | V40 | ~ / | 107 | <±0 | ETO | | 10 | <10 | 50 | <100 | 6.2 | 18 | <34 | <40 | <7 | 167 | <10 | <20 | | JUN | | | | | | | | | | | | | 07 | <10 | 60 | <100 | 4.7 | 42 | <34 | <40 | <7 | 165 | <10 | <20 | | AUG | | | | | | | | | | | | | 23 | <1 | 20 | <1 | 6.1 | 15 | 20 | 1 | <1 | 161 | <1 | 1 | | | | | | | | | | | | | | # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | | | | | | | | | | | | SEP | | | | | | | | | | | 07 | 1055 | 1160 | 188 | 12.0 | | | | | | | | | | | | | | | | | #### 09058500 PINEY RIVER BELOW PINEY LAKE NEAR MINTURN, CO LOCATION.--Lat 39°42'29", long 106°25'34", Eagle County, Hydrologic Unit 14010001, on left bank 1.4 mi upstream from Dickson Creek, 2.0 mi downstream from Piney Lake, and 8.5 mi north of Minturn. DRAINAGE AREA. -- 13.0 mi². PERIOD OF RECORD. --October 1947 to September 1954, October 1963 to current year. GAGE.--Water-stage recorder. Datum of gage is 9,145.25 ft above sea level, levels by U.S. Bureau of Reclamation. Prior to October 1963, water-stage recorder at site 15 ft upstream at present datum. REMARKS.--Records good except for estimated daily discharges, which are poor. No diversions upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | - | DISCHAR | GE, CUBIC | | SECOND, W | | AR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--------------------------------------|--|--|--------------------------------------|---
---|---|--|--|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.5
6.0
5.7
5.4
5.3 | e3.3
e3.2
e3.2
e3.1
e3.0 | e2.4
e2.4
e2.2
e2.0
e1.9 | e2.1
e2.2
e2.1
e2.0
e1.9 | e2.3
e2.5
e2.4
e2.5
e2.5 | e2.2
e2.2
e2.3
e2.4
e2.5 | e2.7
e2.8
e3.1
e3.5
e4.0 | 51
66
94
133
168 | e190
186
179
182
176 | 51
47
44
41
37 | 6.5
6.1
6.3
6.0 | 12
9.5
7.3
6.4
5.9 | | 6
7
8
9
10 | 5.1
5.9
7.1
7.9
7.4 | e3.0
e3.0
e3.0
e3.0
e2.9 | e2.0
e2.1
e2.0
e2.0
e2.0 | e1.8
e2.0
e2.1
e2.3
e2.2 | e2.5
e2.4
e2.3
e2.4
e2.4 | e2.5
e2.5
e2.5
e2.5
e2.3 | e5.0
e5.4
e6.0
e7.2
e9.0 | 187
154
121
78
79 | 160
180
183
168
142 | 34
32
29
35
32 | 5.9
5.5
5.2
4.9
4.4 | 5.8
6.2
6.7
10
8.6 | | 11
12
13
14
15 | 6.5
5.9
5.5
5.3
4.9 | e2.8
e2.8
e2.8
e2.7 | e2.1
e2.0
e2.0
e2.0
e1.9 | e2.3
e2.3
e2.2
e2.1
e2.3 | e2.5
e2.4
e2.4
e2.4
e2.4 | e2.3
e2.5
e2.3
e2.3
e2.3 | e8.8
e10
e13
e16
e14 | 126
98
63
49
48 | 114
108
99
70
92 | 27
24
21
20
19 | 4.3
4.2
4.3
4.3 | 7.0
6.3
5.8
5.3 | | | | | | | | | e12
e14
e16
e17
19 | | 100
81
69
86
125 | 19
28
32
21
17 | 4.9
5.0
8.7
10
8.5 | 4.8
4.6
4.3
4.1
4.0 | | | | | | | | | 23
22
23
19
16 | | | 15
13
11
11
10 | | | | 26
27
28
29
30
31 | 3.2
3.0
2.9
3.3
e3.0
e3.1 | e2.6
e2.7
e2.6
e2.5
e2.5 | e2.1
e2.1
e2.1
e2.0
e1.9
e2.0 | e2.4
e2.3
e2.1
e2.3
e2.1
e2.2 | e1.9
e2.2
e2.2
e2.2 | e2.5
e2.7
e3.0
e3.1
e3.0
e2.8 | 19
33
48
52
50 | 158
124
127
e200
e250
e210 | 70
96
61
57
55 | 9.5
8.5
8.0
7.4
6.8
6.7 | 6.0
6.2
5.9
7.4
8.6 | 13
11
9.9
8.5
9.6 | | | | | | 67.6
2.18
2.4
1.8
134 | | | | 3615
117
250
48
7170 | | 716.9
23.1 | 197.4 | 234.3
7.81 | | STATIST | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.30
15.1
1985
1.71
1980 | 4.05
8.82
1985
1.23
1980 | 2.82
6.41
1999
1.04
1980 | 2.25
4.00
1952
.79
1975 | 2.04
4.01
1996
.83
1975 | 2.59
5.52
1995
.84
1975 | 11.2
23.0
1952
2.12
1973 | 66.7
117
2000
26.6
1968 | 125
202
1952
52.1
1954 | 57.7
146
1995
8.70
1977 | 14.9
45.3
1984
3.69
1954 | 7.34
14.8
1984
2.16
1974 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER Y | EARS 1948 | - 2000 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN MIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTIANEOUS PEAK FLOW INSTANTIANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | Jun 26
Dec 5
Dec 12 | | 9146.8
25.0
e250
e1.8
2.0
a285
a4.47
18140
83
4.7
2.1 | May 30
Jan 6
Dec 12
May 25
May 25 | | 25.3
41.2
12.9
362
.4(
.60
b5.1:
18340
86
4.9 | | 1984
1977
9 1985
6 1975
28 1975
8 1985
8 1985 | | e Estimated. Maximum recorded, may have been higher during period of no gage-height record, May 29 to Jun 1. b Maximum gage height for period of record, 6.44 ft, Apr 13, 1977. #### 09058610 DICKSON CREEK NEAR VAIL, CO $\label{location.--Lat 39°42'14", long 106°27'25", Eagle County, Hydrologic Unit 14010001, on right bank 0.6 mi upstream from Freemam Creek, 1.0 mi upstream from mouth, and 6 mi northwest of Vail.$ DRAINAGE AREA.--3.41 mi². PERIOD OF RECORD.--October 1971 to current year. Prior to October 1972, published as "near Minturn." GAGE.--Water-stage recorder. Elevation of gage is 9,245 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversion by Willy N. ditch 75 ft upstream for irrigation of hay meadows downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|---|--------------------------------------|-------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | | | | | 3.5
3.4
3.3
3.2
3.2 | | 1.5
1.3
1.3
1.2 | | 6
7
8
9
10 | 1.4
1.5
1.3
1.2 | 1.2
1.2
1.2
e1.2
e1.1 | e.90
e.90
e.80
e.80 | e.70
e.90
e1.0
e1.0 | e1.0
e1.0
e1.0
e1.1 | e.90
e.90
e1.0
e.90
e.90 | e1.2
e1.2
e1.2
e1.3
e1.5 | 15
14
14
11
12 | 11
9.8
9.2
9.0
8.2 | 3.0
3.1
3.2
3.7
3.4 | 2.3
1.5
1.6
1.6 | 2.4
1.1
1.5
1.7 | | 11
12
13
14
15 | 1.2
1.2
1.2
1.2 | e1.1
e1.1
e1.1
e1.0
e1.0 | e.90
e.90
e.90
e.80 | e1.0
e1.0
e.90
e1.0
e1.1 | e1.0
e1.0
e1.0
e1.0
e1.0 | e.90
e.90
e.90
e.80
e.90 | e1.5
e1.5
e1.6
e1.8
e2.0 | 15
13
11
9.9
9.8 | 7.5
6.9
6.6
6.2
5.8 | 2.6
2.6
2.7
2.6
2.5 | 1.8
1.6
1.6
1.6 | 1.2
1.2
1.2
1.1 | | 17
18
19
20 | 1.2
1.2
1.3
1.2 | e1.0
e1.1
e1.1
e1.0
e1.0 | e1.0
e1.0
e.90
e1.0 | e1.1
e1.1
e1.2
e1.2
e1.1 | e1.0
e1.0
e1.0
e.90
e.90 | e.90
e.80
e.80
e.90 | e1.9
e1.7
e1.9
e1.8 | 11
12
11
10 | 5.5
5.4
5.1
6.3
6.5 | 4.0
2.4
2.5
2.3
2.3 | 1.5
1.4
1.7
1.9 | 3.0
.81
1.0
1.1
1.3 | | 23
24
25 | | | | | | | | 10
11
14
18
19 | 4.8
4.5
4.3
4.2
4.2 | 2.3
2.9
3.0
1.7
2.0 | 1.4
1.3
1.3
1.2 | 2.3
3.2
2.3
1.8
1.7 | | 26
27
28
29
30
31 | 1.2
1.2
1.2
1.3
1.7 | e1.1
e1.1
e1.0
e1.1
e1.1 | e1.0
e1.0
e.90
e1.0
e.90
e.90 | e1.1
e1.0
e.90
e.80
e.90 | e.80
e.90
e.90
e.90 | e.90
e.90
e1.0
e1.1
e1.0
e.90 | 2.6
4.1
5.4
6.1
6.2 | 20
19
17
18
19 | 4.9
4.8
4.0
3.9
3.7 | 2.2
2.2
2.0
2.0
1.9 | 3.1
2.4
1.1
1.4
1.4 | 1.7
1.7
2.6
1.3
1.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 39.0
1.26
1.7
1.1 | 32.80
1.09
1.2
.80
65 | 28.70
.93
1.1
.80
57 | 31.00
1.00
1.2
.70
61 | 28.30
.98
1.1
.80
56 | 27.90
.90
1.1
.80
55 | 63.70
2.12
6.2
.90
126 | 416.5
13.4
20
6.8
826 | 219.3
7.31
16
3.7
435 | 83.6
2.70
4.0
1.7
166 | 52.1
1.68
3.1
1.1
103 | 47.31
1.58
3.2
.81
94 | | STATIST | | | | OR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.20
2.22
1996
.007
1984 | .99
1.96
1996
.002
1984 | .81
1.60
1996
.000
1984 | .73
1.65
1996
.000
1984 | .69
1.45
1996
.000
1984 | .77
1.23
1985
.000
1984 | 1.52
6.10
1979
.000
1984 | 7.74
20.1
1996
1.22
1977 | 10.8
29.1
1997
.91
1977 | 3.47
12.0
1995
.73
1977 | 1.70
3.83
1995
.17
1982 | 1.40
2.81
1995
.042
1972 | | SUMMARY | STATIST | ics | FOR | 1999 CALENI | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YEA | ARS 1972 | - 2000 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 1056.86
2.90
16
e.80
.84
2100
7.5
1.3 | May 25
Nov 24
Dec 4 | | 20
e.70
.84
24
3.04
2120
9.4
1.2 | May 26 D Jan 6 Dec 4 May 26 May 26 | | 2.66
5.73
.58
48
a.00
.00
52
b3.29
1930
6.5
1.2 | Jun
Aug :
Jun
Jun | 1997
1977
2 1997
12 1972
12 1972
1 1997
1 1997 | a No flow at times some years. b Maximum gage height, 4.89 ft, May 9, 1984, backwater from ice. #### 09058700 FREEMAN CREEK NEAR MINTURN, CO $\label{location.--Lat 39°41'54", long
106°26'42", Eagle County, Hydrologic Unit 14010001, on right bank 0.8 mi upstream from mouth and 7.5 mi north of Minturn.$ DRAINAGE AREA.--2.94 mi². PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,335 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE.
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--|--|---|--------------------------------------|---|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .31
.31
.31
.30 | e.20
e.20
e.20
e.19
e.18 | e.16
e.17
e.17
e.15
e.14 | e.16
e.16
e.15
e.12
e.11 | e.18
e.17
e.18
e.17
e.17 | e.16
e.15
e.16
e.16
e.16 | e.17
e.16
e.17
e.18
e.20 | 4.0
5.6
7.9
9.5 | e10
e7.4
e6.4
e6.0
e6.0 | .74
.75
.73
.62 | .34
.36
.39
.47 | .39
.35
.33
.34 | | | | | | e.10
e.11
e.13
e.17
e.17 | | | | | | .57
.58
.57
.81 | | .37
.43
.47
.53 | | 11
12
13
14
15 | | | | | | | | | | .54
.55
.53
.50 | | .34 | | 16
17
18
19
20 | . 24
. 24
. 24
. 24
. 23 | e.16
e.16
e.17
e.16
e.15 | e.15
e.18
e.15
e.16
e.17 | e.18
e.19
e.20
e.18
e.18 | e.16
e.17
e.17
e.14
e.15 | e.15
e.14
e.14
e.13
e.14 | e.70
e.64
e.80
.89 | 9.2
8.0
6.9
7.3
7.2 | 1.4
1.3
1.2
2.5
2.8 | .55
.56
.57
.49 | .38
.41
.52
.52
.44 | .28
.30
.33
.33 | | | | | | | | | | | | . 48
. 45
. 40
. 42
. 42 | | | | 26
27
28
29
30
31 | .20
.20
.20
.21
.22 | e.15
e.18
e.17
e.17
e.16 | e.17
e.16
e.15
e.16
e.16
e.15 | e.20
e.19
e.16
e.14
e.15
e.16 | e.13
e.15
e.16
e.16 | e.14
e.15
e.17
e.19
e.19 | 1.0
1.2
2.6
3.1
3.6 | e16
e14
e12
e14
e13
e11 | 1.8
1.7
1.1
.87
.81 | .38
.41
.40
.39
.39 | .36
.38
.37
.47
.43 | .48
.40
.39
.41
.41 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | | | | | | | | | STATIST | | | | R WATER YI | | • | BY WATER | • | - | | | | | MEAN
MAX
(WY)
MIN
(WY) | .27
.78
1985
.083
1993 | .18
.45
1985
.030
1965 | .12
.26
1983
.000
1965 | .099
.24
1983
.000
1965 | .092
.21
1983
.000
1965 | .13
.29
1986
.000
1991 | .63
1.73
1971
.000
1991 | 6.87
18.0
1984
1.26
1977 | 6.59
23.2
1983
.30
1977 | .97
3.50
1995
.15
1977 | .35
1.25
1983
.065
1981 | .27
.70
1984
.079
1977 | | SUMMARY | STATISTI | CS | FOR 1 | .999 CALENI | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YE | ARS 1965 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 413.14
1.13
e16
e.10
.11
819
2.9
.24
.12 | | | 483.63
1.32
e16
e.1(
.13
b19
b2.24
959
4.6 | May 26
0 Jan 6
3 Jan 2
May 10
4 May 10 | | 1.39
3.54
.31
63
a.00
.00
82
c2.21
1000
3.4
.20 | May
Nov
Nov
May
May | 1984
1977
25 1984
10 1964
10 1964
25 1984
25 1984 | | a No flow some days some years. b Maximum recorded, may have been higher during period of no gage-height record, May 26 to Jun 12. c Maximum gage height, 3.51 ft, May 18, 1973, backwater from ice. #### 09058800 EAST MEADOW CREEK NEAR MINTURN, CO LOCATION (REVISED).--Lat $39^{\circ}43^{\circ}54^{\circ}$, long $106^{\circ}25^{\circ}34^{\circ}$, in T.4 S., R.81 W., Eagle County, Hydrologic Unit 14010001, on left bank 1.4 mi upstream from mouth, and 10 mi north of Minturn. DRAINAGE AREA.--3.61 mi². PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,455 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | - | 5 5 | | | | - | | | | | | | |--|--|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--------------------------------------|--|--|---------------------------------------|---|-------------------------------------| | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
MEAN VA | AR OCTOBE | R 1999 TO | SEPTEMBE | R 2000 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.1
1.0
.99
1.1
1.1 | e.81
e.78
e.81
e.85
e.81 | e.54
e.54
e.54
e.50
e.46 | e.42
e.42
e.42
e.42
e.42 | e.45
e.41
e.45
e.48 | e.45
e.45
e.45
e.45
e.45 | e.50
e.50
e.50
e.58
e.66 | 5.7
8.1
e13
e18
e22 | 40
39
36
34
31 | 5.5
5.2
4.7
4.4
4.1 | 1.3
1.3
1.3
1.3 | 1.2
1.2
1.0
1.0 | | 6
7
8
9
10 | 1.1
1.7
1.9
1.6 | e.81
e.76
e.74
e.80
e.72 | e.50
e.54
e.54
e.46
e.54 | e.35
e.42
e.42
e.42
e.42 | e.48
e.45
e.45
e.45
e.45 | e.45
e.45
e.45
e.45
e.45 | e.74
e.70
e.70
e.78
e.86 | e29
e31
e27
e20
e17 | 29
28
26
24
22 | 3.8
3.7
3.9
4.7
3.9 | 1.4
1.3
1.2
1.2 | 1.0
1.0
1.2
1.3 | | 11
12
13
14
15 | 1.2
1.0
1.0
1.0 | e.74
e.70
e.67
e.70
e.70 | e.54
e.49
e.46
e.50 | e.42
e.42
e.41
e.41
e.41 | e.48
e.45
e.45
e.45
e.45 | e.45
e.42
e.45
e.45
e.45 | e.86
e.86
e.96
e1.1
e1.2 | e22
e21
e18
e17
e17 | 20
17
15
13
12 | 3.4
3.0
2.9
2.9
2.8 | 1.2
1.1
1.1
1.1 | 1.0
.99
.96
.92 | | 16
17
18
19
20 | e.90
e.88
e.92
e.84
e.84 | e.62
e.62
e.66
e.55
e.62 | e.50
e.50
e.50
e.50 | e.41
e.41
e.41
e.45
e.41 | e.45
e.45
e.45
e.42
e.39 | e.45
e.45
e.45
e.45
e.45 | e1.1
e1.0
e1.1
e1.0
e1.0 | e19
e20
e19
e18
e17 | 11
10
9.6
12
13 | 2.8
2.9
2.6
2.3
2.1 | 1.1
1.3
1.9
1.9 | .88
.85
.91
.90 | | | | | | | | | | | | 2.0
1.8
1.7
1.7 | | | | 26
27
28
29
30
31 | e.74
e.74
e.74
e.88
e.86
e.86 | e.62
e.58
e.54
e.54
e.54 | e.45
e.42
e.42
e.42
e.42
e.45 | e.45
e.41
e.41
e.41
e.45 | e.40
e.44
e.45
e.45 | e.48
e.48
e.50
e.54
e.50
e.50 | 2.2
3.7
5.3
5.7
5.9 | e50
e45
e40
e43
e43
e42 | 10
9.9
7.2
6.1
5.4 | 1.7
1.7
1.6
1.5
1.4 | 1.6
1.5
1.3
1.6
1.7 | 1.5
1.3
1.1
1.1
1.1 | | TOTAL
MEAN
MAX
MIN
AC-FT | 31.20
1.01
1.9
.74
62 | 20.20
.67
.85
.50
40 | 14.97
.48
.54
.42
30 | 12.88
.42
.45
.35
26 | 12.91
.45
.48
.39
26 | 14.28
.46
.54
.42
28 | 46.80
1.56
5.9
.50
93 | 779.8
25.2
50
5.7
1550 | 519.9
17.3
40
5.4
1030 | 89.8
2.90
5.5
1.4
178 | 41.6
1.34
1.9
1.1
83 | 34.08
1.14
2.3
.85
68 | | STATIST | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.31
2.78
1966
.73
1978 | .97
2.00
1966
.55
1979 | .79
1.50
1966
.44
1979 | .69
1.20
1999
.35
1979 | .67
1.30
1999
.40
1965 | .75
1.43
1999
.40
1965 | 1.58
3.75
1987
.66
1975 | 11.5
26.3
1986
2.97
1975 | 23.0
45.7
1983
7.55
1977 | 8.32
28.8
1983
1.28
1977 |
2.24
5.85
1965
.68
1977 | 1.39
3.09
1984
.75
1977 | | SUMMARY | Y STATIST | ICS | FOR | 1999 CALEI | NDAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YE | ARS 1965 | - 2000 | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 1635.91
4.44
32
e.4:
.4:
3240
20
1.3 | Jun 16
2 Dec 27
3 Dec 24 | | e50
e.3
.4
a54
a1.5
3210
17
.9 | May 26 5 Jan 6 1 Jan 1 Jun 1 4 Jun 1 | | 4.44
8.05
1.83
81
.32
.33
107
b1.86
3210
15
1.1
.58 | Jun 2
Jan
Jan
Jun 2
Jun 2 | 1983
1977
20 1983
7 1979
6 1979
17 1995
17 1995 | | Maximum recorded, may have been higher during period of no gage-height record, May 3-31. b Maximum gage height, 2.22 ft, May 12, 1970, backwater from ice. #### 09059500 PINEY RIVER NEAR STATE BRIDGE, CO LOCATION.--Lat $39^{\circ}48^{\circ}00^{\circ}$, long $106^{\circ}35^{\circ}00^{\circ}$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.16, T.3 S., R.82 W., Eagle County, Hydrologic Unit 14010001, on left bank at old bridge crossing, 1.2 mi downstream from Rock Creek, and 6.0 mi southeast of State Bridge. DRAINAGE AREA.--86.2 mi². PERIOD OF RECORD.--May 1944 to current year. Water-quality data available, October 1993 to September 1996. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Datum of gage is 7,272.35 ft above sea level. Prior to July 29, 1944, nonrecording gage, and July 29, 1944 to Oct. 24, 1947, water-stage recorder, at datum 2.38 ft higher. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 400 acres of hay meadows upstream and downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | C FEET PE | R SECOND, N | WATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--|--------------------------------------|---|--------------------------------------|--|---|--|------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 20
19
18
17 | 18
18
23
22
19 | e19
e19
e19
e17
e15 | e17
e17
e16
e15
e14 | e18
e19
e19
e19
e19 | e16
e16
e17
e17
e17 | e19
e17
e16
e17
e19 | 161
203
259
307
370 | 529
441
388
361
330 | 117
114
102
87
78 | 19
19
19
20
19 | 24
20
17
15
14 | | 6
7
8
9
10 | 18
23
26
24
23 | 19
21
22
e19
e19 | e16
e17
e15
e15
e14 | e13
e14
e15
e18
e17 | e19
e18
e18
e18
e19 | e17
e17
e17
e17
e17 | e22
e24
e22
e32
e31 | 411
387
393
274
288 | 296
300
300
297
261 | 77
68
69
78
69 | 19
18
16
15
15 | 16
17
18
22
19 | | 11
12
13
14
15 | 21
20
19
19 | 19
22
23
25
24 | e15
e16
e16
e16
e14 | e17
e16
e15
e15
e18 | e19
e18
e18
e18
e17 | e17
e16
e16
e16
e16 | e50
62
76
89
91 | 417
356
230
191
183 | 220
203
202
163
176 | 58
52
51
44
42 | 15
14
14
14
15 | 16
15
14
13
12 | | 16
17
18
19
20 | 18
20
27
20
21 | 21
e18
e19
e19
e19 | e15
e18
e16
e17
e17 | e19
e19
e21
e21
e20 | e17
e17
e17
e16
e16 | e16
e16
e16
e16
e16 | 70
73
93
81
69 | 211
250
185
156
168 | 194
169
144
166
220 | 44
49
62
46
39 | 16
16
20
26
22 | 12
12
12
12
11 | | 21
22
23
24
25 | 19
18
18
18
16 | e19
e19
e18
e16
e15 | e17
e16
e17
e17
e17 | e20
e19
e19
e19
e19 | e17
e17
e17
e17
e16 | e16
e16
e16
e16
e17 | 80
87
84
77
66 | 176
208
356
635
618 | 164
149
136
117
133 | 35
32
30
28
27 | 20
19
18
16
16 | 15
30
27
26
23 | | 26
27
28
29
30
31 | 16
15
16
17
16
21 | e19
e20
e19
e19
e18 | e18
e17
e17
e17
e17 | e20
e19
e18
e16
e16
e17 | e15
e15
e16
e16 | e19
e21
e22
e23
e22
e20 | 83
125
170
177
168 | 535
548
367
561
687
601 | 146
184
138
126
120 | 26
26
25
22
21
20 | 19
20
18
20
23
26 | 25
22
20
20
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 599
19.3
27
15
1190 | 591
19.7
25
15
1170 | 513
16.5
19
14
1020 | 539
17.4
21
13
1070 | 505
17.4
19
15
1000 | 537
17.3
23
16
1070 | 2090
69.7
177
16
4150 | 10692
345
687
156
21210 | 6773
226
529
117
13430 | 1638
52.8
117
20
3250 | 566
18.3
26
14
1120 | 538
17.9
30
11
1070 | | STATIST
MEAN | | | | | YEARS 1944 | | | | 345 | 110 | 20.1 | 10.0 | | MEAN
MAX
(WY)
MIN
(WY) | 20.0
62.9
1962
6.72
1978 | 17.9
34.1
1985
8.68
1980 | 15.1
24.6
1985
7.19
1980 | 13.5
20.0
1966
7.44
1980 | 13.2
24.5
1986
7.86
1980 | 15.7
35.3
1986
9.18
1980 | 54.1
167
1962
16.8
1961 | 263
495
1958
99.0
1977 | 656
1957
74.1
1954 | 112
379
1983
14.8
1977 | 32.1
94.9
1983
6.22
1954 | 18.2
46.1
1984
4.00
1944 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALE | NDAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YE | ARS 1944 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | EAN EAN IN EAN EAK FLOW EAK STAGE AC-FT) EDS | | 27429
75.1
532
e12
14
54410
271
23
15 | May 25
Jan 29
Jan 10 | | 25581
69.9
687
11
12
881
5.21
50740
203
19 | May 30
Sep 20
Sep 14
May 30
May 30 | e,a | 76.7
127
27.2
e1300
1.9
2.3
.,b,1300
55590
257
20 | Sep
Sep | 1984
1977
25 1984
1 1954
17 1954
25 1984 | e Estimated. Maximum daily discharge for period of record. Maximum discharge and stage, (recorded), 1220 ft³/s, Jun 27, 1983, gage height 5.82 ft, from peak stage indicator, but may have been higher May 25, 1984. # 392511106164000 EAST FORK EAGLE RIVER NEAR RED CLIFF, CO. ## WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}25'11"$, long $106^{\circ}16'40"$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec. 24, T 7 S. R. 80 W., Eagle County, Hydrologic Unit 14010003, at Resolution Road No. 702, 0.25 mi east of East Fork Eagle ford on East Fork Eagle Road, 1.0 mi west of Camp Hale Campground, and 10.2 mi south-southeast of Red Cliff. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD.--November 1996 to current year. REMARKS.--No water-quality data at this site before November 1996. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |------------------|--|---|--|--|--|---|--|--|--|--|--| | NOV
30 | 0920 | 5.3 | 248 | 8.0 | .1 | 10.5 | K1 | K1 | 120 | 28.8 | 11.8 | | JAN
26 | 1345 | 6.6 | 241 | 8.2 | .1 | 10.1 | <1 | <1 | | | | | MAR
14 | 1345 | .98 | 199 | 8.3 | 1.3 | | <1 | <1 | 100 | 24.3 | 10.0 | | MAY
23 | 1615 | 77 | 108 | 8.0 | 7.7 | 8.5 | K2 |
K2 | 55 | 12.6 | 5.75 | | JUN
14 | 0815 | 15 | 156 | 8.1 | 5.2 | 9.3 | K1 | K1 | 74 | 17.2 | 7.51 | | AUG
17 | 1050 | 1.8 | 175 | 8.1 | 9.1 | 8.2 | К9 | К8 | 88 | 20.7 | 8.67 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
30
JAN | 1.4 | .1 | 1.2 | 82 | | | 42.6 | .3 | . 4 | .3 | 139 | | 26
MAR | | | | | | | | | | | | | 14
MAY | 1.7 | .1 | .9 | 90 | | | 16.2 | E.2 | .2 | 5.6 | 114 | | 23
JUN | .8 | .0 | .8 | 52 | | | 6.1 | .3 | .1 | 4.0 | 62 | | 14
AUG | 1.1 | .1 | .9 | 67 | | | 10.9 | .3 | .2 | 4.7 | 83 | | 17 | 1.4 | .1 | .9 | | 88 | 107 | 6.3 | E.2 | .2 | 5.3 | 96 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
30 | .19 | 1.99 | <.001 | .031 | <.002 | E.10 | <.10 | E.005 | <.006 | <.001 | | | JAN
26 | | | <.001 | .022 | <.002 | E.10 | E.10 | .009 | <.006 | <.001 | | | MAR
14
MAY | .15 | .30 | <.001 | .081 | <.002 | .10 | <.10 | <.008 | <.006 | .001 | | | 23
JUN | .08 | 12.9 | <.001 | <.005 | .004 | .36 | .17 | .054 | E.005 | <.001 | | | 14 | .11 | 3.42 | .001 | .036 | <.002 | .11 | E.10 | <.008 | <.006 | <.001 | | | 17 | .13 | .46 | .001 | .025 | .013 | E.10 | E.10 | <.008 | <.006 | <.001 | 1.8 | # 392511106164000 EAST FORK EAGLE RIVER NEAR RED CLIFF, CO.--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATI | D
SO
E (U
AS | CD) | CHRO-
MIUM,
DIS-
SOLVE
(UG/I
AS CF | , COPP
DIS
ED SOL
L (UG
R) AS | -
VED
/L
CU) | | AL
OV-
BLE
/L
FE) | (UG | S-
VED
/L
FE) | (UG, | JED
L
JED
JED
JED | | |-----------|-----------------------|-----|---|---|-------------------------|-------------------------|-------------------------------|------------------------------|------------------------|------|-------------------------------|---------------------------| | NOV
30 | < | .1 | | <1 | | 210 |) | | - | <1 | | 33 | | 14
MAY | < | .1 | | <1 | | 230 |) | | - | <1 | | 25 | | 23
AUG | < | .1 | | <1 | | 1240 |) | | - | <1 | | 65 | | 17 | < | .1 | <.8 | <1 | | 390 |) | <10 |) | <1 | | 38 | | | DATE | | E, N
S-
VED
/L
MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | DIS
SOL
(UG
AS | S-
VED
S/L
NI) | (UG | M,
S-
VED
/L
SE) | SOI
(UC
AS | | SOI
(U | IS-
LVED
G/L
ZN) | | MAI | 30 | 26 | | <.2 | - | - | <2. | | | . 2 | | <20 | | MA | _ | 23 | | <.2 | - | - | <2. | _ | | . 2 | | <20 | | AUG | | 10 | | <.2 | - | - | <2. | | | . 2 | | E13 | | - | 17 | <2 | | <.2 | <1 | - | <. | 7 | < | . 2 | • | <20 | #### 09063000 EAGLE RIVER AT RED CLIFF, CO LOCATION.--Lat 39°30'30", long 106°21'58", in $NW^1/_4SW^1/_4$ sec.20, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank at Red Cliff, and 0.3 mi upstream from Turkey Creek. DRAINAGE AREA. -- 70.0 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --October 1910 to September 1925, May 1944 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 2124: Drainage area. WRD Colo. 1972: 1971. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,653.80 ft above sea level, (levels by U.S. Bureau of Reclamation). Jan. 8, 1911 to Sept. 30, 1925, nonrecording gage at bridge 0.2 mi downstream at different datum. May 24, 1944 to Oct. 12, 1952, water-stage recorder at site 200 ft upstream at datum 1.46 ft lower. Prior to May 6, 1982, at site 250 ft downstream at datum 5.00 ft lower. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station by Columbine, Ewing, and Wurtz ditches. Transbasin diversion upstream from station from Robinson Reservoir (capacity, 2,520 acre-ft) to Tenmile Creek for mining development. Small diversions for irrigation of 400 acres upstream from station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBI | C FEEL PER | | MEAN VA | | K 1999 10 | DEP LEMBE | R 2000 | | | |--|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|---|-------------------------------------|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 14
14
14
14
13 | 15
14
14
14
14 | e14
e15
e15
e14
e11 | e13
e14
e13
e12
e11 | e15
e15
e15
e15
e15 | e13
e13
e13
e14
e14 | e14
e14
e13
e14
e18 | 86
99
122
147
180 | 254
235
218
206
192 | 43
41
39
38
36 | 18
17
16
18 | 19
18
17
16
14 | | 6
7
8
9 | 13
15
18
17
16 | 14
14
14
14 | e12
e13
e11
e11
e12 | e9.0
e9.4
e12
e14
e14 | e15
e14
e14
e14
e14 | e14
e14
e14
e14 | e19
e19
e22
e25
e25 | 199
201
200
175
174 | 179
166
155
145
130 | 34
33
34
42
39 | 18
17
17
16
16 | 16
16
16
17
16 | | 11
12
13
14
15 | 15
14
14
14
14 | 13
14
14
14
13 | e11
e13
e12
e13
e10 | e13
e13
e12
e11
e14 | e15
e14
e14
e14
e14 | e13
e13
e13
e13
e13 | e24
e27
e30
e32
e28 | 210
206
176
161
155 | 118
108
103
94
86 | 34
32
33
31
31 | 16
17
20
17
16 | 14
14
13
13
13 | | 16
17
18
19
20 | 13
13
13
13 | 13
13
14
e12
e12 | e13
e15
e13
e13
e13 | e15
e15
e16
e17
e16 | e13
e13
e13
e13
e12 | e13
e13
e13
e12
e13 | e27
e31
e34
e31
e31 | 165
182
167
155
150 | 81
75
71
80
97 | 39
41
36
30
27 | 19
21
21
20
18 | 13
13
12
12
13 | | 21
22
23
24
25 | 14
14
14
14
13 | e14
e15
e14
e12
e11 | e14
e13
e13
e13
e13 | e15
e15
e15
e14
e15 | e13
e13
e13
e13 | e13
e12
e12
e13
e13 | 38
40
39
35
33 | 147
163
212
265
281 | 72
65
61
59
57 | 26
25
22
22
22 | 18
20
19
20
20 | 14
25
18
17
16 | | 26
27
28
29
30
31 | 13
14
13
15
14 | e15
e15
e15
e15
e15 | e14
e14
e13
e13
e13
e13 | e16
e15
e14
e13
e12
e12 | e11
e12
e13
e13 | e13
e14
e14
e15
e15
e15 | 39
55
79
94
92 | 257
241
244
287
295
280 | 57
59
52
48
46 | 22
21
21
20
20
19 | 19
19
18
20
21 | 15
15
14
14
14 | | TOTAL
MEAN
MAX
MIN
AC-FT | 437
14.1
18
13
867 | 414
13.8
15
11
821 | 400
12.9
15
10
793 | 419.4
13.5
17
9.0
832 | 395
13.6
15
11
783 | 415
13.4
15
12
823 | 1022
34.1
94
13
2030 | 5982
193
295
86
11870 | 3369
112
254
46
6680 | 953
30.7
43
19
1890 | 571
18.4
21
16
1130 | 457
15.2
25
12
906 | | STATIST | ICS OF MO | NTHLY MEA | N DATA F | OR WATER Y | EARS 1911 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 16.2
31.8
1962
10.4
1989 | 13.5
25.2
1985
8.47
1965 | 11.2
18.8
1985
7.06
1989 | 10.4
16.3
1918
5.07
1989 | 10.3
19.7
1916
4.74
1989 | 11.8
25.6
1916
5.68
1981 | 32.4
81.3
1916
9.48
1975 | 157
387
1911
36.5
1981 | 198
422
1912
38.4
1954 | 56.6
161
1995
18.8
1981 | 25.8
54.5
1945
10.7
1977 | 18.3
39.0
1921
8.89
1977 | | SUMMARY | STATISTI |
CS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YEA | ARS 1911 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 17124.8
46.9
301
e7.8
8.1
33970
157
15
8.8 | Jun 4
Feb 12
Feb 8 | | 295
e9.0
11
355
4.77
29420
146
15 | | | 46.9
90.2
16.5
900
al.0
3.8
b1010
c4.00
33950
130
16
9.0 | Jun
Oct 1
Jan 3
Jun
Jun | 1912
1981
5 1912
15 1917
31 1989
5 1912
5 1912 | | e Estimated. a Also occurred Oct 16, 1917. Maximum discharge observed, site and datum then in use, from rating curve extended above 500 ft³/s. c Maximum gage height recorded, 6.43 ft, May 24, 1984. # 09063000 EAGLE RIVER AT RED CLIFF, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1996 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | 100 ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |-----------|--|---|--|--|--|--|--|---|--|--|---| | NOV
30 | 1235 | 24 | 232 | 8.3 | .9 | 9.7 | K1 | K1 | 120 | 28.0 | 11.8 | | JAN
26 | 1000 | 12 | 220 | 8.1 | .5 | 11.0 | K1 | K2 | 120 | 27.6 | 12.1 | | MAR
14 | 0930 | 15 | 224 | 8.4 | .0 | | <1 | <1 | 120 | 26.6 | 12.1 | | MAY
23 | 1315 | 184 | 133 | 8.3 | 11.2 | 8.2 | К2 | <1 | 67 | 15.3 | 7.09 | | JUN
14 | 1045 | 93 | 173 | 8.3 | 6.9 | 9.1 | K1 | <1 | 83 | 18.8 | 8.75 | | AUG
17 | 1250 | 21 | 205 | 8.3 | 13.2 | 7.8 | 16 | K12 | 100 | 23.6 | 10.7 | | | SODIUM, | SODIUM
AD- | SIUM, | ALKA-
LINITY
WAT DIS | BICAR-
BONATE
WATER | CAR-
BONATE
WATER | SULFATE | CHLO-
RIDE, | FLUO-
RIDE, | SILICA,
DIS- | CONSTI- | | DATE | DIS-
SOLVED
(MG/L
AS NA)
(00930) | SORP-
TION
RATIO
(00931) | DIS-
SOLVED
(MG/L
AS K)
(00935) | TOT IT
FIELD
MG/L AS
CACO3
(39086) | DIS IT
FIELD
MG/L AS
HCO3
(00453) | DIS IT
FIELD
MG/L AS
CO3
(00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS-
SOLVED
(MG/L
AS CL)
(00940) | DIS-
SOLVED
(MG/L
AS F)
(00950) | SOLVED
(MG/L
AS
SIO2)
(00955) | TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
30 | 2.3 | .1 | 1.0 | 90 | 109 | | 14.8 | 1.3 | .2 | 6.5 | 119 | | JAN
26 | 2.5 | .1 | .9 | 97 | 117 | | 15.6 | 1.7 | .2 | 7.2 | 125 | | MAR
14 | 2.9 | .1 | 1.0 | 113 | 127 | 5 | 9.9 | 1.5 | .1 | 7.3 | 129 | | MAY
23 | 1.4 | .1 | .7 | 64 | 77 | | 6.0 | 1.1 | <.1 | 5.6 | 75 | | JUN
14 | 1.5 | .1 | .8 | 79 | 95 | | 7.0 | .8 | <.1 | 5.9 | 90 | | AUG
17 | 2.4 | .1 | 1.0 | 97 | 117 | | 7.6 | 1.2 | .1 | 7.5 | 112 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
30 | .16 | 7.58 | <.001 | .023 | <.002 | <.10 | <.10 | .008 | <.006 | <.001 | | | JAN
26 | .17 | 4.03 | <.001 | .032 | <.002 | <.10 | E.10 | E.004 | <.006 | <.001 | | | MAR
14 | .18 | 5.11 | <.001 | .032 | <.002 | E.10 | E.10 | <.008 | <.006 | .001 | 1.2 | | MAY
23 | .10 | 37.2 | <.001 | <.005 | .002 | .33 | .12 | .011 | E.003 | <.001 | 3.9 | | JUN
14 | .12 | 22.7 | <.001 | .014 | .003 | E.10 | E.10 | E.006 | <.006 | <.001 | 2.3 | | AUG 17 | .15 | 6.47 | .001 | .011 | .004 | .11 | .11 | .008 | <.006 | .001 | 1.8 | | 27 | .13 | 0.17 | .001 | .011 | .001 | •== | • | .000 | | .001 | 2.0 | | | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | | | | | NO | V
30 | <.1 | | <1 | 190 | | <1 | 11 | | | | | MA | | <.1 | | <1 | 90 | | <1 | E3 | | | | | MA | Y
23 | <.1 | | E1 | 220 | | <1 | 14 | | | | | AU | G
17 | <.1 | <.8 | <1 | 240 | 220 | <1 | 13 | | | # 09063000 EAGLE RIVER AT RED CLIFF, CO--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |-----------|---|---|---|--|---|---| | NOV
30 | 3 | <.2 | | <2.4 | <.2 | <20 | | 14 | 2 | <.2 | | <2.4 | | <20 | | MAY
23 | 4 | <.2 | | <2.4 | <.2 | <20 | | AUG
17 | E3 | <.2 | <1 | <.7 | <.2 | <20 | # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | SPE- | | |--------|--| | CIFIC | | | CON- | TEMPER- | | DUCT- | ATURE | | ANCE | WATER | | | (DEG C) | | 00095) | (00010) | | | | | | | | 204 | 3.7 | | | | | 92 | 5.7 | | | | | 217 | 16.1 | | C
C | CIFIC
CON-
DUCT-
ANCE
US/CM) | ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | |------------------|------|---|---|-----| | NOV
30 | 1235 | 24 | 4 | .29 | | MAR
14 | 0930 | 15 | 1 | .03 | | MAY
23
JUN | 1315 | 184 | 7 | 3.3 | | 14
AUG | 1045 | 93 | 4 | .93 | | 17 | 1250 | 21 | 2 | .10 | ## 09063200 WEARYMAN CREEK NEAR RED CLIFF, CO LOCATION.--Lat 39°31'20", long 106°19'23", in $SE^1/_4SW^1/_4$ sec.15, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank 0.15 mi upstream from mouth, 2.25 mi east of Red Cliff. DRAINAGE AREA.--9.53 mi². PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,280 ft above sea level, from topographic map. Prior to Aug. 7, 1992, at site 0.25 mi upstream, at different datum. REMARKS.--Records good except for the period May 28 to June 3 and estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | NATER YE. | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--------------------------------------|---|--------------------------------------|--|---|--------------------------------------|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP |
 1
2
3
4
5 | 4.0
4.0
3.9
3.8
3.7 | 2.5
e2.5
e2.5
e2.6
e2.5 | e1.9
e2.0
e1.8
e1.6
e1.7 | e1.8
e1.8
e1.7
e1.6
e1.4 | e2.1
e2.0
e2.1
e2.1
e2.0 | e1.4
e1.5
e1.5
e1.6
e1.7 | e1.9
e1.9
e2.0
e2.1
e2.5 | 8.1
9.0
11
14
16 | 58
61
56
58
57 | 14
14
14
13 | 5.5
5.3
5.2
5.2 | 3.7
3.5
3.3
3.2
3.1 | | 6
7
8
9
10 | 3.8
4.2
4.0
3.9
3.8 | e2.4
e2.4
e2.5
e2.4
e2.2 | e1.7
e1.7
e1.6
e1.5
e1.6 | e1.3
e1.7
e1.8
e1.8 | e2.0
e1.9
e1.9
e1.9
e2.0 | e1.6
e1.7
e1.7
e1.8
e1.8 | e2.7
e2.6
e2.6
e3.0
e3.3 | 17
17
16
15 | 52
50
50
47
44 | 12
11
11
11
10 | 5.1
4.9
4.8
4.4
4.5 | 3.5
3.4
3.3
3.2
2.9 | | 11
12
13
14
15 | 3.7
3.6
3.4
3.3
3.2 | e2.2
e2.3
e2.2
e2.1
e2.1 | e1.7
e1.6
e1.5
e1.5 | e1.8
e1.7
e1.7
e1.8
e1.8 | e1.9
e1.9
e1.9
e1.8
e1.8 | e1.9
e1.8
e1.8
e1.9 | e3.4
e3.4
e3.7
e4.0
e4.1 | 17
17
16
15 | 42
40
38
35
31 | 9.3
9.2
8.9
8.7
9.1 | 4.7
4.6
4.8
4.4
4.2 | 2.9
2.8
2.8
2.7
2.6 | | 16
17
18
19
20 | 3.0
3.8
2.9
2.9 | e2.1
e2.1
e2.1
e2.0
e1.9 | e1.8
e1.7
e1.7
e1.8
e1.7 | e1.8
e1.8
e1.9
e1.9 | e1.8
e1.8
e1.5
e1.6 | e1.9
e1.9
e1.8
e1.8
e1.9 | e3.9
e3.7
e4.1
e3.9
e3.7 | 15
16
15
15 | 29
27
25
26
25 | 9.7
9.9
9.0
8.2
7.6 | 4.3
4.9
4.7
4.7 | 2.7
2.8
2.8
2.8
2.8 | | 21
22
23
24
25 | 2.9
2.8
2.8
2.8
2.7 | e2.0
e1.9
e1.7
e1.6
e2.0 | e1.7
e1.8
e1.6
e1.7
e1.8 | e1.9
e1.8
e1.8
e1.9
e2.0 | e1.6
e1.6
e1.5
e1.4 | e1.8
e1.8
e1.8
e2.0
e2.0 | e4.0
e4.7
e5.4
e5.8
e4.8 | 15
16
24
32
35 | 22
21
20
19
18 | 7.3
7.0
7.0
6.8
6.6 | 4.2
4.1
3.9
3.9
4.0 | 3.3
4.0
3.4
3.3
3.1 | | 26
27
28
29
30
31 | 2.7
2.6
2.6
2.7
2.5
2.6 | e2.1
e2.0
e2.0
e2.0
e1.9 | e1.8
e1.7
e1.7
e1.6
e1.6 | e1.9
e1.8
e1.8
e1.9
e2.0 | e1.5
e1.4
e1.4
e1.4 | e2.0
e2.0
e2.1
e2.3
e2.1
e2.0 | 4.6
5.7
6.8
7.9
8.1 | 33
31
28
30
34
54 | 18
17
16
15
14 | 6.2
6.1
6.0
5.9
5.8
5.6 | 3.8
3.7
3.8
4.0
3.9
3.9 | 2.9
2.9
2.9
2.9
2.9 | | | | | 52.2
1.68
2.0
1.4
104 | | | 56.8 | 120.3 | 626.1
20.2
54
8.1
1240 | 1031 | 281.9 | 138.7
4.47
5.5
3.7
275 | 92.4
3.08
4.0
2.6
183 | | STATIST | | | | | | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.81
5.02
1985
1.65
1989 | 1.98
2.86
1985
1.27
1970 | 1.59
2.48
1985
1.06
1989 | 1.36
1.95
1985
.87
1992 | 1.28
1.80
1985
.45
1967 | 1.39
2.28
1985
.80
1965 | 2.21
4.66
1985
1.13
1968 | 12.8
34.4
1984
4.96
1995 | 45.7
90.2
1984
16.7
1977 | 21.5
55.5
1995
5.13
1977 | 6.87
17.4
1984
2.71
1977 | 3.89
9.57
1984
2.16
1977 | | SUMMARY | | | | | | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1965 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 3210.6
8.80
71
el.1
1.1
6370
30
2.6
1.2 | Jun 21 | | 2672.1
7.30
61
e1.3
1.4
63
2.53
5300
17
2.9
1.7 | | | 8.62
17.4
3.61
140
.30
.40
a155
a3.61
6240
25
2.4
1.2 | Jun 2
Feb 2
Feb
Jun 2 | 1984
1977
0 1983
1 1967
8 1967
8 1968
10 1983 | e Estimated. a Site and datum then in use. #### 09063400 TURKEY CREEK NEAR RED CLIFF, CO LOCATION.--Lat $39^{\circ}31^{\circ}22^{\circ}$, long $106^{\circ}20^{\circ}08^{\circ}$, in $NW^{1}/_{4}SW^{1}/_{4}$ sec.16, T.6 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank 400 ft downstream from Lime Creek, 1.9 mi northeast of Red Cliff, and 2.0 mi upstream from mouth. DRAINAGE AREA.--23.8 mi². PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,918 ft above sea level, from topographic map. REMARKS.--Records good except for the period May 30 to June 4 and estimated daily discharges, which are poor. No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YE
MEAN V | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--|---|--------------------------------------|--|--|--|------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.9
7.7
7.6
7.5
7.3 | e7.4
e6.6
e6.6
e7.0
e6.5 | e4.8
e5.0
e4.5
e4.0
e3.4 | e4.2
e4.2
e4.2
e4.2
e4.2 | e5.6
e5.2
e5.3
e5.4
e5.4 | e3.9
e3.9
e3.8
e3.9
e3.9 | e4.4
e4.5
e4.5
e5.0
e6.0 | 32
35
45
54 | 229
162
116
140
109 | 32
30
29
28
27 | 15
15
15
14
14 | 10
9.7
9.5
9.2
9.4 | | 6
7
8
9 | 7.4
8.2
7.8
7.5
7.2 | e6.8
e7.0
e7.0
e7.0
e6.4 | e4.1
e4.3
e4.5
e3.5
e3.8 | e4.2
e4.2
e4.5
e4.2
e4.2 | e5.4
e5.0
e4.9
e4.9
e5.1 | e4.0
e3.9
e3.8
e3.8
e3.8 | e6.2
e6.0
e6.2
e6.8
e7.4 | 59
66
61
52
48 | 69
51
46
46
46 | 26
25
25
26
24 | 13
13
13
13 | 9.8
9.5
9.3
9.3
8.7 | | 11
12
13
14
15 | 6.8
6.7 | e6.4
e6.2
e6.6 | e4.5
e4.2
e4.3
e3.5
e4.7 | e4.2
e4.5
e4.5
e4.5
e4.3 | e4.9
e4.8
e4.8
e4.7
e4.7 | e3.8
e3.7
e3.7
e3.7
e3.6 | e7.4
e7.4
e8.0
e8.8
e9.8 | 56
57
55
45
45 | 60
77
88
89
82 | 23
22
21
21
23 | 13
13
12
12
12 | 8.5
8.4
8.3
8.1
8.0 | | 16
17
18
19
20 | 6.1
5.7
6.4
6.1
6.0 | e6.0
e6.4
e5.0
e4.8
e5.2 | e5.2
e4.5
e4.6
e4.8
e4.7 | e4.5
e4.5
e4.5
e5.5
e5.2 | e4.7
e4.7
e4.7
e4.6
e4.1 | e3.5
e3.7
e3.9
e4.0 | e9.0
e8.6
e9.0
e8.6
e8.4 | 48
54
51
45
45 | 71
62
55
58
59 | 24
24
21
20
21 | 13
14
14
13
12 | 7.9
7.9
8.1
7.9
7.9 | | 21
22
23
24
25 | 6.0
5.9
5.8
5.7
e5.6 | e5.0
e4.7
e4.5
e3.9
e5.0 | e4.5
e4.5
e4.6
e4.6
e4.5 | e5.1
e5.0
e5.0
e5.2
e5.4 | e4.1
e4.1
e4.1
e4.0
e4.0 | e4.0
e4.0
e4.4
e4.4 | e9.0
e10
e12
e13
e14 | 45
50
68
113
165 | 46
42
41
39
38 | 20
19
19
19
18 | 12
12
11
11 | 9.2
10
8.4
8.3
8.1 | | 26
27
28
29
30
31 | e6 3 | e5.4
e5.2
e5.0
e4.9
e4.8 | e4.5
e4.2
e4.2
e4.2
e4.2
e4.6 | e5.4
e5.1
e4.9
e4.9
e4.9
e5.6 | e3.7
e3.9
e3.9
e3.9 | e4.4
e4.5
e4.9
e5.0
e4.7
e4.3 | 16
21
28
32
34 | 145
128
130
153
155
190 | 38
37
35
35
35 | 18
17
17
17
16
16 | 11
10
11
12
11 | 8.1
7.8
7.8
7.9
7.7 | | TOTAL
MEAN
MAX
MIN
AC-FT | 209.1
6.75
8.2
5.6
415 | 7.4
3.9
349 | 4.37
5.2
3.4
269 | 4.68
5.6
4.2
288 | 4.64
5.6
3.7
267 | 124.4
4.01
5.0
3.5
247 | 331.0
11.0
34
4.4
657 | 2349
75.8
190
32
4660 | 2101
70.0
229
35
4170 | 688
22.2
32
16
1360 | 389
12.5
15
10
772 | 258.7
8.62
10
7.7
513 | | | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.19
12.2
1985
3.77
1978 | 4.61
9.19
1985
2.84
1978 | 3.66
5.76
1985
2.68
1982 | 3.22
4.96
1985
1.92
1987 | 3.03
4.64
2000
1.00
1964 | 3.55
6.36
1985
2.10
1981 | 7.69
23.1
1985
2.66
1973 | 47.8
103
1984
17.8
1995 | 120
274
1984
40.9
1977 | 47.7
139
1995
11.0
1977 | 14.2
39.1
1984
6.34
1977 | 8.12
19.8
1984
4.23
1977 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | F | FOR 2000 WAT | TER YEAR | | WATER YEA | ARS 1964 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN TANNUAL M TANNUAL M TOAILY ME DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 7949.2
21.8
173
e3.0
3.0
15770
65
7.0
3.2 | Jun 23
Jan 29
Feb 27 | | 7041.0
19.2
229
e3.4
3.6
292
2.65
13970
51
7.4
4.1 | Jun
1
Dec 5
Mar 12
Jun 1
Jun 1 | | 22.5
49.4
9.46
415
a1.0
b556
c2.87
16320
69
5.9
2.8 | Jun 1
Jan 1
Jan 1
Jun | 1984
1977
17 1965
21 1964
21 1964
8 1985
8 1985 | e Estimated. a Also occurred Jan 22 to Feb 29, 1964. b From rating curve extended above 325 ft³/s. c Maximum gage height for period of record, 3.24 ft, Jun 6, 1997. #### 09063900 MISSOURI CREEK NEAR GOLD PARK, CO LOCATION.--Lat 39°23'25", long 106°28'10", Eagle County, Hydrologic Unit 14010003, on left bank 50 ft downstream from road culvert, 0.6 mi upstream from Fancy Creek, 2.2 mi southwest of Gold Park, and 10 mi southwest of Red Cliff. DRAINAGE AREA.--6.39 mi². PERIOD OF RECORD. -- August 1972 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Elevation of gage is 9,980 ft above sea level, from topographic map. REMARKS.-- Records good except for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Arkansas River basin through Homestake Tunnel. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YI
MEAN V | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|---|--|--------------------------------------|--|--------------------------------------|--------------------------------------|---|--|------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.6
5.8
5.2
4.8
4.5 | e1.2
e1.2
e1.2
e1.2 | e.74
e.78
e.78
e.74
e.72 | e.64
e.64
e.64
e.64 | e.68
e.66
e.70
e.72
e.72 | e.78
e.64
e.62
e.64
e.64 | e.74
e.74
e.76
e.80
e.90 | 20
25
28
22
24 | 52
47
45
37
28 | 7.3
7.2
7.0
6.8
6.7 | 6.1
5.9
5.8
5.5 | 5.5
4.8
4.1
3.7
3.9 | | 6
7
8
9
10 | | | | | | | e.98
e.98
e1.0
e1.2
e1.3 | | | | | | | 11
12
13
14
15 | 6.2
5.5
4.9
4.7
4.2 | e.82
e.84
e.84
e.82
e.88 | e.76
e.74
e.70
e.68
e.70 | e.64
e.64
e.62
e.64
e.64 | e.74
e.74
e.70
e.70
e.70 | e.66
e.70
e.66
e.64
e.62 | e1.4
e1.6
e2.2
e2.8
e2.5 | | | 6.4
6.4
e6.0
e7.0
e10 | | 5.8
5.1
4.6
4.2
3.8 | | | | | | e.64
e.64
e.62
e.64 | | | | | | e14
e21
e20
e18
11 | | 2.0 | | | | | | | | | e3.5
e4.5
e4.5
e4.0
e3.9 | | | | | | | 26
27
28
29
30
31 | e1.8
e1.6
e1.4
e1.3
e1.3 | e.81
e.82
e.80
e.74
e.76 | e.66
e.64
e.64
e.64
e.66 | e.66
e.62
e.62
e.62
e.66 | e.60
e.64
e.70
e.70 | e.66
e.74
e.80
e.76
e.74 | e3.9
7.5
11
15
20 | 43
36
52
98
93
70 | 23
24
22
14
7.3 | 9.4
8.8
8.4
7.7
7.2
6.6 | 5.4
6.1
5.6
5.6
6.0 | 7.3
6.3
5.7
6.9
7.6 | | MAX
MIN
AC-FT | 1.2
242 | 1.2
.70
52 | .78
.64
44 | .66
.56
39 | .60 | .80
.62
41 | 222 | 98
14
2040 | 26.4
60
7.3
1570 | 292.7
9.44
21
6.0
581 | 5.20
6.3
3.7 | 6.00 | | STATIST
MEAN | rics of M | | | OR WATER Y | EARS 1972
.70 | - 2000
.82 | , BY WATER 3 | YEAR (WY) | 32.3 | 20.7 | 9.27 | 4.95 | | MAX
(WY)
MIN
(WY) | 7.29
1985
.84
1980 | 3.59
1997
.61
1977 | 2.73
1996 | 1.66
1996
.31
1976 | 1.48
1998
.28
1977 | 1.75
1998
.37
1979 | 7.02
1974
.71
1983 | 41.7
1984
4.00
1983 | 79.0
1984
12.7
1977 | 78.6
1984
7.96
1997 | 29.1
1983
3.55
1977 | 9.46
1984
1.65
1974 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | 1 | FOR 2000 WA | TER YEAR | | WATER YE | EARS 1972 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN TANNUAL M TANNUAL M TOAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 2325.60
6.37
60
e.64
.65
4610
16
2.4
.78 | Jun 23
Dec 27
Dec 25 | | 2794.55
7.64
98
e.56
.62
166
3.23
5540
21
3.0
.64 | May 29
Jan 7
Jan 2
May 29
May 29 | | 7.84
20.6
4.31
172
a.22
b300
c3.11
5680
20
2.3 | Jul 1
4 Feb 1
5 Feb
Jul
9 Jul | 1984
1977
10 1984
12 1977
7 1977
4 1975
4 1975 | Estimated. Also occurred Feb 13, 1977. From rating curve extended above 35 ft³/s. Maximum gage height, 3.83 ft, Jul 30, 1983. #### 09064000 HOMESTAKE CREEK AT GOLD PARK, CO LOCATION.--Lat $39^{\circ}24^{\circ}20^{\circ}$, long $106^{\circ}25^{\circ}58^{\circ}$, Eagle County, Hydrologic Unit 14010003, on left bank at Gold Park, 400 ft downstream from ford at Gold Park Campground, 0.5 mi downstream from French Creek, and 8 mi southwest of Red Cliff. DRAINAGE AREA. -- 36.0 mi². PERIOD OF RECORD.--October 1947 to September 1954, August 1972 to current year. Statistical summary computed for 1973 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Elevation of gage is 9,200 ft above sea level, from topographic map. Prior to Aug. 1, 1972, water-stage recorder at site 1,500 ft upstream at datum 9,245 ft above sea level (river-profile survey). REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by Homestake Lake (capacity, 44,360 acre-ft) since June 7, 1966. Transmountain diversion upstream from station to Arkansas River basin through Homestake Tunnel since June 6, 1967. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | DAY OCT NOV DEC JAN FEE MAR APR MAY JUN JUL AUG SEP | | | 2100111 | | 0 1221 121 | DAILY | MEAN VA | ALUES | 1000 | 021 121 122 | 2000 | | | |---|--|---|--|--|--|--------------------------------------|--|--|---|----------------------------------|--|---------------------------------|---| | 2 199 e8.8 e5.6 e4.5 e4.5 e4.5 e5.2 e89 118 22 15 17 4 15 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 6 14 e10 e5.2 e4.0 e5.0 e4.5 e7.0 98 70 34 13 16 7 22 e9.6 e5.6 e5.6 e4.5 e5.0 e4.5 e6.8 e8.9 73 34 12 19 8 25 e9.4 e5.6 e4.5 e5.0 e4.5 e6.8 e8.9 73 34 12 19 10 23 e8.8 e5.4 e4.5 e5.0 e4.5 e8.6 e1 76 33 11 15 10 23 e8.8 e5.4 e4.5 e5.0 e4.5 e8.8 e6.9 40 39 10 25 11 20 e8.6 e5.4 e4.5 e5.2 e4.7 e10 82 36 38
10 16 12 18 e8.6 e5.4 e4.5 e5.0 e6.5 e8.8 e8.8 e9 40 39 10 20 11 20 e8.6 e5.4 e4.5 e5.0 e4.5 e8.8 e8.8 e9 40 39 10 20 11 20 e8.6 e5.4 e4.5 e5.0 e4.5 e8.8 e8.8 e9 40 39 10 20 11 20 e8.6 e5.2 e4.5 e5.0 e4.5 e8.8 e8.8 e9 40 39 10 16 12 18 e8.6 e5.2 e4.5 e5.0 e4.5 e8.8 e8.8 e9 40 39 10 16 12 18 e8.6 e5.4 e4.5 e5.0 e4.7 20 49 34 36 12 15 13 15 e7.8 e4.6 e4.5 e5.0 e4.5 e5.0 e4.7 20 49 34 34 36 12 15 15 e13 e8.2 e5.2 e4.5 e5.0 e4.5 18 39 256 59 11 12 16 e12 e7.8 e5.2 e4.5 e5.0 e4.5 18 39 256 59 11 12 16 e12 e7.8 e5.2 e4.5 e5.0 e4.5 20 53 231 126 15 10 18 e14 e6.6 e5.2 e4.5 e5.0 e4.5 20 53 231 126 15 10 18 e14 e6.6 e5.2 e4.5 e5.0 e4.5 20 53 231 126 15 10 19 e13 e6.2 e5.2 e4.5 e5.0 e4.5 e6.0 e4.6 29 43 205 95 14 10 20 e12 e7.0 e5.2 e4.5 e4.5 e4.6 22 41 353 56 16 9.7 21 e12 e7.8 e4.9 e4.5 e4.5 e4.5 e4.6 22 41 353 56 16 9.7 21 e12 e7.8 e4.9 e4.5 e4.5 e4.5 e4.5 e3.0 e4.5 20 25 22 20 20 22 e11 e7.4 e4.9 e4.5 e4.5 e4.5 e4.6 22 41 353 56 16 9.7 23 e10 e6.4 e4.9 e4.5 e4.5 e4.5 e4.6 22 27 150 31 22 24 24 e10 e5.6 e4.9 e4.5 e4.5 e4.5 e4.6 22 27 150 31 22 24 25 e9.6 e7.0 e4.8 e4.9 e4.5 e4.5 e4.5 e4.6 22 27 150 31 22 24 25 e9.6 e7.0 e4.8 e4.8 e4.8 e4.8 e4.2 e4.6 27 277 150 31 22 24 26 e9.6 e8.4 e4.9 e4.5 e4.5 e4.5 e4.5 e5.6 66 110 65 22 20 16 27 e9.4 e8.0 e4.5 e4.5 e4.5 e4.5 e5.6 56 10 10 65 22 20 16 28 e8.8 e7.4 e4.9 e4.5 e4.5 e4.5 e5.6 56 110 65 22 20 116 29 e9.8 e6.8 e4.5 e4.5 e4.5 e4.5 e5.6 56 110 65 22 20 116 27 e9.4 e8.0 e4.5 e4.5 e4.5 e4.5 e4.5 e3.9 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e4.5 e4.5 e4.5 e4.5 e4.5 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 | 2
3
4 | 19
17
15 | e8.8
e9.4 | e5.6
e5.6 | | | | | | 118
108 | 22
21
21 | 15
15
15 | 17
15
13 | | 16 e12 e7.8 e5.2 e4.5 e5.0 e4.5 16 46 276 109 14 11 17 e12 e7.2 e5.2 e4.5 e5.0 e4.6 20 53 231 126 15 10 18 e14 e6.6 e5.2 e4.5 e5.0 e4.6 29 43 205 95 14 10 19 e13 e6.2 e5.2 e4.5 e4.5 e4.6 24 41 320 72 18 10 20 e12 e7.0 e5.2 e4.5 e4.5 e4.6 22 41 353 56 16 9.7 21 e12 e7.8 e4.9 e4.5 e4.5 e4.7 30 43 383 56 16 9.7 22 e11 e7.4 e4.9 e4.5 e4.5 e4.5 e4.7 32 58 158 33 30 42 23 e10 e6.6 e4.9 e4.5 e4.5 e4.5 e4.7 32 58 158 33 30 42 23 e10 e6.6 e4.9 e4.5 e4.5 e4.5 e4.6 32 166 158 33 41 17 28 22 24 25 e9.6 e7.0 e4.8 e4.6 e4.2 e4.6 25 272 150 29 23 21 25 e9.6 e7.0 e4.8 e4.6 e4.2 e4.6 27 237 150 29 23 21 26 e8.6 e8.4 e4.8 e4.8 e4.2 e4.6 26 110 114 26 22 20 27 e9.4 e8.0 e4.5 e4.5 e4.5 e5.8 37 72 73 24 21 18 28 e8.8 e7.4 e4.5 e4.5 e4.5 e5.6 56 110 114 26 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 110 114 26 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 110 16 5 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e4.5 e5.6 56 110 65 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 10 65 22 20 16 20 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 10 65 22 20 16 20 e9.8 e6.8 e4.5 e4.5 e4.5 e4.5 e5.6 65 10 65 22 20 16 20 e9.8 e6.8 e4.8 | 7
8
9 | 14
22
25
25
23 | e10
e9.6
e9.4
e9.0
e8.8 | e5.2
e5.6
e5.6
e5.0
e5.4 | e4.0
e4.5
e4.5
e4.5
e4.5 | e5.0
e5.0
e5.0
e5.0
e5.0 | e4.5
e4.5
e4.5
e4.5 | e7.0
e6.8
e7.0
e8.6
e8.8 | 98
89
81
61
69 | 70
73
76
63
40 | 34
34
33
38
39 | 13
12
11
11
10 | 19
18
25 | | 16 e12 e7.8 e5.2 e4.5 e5.0 e4.5 16 46 276 109 14 11 17 e12 e7.2 e5.2 e4.5 e5.0 e4.6 20 53 231 126 15 10 18 e14 e6.6 e5.2 e4.5 e5.0 e4.6 29 43 205 95 14 10 19 e13 e6.2 e5.2 e4.5 e4.5 e4.6 24 41 320 72 18 10 20 e12 e7.0 e5.2 e4.5 e4.5 e4.6 22 41 353 56 16 9.7 21 e12 e7.8 e4.9 e4.5 e4.5 e4.7 30 43 383 56 16 9.7 22 e11 e7.4 e4.9 e4.5 e4.5 e4.5 e4.7 32 58 158 33 30 42 23 e10 e6.6 e4.9 e4.5 e4.5 e4.5 e4.7 32 58 158 33 30 42 23 e10 e6.6 e4.9 e4.5 e4.5 e4.5 e4.6 32 166 158 33 41 17 28 22 24 25 e9.6 e7.0 e4.8 e4.6 e4.2 e4.6 25 272 150 29 23 21 25 e9.6 e7.0 e4.8 e4.6 e4.2 e4.6 27 237 150 29 23 21 26 e8.6 e8.4 e4.8 e4.8 e4.2 e4.6 26 110 114 26 22 20 27 e9.4 e8.0 e4.5 e4.5 e4.5 e5.8 37 72 73 24 21 18 28 e8.8 e7.4 e4.5 e4.5 e4.5 e5.6 56 110 114 26 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 110 114 26 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 110 16 5 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e4.5 e5.6 56 110 65 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 10 65 22 20 16 20 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 10 65 22 20 16 20 e9.8 e6.8 e4.5 e4.5 e4.5 e4.5 e5.6 65 10 65 22 20 16 20 e9.8 e6.8 e4.8 | 14 | 20
18
15
14
e13 | e8.6
e8.6
e7.8
e8.0
e8.2 | e5.4
e5.2
e4.6
e4.6
e5.2 | e4.5
e4.5
e4.5
e4.5 | e5.0
e5.0
e5.0 | e5.0
e4.7
e4.5 | e13
20
23 | 67
49
39 | 36
34
34
110
256 | 38
36
32
44
59 | 12
14
12 | 15
14
12 | | 26 e9.6 e8.4 e4.8 e4.8 e4.2 e4.6 26 110 114 26 22 20 27 e9.4 e8.0 e4.5 e4.5 e4.5 e5.8 37 72 73 24 21 18 28 e8.8 e7.4 e4.5 e4.5 e4.5 e5.6 56 110 65 22 20 16 29 e9.8 e6.8 e4.5 e4.5 e4.5 e5.6 56 110 65 22 20 16 30 e9.0 e6.0 e4.5 e4.5 e4.5 e-5.2 92 274 23 20 21 18 31 e9.8 e4.8 e4.8 e4.8 e5.0 205 18 20 TOTAL 448.0 242.2 156.8 139.7 138.6 146.0 693.2 3154 3822 1263 493 514.7 MEAN 14.5 8.07 5.06 4.51 4.78 4.71 23.1 102 127 40.7 15.9 17.2 MAX 25 11 5.6 4.8 5.2 5.8 92 282 353 126 23 42 MIN 8.8 5.6 4.5 4.0 4.2 4.5 5.2 39 23 18 10 9.7 AC-FT 889 480 311 277 275 290 1370 6260 7580 2510 978 1020 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 2000, BY WATER YEAR (WY) MEAN 14.0 9.82 7.34 6.05 5.67 6.60 14.9 66.5 101 62.4 32.4 17.1 MAX 31.4 15.2 13.8 10.9 10.3 12.4 33.8 211 310 243 121 34.8 (WY) 1985 1991 1986 1986 1986 1986 1989 1989 1984 1984 1984 1995 1983 1984 MIN 6.15 4.37 2.78 2.16 1.98 2.56 5.50 29.7 38.0 24.4 12.9 8.36 (WY) 1990 1990 1976 1976 1976 1976 1976 1983 1977 1992 1988 1977 1977 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1973 - 2000 ANNUAL TOTAL 877.9 11211.2 ANNUAL MEAN 24.0 30.6 29.7 38.0 24.4 12.9 8.36 (WY) 1990 1990 1976 1976 1976 1976 1983 1977 1992 1988 1977 1977 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1973 - 2000 ANNUAL MEAN 24.0 30.6 29.7 38.0 24.4 12.9 8.36 (WY) 1990 1990 1976 1976 1976 1976 1983 1977 1992 1988 1977 1977 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1973 - 2000 ANNUAL MEAN 24.0 30.6 1.8 Feb 5 1976 ANNUAL MEAN 64.5 Dec 27 64.0 Jan 6 1.8 Feb 5 1976 ANNUAL MEAN 64.5 Dec 27 64.0 Jan 6 1.8 Feb 5 1976 ANNUAL MEAN 64.5 Dec 27 64.0 Jan 6 1.8 Feb 5 1976 ANNUAL SEVEN-DAY MINIMUM 64.6 Dec 25 6.56 Jun 19 63.0 Jun 30 1984 LOWEST ANNUAL MEAN 64.5 Dec 27 64.0 Jan 6 1.8 Feb 5 1976 ANNUAL SEVEN-DAY MINIMUM 64.6 Dec 25 6.56 Jun 19 63.0 Jun 30 1984 LOWEST ANNUAL SEVEN-DAY MINIMUM 64.6 Dec 25 6.56 Jun 19 63.0 Jun 30 1984 LOWEST ANNUAL SEVEN-DAY MINIMUM 64.6 Dec 25 6.56 Jun 19 6 | 17
18
19 | e12 | e7.8
e7.2
e6.6
e6.2
e7.0 | e5.2
e5.2
e5.2
e5.2
e5.2 | e4.5
e4.5
e4.5
e4.5 | e5.0 | e4.5
e4.6
e4.6
e4.6 | 16
20
29
24
22 | 46
53
43
41
41 | 276
231
205
320
353 | 109
126
95
72 | 15
14
18 | 10
10
10 | | TOTAL 448.0 242.2 156.8 139.7 138.6 146.0 693.2 3154 3822 1263 493 514.7 MEAN 14.5 8.07 5.06 4.51 4.78 4.71 23.1 102 127 40.7 15.9 17.2 MAX 25 11 5.6 4.8 5.2 5.8 92 282 353 126 23 42 MIN 8.8 5.6 4.5 4.0 4.2 4.5 5.2 39 23 18 10 9.7 AC-FT 889 480 311 277 275 290 1370 6260 7580 2510 978 1020 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 2000, BY WATER YEAR (WY) MEAN 14.0 9.82 7.34 6.05 5.67 6.60 14.9 66.5 101 62.4 32.4 17.1 MAX 31.4 15.2 13.8 10.9 10.3 12.4 33.8 211 310 243 121 34.8 (WY) 1985 1991 1986 1986 1986 1986 1989 1989 1984 1984 1995 1983 1984 MIN 6.15 4.37 2.78 2.16 1.98 2.56 5.50 29.7 38.0 24.4 12.9 8.36 (WY) 1990 1990 1976 1976 1976 1976 1976 1983 1977 1992 1988 1977 1977 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1973 - 2000 ANNUAL MEAN 24.0 30.6 282.7 HIGHEST ANNUAL MEAN 24.0 30.6 282.7 HIGHEST ANNUAL MEAN 31.4 15.2 13.8 139 Jun 23 353 Jun 20 b602 Jun 30 1984 LOWEST ANNUAL MEAN 24.0 30.6 282.7 HIGHEST DAILLY MEAN 139 Jun 23 353 Jun 20 b602 Jun 30 1984 LOWEST DAILLY MEAN 4.5 Dec 25 4.4 Feb 20 1.9 Jan 31 1976 INSTANTANEOUS PEAK FLOW 1NSTANTANEOUS SLOW 4.6 Dec 25 4.4 Feb 20 1.9 Jan 31 1976 INSTANTANEOUS PEAK FLOW 1NSTANTANEOUS PEAK FLOW 1NSTANTANEOUS PEAK FLOW 1NSTANTANEOUS PEAK SLOW 4.6 Dec 25 4.4 Feb 20 1.9 Jan 31 1976 INSTANTANEOUS PEAK SLOW 4.6 Dec 25 4.4 Feb 20 1.9 Jan 31 1976 INSTANTANEOUS PEAK FLOW 4.6 Dec 25 4.4 Feb 20 201.9 Jan 31 1976 INSTANTANEOUS PEAK SLOW 4.6 Dec 25 4.4 Feb 20 201.9 Jan 30 1984 ANNUAL RUNOFF (AC-FT) 17400 22240 20810 | 22
23
24 | e12
e11
e10
e10
e9.6 | e7.8
e7.4
e6.4
e5.6
e7.0 | e4.9
e4.9
e4.9
e4.9 | e4.5
e4.5
e4.5
e4.5 | e4.5
e4.5
e4.5
e4.5
e4.2 | e4.7
e4.7
e4.6
e4.6
e4.6 | 30
32
32
25
27 | 43
58
166
272
237 | 182
158
158
150
150 | 45
38
34
31
29 | 18
20
17
22
23 | 42
28
24 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 2000, BY WATER YEAR (WY) | 26
27
28
29
30
31 | e9.6
e9.4
e8.8
e9.8
e9.0
e9.8 | e8.4
e8.0
e7.4
e6.8
e6.0 | e4.8
e4.5
e4.5
e4.5
e4.5
e4.8 | e4.8
e4.5
e4.5
e4.5
e4.5
e4.5 | e4.2
e4.5
e4.5
e4.5 | e4.6
e5.8
e5.6
e5.4
e5.2
e5.0 | 37
56
75
92 | 110
72
110
282
274
205 | 114
73
65
46
23 | 26
24
22
21
20
18 | 21
20
21
21 | 18
16
17 | | MEAN 14.0 9.82 7.34 6.05 5.67 6.60 14.9 66.5 101 62.4 32.4 17.1 MAX 31.4 15.2 13.8 10.9 10.3 12.4 33.8 211 310 243 121 34.8 (WY) 1985 1991 1986 1986 1986 1989 1984 1984 1995 1983 1984 MIN 6.15 4.37 2.78 2.16 1.98 2.56 5.50 29.7 38.0 24.4 12.9 8.36 (WY) 1990 1990 1976 1976 1976 1976 1983
1977 1992 1988 1977 1977 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1973 - 2000 ANNUAL MEAN 24.0 30.6 a28.7 HIGHEST ANNUAL MEAN 139 Jun 23 353 Jun | MEAN
MAX
MIN | 14.5
25
8.8 | 242.2
8.07
11
5.6
480 | 156.8
5.06
5.6
4.5
311 | 139.7
4.51
4.8
4.0
277 | 138.6
4.78
5.2
4.2
275 | 146.0
4.71
5.8
4.5
290 | 693.2
23.1
92
5.2
1370 | 3154
102
282
39
6260 | 3822
127
353
23
7580 | 126
18 | 15.9
23
10 | 17.2
42
9.7 | | MAX 31.4 15.2 13.8 10.9 10.3 12.4 33.8 211 310 243 121 34.8 (WY) 1985 1991 1986 1986 1986 1989 1989 1984 1994 1995 1983 1983 1989 1984 1994 1995 1983 1983 1977 1992 1988 1977 1977 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1973 - 2000 ANNUAL MEAN 24.0 30.6 a28.7 HIGHEST ANNUAL MEAN 24.0 30.6 a28.7 HIGHEST DAILLY MEAN 139 Jun 23 353 Jun 20 b602 Jun 30 1984 LOWEST DAILLY MEAN 139 Jun 23 353 Jun 20 b602 Jun 30 1984 LOWEST DAILLY MEAN 64.5 Dec 27 e4.0 Jan 6 1.8 Feb 5 | STATIST | TICS OF M | ONTHLY MEA | AN DATA F | OR WATER Y | EARS 1973 | 3 - 2000, | BY WATER | YEAR (WY) | | | | | | ANNUAL TOTAL 8770.9 11211.2 ANNUAL MEAN 24.0 30.6 a28.7 HIGHEST ANNUAL MEAN 79.2 1984 LOWEST ANNUAL MEAN 15.3 1977 HIGHEST ANNUAL MEAN 15.3 1977 HIGHEST ANNUAL MEAN 139 Jun 23 353 Jun 20 b602 Jun 30 1984 LOWEST DAILY MEAN e4.5 Dec 27 e4.0 Jan 6 1.8 Feb 5 1976 ANNUAL SEVEN-DAY MINIMUM 4.6 Dec 25 4.4 Feb 20 1.9 Jan 31 1976 INSTANTANEOUS PEAK FLOW 671 Jun 19 c930 Jun 30 1984 INSTANTANEOUS PEAK STAGE 5.56 Jun 19 d6.21 Jun 30 1984 ANNUAL RUNOFF (AC-FT) 17400 22240 20810 10 PERCENT EXCEEDS 60 81 65 50 PERCENT EXCEEDS 12 12 12 | MAX
(WY)
MIN | 31.4
1985
6.15 | 15.2 | 13.8 | 10.9
1986
2.16 | 10.3
1986
1.98 | 12.4
1989
2.56 | 33.8
1989
5.50 | 211
1984
29.7 | 310
1984
38.0 | 243
1995
24.4 | 121
1983
12.9 | 34.8
1984
8.36 | | ANNUAL MEAN 24.0 30.6 a28.7 HIGHEST ANNUAL MEAN 79.2 1984 LOWEST ANNUAL MEAN 15.3 1977 HIGHEST DAILY MEAN 139 Jun 23 353 Jun 20 b602 Jun 30 1984 LOWEST DAILY MEAN e4.5 Dec 27 e4.0 Jan 6 1.8 Feb 5 1976 ANNUAL SEVEN-DAY MINIMUM 4.6 Dec 25 4.4 Feb 20 1.9 Jan 31 1976 INSTANTANEOUS PEAK FLOW 671 Jun 19 c930 Jun 30 1984 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 17400 22240 20810 10 PERCENT EXCEEDS 60 81 65 50 PERCENT EXCEEDS 12 12 12 | SUMMARY | Y STATIST | ICS | FOR | 1999 CALEN | IDAR YEAR | F | OR 2000 WAS | TER YEAR | | WATER YEA | ARS 1973 | - 2000 | | | ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT ANNUAL INSTANT ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ANNUAL M I DAILY ME SEVEN-DA ITANEOUS P ITANEOUS P RUNOFF (CENT EXCE | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 24.0 139 | Dec 27 | | 30.6
353
e4.0
4.4
671
5.56
22240
81
12 | Jun 20
Jan 6
Feb 20
Jun 19
Jun 19 | | 79.2
15.3
b602
1.8
1.9
c930
d6.21
20810
65
12 | Jun
Feb
Jan
Jun
Jun | 1977
30 1984
5 1976
31 1976
30 1984 | Average discharge for 7 years (water years 1948-54), $63.4~{\rm ft}^3/{\rm s}$, $45,930~{\rm acre-ft/yr}$, prior to diversion through Homestake Tunnel. Homestake Tunnel. b Maximum daily discharge for period of record, 755 ft³/s, Jun 21, 1951. c Maximum discharge and stage for period of record, 1080 ft³/s, Jun 13, 1953, gage height, 6.84 ft, site and datum then in use, from rating curve extended above 700 ft³/s. d Maximum gage height for statistical period, 6.31 ft, Apr 5, 1978, backwater from ice. ### 09064500 HOMESTAKE CREEK NEAR RED CLIFF, CO LOCATION.--Lat 39°28'24", long $106^{\circ}22'02$ ", in $NE^{1}/_{4}NE^{1}/_{4}$ sec.6, T.7 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank at downstream side of Forest Service road bridge, 2.4 mi south of Red Cliff, and 3.0 mi upstream from mouth. DRAINAGE AREA. -- 58.2 mi². PERIOD OF RECORD.--October 1910 to September 1918, May 1944 to current year. Published as "at Redcliff" October 1910 to September 1916. Statistical summary computed for 1967 to current year. REVISED RECORDS. -- WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 8,783 ft above sea level (river-profile survey). See WSP 1713 or 1733 for history of changes prior to May 8, 1961. REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by Homestake Lake (capacity, 44,360 acre-ft) since June 7, 1966. Transmountain diversions upstream from station through Homestake Tunnel (see elsewhere in this report) since June 6, 1967. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YI
MEAN V | EAR OCTOBEF
ALUES | R 1999 TO | SEPTEMBE | R 2000 | | | |-------------|--------------|-----------------------|--------------|--------------|------------------|----------------------|----------------------|------------|------------|-------------|-------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 23 | 12 | e7.0 | e5.4 | | e6.0 | e6.9 | 161 | 272 | 37 | 18 | 28
24 | | 2
3 | 20
19 | 10
11 | e6.4
e6.4 | e5.2
e5.0 | e5.4
e5.3 | e6.0
e6.0 | e7.6
e8.0 | 181
189 | 227
210 | 35
33 | 16
15 | 24
18 | | 4 | 17 | 11 | e6.4 | | e5.6 | e6.0 | e8.4 | 183 | 179 | 30 | 16 | 15 | | 5 | 17 | 12 | e6.2 | e5.0 | e5.8 | e6.0 | e8.6 | 203 | 156 | 30 | 14 | 14 | | 6 | 18 | 11 | e5.8 | e4.2 | e6.0 | e6.0 | e8.8 | 212 | 135 | 43 | 13 | 21 | | 7 | 27 | 11 | e5.8 | e4.2 | e5.7 | e6.0 | e9.6 | 198 | 142 | 43 | 9.8 | 28 | | 8
9 | 32
32 | 10
9.4 | e6.2
e6.2 | e5.0
e5.2 | e5.6 | e5.9 | e10
e12 | 193
152 | 136
135 | 41
51 | 8.8
9.4 | 25
41 | | 10 | 26 | e9.2 | e6.2 | e5.0 | e5.6
e5.7 | e5.9
e5.9
e6.0 | e18 | 148 | 90 | 49 | 8.3 | 31 | | 11 | 23 | e9.2 | e5.8 | e5.1 | e5.6 | e5.9 | e22 | 185 | 76 | 47 | 8.5 | 23 | | 12 | 21 | e9.2 | e6.0 | | e5.8 | e6.4 | e26 | 160 | 72 | 48 | 11 | 19 | | 13 | 19 | e9.2 | e5.8 | e5.1 | e5.8
e5.8 | e7.0 | e28 | 115 | 67 | 39 | 17 | 16 | | 14
15 | 18
17 | e8.6
e8.8 | e5.4
e5.2 | e5.1
e5.1 | e5.8
e5.8 | e7.0
e6.8
e6.4 | e27
e25 | 97
94 | 110
257 | 54
66 | 9.8
12 | 14
11 | | 16 | 15 | e9.0 | e5.6 | e5.0 | e5.8 | e6.2 | e27 | 108 | 294 | 117 | 14 | 9.1 | | 17 | 15 | e8.6 | e5.8 | | | e6.1 | e37 | 122 | 254 | 154 | 23 | 6.8 | | 18 | 17 | e8.0 | e5.8 | | e5.8 | e6.1 | e40 | 96 | 223 | 120 | 18 | 8.4 | | 19 | 16 | e7.6 | e5.8 | e5.0 | e5.6 | e6.1 | e31 | 88 | 276 | 89 | 27 | 9.1 | | 20 | 15 | e7.2 | e5.8 | | e5.4 | e6.2 | e38 | 91 | 416 | 68 | 23 | 8.5 | | 21 | 15 | e7.6 | e5.8 | e5.1 | e4.8 | e6.2 | e50 | 92 | 228 | 56 | 24 | 12 | | 22 | 14 | e8.6 | e5.8 | e5.1 | e5.2 | e6.2 | e54 | 111 | 189 | 48 | 31 | 68 | | 23
24 | 13
13 | e8.0
e7.2 | e5.4
e5.4 | e5.1
e5.0 | e5.3
e5.3 | e6.0
e6.2 | e52
e50 | 199
364 | 187
177 | 41
37 | 19
32 | 46
33 | | 25 | 12 | e6.6 | e5.4 | e5.0 | e5.2 | e6.8 | e78 | 385 | 175 | 34 | 38 | 29 | | 26 | 12 | e7.6 | e5.4 | e5.2 | e5.1 | e7.6
e7.3 | 84 | 254 | 154 | 31 | 44 | 27 | | 27 | 12 | e9.2 | e5.4 | | e4.8 | e7.3 | 112 | 189 | 107 | 30 | 37 | 23 | | 28 | 11 | e9.2 | | | e5.2 | e7.0 | 148 | 187 | 92 | 30 | 31 | 20 | | 29 | 13 | e8.4 | | e5.1 | e5.2 | e7.0
e6.8
e6.8 | 171 | 373 | 74 | 27 | 31 | 20 | | 30 | 11 | e7.6 | e5.2 | e5.0 | | | 190 | 431 | 41 | 23 | 32 | 25 | | 31 | 12 | | e5.2 | e5.0 | | e6.9 | | 346 | | 20 | 31 | | | TOTAL | 545 | 272.0 | 179.0 | 155.9 | 159.4 | 196.8 | 1387.9 | 5907 | 5151 | 1571 | 641.6 | 672.9 | | MEAN | 17.6 | 9.07 | 5.77 | | | | 46.3 | 191 | 172 | 50.7 | 20.7 | 22.4 | | MAX
MIN | 32
11 | 12
6.6 | 7.0
5.2 | 5.4
4.2 | 6.0
4.8 | 7.6
5.9 | 190
6.9 | 431
88 | 416
41 | 154
20 | 44
8.3 | 68
6.8 | | AC-FT | 1080 | 540 | 355 | 309 | 316 | 390 | 2750 | 11720 | 10220 | 3120 | 1270 | 1330 | | | | | | | | | , BY WATER | MEAN
MAX | 19.2 | 13.5
31.0 | 10.4
19.7 | 8.63
16.7 | 8.43
16.7 | 10.8
22.5 | 36.1 | 128
358 | 149
439 | 75.4
313 | 37.9 | 22.7
42.3 | | (WY) | 45.1
1985 | 1985 | 19.7 | 1996 | 1996 | 1989 | 73.1
1986 | 1984 | 1984 | 1984 | 136
1983 | 1984 | | MIN | 8.59 | 5.30 | 4.66 | 3.19 | 2.93 | 3.60 | 10.8 | 53.6 | 55.2 | 27.8 | 8.54 | 8.29 | | (WY) | 1976 | 1967 | 1989 | 1987 | 1987 | 1981 | 1983 | 1990 | 1992 | 1967 | 1990 | 1977 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | IDAR YEAR | 1 | FOR 2000 WA | ATER YEAR | | WATER YE | ARS 1967 | - 2000 | | ANNUAL | TOTAL | | | 15344.6 | | | 16839.5 | | | | | | | ANNUAL | | | | 42.0 | | | 46.0 | | | 43.5 | | | | | ' ANNUAL I | | | | | | | | | 116 | | 1984 | | | ANNUAL M | | | 007 | W. 05 | | 401 | | | a20.3 | | 1977 | | | DAILY ME | | | 227
e5.2 | May 25
Dec 15 | | 431
e4.2 | May 30 | | 831
81 8 | | 25 1984 | | | DAILY ME | AN
Y MINIMUM | | | Dec 15
Dec 25 | | 4.8 | Jan 9 | | b1.8
2.1 | | 2 1990
29 1990 | | | | I MINIMUM
EAK FLOW | | ٥.٥ | DEC 25 | | 638 | May 30 | | c943 | | 24 1984 | | | | EAK STAGE | | | | | | L May 30 | | 3.96 | | 24 1984 | | | RUNOFF (. | | | 30440 | | | 33400 | 2 | | 31540 | 2 | | | | ENT EXCE | | | 131 | | | 157 | | | 117 | | | | | CENT EXCE | | | 17 | | | 13 | | | 17 | | | | 90 PERC | CENT EXCE | EDS | | 7.2 | | | 5.2 | | | 6.4 | | | e Estimated. a Average discharge for 30 years (water years 1911-18, 1945-66), 86.6 ft³/s; 62,740 acre-ft/yr, prior to diversion through Homestake tunnel. Minimum observed for period of record, 0.60 ft³/s, Jan 25, 1915 (discharge measurement). Maximum discharge and stage for period of record, 1300 ft³/s, Jun 24, 1918, gage height, 6.20 ft, site and datum then in use. #### 09064600 EAGLE RIVER NEAR MINTURN, CO LOCATION.--Lat
$39^{\circ}33'14"$, long $106^{\circ}24'07"$, in $SW^{1}/_{4}SE^{1}/_{4}$ of unsurveyed sec. T.6 S., R.81 W., Eagle County, Hydrologic Unit 14010003, on left bank 500 ft upstream from U.S. Highway 24 bridge and 2.5 miles southeast of Minturn. DRAINAGE AREA. -- 186 mi². PERIOD OF RECORD. -- October 1989 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,078.37 ft above sea level, from levels by private engineering firm. REMARKS.--Records good except for estimated daily discharges, which are poor. Transmountain diversions upstream from station by Columbine, Ewing, and Wurtz Ditches. Transmountain diversion from Robinson Reservoir (capacity 2,520 acre-ft), for use in Tenmile Creek basin. Several small diversions for irrigation upstream from station. No regulation. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DIDCINIC | on, cobi | | | MEAN VA | LUES | 1000 10 | OBI TENDE | at 2000 | | | |----------|------------------------|---------------------|------------|------------|------------|----------|---------------|------------------|------------|--------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 62 | 44 | e39 | e31 | e34 | e30 | 34 | 358 | 846 | 155 | 64 | 64 | | 2 | 59 | 39 | e39 | e34 | e32 | 29 | 33 | 399 | 742 | 146 | 61 | 60 | | 3 | 57 | 38 | e39 | e31 | e35 | 28 | 34 | 464 | 690 | 140 | 58 | 56 | | 4 | 54 | 38 | e36 | e31 | e37 | 29 | 36 | 505 | 634 | 132 | 60 | 54 | | 5 | 52 | 38 | e34 | e31 | e37 | 30 | 48 | 579 | 590 | 122 | 58 | e51 | | 6 | 52 | 38 | e37 | e27 | e37 | 30 | 60 | 623 | 540 | 129 | 57 | e62 | | 7 | 66 | 37 | e39 | e31 | e35 | 29 | 64 | 615 | 527 | 126 | 53 | e66 | | 8 | 77 | 37 | e39 | e31 | e35 | 31 | 69 | 593 | 504 | 125 | 50 | e68 | | 9 | 72 | 37 | e35 | e31 | e35 | 29 | 85 | 501 | 496 | 152 | e48 | e78 | | 10 | 68 | 34 | e37 | e31 | e35 | 30 | 101 | 481 | 420 | 145 | e47 | e72 | | 11 | 64 | 35 | e35 | e31 | e37 | 30 | 97 | 575 | 377 | 131 | e55 | e62 | | 12 | 60 | e33 | e37 | e31 | e35 | 30 | 103 | 550 | 351 | 126 | e55 | e55 | | 13
14 | 57
55 | e30
e32 | e33 | e30 | e35
e35 | 31
31 | 125
142 | 442
393 | 331 | 119 | e57 | e50 | | 14
15 | 55
52 | e32
e32 | e33
e37 | e28
e31 | e35
e35 | 31
29 | 133 | 393
375 | 327
452 | 122
141 | e53
e49 | e47
e44 | | 15 | | e32 | e37 | 631 | | 29 | 133 | | | | 649 | 644 | | 16 | 49 | e30 | e37 | e31 | e35 | 32 | 114 | 395 | 497 | 197 | e60 | e42 | | 17
18 | 43
51 | e30
e36 | e37
e37 | e31
e31 | e35
e35 | 30
30 | 132
170 | 442
398 | 443
399 | 243
209 | 68
68 | e40
e42 | | 19 | 50 | e32 | e37 | e34 | e32 | 31 | 162 | 377 | 447 | 165 | 70 | e42 | | 20 | 48 | e32 | e37 | e31 | e30 | 29 | 144 | 370 | 670 | 139 | 65 | e39 | | | | | | | | | | | | | | | | 21 | 48 | 37 | e34 | e31 | e32 | 30 | 168 | 363 | 417 | 122 | 64 | e44 | | 22 | 47 | 37 | e34 | e31 | e32 | 28 | 181 | 409 | 351 | 109 | 68 | e86 | | 23 | 46 | 34 | e34 | e31 | e32 | 28 | 174 | 564 | 339 | 100 | 61 | e78 | | 24 | 45 | 30 | e34 | e31 | e32 | 29 | 166 | 832 | 322 | 93 | 66 | e69 | | 25 | 44 | e28 | e34 | e31 | e30 | 29 | 154 | 923 | 315 | 91 | 76 | e62 | | 26 | 43 | e39 | e34 | e34 | e29 | 30 | 183 | 777 | 305 | 86 | 80 | e60 | | 27 | 42 | e41 | e31 | e34 | e30 | 32 | 241 | 655 | 269 | 83 | 73 | e57 | | 28
29 | 41
46 | e39 | e31 | e33 | e30 | 36 | 329 | 642 | 232 | 80
75 | 67 | e50 | | 30 | 41 | e39
e39 | e31
e31 | e32
e30 | e30 | 37
36 | 381
409 | 892
1030 | 207
167 | 75
70 | 72
73 | e50
e53 | | 31 | 42 | | e31 | e30 | | 35 | | 946 | | 67 | 71 | | | TOTAL | 1633 | 1070 | 1093 | 966 | 973 | 948 | 4272 | 17468 | 13207 | 3940 | 1927 | 1703 | | MEAN | 52.7 | 35.7 | 35.3 | 31.2 | 33.6 | 30.6 | 142 | 563 | 440 | 127 | 62.2 | 56.8 | | MAX | 77 | 44 | 39 | 34 | 37 | 37 | 409 | 1030 | 846 | 243 | 80 | 86 | | MIN | 41 | 28 | 31 | 27 | 29 | 28 | 33 | 358 | 167 | 67 | 47 | 39 | | AC-FT | 3240 | 2120 | 2170 | 1920 | 1930 | 1880 | 8470 | 34650 | 26200 | 7810 | 3820 | 3380 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | OR WATER Y | YEARS 1990 | - 2000, | BY WATER | YEAR (WY) |) | | | | | MEAN | 46.8 | 39.0 | 31.4 | 28.4 | 27.9 | 33.9 | 92.0 | 416 | 556 | 212 | 90.1 | 57.0 | | MAX | 68.8 | 47.8 | 44.6 | 41.8 | 42.3 | 54.4 | 175 | 726 | 962 | 661 | 186 | 73.8 | | (WY) | 1998 | 1996 | 1996 | 1996 | 1996 | 1997 | 1996 | 1996 | 1995 | 1995 | 1995 | 1995 | | MIN | 27.6 | 25.3 | 21.2 | 17.9 | 18.4 | 23.5 | 50.4 | 219 | 263 | 94.8 | 49.8 | 40.6 | | (WY) | 1990 | 1990 | 1990 | 1990 | 1990 | 1991 | 1991 | 1990 | 1992 | 1994 | 1990 | 1994 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1990 | - 2000 | | ANNUAL ' | TOTAL | | | 50585 | | | 49200 | | | | | | | ANNUAL I | MEAN | | | 139 | | | 134 | | | 136 | | | | HIGHEST | ANNUAL M | EAN | | | | | | | | 197 | | 1995 | | LOWEST 2 | ANNUAL ME | AN | | | | | | | | 87.9 | | 1990 | | | DAILY ME | | | 729 | Jun 17 | | 1030 | May 30 | | 1540 | | 1995 | | | DAILY MEA | | | e20 | Mar 13 | | e27 | Jan 6 | | 11 | | 9 1994 | | | | MINIMUM | | 22 | Mar 9 | | 29 | Mar 20 | | 10 | | 4 1990 | | | ANEOUS PE | AK FLOW
AK STAGE | | | | | 1220 | May 30
May 30 | | 1810
6.75 | | 1995 | | | ANEOUS PE
RUNOFF (A | | | 100300 | | | 5.85
97590 | ray 30 | | 98590 | oun 1 | L8 1995 | | | ENT EXCEE | | | 477 | | | 418 | | | 391 | | | | | ENT EXCEE | | | 57 | | | 50 | | | 49 | | | | | ENT EXCEE | | | 30 | | | 30 | | | 25 | | | | | | | | | | | | | | | | | e Estimated. #### 09065100 CROSS CREEK NEAR MINTURN, CO LOCATION.--Lat $39^{\circ}34^{\circ}05^{\circ}$, long $106^{\circ}24^{\circ}43^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.36, T.5 S., R.81 W., Eagle County, Hydrologic Unit 14010003, on right bank 0.4 mi upstream from mouth, and 1.5 mi southeast of Minturn. DRAINAGE AREA.--34.2 mi². PERIOD OF RECORD.--May 1956 to September 1963, October 1967 to current year. REVISED RECORDS. -- WDR CO-81-2: 1980 (M). WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,992 ft above sea level, from topographic map. Prior to July 18, 1956, nonrecording gage at site 0.3 mi downstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Bolts ditch exports water upstream from station to tailings ponds and recreation lake along Eagle River. Diversion 0.5 mi upstream from station for water supply of school and for municipal supply of Minturn. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES Y OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | |---|--|--|--|--|--------------------------------------|--|---|--|------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | | | | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 24
22
20
18
17 | 13
11
14
15
13 | e4.2
e4.2
e4.2
e3.9
e3.7 | e3.4
e3.4
e3.4
e3.4 | e4.4
e4.4
e4.4
e4.7
e4.7 | e4.3
e4.3
e4.3
e4.3 | e6.0
e6.0
e6.0
e6.8
e8.7 | 69
89
124
155
204 | 398
343
324
287
281 | 109
106
99
94
80 | 17
16
16
17
16 | 40
33
27
24
22 | | 6
7
8
9
10 | 17
25
26
25
24 | 12
e9.8
e8.2
e7.4
e7.0 | e4.0
e4.2
e4.2
e3.7
e4.2 | e3.0
e3.5
e3.5
e3.5
e3.5 | e4.7
e4.5
e4.5
e4.5
e4.5 | e4.3
e4.5
e4.2
e4.2 | e14
e13
e13
e16
e20 | 102 | 239
268
274
295
217 | 75
72
67
94
82 | 15
14
13
12
12 | 30
38
33
47
38 | | 11
12
13
14
15 | 22
20
18
17
15 | e7.2
e6.5
e6.0
e6.0
e6.0 | e4.2
e3.9
e3.6
e3.6
e3.9 | e3.5
e3.5 | e4.5 | e4.2
e4.8
e4.5
e4.5
e4.5 | e20 | 164
157
102
85
87 | 201
199
177
134
174 | 73
67
58
57
61 | 17
15
17
14
14 | 29
25
22
19
17 | | 16
17
18
19
20 | 14
13
15
14
14 | e5.0
e5.0
e5.6
e4.2
e4.8 | e3.9
e3.9
e3.9
e3.9 | e3.7
e3.7
e3.7
e4.3
e4.0 | e4.5
e4.5
e4.5
e4.5
e4.3 | e4.5
e4.5
e4.5
e4.5
e4.5 | e33
e30
e32
e31
e29 | 98
134
94
80
88 | 189
143
128
200
277 | 94
111
108
67
51 | 27
48
45
62
52 | 16
15
15
15
13 | | 21
22
23
24
25 | 14
13
12
11
11 | e4.8
e4.8
e4.3
e3.4
e4.4 | e3.6
e3.6
e3.6
e3.6 | e4.0
e4.0
e4.0
e4.0
e4.3 | e4.5
e4.5
e4.5
e4.5
e4.1 | e4.5
e4.5
e5.0
e5.6
e5.6 | 39
46
57
39
34 | 94
132
259
448
458 | 171
144
138
115
123 | 42
35
32
29
27 | 44
47
37
31
57 |
15
59
50
39
33 | | 26
27
28
29
30
31 | 10
11
10
11
10
13 | e5.4
e5.2
e4.9
e4.6
e4.3 | e3.6
e3.3
e3.3
e3.3
e3.3
e3.7 | e4.3
e4.3
e4.0
e3.8
e3.6
e3.5 | e3.8
e4.3
e4.3
e4.3 | e5.6
e5.6
e6.2
e6.8
e6.4
e6.0 | 42
55
72
78
80 | 343
209
227
458
546
466 | 126
158
123
111
112 | 26
25
24
22
20
18 | 49
51
44
46
50
44 | 31
27
23
23
27 | | TOTAL
MEAN
MAX
MIN
AC-FT | 506
16.3
26
10
1000 | 212.8
7.09
15
3.4
422 | 117.7
3.80
4.2
3.3
233 | 114.4
3.69
4.3
3.0
227 | | 149.8
4.83
6.8
4.2
297 | 936.5
31.2
80
6.0
1860 | 6276
202
546
69
12450 | 6069
202
398
111
12040 | 1925
62.1
111
18
3820 | 959
30.9
62
12
1900 | 845
28.2
59
13
1680 | | STATIST | TICS OF M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 1957 | - 2000 | , BY WATER | YEAR (WY | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.7
49.5
1962
3.39
1957 | 7.19
15.6
1962
1.99
1957 | 4.27
9.81
1997
.99
1963 | 3.14
8.85
1997
.17
1963 | 3.01
8.84
1997
.48
1977 | 4.15
11.4
1997
1.09
1977 | 21.3
57.6
1962
6.35
1973 | 123
221
1970
57.8
1995 | 252
360
1980
134
1977 | 134
355
1957
38.5
1977 | 44.7
122
1983
14.4
1977 | 22.5
65.0
1961
6.68
1974 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | IDAR YEAR | 1 | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1957 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ANNUAL M DAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | | Jun 26
Feb 12
Dec 24 | | 18240.8
49.8
546
e3.0
3.4
738
5.03
36180
143
15
3.8 | May 30
Jan 6
Jan 1
May 30
May 30 | | 52.9
83.2
25.4
618
a.10
.13
754
b5.45
38300
178
11
2.3 | Jun 3
Dec 2
Dec 2
Jun 3
Jun 3 | 1984
1977
0 1957
7 1962
6 1962
0 1957
0 1957 | e Estimated. a Also occurred Dec 28-31, 1962, Jan 6-8, 11-15, 1963. b Maximum gage height, 6.14 ft, Aug 6, 1983. #### 09065500 GORE CREEK AT UPPER STATION, NEAR MINTURN, CO LOCATION.--Lat 39°37'33", long 106°16'39", in NE¹/₄NW¹/₄ sec.18, T.5 S., R.79 W., Eagle County, Hydrologic Unit 14010003, on right bank 20 ft downstream from bridge pier on Interstate 70, 0.2 mi upstream from Black Gore Creek, 4.4 mi east of Vail, and 8.4 mi northeast of Minturn. DRAINAGE AREA. -- 14.4 mi². PERIOD OF RECORD. -- October 1947 to September 1956, October 1963 to current year. REVISED RECORDS.--WDR CO-89-2: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,600 ft above sea level, from topographic map. Oct. 1, 1947 to Sept. 30,1956, Oct. 1, 1963 to Sept. 30, 1980, at various sites about 1200 ft upstream at different datums. See WDR CO-80-2, for history of changes prior to Oct. 1, 1980. Oct. 1, 1980 to Apr. 21, 1992, gage at site 10 ft upstream and at datum 2.0 ft REMARKS.--Records good except for estimated daily discharges, which are poor. No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | | YEAR OCTOBER | R 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--|--|--------------------------------------|--|--|---|------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e11
e11
e10
e9.8
e9.8 | 8.4
6.1
4.6
4.5
4.5 | e4.1
e3.9
e3.9
e3.9
e3.5 | e3.7
e3.5
e3.3
e3.0
e3.0 | e3.2
e3.6
e3.9
e3.9 | e4.0
e4.0
e4.1
e4.1 | e6.2
e6.2
e6.0
e6.2
e8.6 | e100
e120 | 265
252
233
220
219 | 73
70
65
59
53 | 12
12
12
11
11 | 14
12
10
9.0
8.3 | | 6
7
8
9
10 | e10
e12
e13
e12
e12 | 4.4
4.4
3.7
3.7
3.9 | e4.5
e4.8
e4.8
e4.4
e4.4 | e2.8
e2.8
e3.0
e3.0 | e4.1
e3.9
e3.9
e3.9
e4.1 | e4.1
e4.2
e4.0
e3.9
e4.0 | e10
9.3
e10
e12
e16 | e130
e130
e110
e92
e70 | 217
217
202
170
152 | 50
47
45
56
49 | 9.7
9.1
8.7
8.5 | 9.5
9.9
11
12
9.6 | | 11
12
13
14
15 | e11
e11
e10
e9.4
9.2 | 3.8
3.9
3.8
4.1
3.9 | e4.5
e4.4
e4.1
e4.3
e4.2 | e3.3
e3.5
e3.7
e3.5
e3.3 | e4.3
e4.1
e4.1
e4.4
e4.1 | e4.0
e4.0
e3.8
e3.8 | e15
e15
e20
e21
e22 | 112
97
63
54
58 | 146
140
124
111
129 | 44
40
36
34
34 | 9.3
10
9.3
8.1
8.7 | 8.1
7.4
6.8
6.4
6.0 | | 16
17
18
19
20 | 8.3
9.5
9.6
9.0 | 3.9
3.7
2.7
2.9
e3.2 | e4.3
e4.0
e3.7
e3.7 | e3.3
e3.3
e3.4
e3.4 | e4.1
e4.4
e4.3
e4.0
e4.2 | e3.5
e3.6
e4.2
e4.6
e5.0 | e18
e19
e24
e22
e20 | 81
87
58
49
50 | 126
106
96
117
133 | 41
47
39
32
28 | 11
12
18
16
14 | 5.6
5.4
5.7
5.4
5.1 | | | | | | e3.4
e3.4
e3.3
e3.3
e3.5 | | | | | | 25
22
21
19
18 | 14
13
11
11 | 8.7
16
13
12
11 | | 26
27
28
29
30
31 | 7.7
7.5
7.0
7.4
7.7
8.8 | e3.3
e3.7
e3.9
e4.1
e4.1 | e3.8
e4.1
e4.3
e4.3
e4.0
e3.9 | e3.5
e3.3
e3.1
e2.9
e2.7
e2.6 | e4.2
e4.1
e4.1
e4.2 | e5.8
e5.6
e7.0
e7.0
e6.8
e6.4 | e23
e31
e42
e47
e47 | 138
112
163
290
309
285 | 91
92
79
76
74 | 17
16
16
15
14
13 | 14
13
13
17
16
15 | 10
9.0
8.2
8.2
8.2 | | TOTAL
MEAN
MAX
MIN
AC-FT | 293.8
9.48
13
7.0
583 | 119.9
4.00
8.4
2.7
238 | 125.8
4.06
4.8
3.5
250 | 100.1
3.23
3.7
2.6
199 | 118.4
4.08
4.5
3.2
235 | 145.0
4.68
7.0
3.5
288 | 589.5
19.6
47
6.0
1170 | 3646
118
309
45
7230 | 142 | 1138
36.7
73
13
2260 | 376.4
12.1
18
8.1
747 | | | | | | | | | | 0, BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 7.56
19.8
1985
3.12
1976 | 4.98
15.3
1985
2.50
1976 | 3.69
9.23
1986
1.94
1964 | 3.16
9.75
1986
1.86
1964 | 3.06
10.6
1986
1.55
1977 | 3.71
12.6
1985
1.57
1977 | 22.5
1969
3.81 | 69.1
121
1974
23.4
1968 | 154
245
1978
59.2
1954 | 70.4
198
1983
17.2
1977 | 20.7
83.7
1983
7.37
1954 | 9.62
22.9
1984
3.52
1956 | | SUMMARY | Y STATIST | rics | FOR | 1999 CALEN | DAR YEAR | | FOR 2000 W | ATER YEAR | | WATER Y | EARS 1948 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN T ANNUAL ANNUAL T DAILY ME SEVEN-DA TANEOUS F | MEAN MEAN EAN AY MINIMUM PEAK FLOW PEAK STAGE (AC-FT) EEDS | | | Jun 25
Feb 20
Feb 17 | | 11174.4
30.5
309
2.6
2.9
435
3.66
22160
98
8.6
3.5 | May 30
Jan 31
Jan 4
May 29
May 29 | | 30.2
48.3
17.4
455
1.2
1.3
a662
b2.60
21890
100
7.0
2.5 | | 1983
1954
25 1983
5 1977
27 1977
24 1983
24 1983 | a From rating curve extended above 140 ft³/s. b Maximum gage height, 6.65 ft, Jun 18, 1951, datum then in use. #### 09066000 BLACK GORE CREEK NEAR MINTURN, CO LOCATION.--Lat 39°35'47", long 106°15'52", T.5 S., R.79 W., Eagle County, Hydrologic Unit 14010003, on right bank 200 ft from U.S. Highway 6, 0.3 mi upstream from Timber Creek, 2.5 mi upstream from mouth, and 9 mi east of Minturn. DRAINAGE AREA.--12.6 mi². PERIOD OF RECORD.--October 1947 to September 1956, October 1963 to current year. REVISED RECORDS.--WDR CO-89-2: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 9,150 ft above sea level, from topographic map. Prior to October 1963, at site 15 ft upstream, at present datum. REMARKS.--Records good except for estimated daily discharges, which are poor. No diversions upstream from station. Natural regulation by two small recreation lakes upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | |--|--|--|--|--
--------------------------------------|--------------------------------------|---|--|-------------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | | e4.4
e4.4
e4.2
e4.6
e6.0 | 20
28
39
51
64 | 172
154
142
129
118 | 17
17
16
15
14 | 5.4
5.3
5.1
5.0
4.9 | 4.4
4.0
3.7
3.5
3.7 | | 6
7
8
9
10 | 4.7
6.2
6.3
5.9
5.3 | e2.7
e2.6
e2.6
e2.5
e2.5 | e3.2
e3.3
e3.5
e3.2
e3.5 | e3.0
e3.2
e3.3
e3.3
e3.5 | e3.3
e3.2
e3.2
e3.2
e3.5 | e3.9
e4.1
e3.7
e3.8
e3.9 | e5.8
5.3
6.1
8.3
8.5 | 70
65
52
62 | 99
87
76
66 | 12
12
14
12 | 4.6
4.4
4.3
4.4 | 4.1
3.7
4.4
4.2
3.6 | | 11
12
13
14
15 | 5.0
4.7
4.5
4.4
4.4 | e2.7
e2.6
e2.4
e2.6
e2.6 | e3.4
e3.3
e3.1
e3.1
e3.3 | e3.7
e3.8
e3.8
e3.6
e3.3 | e3.7
e3.7
e3.7
e3.7
e3.7 | e3.9
e4.0
e3.8
e3.8
e3.8 | 7.7
9.6
11
11 | 90
91
63
57
61 | 57
52
48
42
40 | 11
11
10
10
12 | 4.6
4.6
4.4
4.2
4.9 | 3.3
3.1
2.9
2.8
2.7 | | 16
17
18
19
20 | | | | e3.3
e3.3
e3.5
e4.0
e3.6 | | e3.5
e3.6
e3.5
e3.3
e3.5 | 9.0
10
13
11 | | | 14
15
11
9.5
8.6 | | 2.6
2.6
2.8
2.6
2.6 | | 21
22
23
24
25 | 4.6
4.4
4.4
4.3
4.3 | e2.7
e2.7
e2.5
e2.4
e2.4 | e3.8
e3.8
e3.7
e3.5 | e3.3
e3.1
e3.0
e3.0
e3.3 | e3.5
e3.4
e3.4
e3.5
e3.4 | e3.5
e3.7
e3.9
e4.1
e4.2 | 12
12
12
10
10 | 53
73
123
164
174 | 31
28
26
25
24 | 8.1
7.6
7.2
7.1
7.0 | 5.3
4.9
4.4
4.3
4.7 | 4.9
5.1
3.8
3.8
3.6 | | 26
27
28
29
30
31 | 4.2
4.2
4.1
4.2
e3.2
e3.0 | e2.5
e2.5
e2.6
e2.7
e2.7 | e3.8
e3.7
e3.7
e3.7
e3.5
e3.5 | e3.3
e3.1
e2.6
e2.8
e2.1
e2.1 | e3.3
e3.5
e3.6
e3.6 | e4.2
e4.5
e4.8
e5.0
e5.0 | 13
17
21
21
19 | 145
133
147
200
212
194 | 26
25
22
20
18 | 6.7
6.5
6.2
6.0
5.8
5.6 | 4.4
4.2
4.4
5.2
4.9 | 3.4
3.1
2.9
3.0
3.0 | | TOTAL
MEAN
MAX
MIN
AC-FT | 142.9
4.61
6.3
3.0
283 | 78.6
2.62
3.0
2.3
156 | 106.2
3.43
3.8
2.7
211 | 100.7
3.25
4.0
2.1
200 | 97.5
3.36
3.7
2.3
193 | 121.7
3.93
5.0
3.3
241 | 308.9
10.3
21
4.2
613 | 2822
91.0
212
20
5600 | 1814
60.5
172
18
3600 | 327.9
10.6
17
5.6
650 | 151.6
4.89
6.2
4.2
301 | 103.9
3.46
5.1
2.6
206 | | | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.91
10.7
1985
1.90
1951 | 3.41
10.7
1985
1.84
1964 | 2.86
9.57
1985
1.35
1970 | 2.53
8.08
1986
1.01
1979 | 2.43
9.09
1986
.91
1979 | 3.00
14.5
1986
1.40
1971 | 7.52
22.8
1985
2.86
1973 | 55.6
130
1948
15.0
1995 | 91.5
160
1978
21.8
1954 | 22.2
69.2
1995
6.09
1954 | 7.28
21.4
1984
2.56
1954 | 4.35
12.0
1984
2.43
1956 | | SUMMARY | Y STATISTI | CS | FOR : | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YE | ARS 1948 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERO
50 PERO | | CAN CAN AN MINIMUM CAK FLOW CAK STAGE AC-FT) CDS CDS | | 6231.1
17.1
135
2.2
2.5
12360
57
4.9
2.8 | Jun 16
Apr 20
Nov 19 | | 6175.9
16.9
212
e2.1
e2.5
302
4.94
12250
53
4.3
2.7 | May 30
Jan 30
Jan 28
May 29
May 29 | | 17.2
30.3
8.16
274
.90
370
a5.06
12480
54
3.9
2.0 | Jun 1
Feb 2
Feb
Jun 1 | 1984
1954
17 1995
22 1968
4 1979
17 1995
17 1995 | e Estimated. a Maximum gage height, 6.00 ft, Mar 30, 1968, backwater from ice. # 09066100 BIGHORN CREEK NEAR MINTURN, CO LOCATION.--Lat $39^{\circ}38^{\circ}24^{\circ}$, long $106^{\circ}17^{\circ}34^{\circ}$, in $N^{1}/_{2}$ sec.12, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank 0.3 mi upstream from U.S. Highway 6, 0.4 mi upstream from mouth, 4.5 mi east of Vail, and 8.5 mi northeast of Minturn. DRAINAGE AREA.--4.54 mi². PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,625 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAF | RGE, CUBIC | C FEET PER | SECOND, | WATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--------------------------------------|---|--------------------------------------|--|--|---|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.5
3.2
3.0
2.8
2.7 | e1.5
e1.4
e1.4
e1.5 | e.78
e.79
e.78
e.75
e.71 | e.82
e.82
e.76
e.76 | e.70
e.75
e.80
e.80
e.80 | e.84
e.80
e.86
e.82
e.86 | e1.1
e1.1
e1.0
e1.1
e2.3 | | 76
66
60
57
55 | 21
20
19
17
16 | 5.4
5.1
4.7
4.8
4.8 | 3.9
3.6
3.4
3.3
3.3 | | 6
7
8
9
10 | 2.7
3.2
3.3
3.5
3.4 | e1.4
e1.4
e1.3
e1.3 | e.70
e.72
e.71
e.69
e.71 | e.74
e.74
e.82
e.82
e.82 | e.80
e.80
e.80
e.80 | e.86
e.90
e.86
e.84
e.88 | e2.9
3.1
3.4
4.5
5.6 | 53
46
37
26
26 | 56
59
55
47
43 | 15
15
14
16
15 | 4.5
4.2
3.9
3.8
3.8 | 3.6
3.7
3.7
4.0
3.6 | | 11
12
13
14
15 | 3.2
3.0
2.9
2.8
2.7 | e1.1
e1.1
e1.0
e.96
e.92 | e.73
e.72
e.69
e.69
e.71 | e.86
e.90
e.90
e.86
e.86 | e.90
e.90
e.90
e.90 | e.88
e.92
e.88
e.88 | 5.1
5.3
6.9
7.8
7.6 | 37
35
24
20
19 | 42
40
33
28
33 | 15
13
12
12
12 | 4.4
4.7
4.1
3.9
4.5 | 3.3
3.1
3.0
2.7
2.6 | | | | | | | | | 6.1
6.4
8.0
7.1
6.2 | | | | | | | | | | | | | | 6.6
7.0
6.5
5.6
5.2 | | | | | | | 26
27
28
29
30
31 | 2.0
2.0
1.9
e1.8
e1.7
e1.6 | e.75
e.77
e.76
e.76
e.76 | e.82
e.80
e.80
e.80
e.80 | e.86
e.86
e.74
e.80
e.72
e.66 | e.76
e.84
e.84
e.84 | e1.0
e1.1
e1.4
e1.4
e1.3
e1.2 | 6.0
9.6
16
18
15 | 51
42
64
103
107
93 | 24
26
22
21
21 | 6.7
6.3
6.2
6.0
5.7
5.4 | 4.7
4.5
4.5
5.0
4.5
4.2 | 4.0
3.7
3.5
3.5
3.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | 23.27 | 25.48 | 23 97 | 29.66 | | 1303
42.0
107
14
2580 | | 362.6 | 148.7 | 102.2
3.41
4.8
2.3
203 | | STATIST | | | | | | | BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.79
8.03
1986
1.01
1964 | 1.70
4.65
1985
.84
1980 | 1.04
2.53
1985
.63
1977 | .85
2.04
1986
.45
1967 | .83
2.54
1986
.30
1964 | 1.02
2.97
1986
.32
1981 | 3.89
10.0
1985
.86
1964 | 24.4
52.5
1984
8.09
1995 | 49.3
85.2
1978
17.7
1966 | 22.6
61.2
1983
5.61
1977 | 7.49
22.6
1984
3.27
1994 | 3.65
9.94
1984
1.12
1975 | | SUMMARY | STATIST | ICS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | ER YEAR | | | ARS 1964 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL M ANNUAL M DAILY M DAILY ME SEVEN-DA ANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 3254.84
8.92
74
e.69
e.71
6460
33
2.4
.80 | Jun 23
Dec 9
Dec 8 | | 107
e.66
e.71
153
3.91
6870
28
2.8
.76 | May 30
Jan 31
Dec 8
May 29
May 29 | | 9.98
18.6
5.15
170
a.10
.20
b338
c4.10
7230
33
2.4
.70 | Jun 2
Feb
Mar
Jun
Jun | 1984
1966
26 1983
8 1967
4 1981
8 1985
8 1985 | e Estimated. a Also occurred Jan 30, 1970. b From rating curve extended above 82 ft³/s. c Maximum gage height, 4.26 ft, Jun 8, 1985, backwater from debris. ### 09066150 PITKIN CREEK NEAR MINTURN, CO LOCATION.--Lat $39^{\circ}38'37"$, long $106^{\circ}18'07"$
, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.1, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank, 100 ft downstream from Pitkin ditch headgate (revised), 1,000 ft upstream from U.S. Highway 6, 1,200 ft upstream from mouth, 4.0 mi east of Vail, and 8 mi northeast of Minturn. DRAINAGE AREA. -- 5.32 mi². PERIOD OF RECORD.--Annual maximum and occasional low-flow measurements water years 1965-66. October 1966 to current year. REVISED RECORDS.--WRD Colo. 1971: 1967-70. WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 8,525 ft above sea level, from topographic map. Oct. 1, 1964, to Sept. 30, 1966, crest-stage gage at datum 0.98 ft lower, at site 300 ft downstream. REMARKS.--Records good except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIO | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--------------------------------------|--|-------------------------------------|--|--|--|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | | | | e1.8
e1.8
e1.7
e1.9
e2.1 | | | | | 6.1
5.7
5.2
4.9
4.8 | | | | | | | | | e2.7
e2.6
e2.9
3.9
5.3 | | | | | | | 11
12
13
14
15 | 4.3
4.0
3.8
3.6
3.4 | 2.0
2.0
1.9
1.9 | e2.2
e2.2
e2.1
e2.1
e2.2 | e1.5
e1.6
e1.6
e1.5
e1.4 | e1.4
e1.4
e1.4
e1.4 | e1.5
e1.5
e1.5
e1.5 | 5.1
5.3
6.5
6.8
7.1 | 50
42
26
22
22 | 46
42
34
29
35 | 14
13
12
12
11 | 5.1
5.1
4.9
4.7
4.7 | 5.1
4.8
4.6
4.5
4.3 | | 16
17
18
19
20 | 3.1
2.9
3.1
3.1
3.2 | 1.9
1.9
1.8
1.8
e2.0 | e2.2
e2.3
e2.3
e2.4
e2.4 | e1.4
e1.4
e1.4
e1.7
e1.5 | e1.4
e1.4
e1.3
e1.1 | e1.4
e1.4
e1.3
e1.4 | 6.5
6.3
7.3
6.8
6.7 | 27
29
21
19
20 | 35
30
28
37
43 | 11
12
12
11
9.5 | 4.7
5.0
6.6
7.3
6.6 | 4.0
4.0
4.3
4.2
3.9 | | | | | | | | | 7.2
7.5
7.6
6.7 | | | | | | | 26
27
28
29
30
31 | 2.7
2.6
2.6
2.7
2.6
2.8 | e2.0
e2.0
e2.1
e2.1
e2.1 | e2.0
e1.9
e1.9
e1.9
e1.9 | e1.3
e1.3
e1.3
e1.2
e1.2 | e1.2
e1.4
e1.4
e1.4 | e1.7
e1.8
e2.2
e2.2
e2.2
e2.0 | 6.6
9.3
14
15
15 | 61
48
66
128
132
136 | 29
27
24
24
23 | 6.8
6.5
6.4
6.2
6.1
6.0 | 5.5
5.3
5.0
6.8
6.4
6.4 | 6.2
5.4
4.9
5.0
5.0 | | | | | | | | | 186.1
6.20
15
1.7
369 | | | | | | | STATIST | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.10
9.43
1985
1.49
1967 | 2.54
3.84
1982
1.26
1980 | 1.78
3.28
1986
.94
1967 | 1.44
3.84
1986
.58
1967 | 1.35
3.94
1986
.70
1981 | 1.50
3.85
1985
.87
1981 | 4.08
6.98
1992
1.44
1973 | 24.6
49.2
2000
8.48
1995 | 54.0
101
1978
23.2
1989 | 30.1
94.5
1984
7.73
1994 | 9.71
31.1
1983
4.15
1969 | 5.13
11.2
1984
2.78
1988 | | SUMMARY | STATISTI | CS | FOR : | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YE | ARS 1967 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT | MEAN T ANNUAL M ANNUAL ME T DAILY MEA DAILY MEA SEVEN-DAY TANEOUS PE | MEAN AN A | | 3878.3
10.6
65
e1.3
e1.3
7690
42
3.2
1.6 | | | 4158.9
11.4
136
e1.1
e1.2
256
2.94
8250
32
3.9
1.4 | May 31
Feb 20
Jan 29
May 29
May 29 | | 11.7
22.7
6.77
186
.24
.265
a2.85
8490
38
3.3
1.1 | Jun 1
Oct 1
Oct 2
Jun
Jun | 1984
1989
14 1978
29 1972
26 1972
8 1985
8 1985 | e Estimated. a Maximum gage height, 3.75 ft, Jul 13, 1995, backwater from debris. #### 09066200 BOOTH CREEK NEAR MINTURN, CO LOCATION.--Lat $39^{\circ}38^{\circ}54^{\circ}$, long $106^{\circ}19^{\circ}21^{\circ}$, in $NE^{1}/_{4}SE^{1}/_{4}$ of sec.3, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank (revised), downstream side of old Highway 6 bridge pier, 100 ft upstream from frontage road to I-70, 0.2 mi upstream from mouth, 3.0 mi northeast of Vail, and 7.0 mi northeast of Minturn. DRAINAGE AREA.--6.02 mi². PERIOD OF RECORD. -- October 1964 to current year. REVISED RECORDS.--WDR CO-89-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,325 ft above sea level, from topographic map. Prior to June 4, 1984, gage at site 1,000 ft upstream at different datum (gage destroyed by rock slide). REMARKS.--Records good except for estimated daily discharges, which are poor. No diversion or regulation upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE
MEAN V | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--------------------------------------|---|--------------------------------------|--|---|---------------------------------------|-------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.6
2.5
2.3
2.2
2.1 | 1.1
1.0
.91
.83
.77 | e.56
e.60
e.60
e.56
e.50 | e.88
e.88
e.84
e.82
e.82 | e.74
e.80
e.84
e.86
e.86 | e.90
e.86
e.92
e.88
e.94 | e1.2
e1.2
e1.1
e1.3
e2.9 | 19
e30
40
45
51 | e120
e104
e94
e88
e85 | 15
14
13
11
10 | 1.8
1.7
1.6
1.6 | 3.2
2.6
2.1
1.9
1.8 | | 8
9
10 | | | | | | | e3.4
e2.8
3.2
4.7
6.1 | | | 9.1
8.4
7.9
9.2
8.4 | 1.6
1.4
1.4
1.2 | 2.0
2.0
2.5
3.2
2.3 | | | | | | | | | 5.5
5.5
7.3
8.0
8.0 | | | | 1.4
2.1
1.6
1.3
1.3 | 1.9
1.7
1.5
1.4 | | 16
17
18
19
20 | | | | | | | 6.9
7.2
9.1
8.2
7.6 | | 41
33
30
39
48 | 5.2
6.1
5.6
4.6
4.1 | 1.3
1.7
2.9
3.5
2.6 | 1.3
1.2
1.3
1.1 | | 21
22
23
24
25 | 1.5
1.4
1.3
1.2 | e.57
e.47
e.50
e.47
e.50 | e.78
e.76
e.76
e.76
e.84 | e.92
e.92
e.88
e.88
e.92 | e.86
e.86
e.86
e.86
e.82 | e.96
e1.0
e1.1
e1.1
e1.1 | 8.3
9.0
8.6
7.8
7.2 | 29
40
52
59
58 | 34
30
25
22
21 | 3.7
3.3
3.2
3.0
2.9 | | 2.3
4.7
3.4
3.4 | | 26
27
28
29
30
31 | 1.1
1.1
1.0
1.1
1.1 | e.54
e.54
e.56
e.56
e.56 | e.88
e.86
e.86
e.86
e.86 | e.92
e.92
e.80
e.86
e.76
e.70 | e.82
e.90
e.90
e.90 | e1.1
e1.2
e1.5
e1.5
e1.4
e1.3 | 8.3
12
17
19
21 | 52
50
63
e95
e138
e130 | 29
26
20
19
17 | 2.8
2.6
2.4
2.2
2.1
1.9 | 1.6
1.6
1.6
3.8
3.5
3.7 | 3.7
3.0
2.7
2.7
2.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 59.8
1.93
3.6
1.0
119 | 19.19
.64
1.1
.47
38 | 21.44
.69
.88
.50
43 | 27.36
.88
1.0
.70
54 | 25.66
.88
.96
.74
51 | 32.14
1.04
1.5
.86
64 | 219.4
7.31
21
1.1
435 | 1484
47.9
138
19
2940 | 1516
50.5
120
17
3010 | | | 69.5
2.32
4.7
1.1
138 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.89
8.30
1985
.88
1975 | 1.98
7.17
1985
.64
2000 | 1.24
3.54
1985
.67
1975 | 1.00
2.48
1985
.37
1977 | .95
2.97
1985
.39
1981 | 1.36
5.72
1986
.41
1981 | 5.48
14.2
1986
1.39
1973 | 31.7
57.8
1974
10.0
1995 | 64.4
123
1982
23.5
1966 | 25.1
70.4
1983
3.65
1994 | 5.81
14.4
1984
1.45
1994 | 2.99
7.29
1984
.97
1974 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | I | FOR 2000 WA | TER YEAR | | WATER YEA | ARS 1965 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL M DAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 4257.75
11.7
82
e.47
e.51
8450
52
2.5
.64 | Jun
25
Nov 22
Nov 22 | | 3726.89
10.2
138
e.47
e.51
b
3.91
7390
37
1.5
.64 | | | 12.1
19.0
6.66
218
a.20
.33
355
c,d4.07
8760
41
2.3
.75 | | 1982
1977
15 1978
8 1967
7 1967
15 1978
15 1978 | e Estimated. e Estimated. a Also occurred Jan 29, 1970, and Feb 10-11, 1981. b Maximum discharge not determined. c Maximum gage height, 4.62 ft, Jun 18, 1963, backwater from debris. d Site and datum then in use. #### 09066300 MIDDLE CREEK NEAR MINTURN, CO LOCATION.--Lat 39°38'45", long 106°22'54", in sec.6, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on right bank 200 ft upstream from Interstate Highway 70, 0.2 mi upstream from mouth, and 5.0 mi northeast of Minturn. DRAINAGE AREA.--5.94 mi². PERIOD OF RECORD. -- October 1964 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,200 ft above sea level, from topographic map. Prior to Oct. 1, 1977 at site 700 ft upstream, at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion or regulation upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PEF | SECOND, W | VATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--|--|--------------------------------------|--|---|--|--------------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.3
1.2
1.2
1.1 | e.69
e.66
.60
e.45 | e.37
e.39
e.39
e.37
e.34 | e.50
e.50
e.48
e.45
e.45 | e.37
e.40
e.42
e.43
e.43 | e.32
e.28
e.29
e.26
e.27 | e.33
e.33
e.31
e.37
e.45 | e7.0
e11
e14
e17
e19 | 59
55
51
47
46 | 8.7
8.0
7.4
6.8
6.3 | 1.5
1.5
1.4
1.5 | 1.4
1.2
.99
.90
.87 | | 6
7
8
9
10 | 1.1
1.6
1.6
1.5 | e.43
e.44
.52
.48
e.39 | e.39
e.40
e.40
e.39
e.40 | e.44
e.44
e.48
e.48
e.48 | e.44
e.43
e.43
e.43
e.45 | | | | | 6.0
5.6
5.4
5.9
5.4 | | 1.2
1.1
1.3
1.7 | | 11
12
13
14
15 | 1.1
1.0
.97
.88
.81 | e.40
e.39
e.40
e.38
e.38
e.38 | e.40
e.40
e.39
e.39
e.41 | e.50
e.52
e.52
e.50
e.50 | e.45
e.45
e.45
e.45
e.45 | e.27
e.29
e.27
e.27
e.27 | e1.6
e1.6
e2.1
e2.3
e2.3 | | | 4.9
4.5
4.3
4.0
3.9 | 1.3
1.2
1.3
1.1 | .74 | | 16
17
18
19
20 | .74
e.84
.93
.86
.84 | e.36
.34
e.38
e.37
e.42 | e.41
e.43
e.43
e.45
e.45 | e.50
e.50
e.50
e.54
e.47 | e.45
e.45
e.45
e.41
e.37 | e.27
e.28
e.27
e.26
e.27 | e2.0
e2.2
e2.6
e2.3
e2.2 | 16
18
15
13 | 21
19
17
19
20 | 4.1
4.4
3.9
3.3
3.0 | 1.2
1.5
2.5
2.5
1.8 | .58
.56
.63
.63 | | 21
22
23
24
25 | | | | | e.38
e.38
e.38
e.30 | | | | | 2.8
2.6
2.4
2.3
2.2 | | | | 26
27
28
29
30
31 | .72
.65
.61
.63
.66
e.72 | e.36
e.36
e.37
e.37 | e.52
e.50
e.50
e.50
e.50
e.48 | e.46
e.46
e.40
e.42
e.37
e.35 | e.30
e.32
e.32
e.32 | e.31
e.33
e.40
e.40
e.37
e.35 | e2.8
e4.3
e5.4
e6.0
e5.8 | 37
37
44
65
80
76 | 14
13
11
10
9.3 | 2.0
2.0
1.8
1.7
1.6 | 1.2
1.3
2.8
1.7 | 1.2
.92
.81
.83
.92 | | TOTAL
MEAN
MAX
MIN
AC-FT | 59 | 25 | 26 | 29 | 23 | 18 | 127 | 1510 | 1620 | 128.7
4.15
8.7
1.5
255 | 45.8
1.48
2.8
1.1
91 | 29.89
1.00
2.4
.56
59 | | | | | | | TEARS 1965 | | | | | 10.1 | 2 00 | 1.66 | | MEAN
MAX
(WY)
MIN
(WY) | 1.21
3.90
1985
.36
1965 | .81
3.10
1983
.030
1965 | .49
1.75
1986
.000
1965 | .40
2.45
1986
.000
1965 | .37
2.34
1986
.000
1965 | .41
2.16
1985
.000
1965 | 1.33
6.53
1985
.26
1976 | 12.1
25.5
1984
3.41
1995 | 35.1
53.1
1984
14.3
1966 | 13.1
39.5
1995
2.30
1977 | 3.22
14.0
1983
.86
1977 | 1.66
7.18
1979
.36
1977 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | IDAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YEA | ARS 1965 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN TANNUAL M TANNUAL M TOAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 1816.50
4.98
57
e.12
e.13
3600
16
.81 | Jun 22
2 Feb 23
3 Feb 19 | | 80
e.2:
e.2:
104
2.7:
3850
17
.8 | May 30
5 Mar 9
7 Mar 4
May 30
5 May 30 | | 5.85
11.3
2.52
93
a.00
.00
116
b,c2.65
4240
20 | | 1984
1977
22 1983
10 1964
10 1964
20 1974
20 1974 | a No flow at times most years. b Maximum gage height, 3.28 ft, Jun 25, 1983, backwater from debris. c Site and datum then in use. #### 09066325 GORE CREEK ABOVE RED SANDSTONE CREEK AT VAIL, CO LOCATION.--Lat $39^{\circ}38'28"$, long $106^{\circ}23'39"$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.7, T.5 S., R.80 W., Eagle County, Hydrologic Unit 14010003, on left bank 200 ft downstream of the water treatment plant at Vail, 0.1 mi upstream from Red Sandstone Creek, and 0.6 mi downstream from Middle Creek. DRAINAGE AREA. -- 77.1 mi². PERIOD OF RECORD. -- October 1999 to September 2000. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,055 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHARG | €E, CUBIC | FEET PER | | WATER YEA
Y MEAN VAI | | R 1999 TO | SEPTEMBER | R 2000 | | | |----------------------------------|-------------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|----------------------------------|--------------------------------|---|---------------------------------|----------------------------------|----------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e34 | e14 | 18 | 20 | 13 | 19 | 25 | 155 | 1050 | 188 | 37 | 44 | | 2 | e33 | e11 | 21 | 21 | e15 | 20 | 25 | 207 | 959 | 178 | 36 | 40 | | 3 | e31 | e11 | 21 | 19 | e17 | 20 | 24 | 299 | 900 | 165 | 36 | 37 | | 4 | e29 | e14 | 20 | 29 | e18 | 21 | 26 | 388 | 850 | 150 | 34 | 33 | | 5 | e29 | e16 | 15 | 24 | e18 | 22 | 36 | 490 | 815 | 137 | 35 | 33 | | 6 | e31 | e18 | 18 | 17 | e19 | 22 | 44 | 543 | 804 | 129 | 34 | 37 | | 7 | 37 | 18 | 19 | 18 | e18 | 23 | 40 | 525 | 789 | 123 | 32 | 38 | | 8 | 38 | e17 | 20 | 19 | e18 | 21 | 41 | 487 | 739 | 117 | 30 | 39 | | 9 | 38 | e17 | 18 | 19 | 18 | 21 | 52 | 360 | 654 | 137 | 29 | 46 | | 10 | 36 | e16 | 20 | 20 | 20 | 22 | 62 | 372 | 568 | 125 | 30 | 37 | | 11 | 33 | e18 | 20 | 21 | 21 | 22 | 57 | 504 | 512 | 117 | 34 | 33 | | 12 | 31 | e17 | 19 | 22 | 21 | 23 | 59 | 482 | 477 | 104 | 35 | 30 | | 13 | 30 | e16 | 18 | 22 | 21 | 22 | 74 | 347 | 413 | 96 | 33 | 28 | | 14 | 29 | 14 | 18 | 20 | 21 | 22 | 79 | 303 | 351 | 94 | 30 | 27 | | 15 | 28 | e17 | 19 | 19 | 21 | 22 | 80 | 308 | 383 | 92 | 30 | 26 | | 16
17
18
19
20 | 27
23
29
27
26 | 17
21
20
13
19 | 20
21
21
21
21
22 | 19
19
20
23
21 | 20
20
21
19
18 | 20
21
20
19
20 | 69
71
91
83
73 | 373
415
322
283
286 | 373
316
283
340
400 | 98
112
100
85
78 | 36
39
53
54
47 | 25
24
25
25
23 | | 21 | 26 | 21 | 22 | 19 | 20 | 20 | 81 | 292 | 302 | 68 | 45 | 35 | | 22 | 25 | 20 | 22 | 18 | 19 | 21 | 87 | 385 | 277 | 63 | 44 | 60 | | 23 | 24 | 19 | 22 | 17 | 19 | 22 | 93 | 680 | 255 | 60 | 38 | 48 | | 24 | 23 | 14 | 21 | 17 | 20 | 23 | 87 | 931 | 229 | 57 | 36 | 45 | | 25 | 23 | 20 | 20 | 19 | 19 | 24 | 79 | 923 | 230 | 54 | 44 | 42 | | 26
27
28
29
30
31 | 22
22
22
e21
e20
e19 | 23
22
20
18
18 | 22
21
21
21
20
20 | 19
18
15
16
12 | 19
20
21
e20
 | 24
25
29
29
29
27 | 87
117
156
172
167 | 764
649
788
1170
1250
1180 | 257
263
223
208
198 | 51
49
47
45
42
40 | 41
40
40
52
47
48 | 43
40
37
37
36 | | TOTAL | 866 | 519 | 621 | 594 | 554 | 695 | 2237 | 16461 | 14418 | 3001 | 1199 | 1073 | | MEAN | 27.9 | 17.3 | 20.0 | 19.2 | 19.1 | 22.4 | 74.6 | 531 | 481 | 96.8 | 38.7 | 35.8 | | MAX | 38 | 23 | 22 | 29 | 21 | 29 | 172 | 1250 | 1050 | 188 | 54 | 60 | | MIN | 19 | 11 | 15 | 12 | 13 | 19 | 24 | 155 | 198 |
40 | 29 | 23 | | AC-FT | 1720 | 1030 | 1230 | 1180 | 1100 | 1380 | 4440 | 32650 | 28600 | 5950 | 2380 | 2130 | | SUMMARY STATISTICS | FOR 2000 WATER YEAR | |---|--| | ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE | 42238
115
1250 May 30
e11 Nov 2
14 Jan 28
a1630 May 29
9.30 May 29 | | ANNUAL RUNOFF (AC-FT) | 83780 | | 10 PERCENT EXCEEDS | 364 | | 50 PERCENT EXCEEDS | 29 | | 90 PERCENT EXCEEDS | 18 | e Estimated. a From rating curve extended above 700 ft^3/s . #### 09066400 RED SANDSTONE CREEK NEAR MINTURN, CO LOCATION.--Lat $39^{\circ}40^{\circ}58$ ", long $106^{\circ}24^{\circ}03$ ", in sec.25, T.4 S., R.81 W., (projected), Eagle County, Hydrologic Unit 14010003, on left bank 150 ft upstream from road culvert, 1,400 ft upstream from Indian Creek, and 6.8 mi north of Minturn. DRAINAGE AREA.--7.32 mi^2 . PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder and concrete control. Elevation of gage is 9,212 ft above sea level, from topographic map. REMARKS.-- Records good except for estimated daily discharges, which are poor. No regulation or diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | VATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|----------------------------------|---|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.4
2.4
2.2
2.1
2.1 | e1.7
e1.7
e1.7
e1.7 | e1.3
e1.3
e1.3
e1.2 | e1.1
e1.1
e1.1
e1.1
e1.0 | e1.3
e1.4
e1.4
e1.4 | e1.5
e1.5
e1.5
e1.5
e1.5 | e2.0
e1.9
e1.9
e2.0
e2.3 | 14
19
27
35
45 | 97
82
73
69
65 | 9.4
8.3
7.6
6.8
6.2 | 2.2
2.2
2.2
2.3
2.2 | 1.9
1.8
1.6
1.6 | | 6
7
8
9
10 | | e1.7
e1.6
e1.6
e1.5
e1.5 | e1.2
e1.2
e1.1
e1.1 | e.90
e1.1
e1.2
e1.3
e1.2 | e1.4
e1.4
e1.4
e1.4 | e1.6
e1.5
e1.5
e1.5
e1.5 | e2.8
e3.3
e3.2
e3.0
e3.3 | 53
54
46
35
43 | 59
57
53
47
39 | 5.7
5.5
5.3
6.1
5.3 | 2.3
2.1
2.0
2.0
2.0 | 1.7
1.7
1.8
2.1
1.6 | | 11
12
13
14
15 | 2.4
2.3
2.0
2.0 | e1.5
e1.5
e1.6
e1.5
e1.5 | e1.1
e1.0
e1.1
e1.0
e.90 | e1.2
e1.1
e1.1
e1.2 | e1.4
e1.4
e1.4
e1.3 | e1.4
e1.5
e1.5
e1.4
e1.4 | e3.8
e4.4
e4.4
e4.8
e5.7 | 56
48
36
32
33 | 35
32
28
26
26 | 4.7
4.3
4.1
3.9
3.7 | 2.0
1.9
1.9
1.9
2.1 | 1.5
1.4
1.4
1.3 | | 16
17
18
19
20 | 1.5
1.8
e1.8
e1.8
e1.7 | e1.5
e1.4
e1.5
e1.4
e1.3 | e1.0
e1.1
e1.0
e1.0 | e1.3
e1.3
e1.4
e1.3
e1.3 | e1.3
e1.4
e1.4
e1.3
e1.3 | e1.4
e1.4
e1.3
e1.3 | e6.4
e6.0
e5.8
6.0
5.7 | 42
42
32
32
33 | 23
20
18
23
24 | 5.1
6.3
4.8
4.0
3.7 | 1.9
2.2
3.1
2.7
2.2 | 1.3
1.2
1.3
1.3 | | 21
22
23
24
25 | e1.7 | e1.5
e1.5
e1.4
e1.2
e1.4 | e1.1 | e1.2
e1.3
e1.3
e1.3
e1.3 | e1.5
e1.5
e1.5
e1.4
e1.3 | e1.4
e1.4
e1.5
e1.6 | 5.7
5.8
5.2
4.9
4.7 | 34
45
66
89
93 | 18
16
15
14
14 | 3.5
3.2
3.0
2.9
2.9 | 2.0
2.0
1.9
1.8
1.9 | 1.9
2.9
1.7
1.7 | | 26
27
28
29
30
31 | e1.5
e1.7
e1.8
e1.8
e1.8 | e1.5
e1.5
e1.4
e1.4
e1.4 | e1.1
e1.1
e1.1
e1.0
e1.0 | e1.4
e1.3
e1.2
e1.2 | e1.4
e1.4
e1.5
e1.5 | e1.6
e1.6
e1.8
e2.0
e2.0 | 5.6
9.0
12
13
14 | 79
75
93
123
127
117 | 18
16
13
11
10 | 2.7
2.7
2.6
2.5
2.3
2.3 | 1.8
1.8
2.5
2.1 | 1.9
1.6
1.5
1.5 | | TOTAL
MEAN
MAX
MIN
AC-FT | 64.0
2.06
3.8
1.5
127 | 1.7 | 1.3
.90
67 | .90
74 | 1.3 | 1.52
2.0
1.3
93 | 158.6
5.29
14
1.9
315 | 1698
54.8
127
14
3370 | 1041
34.7
97
10
2060 | 141.4
4.56
9.4
2.3
280 | 65.1
2.10
3.1
1.8
129 | 48.7
1.62
2.9
1.2
97 | | | CICS OF MC | NTHLY MEA | AN DATA F | OR WATER Y | 1.01 | | BY WATER Y | YEAR (WY) | 50.0 | 12.2 | 3.63 | 2.20 | | MEAN
MAX
(WY)
MIN
(WY) | 5.14
1985
.92
1989 | 3.80
1985
.57 | 2.60
1985
.51
1977 | 2.14
1985
.52
1987 | 1.01
2.14
1985
.48
1987 | 1.13
1.90
1985
.46
1987 | 3.48
6.60
1971
1.47
1973 | 29.8
69.9
1996
6.85
1995 | 92.0
1983
16.3
1966 | 12.2
44.0
1983
3.22
1977 | 15.0
1983
1.59
1987 | 2.20
5.57
1984
.98
1987 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | CER YEAR | | WATER YE | ARS 1964 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | | AN
CAN
MINIMUM
CAK FLOW
CAK STAGE
AC-FT)
CDS | | 2941.00
8.06
55
e.90
1.0
5830
33
2.1
1.2 | May 25
Dec 15 | | 1.0
164 | May 30
Dec 15
Dec 14
May 29
May 29 | | 9.12
14.9
4.31
164
20
.34
223
a4.58
6600
29
1.8 | Jun 2
Jan 3
Jan 2
Jun 1
Jun 1 | | e Estimated. a Maximum gage height, 5.18 ft, Apr 17, 1987, backwater from ice. # 09066510 GORE CREEK AT MOUTH NEAR MINTURN, CO LOCATION.--Lat $39^\circ36'34"$, long $106^\circ26'50"$, in $NE^1/_4NW^1/_4$ sec.22, T.5 S., R.81W., Eagle County, Hydrologic Unit 14010003, on left bank 0.1 mi upstream from the confluence with Eagle River and 2 mi northwest of Minturn. DRAINAGE AREA.-- 102 mi^2 . # WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1995 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,730 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversion upstream from station for Vail water treatment plant. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--------------------------------------|--|--------------------------------------|---|--------------------------------------|--------------------------------------|---|---|--------------------------------------|--|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 40
39
37
35
35 | 23
19
20
20
21 | 19
18
18
18
e16 | 17
16
15
e14
e14 | e13
e15
e17
18
18 | 21
23
23
24
26 | 27
27
25
27
38 | 200
251
339
426
530 | 1140
1010
943
884
836 | 210
201
189
175
162 | 50
47
46
44
44 | 48
43
39
36
35 | | 6
7
8
9
10 | 36
44
45
45
41 | 20
20
20
19
17 | e21
e22
e22
e20
e20 | e13
e13
e14
e14
e14 | 19
18
18
18
19 | 25
27
25
24
24 | 47
44
45
58
71 | 587
572
535
408
419 | 804
798
753
669
580 | 154
146
140
164
149 | 44
40
37
36
35 | 40
41
43
51
40 | | 11
12
13
14
15 | 37
35
34
32
31 | 19
17
16
18
17 | e21
e20
e19
e20
e19 | e15
16
17
16
17 | 20
19
19
20
19 | 23
25
23
24
24 | 67
68
86
94
95 | 552
536
397
351
353 | 529
494
437
381
403 | 137
127
118
115
113 | 38
38
38
34
33 | 35
32
30
29
27 | | 16
17
18
19
20 | 28
24
31
29
28 | 17
20
20
13
18 | e20
e18
17
17 | 17
17
18
21
24 | 19
20
20
e18
e19 | 22
22
21
21
22 | 80
82
106
97
86 | 409
449
368
333
332 | 393
343
312
363
425 | 124
142
125
106
95 | 39
42
60
63
52 | 26
25
26
27
24 | | 21
22
23
24
25 | 27
27
25
25
24 | 20
18
17
e15
e14 | 18
17
17
e16
e16 | 20
20
19
20
21 | e19
e19
e19
21
20 | 21
22
23
24
25 |
94
105
112
103
92 | 332
411
700
1020
1010 | 330
304
286
260
258 | 87
81
76
72
71 | 50
48
42
39
46 | 36
69
52
47
42 | | 26
27
28
29
30
31 | 22
22
22
25
21
23 | e15
e17
e18
19
19 | e18
19
20
20
18
22 | 21
20
18
e16
e14
e12 | 21
22
23
23
 | 26
26
31
31
30
27 | 103
140
189
209
208 | 820
688
822
1240
1290
1270 | 278
291
246
230
219 | 67
64
61
59
55 | 43
43
46
59
52
54 | 45
39
36
37
37 | | TOTAL
MEAN
MAX
MIN
AC-FT | 969
31.3
45
21
1920 | 546
18.2
23
13
1080 | 583
18.8
22
16
1160 | 523
16.9
24
12
1040 | 553
19.1
23
13
1100 | 755
24.4
31
21
1500 | 2625
87.5
209
25
5210 | 17950
579
1290
200
35600 | 15199
507
1140
219
30150 | 3637
117
210
52
7210 | 1382
44.6
63
33
2740 | 1137
37.9
69
24
2260 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 41.5
48.5
1998
31.3
2000 | 28.8
33.3
1997
18.2
2000 | 23.2
27.0
1997
18.8
2000 | 20.6
26.6
1997
16.9
2000 | 19.6
22.3
1997
17.4
1999 | 30.2
42.4
1997
24.4
2000 | 73.9
102
1996
48.1
1998 | 462
678
1996
248
1999 | 734
1103
1997
419
1998 | 221
291
1997
117
2000 | 74.9
108
1997
44.6
2000 | 42.7
52.4
1997
32.0
1998 | | SUMMARY | STATISTI | CS | FOR 1 | .999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1996 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 800
13
15
87390
442
39
17 | Jun 23
Nov 19
Feb 21 | | 1290
125
1290
12
14
1640
9.69
90960
399
32
17 | May 30
Jan 31
Jan 4
May 29
May 29 | | 148
194
104
1540
12
14
1850
9.97
107200
459
40 | Jan 3
Jan
Jun | 1996
1998
4 1997
31 2000
4 2000
4 1997
4 1997 | e Estimated. #### 09066510 GORE CREEK AT MOUTH NEAR MINTURN, CO--Continued (Eagle River Watershed Retrospective Assessment Program) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1995 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1996 to September 1997. WATER TEMPERATURE: October 1996 to September 1998. INSTRUMENTATION.--Water-quality monitor with satellite telemetry October 1996 to September 1997. Water temperature sensor and logger October 1997 to September 1998. REMARKS.--The following remark codes may appear in the tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 464 microsiemens, Jan. 29, 1997; minimum, 83 microsiemens, June 19-20, 1997. WATER TEMPERATURE: Maximum, 18.8°C, Aug. 23, 1998; minimum, 0.0°C on many days during winters. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |---|---|--|---|---|---|---|---|--|--|--|--| | NOV
01 | 1050 | 19 | 338 | 8.6 | 2.6 | 11.0 | | | 150 | 47.4 | 8.49 | | DEC
01
21 | 0835
1035 | 17
17 | 388
400 | 8.2
8.4 | .2 | 10.8
12.2 | | | 190
170 | 58.6
54.7 | 10.2
9.29 | | JAN
27 | 0950 | 22 | 403 | 8.4 | 1.2 | 13.2 | | | 180 | 55.0 | 10.1 | | FEB
25
MAR | 0915 | 19 | 436 | 8.7 | .8 | 11.3 | | | 180 | 55.1 | 10.8 | | 15
APR | 0945 | 24 | 426 | 8.7 | 2.9 | 10.9 | | | 180 | 56.1 | 9.82 | | 11
MAY | 0815 | 75 | 279 | 8.3 | 2.9 | 10.0 | | | 120 | 37.2 | 6.17 | | 17 | 0750 | 463 | 123 | 7.8 | 3.1 | 9.9 | | | 57 | 16.2 | 4.13 | | 24 | 0915 | 973 | 89 | 7.9 | 4.5 | 10.5 | | | 42 | 13.1 | 2.16 | | 13 | 1215 | 437 | 118 | 8.0 | 7.2 | 9.2 | | | 53 | 16.5 | 2.78 | | 29
JUL | 1150 | 225 | 148 | 8.6 | 9.3 | 9.2 | | | 67 | 20.7 | 3.61 | | 19
AUG | 0755 | 116 | 201 | 8.1 | 9.3 | 8.9 | | | 98 | 30.5 | 5.25 | | 16
SEP | 1030 | 40 | 290 | 8.7 | 13.4 | 7.9 | K53 | 59 | 130 | 42.0 | 7.24 | | 19 | 1040 | 29 | 364 | 8.5 | 9.6 | 9.1 | | | 160 | 50.5 | 8.54 | | | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
01 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | BONATE WATER DIS IT FIELD MG/L AS CO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | NOV
01
DEC | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
01
DEC
01
21 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
01
DEC
01
21
JAN
27 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV 01 DEC 01 21 JAN 27 FEB 25 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
6.7
7.8
9.4 | AD-SORP-TION RATIO (00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
106
125
126 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452)
4 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1
53.1 | RIDE,
DIS-
SOLVED
(MG/L
AS
CL)
(00940)
11.5
13.1
14.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV 01 DEC 01 21 JAN 27 FEB 25 MAR 15 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
6.7
7.8
9.4 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.2
1.4
1.6 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
106
125
126
112 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
122
150
149 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 1 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1
53.1
47.0 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
11.5
13.1
14.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.3
4.6
5.9 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
188
225
230
222 | | NOV
01
DEC
01
21
JAN
27
FEB
25
MAR
15 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
6.7
7.8
9.4
10.8 | AD-
SORP-
TION
RATIO
(00931)
.2
.2
.3
.4 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.2
1.4
1.6 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
106
125
126
112 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
122
150
149
128 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 1 4 7 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1
53.1
47.0 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
11.5
13.1
14.6
21.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.1
.2
.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.3
4.6
5.9
5.2
4.4 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
188
225
230
222
250 | | NOV 01 DEC 01 21 JAN 27 FEB 25 MAR 15 APR 11 MAY 17 24 | DIS-
SOLVED (MG/L
AS NA) (00930)
6.7
7.8
9.4
10.8
14.3 | AD-
SORP-
TION
RATIO
(00931)
.2
.2
.3
.4
.5 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.2
1.4
1.6
1.8
2.0 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
106
125
126
112
122
118 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
122
150
149
128
132 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 1 4 7 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1
53.1
47.0
52.8
46.8 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
11.5
13.1
14.6
21.1
31.5 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.1
.1
.2
.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.3
4.6
5.9
5.2
4.4 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
188
225
230
222
250
248 | | NOV 01 DEC 01 21 JAN 27 FEB 25 MAR 15 APPR 11 MAY 17 24 JUN 13 29 | DIS-
SOLVED (MG/L
AS NA) (00930)
6.7
7.8
9.4
10.8
14.3
16.5
10.4 | AD-
SORP-
TION
RATIO
(00931)
.2
.2
.3
.4
.5
.5 | SIUM,
DIS-
SOIVED
(MG/L
AS K)
(00935)
1.2
1.4
1.6
1.8
2.0
2.0 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
(39086)
106
125
126
112
122
118
93 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 122 150 149 128 132 132 112 56 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 1 4 7 5 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1
53.1
47.0
52.8
46.8
18.9
7.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
11.5
13.1
14.6
21.1
31.5
35.8
19.3 | RIDE,
DIS-
SOIVED
(MG/L
AS F)
(00950)
.1
.1
.2
.1
.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.3
4.6
5.9
5.2
4.4
3.2
4.7 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
188
225
230
222
250
248
155 | | NOV 01 DEC 01 21 JAN 27 FEB 25 MAR 15 APR 11 MAY 17 24 JUN 13 29 JUL 19 | DIS-
SOLVED (MG/L
AS NA) (00930)
6.7
7.8
9.4
10.8
14.3
16.5
10.4
1.8
1.7 | AD-SORP-TION RATIO (00931) .2 .2 .3 .4 .5 .5 .4 .1 .1 | SIUM,
DIS-
SOIVED (MG/L
AS K) (00935)
1.2
1.4
1.6
1.8
2.0
2.0
1.1 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 106 125 126 112 122 118 93 40 48 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 122 150 149 128 132 132 112 56 48 57 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 1 4 7 5 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1
53.1
47.0
52.8
46.8
18.9
7.9
3.1
5.2 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
11.5
13.1
14.6
21.1
31.5
35.8
19.3
2.3
2.5 | RIDE,
DIS-
SOIVED
(MG/L
AS F)
(00950)
.1
.1
.2
.1
.1
.1
.1
.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.3
4.6
5.9
5.2
4.4
3.2
4.7
5.4
4.0 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
188
225
230
222
250
248
155
66
51 | | NOV 01 DEC 01 21 JAN 27 FEB 25 MAR 15 APR 11 MAY 17 24 JUN 13 29 JUL | DIS-
SOLVED (MG/L
AS NA) (00930)
6.7
7.8
9.4
10.8
14.3
16.5
10.4
1.8
1.7 | AD-SORP-TION RATIO (00931) .2 .2 .3 .4 .5 .5 .1 .1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.2
1.4
1.6
1.8
2.0
2.0
1.1
.5
.5 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 106 125 126 112 122 118 93 40 48 55 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 122 150 149 128 132 132 132 132 56 48 57 59 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 4 1 4 7 5 4 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
42.2
52.1
53.1
47.0
52.8
46.8
18.9
7.9
3.1
5.2
9.2 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
11.5
13.1
14.6
21.1
31.5
35.8
19.3
2.3
2.5
2.2 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.1
.1
.2
.1
.1
.1
.1
.1
.1
.1 | DIS-
SOLVED (MG/L
AS SIO2) (00955)
5.3
4.6
5.9
5.2
4.4
3.2
4.7
5.4
4.0 | SUM OF CONSTI- TUENTS, DIS- SOLVED (170301) 188 225 230 222 250 248 155 66 51 62 77 | # 09066510 GORE CREEK AT MOUTH NEAR MINTURN, CO--Continued (Eagle River Watershed Retrospective Assessment Program) WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | WHIEN | QUALITI | DAIA, WAI | EK IEAK C | CIOBER I | JJJ IO SEF | TEMBER 20 | 700 | | | |-----------|--|--|---|--|---|--|--|---|--|----------------|---| | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | TOTAL
(MG/L
AS P) | PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666) | (MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV | | | | | | | | | | | | | 01
DEC | .26 | 9.67 | .001 | .422 | .004 | .11 | E.10 | .060 | .049 | .042 | | | 01
21 | .31 | 10.3
10.6 | .002 | .659
1.48 | .002 | .10
.19 | <.10
.15 | .102
.217 | .097
.202 | .083
.194 | | | JAN
27 | .30 | 13.0 | .005 | .934 | .009 | .16 | .15 | .170 | .154 | .141 | | | FEB 25 | .34 | 12.6 | .005 | 1.37 | <.002 | .18 | .13 | .194 | .176 | .174 | | | MAR
15 | .34 | 15.8 | .017 | 1.60 | <.002 | . 27 | .22 | .245 | .217 | .225 | 1.9 | | APR
11 | .21 | 31.4 | .001 | .456 | .002 | .35 | .18 | .081 | .050 | .043 | | | MAY | | | | | | | | | | | | | 17
24 | .09
.07 | 82.8
134 | <.001
<.001 | .084
.110 | .005
.004 | .21 | E.10
.15 | .015
.067 | E.004
.010 | .001
.004 | 4.1 | | JUN
13 | .08 | 72.8 | .001 | .077 | <.002 | .12 | E.10 | .015 | E.005 | <.001 | 2.2 | | 29
JUL | .10 | 46.5 | .001 | .059 | .002 | .11 | .10 | .014 | .010 | .008 | | | 19
AUG | .15 | 34.1 | .001 | .211 | .002 | .17 | E.10 | .038 | .022 | .016 | | | 16
SEP | .22 | 17.7 | .005 | .514 | .013 | .19 | <.10 | .088 | .084 | .071 | 1.4 | | 19 | .27 | 15.3 | .004 | .512 | .021 | .14 | .11 | .079 | .074 | .063 | | | | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | | | | | | 01 | E.1 | | E1 | E20 | | <1 | E2 | | | | | | 15 | <.1 | | 2 | 30 | | <1 | 4 | | | | | | 24 | <.1 | | <1 | 20 | | <1 | 3 | | | | | AU | IG
16 | <.1 | <.8 | 2 | 50 | <10 | <1 | 5 | | | | | | | NE
D
SO
TE (U
AS | IS- D
LVED SO
G/L (U
MN) AS | DLVED SC
IG/L (U
HG) AS | KEL,
NI
S- I
DLVED SO
IG/L (I
S NI) AS | DIS- D
DLVED SC
UG/L (U
S SE) AS | DIS- I
DLVED SC
JG/L (U
B AG) AS | ENC,
DIS-
DLVED
JG/L
3 ZN)
1090) | | | | | | DEC
01 | . E | 2 < | . 2 | <: | 2.4 < | :.2 < | <20 | | | | | | MAR
15 | | 3 < | . 2 | <: | 2.4 < | :.2 < | <20 | | | | | | MAY
24 | | 3 < | . 2 | E | 1.3 < | :.2 < | <20 | | | | | | AUG
16 | . E | 2 < | .2 < | 1 . | <.7 < | :.2 < | <20 | | | | | MIS | DIS- | JS FIELD M | EASUREMEN | TS, WATER | YEAR OC | TOBER 1999 | TO SEPTE | EMBER 2000
DIS- | CDE | | | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | NOV | | | | | M737 | | | | | | NOV | 1045 | 0.0 | 242 | 4 - | MAY | 1000 | 250 | 460 | 0.0 | | 01 | 1347 | 20 | 343 | 4.5 | 10 | 1220 | 372 | 463 | 8.0 | | JAN | | | | | JUN | | | | | | 20 | 1040 | 20 | 428 | 1.5 | 07 | 1600 | 759 | 102 | 10.5 | | MAR | | | | | AUG | | | | | | 09 | 1320 | 27 | 439 | 3.5 | 16 | 1105 | 40 | | 15.0 | | APR | | | | | | | | | | | 07 | 1130 | 46 | 347 | 4.5 | | | | | | 09066510 GORE CREEK AT MOUTH NEAR MINTURN, CO--Continued (Eagle River Watershed Retrospective Assessment Program) SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | |-----------|------|---|---|-----| | DEC 01 | 0835 | 17 | 2 | .08 | | MAR | 0033 | Ι, | 2 | .00 | | 15
JUN | 0945 | 24 | 2 | .11 | | 13 | 1215 | 437 | 14 | 16 | | JUL
19 | 0755 | 116 | 3 | .85 | | AUG
16 | 1030 | 40 | 2 | .24 | #### 09067000 BEAVER CREEK AT AVON, CO LOCATION.--Lat $39^\circ37^\circ47^\circ$, long $106^\circ31^\circ20^\circ$, in $NE^{1/}_4SW^{1/}_4$ sec.12, T.5 S., R.82 W., Eagle County, Hydrologic Unit 14010003, on left bank at Avon, 550 ft upstream from U.S. Highway 6 and 24, and 700 ft upstream from mouth. DRAINAGE AREA. -- 14.8 mi². PERIOD OF RECORD.--January to December 1911, January 1912 to September 1914 (gage heights and discharge measurements only), May 1974 to February 1988. October 1988 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,453 ft above sea level, from topographic map. Prior to May 1, 1974, nonrecording gage near present site, at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation upstream and downstream from station. Slight natural regulation by several small lakes in headwaters. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIO | C FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--------------------------------------|--|---|--------------------------------------|--|--|---|-------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.6
5.4
5.3
4.9
4.8 | 4.7
4.4
5.3
4.7
4.5 | e3.3
e3.3
e3.2
e3.0 | e2.9
e2.8
e2.8
e2.8
e2.8 | e3.0
e2.7
e3.0
e3.3
e3.3 | 2.3
2.3
2.5
2.5
2.6 | 3.3
3.4
3.3
3.8
5.1 | 25
30
37
41
47 | 91
80
76
71
67 | 18
17
16
15 | 5.7
5.4
5.8
5.5
5.4 | 5.0
4.4
4.2
3.9
3.6 | | 6
7
8
9
10 | 4.7
6.8
6.6
6.6 | 4.8
4.6
4.6
4.6
4.5 | e3.2
e3.5
e3.5
e3.0
e3.4 | e2.6
e2.8
e2.8
e2.8 | e3.3
e3.1
e3.1
e3.1 | 2.5
2.6
2.5
2.4
2.5 | 5.8
6.0
6.0
6.6
7.2 | 52
56
65
52
52 | 65
66
64
62
56 | 12
11
11
14
14 | 5.3
5.8
5.2
4.9
5.1 | 4.3
4.4
5.2
5.5
4.6 | | 11
12
13
14
15 | 7.3
6.1
6.3
5.6
5.1 | 4.4
4.1
4.9
5.0
4.6 | e3.4
e3.3
e3.1
e3.1
e2.8 | e2.8
e2.8
e2.8
e2.8
e2.8 | e3.3
e3.0
e3.0
e3.0
e3.0 | 3.6
2.6
2.8
2.6
2.7 | 7.5
8.1
8.8
10 | 60
59
50
45
44 | 50
46
41
37
35 | 12
11
9.9
9.1
8.9 | 6.4
7.0
6.3
5.3
4.9 | 4.1
3.8
3.4
3.1
3.5 | | 16
17
18
19
20 | 4.7
4.6
4.8
4.2
4.4 | 3.7
e3.6
e3.8
e3.2
e3.6 | e3.3
e3.3
e3.3
e3.3 | e2.8
e2.8
e2.8
e3.0
e2.8 | e3.0
e3.0
e3.0
e2.8
e2.5 | 2.8
2.7
2.5
3.8
2.5 | 8.0
9.5
12
11
10 | 48
55
49
44
45 | 34
30
27
32
37 | 11
15
13
11
11 | 5.8
6.4
6.9
8.4
6.8 | 3.5
3.2
3.7
3.2
3.4 | | 21
22
23
24
25 | 4.9
4.5
4.3
4.2
4.4 | e3.6
e3.6
e3.2
e2.5
e3.3 | e3.1
e3.1
e3.1
e3.1
e3.1 | e2.8
e2.8
e2.8
e2.8
e2.8 | e2.8
e2.8
e2.8
e2.8
e2.7 | 2.7
2.6
2.7
2.9
3.2 | 12
13
16
15
13 | 45
53
74
94
101 | 27
25
24
23
22 | 10
9.2
8.5
8.1
7.9 | 5.8
5.6
5.0
4.8
4.7 | 5.1
6.3
5.2
5.2
4.7 | | 26
27
28
29
30
31 | 4.5
4.4
4.1
5.3
4.4
4.7 | e4.2
e4.0
e3.8
e3.6
e3.3 | e3.1
e2.8
e2.8
e2.8
e2.8
e3.1 | e3.0
e2.8
e2.8
e2.8
e2.7 | e2.5
e2.7
e2.8
2.4
 | 3.2
3.6
3.8
4.1
3.7
3.6 | 15
20
24
28
26 | 86
66
73
107
110
103 | 26
27
22
19
18 | 7.9
7.8
7.2
7.1
6.7
6.3 | 4.5
5.1
4.6
5.4
5.5
5.6 | 4.7
4.3
4.2
4.3
4.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | 84.9
2.93
3.3
2.4 | | 327.4
10.9
28
3.3
649 | 1868
60.3
110
25
3710 | 43.3 | 339.6
11.0
18
6.3
674 | 5.64 | 128.3
4.28
6.3
3.1
254 | | STATIST | rics of M | ONTHLY MEA | N DATA FO | OR WATER Y | EARS 1974 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.51
8.42
1998
2.28
1981 | 3.66
5.78
1997
2.07
1980 | 2.98
5.01
1984
1.65
1995 | 2.53
4.17
1986
1.44
1981 | 2.40
3.99
1986
1.51
1977 | 2.98
4.71
1997
1.49
1977 | 6.33
11.2
1996
2.48
1975 | 29.4
60.3
2000
11.5
1977 | 62.8
114
1983
22.6
1977 | 29.7
79.5
1983
4.81
1977 | 10.1
25.6
1984
2.34
1977 | 5.77
10.6
1984
1.41
1977 | | SUMMARY | STATIST | ICS | FOR 3 | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER Y | EARS 1974 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 4630.7
12.7
69
e2.0
2.1
9180
43
5.3
2.5 | Jun 25
Feb 12
Feb 25 | | 4779.7
13.1
110
2.3
2.4
134
9480
45
4.6
2.8 | May 30
Mar 1
Feb 29
May 29
May 29 | | 13.6
22.7
4.9
242
.5:
.7:
249
3.4:
9860
41
4.5
2.1 | | 1984
1977
27 1983
10 1977
5 1977
27 1983
27 1983 | e Estimated. #### 09067005 EAGLE RIVER AT AVON, CO #### WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}37^{\circ}54^{\circ}$, long $106^{\circ}31^{\circ}19^{\circ}$, in $\text{SE}^{1}/_{4}\text{NW}^{1}/_{4}$ sec.12, T.5 S., R.82 W., Eagle County, Hydrologic Unit 14010003, on left bank 100 ft downstream from bridge, 300 ft north of Highway 6 and 24, and 350 ft downstream from Beaver Creek, in the city of Avon. DRAINAGE AREA.--395 mi². PERIOD OF RECORD. -- October 1993 to current year. REMARKS.--Records of discharge are given for Eagle River below Wastewater Treatment Plant at Avon (station 09067020), located 0.6 mi downstream; flows are considered to be equivalent. Note: The following remark codes may appear in the tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECON
(00061 | CIFI CON- DUCT ANCE US/C | C WHOLE FIEL - (STAN ARD M) UNIT | E
D TEMPEI
D- ATURI
WATEI
S) (DEG (| E DIS-
R SOLVI
C) (MG/1 | - UM-ME
ED (COLS.
L) 100 MI | WATER WHOLE TOTAL UREASE (COL / L) 100 MI | HARD-
NESS
TOTAL
(MG/L
AS
L) CACO3 | CALCII DIS-
SOLVI (MG/I) AS CI | DIS-
ED SOLVE
L (MG/L
A) AS MG | , SODIUM, DIS- D SOLVED (MG/L) AS NA) | |------------------|--------------|--|--|--|---|--|--|--|---|--|--|--| | NOV
01 | 1341 | 96 | 300 | 8.2 | 4.8 | 9.7 | | | 130 | 36.4 | 9.91 | 5.3 | | DEC
01 | 1045 | | 329 | | .5 | 11.6 | К4 | K1 | 160 | 43.5 | 12.7 | 6.0 | | 21
JAN | 1350 | | 347 | | .9 | 10.8 | | | 160 | 42.9 | 11.7 | 6.1 | | 25
FEB | 1520 | | 358 | | 1.1 | 11.1 | 31 | K2 | 160 | 43.6 | 13.1 | 7.2 | | 25
MAR | 1100 | | 375 | | 1.0 | 11.8 | | | 170 | 43.7 | 13.7 | 9.3 | | 13
APR | 1515 | | 372 | | 4.8 | 10.1 | K6 | K24 | 170 | 46.3 | 13.6 | 9.6 | | 11
MAY | 1000 | | 231 | | | 10.1 | | | 110 | 29.9 | 8.77 | 5.4 | | 17
25 | 1100
1300 | | 120
86 | | 4.3
6.4 | 9.7
9.6 |
K17 |
K7 | 58
42 | 18.3
11.9 | 2.88
2.90 | 2.5
1.2 | | JUN
13 | 0745 | 1370 | 119 | | 8.6 | 8.9 | 54 | 50 | 53 | 15.0 | 3.78 | 1.4 | | 29
JUL | 1330 | | 141 | | 11.9 | 8.6 | | | 63 | 17.9 | 4.46 | | | 19
AUG | 0950 | | 168 | | 11.3 | 8.4 | | | 74 | 21.2 | 5.17 | 2.5 | | 15
SEP | 1430 | | 287 | | 18.0 | 8.0 | K8 | K14 | 130 | 36.2 | 9.48 | 4.9 | | 19 | 1235 | 96 | 317 | 8.3 | 12.5 | 8.5 | | | 140 | 40.1 | 9.79 | 5.5 | | DA | | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | NOV
01
DEC | | .2 | 1.0 | 101 | | 83 | 52.9 | 5.0 | <.1 | 6.5 | 167 | .23 | | 01
21 | | .2 | 1.1
1.3 | 120
118 | | 99
98 | 65.3
65.6 | 5.7
5.9 | .1
.1 | 6.0
6.8 | 201
201 | . 27
. 27 | | JAN
25 | | .2 | 1.3 | 115 | | 95 | 63.3 | 8.8 | .1 | 6.6 | 203 | .28 | | FEB
25 | | .3 | 1.5 | 109 | 5 | 98 | 69.6 | 15.7 | .1 | 6.4 | 221 | .30 | | MAR
13 | | .3 | 1.5 | 96 | 8 | 94 | 69.6 | 16.0 | .1 | 5.8 | 221 | .30 | | APR
11
MAY | | .2 | 1.0 | 83 | | 69 | 34.0 | 8.1 | <.1 | 6.3 | 135 | .18 | | 17
25 | | .1
.1 | .5
.6 | 61
45 | | 51
37 | 5.3
5.1 | 4.1
1.3 | <.1
<.1 | 4.7
4.9 | 69
50 | .09 | | 13
29 | | .1
.1 | .5
.6 | 48
56 | | 40
47 | 8.1
13.4 | 1.3
2.0 | <.1
<.1 | 4.6
4.5 | 58
73 | .08
.10 | | JUL
19
AUG | | .1 | .5 | 66 | | 55 | 17.4 | 2.3 | <.1 | 4.4 | 86 | .12 | | AUG
15
SEP | | .2 | 1.0 | 80 | 11 | 85 | 50.7 | 5.0 | <.1 | 5.3 | 164 | .22 | | 19 | | .2 | 1.1 | 95 | 4 | 85 | 56.8 | 5.3 | <.1 | 5.3 | 175 | .24 | OCT 06... 1230 123 272 8.9 # 09067005 EAGLE RIVER AT AVON, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | SOLIDS,
DIS- | NITRO-
GEN, | NITRO-
GEN,
NO2+NO3 | NITRO-
GEN, | NITRO-
GEN, | NITRO-
GEN,AM- | NITRO-
GEN,AM- | PHOS- | PHOS-
PHORUS | PHOS-
PHORUS
ORTHO. | CARBON,
ORGANIC | |------------------|---|---|---|--|---|--|--|---|--|---------------------------|---| | DATE | SOLVED
(TONS
PER
DAY)
(70302) | DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P)
(00666) | DIS- | DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
01 | 43.4 | .003 | .151 | .002 | .12 | .15 | .12 | .012 | E.004 | .003 | | | DEC
01
21 | 38.5
32.2 | <.001
.002 | .274
.480 | <.002
<.002 | | E.10
.12 | E.10
E.10 | .025 | .017 | .013
.025 | | | JAN
25 | 37.2 | .003 | .481 | .003 | | .11 | E.10 | .060 | .046 | .038 | | | FEB 25 | 35.9 | .003 | .632 | <.002 | | .12 | .12 | .066 | .051 | .046 | | | MAR
13 | 33.4 | .003 | .516 | <.002 | | .21 | E.10 | .077 | .054 | .051 | 1.7 | | APR
11
MAY | 80.5 | .001 | .261 | .002 | .16 | .30 | .16 | .045 | .013 | .008 | | | 17
25
JUN | 275
375 | <.001
<.001 | .119
.074 | .003 | .11 | .20
.25 | .11 | .018
.045 | .008
E.005 | .005
<.001 |
5.4 | | 13
29 | 216
144 | <.001
.001 | .074 | <.002
.008 | | .13
.14 | E.10
E.10 | .013 | <.006
E.004 | <.001 | 2.3 | | JUL
19
AUG | 88.7 | .001 | .081 | .034 | .10 | .18 | .12 | .013 | E.004 | .003 | | | 15
SEP | 50.0 | .002 | .179 | .005 | | .12 | E.10 | .023 | .022 | .014 | 1.5 | | 19 | 45.4 | .002 | .176 | .011 | | .12 | E.10 | .014 | .010 | .007 | | | | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | SOLVED
(UG/L
AS FE) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | | | | | DE | C
01 | E.1 | | E1 | 270 | | <1 | 134 | | | | | | 13 | E.1 | | 2 | 360 | | <1 | 171 | | | | | | 25 | <.1 | | 2 | 980 | | <1 | 138 | | | | | AU | G
15 | <.1 | <.8 | 2 | 190 | 90 | <1 | 43 | | | | | | DA | NE
D
SO
ATE (U
AS | IS- D
LVED SO
G/L (U
MN) AS | LVED SC
G/L (U
HG) AS | CKEL, N
S-
DLVED S
JG/L (
S NI) A | DIS- I
OLVED SC
UG/L (U
S SE) AS | DIS- D
DLVED SO
NG/L (U
B AG) AS | NC,
IS-
LVED
G/L
ZN)
090) | | | | | | DEC
01 | . 1 | 25 < | .2 | < | 2.4 < | 1 | 93 | | | | | | MAR
13
MAY | . 1 | 55 < | .2 | < | 2.4 < | 1 | 70 | | | | | | MAY
25
AUG | | 14 < | .2 | < | 2.4 < | 1 | 21 | | | | | | 15 | | 31 E | .1 < | :1 | <.7 < | :1 E | 18 | | | | | MIS | CELLANEOU | JS FIELD M | EASUREMEN | TS, WATER | YEAR OC | TOBER 1999 | TO SEPTE | MBER 2000 | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | # 09067005 EAGLE RIVER AT AVON, CO--Continued # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | |-----------|------|---|---|---|-----| | DEC | | | | | | | 01
MAR | 1045 | 71 | .5 | 3 | .58 | | 13 | 1515 | 56 | 4.8 | 6 | .92 | | MAY | | | | | | | 25
JUN | 1300 | 2750 | 6.4 | 51 | 378 | | 13 | 0745 | 1370 | 8.6 | 6 | 23 | | JUL | | | | | | | 19 | 0950 | 381 | 11.3 | 3 | 2.8 | | AUG
15 | 1430 | 113 | 18.0 | М | .12 | | ±J | 1430 | 113 | 10.0 | 1*1 | | #### 09067020 EAGLE RIVER BELOW WASTEWATER TREATMENT PLANT AT AVON, CO LOCATION.--Lat $39^{\circ}38^{\circ}06^{\circ}$, long $106^{\circ}31^{\circ}57^{\circ}$, in $\text{NE}^{1}/_{4}\text{NE}^{1}/_{4}$ sec.11, T.5 S., R.82 W., Eagle County, Hydrologic Unit 14010003, on right bank 60 ft downstream from Eagle River Wastewater Treatment Plant effluent discharge point, and 0.2 mi upstream from Beaver Creek Boulevard bridge, in the city of Avon. DRAINAGE AREA. -- 402 mi². PERIOD OF RECORD.--October 1999 to September 2000. October 1988 to September 1999, streamflow data were collected 0.6 mi upstream at site 09067005 Eagle River at Avon; streamflow records are considered to be equivalent. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 7,380 ft above sea level, from topographic map. Prior to October 14, 1999, streamflow data were collected 0.6 mi upstream at site 09067005 Eagle River at Avon; streamflow records are considered to be equivalent. REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, diversions for irrigation and municipal use. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging
Stations" section of this report. | | | DISCHARO | GE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | | R 1999 TO |) SEPTEMBE | R 2000 | | | |-------|------|----------|-----------|----------|------|-----------------------|-------|-----------|------------|--------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | DAI | 001 | NOV | DEC | UAIN | LED | MAR | APK | MAI | JUN | UUL | AUG | SEP | | 1 | 152 | 106 | 69 | 67 | 78 | 67 | 88 | 702 | 2630 | 564 | 151 | 177 | | 2 | 142 | 94 | 72 | 64 | 72 | 70 | 88 | 846 | 2340 | 527 | 144 | 161 | | 3 | 134 | 90 | 67 | 58 | 75 | 71 | 86 | 1130 | 2180 | 493 | 139 | 144 | | 4 | 126 | 91 | 56 | 49 | 74 | 72 | 87 | 1330 | 2070 | 463 | 139 | 128 | | 5 | 124 | 91 | 47 | e44 | 71 | 79 | 120 | 1610 | 1930 | 420 | 135 | 120 | | 6 | 120 | 88 | 58 | e41 | 72 | 78 | 154 | 1820 | 1860 | 403 | 133 | 142 | | 7 | 154 | 88 | 62 | 52 | 68 | 81 | 156 | 1780 | 1850 | 389 | 125 | 153 | | 8 | 176 | 89 | 64 | 66 | 67 | 80 | 160 | 1730 | 1780 | 374 | 117 | 156 | | 9 | 172 | 89 | 47 | 64 | 68 | 75 | 197 | 1400 | 1700 | 446 | 112 | 183 | | 10 | 161 | 80 | 54 | 65 | 69 | 75 | 234 | 1340 | 1510 | 418 | 110 | 163 | | 11 | 150 | 80 | 61 | 68 | 70 | 72 | 227 | 1700 | 1400 | 377 | 128 | 139 | | 12 | 145 | 81 | 59 | 65 | 69 | 79 | 229 | 1700 | 1310 | 351 | 127 | 123 | | 13 | 143 | 75 | 52 | 58 | 71 | 71 | 272 | 1310 | 1180 | 324 | 134 | 113 | | 14 | 132 | 76 | 52 | 57 | 70 | 73 | 307 | 1150 | 1030 | 316 | 121 | 106 | | 15 | 127 | 78 | 48 | 70 | 69 | 75 | 310 | 1120 | 1230 | 332 | 113 | 100 | | 16 | 122 | 74 | 64 | 69 | 65 | 71 | 258 | 1230 | 1310 | 419 | 135 | 95 | | 17 | 106 | 82 | 64 | 66 | 68 | 72 | 276 | 1460 | 1140 | 495 | 173 | 91 | | 18 | 130 | 89 | 58 | 63 | 67 | 73 | 352 | 1260 | 1010 | 479 | 197 | 97 | | 19 | 125 | 55 | 66 | 68 | 64 | 66 | 333 | 1120 | 1190 | 367 | 219 | 96 | | 20 | 122 | 69 | 63 | 64 | 60 | 73 | 288 | 1070 | 1600 | 314 | 202 | 91 | | 21 | 122 | 77 | 61 | 66 | 72 | 67 | 326 | 1020 | 1110 | 282 | 189 | 107 | | 22 | 119 | 69 | 60 | 66 | 66 | 68 | 362 | 1190 | 942 | 254 | 191 | 236 | | 23 | 114 | 64 | 62 | 64 | 68 | 71 | 361 | 1820 | 893 | 235 | 169 | 209 | | 24 | 111 | 41 | 53 | 62 | 68 | 76 | 349 | 2540 | 787 | 222 | 159 | 182 | | 25 | 109 | 52 | 58 | 71 | 67 | 77 | 312 | 2750 | 789 | 214 | 196 | 163 | | 26 | 105 | 86 | 65 | 70 | 65 | 81 | 352 | 2430 | 810 | 202 | 196 | 159 | | 27 | 103 | 81 | 63 | 70 | 69 | 81 | 450 | 1990 | 837 | 193 | 193 | 145 | | 28 | 101 | 74 | 57 | 55 | 71 | 97 | 636 | 2090 | 677 | 187 | 180 | 132 | | 29 | 112 | 71 | 56 | 65 | 71 | 100 | 751 | 2870 | 614 | 178 | 204 | 130 | | 30 | 96 | 69 | 54 | 53 | | 98 | 808 | 3140 | 587 | 168 | 203 | 139 | | 31 | 101 | | 53 | 64 | | 93 | | 2970 | | 160 | 195 | | | TOTAL | 3956 | 2349 | 1825 | 1924 | 2004 | 2382 | 8929 | 51618 | 40296 | 10566 | 4929 | 4180 | | MEAN | 128 | 78.3 | 58.9 | 62.1 | 69.1 | 76.8 | 298 | 1665 | 1343 | 341 | 159 | 139 | | MAX | 176 | 106 | 72 | 71 | 78 | 100 | 808 | 3140 | 2630 | 564 | 219 | 236 | | MIN | 96 | 41 | 47 | 41 | 60 | 66 | 86 | 702 | 587 | 160 | 110 | 91 | | AC-FT | 7850 | 4660 | 3620 | 3820 | 3970 | 4720 | 17710 | 102400 | 79930 | 20960 | 9780 | 8290 | | | | | | | / 0 | - / - 0 | | | | | | -270 | | SUMMARY STATISTICS | FOR 2000 WA | TER YEAR | |--|--|---| | ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 134958
369
3140
41
53
3640
8.40
267700
1230
120
63 | May 30
Nov 24
Dec 9
May 30
May 30 | | 90 PERCENI EACEEDS | 03 | | e Estimated. ### 09067200 LAKE CREEK NEAR EDWARDS, CO LOCATION.--Lat 39°38'51", long 106°36'31", in $SE^1/_4NE^1/_4$ sec.6, T.5 S., R.82 W., Eagle County, Hydrologic Unit 14010003, on right bank 30 ft upstream from U.S. Highway 6, and 1.0 mi west of Edwards. DRAINAGE AREA.--49.0 mi². PERIOD OF RECORD.--October 1993 to current year. Published as station number 09066980 during the 1994-96 water years. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,160 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions for irrigation, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | C FEET PER | | VATER YE.
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--------------------------------------|---|--------------------------------------|--------------------------------------|---|---|------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 33
32
30
28
27 | 21
20
21
22
21 | 14
14
14
13
12 | 11
11
11
11 | 13
12
13
14
14 | e11
e12
e12
e12
e12 | 16
16
15
17
21 | 69
75
99
123
174 | 552
448
250
249
245 | 107
103
101
97
87 | 22
22
22
21
20 | 41
35
32
29
28 | | 6
7
8
9
10 | 26
32
31
29
29 | 21
20
19
19
17 | 13
14
14
12
14 | 10
11
11
11
11 | 14
e13
e13
e13
e13 | e12
e12
14
14
14 | 24
23
23
26
29 | 207
203
192
138
127 | 227
233
234
241
210 | 84
82
79
93
85 | 20
19
19
19
18 | 32
40
38
50
40 | | 11
12
13
14
15 | 28
27
26
26
26 | 18
17
16
17
17 | 14
13
12
12
13 | 11
11
11
11
11 | e14
e14
e13
e13
e13 | 13
14
14
14
14 | 29
29
32
35
39 | 186
176
127
110
110 | 187
177
161
135
159 | 80
76
70
68
69 | 20
20
19
18
18 | 35
32
30
27
25 | | 16
17
18
19
20 | 25
24
26
23
23 | 16
16
17
14
16 | 13
13
13
13
13 | 11
11
11
12
12 | e13
e13
e13
e13
e12 | 13
13
13
13
14 | 36
34
36
35
32 | 123
167
122
104
111 | 166
139
127
169
207 | 80
94
99
79
71 | 24
30
35
59
55 | 23
20
20
20
19 | | 21
22
23
24
25 | 23
23
22
21
20 | 16
16
14
11
14 | 12
12
12
12
12 | 12
12
12
12
12 | e12
e12
e12
e12
e12 | 14
14
14
14
15 | 36
44
52
51
45 | 117
156
279
365
403 | 158
137
130
115
119 | 60
52
48
44
41 | 48
46
42
38
47 | 24
54
47
43
40 | | 26
27
28
29
30
31 | 20
19
19
23
22
22 | 18
17
16
15
14 | 12
11
11
11
11
12 | 13
12
12
12
12
12 | e11
e12
e12
e12
 | 15
16
17
18
17 | 45
51
66
73
73 | 338
271
284
381
342
426 | 125
153
123
114
114 | 40
39
35
25
24
22 | 39
38
37
45
47
51 | 41
37
34
32
34 | | TOTAL
MEAN
MAX
MIN
AC-FT | 785
25.3
33
19
1560 | 516
17.2
22
11
1020 | 391
12.6
14
11
776 | 355
11.5
13
10
704 | 370
12.8
14
11
734 | 430
13.9
18
11
853 | 1083
36.1
73
15
2150 | 6105
197
426
69
12110 | 5804
193
552
114
11510 | 2134
68.8
107
22
4230 | 978
31.5
59
18
1940 | 1002
33.4
54
19
1990 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 30.9
44.8
1998
24.2
1999 | 22.8
28.4
1996
16.8
1995 | 14.6
19.0
1996
10.8
1994 | 12.5
16.0
1997
9.43
1995 | 11.5
13.3
1998
9.26
1994 | 13.0
14.9
1997
10.6
1994 | 23.7
36.1
2000
15.4
1995 | 129
197
2000
43.8
1995 | 262
418
1997
171
1998 | 139
293
1995
44.3
1994 | 65.0
125
1995
24.5
1994 | 36.6
56.0
1997
23.5
1994 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALENI | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1994 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN
'ANNUAL ME
'DAILY ME
DAILY MEA | CAN CAN AN MINIMUM CAK FLOW CAK STAGE AC-FT) CDS CDS | | 20780.1
56.9
308
e8.2
9.4
41220
189
21
11 | May 25
Feb 12
Feb 25 | | 19953
54.5
552
10
11
726
2.98
39580
143
22
12 | Jun 1
Jan 6
Jan 1
Jun 1
Jun 1 | | 63.5
87.3
45.5
845
7.0
8.0
1290
3.63
46010
191
25 | Feb
Jan 2
Jun 1 | 1997
1994
16 1995
1 1994
29 1994
16 1995
16 1995 | e Estimated. ### 394259106405900 ALKALI CREEK BELOW MUDDY CREEK NEAR WOLCOTT, CO. ###
WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}42^{\circ}59^{\circ}$, long $106^{\circ}40^{\circ}59^{\circ}$, in $NW^{1}/_{4}SW^{1}/_{4}$ sec.10, T. 45 S, R. 83 W., Eagle County, Hydrologic Unit 14010003, 0.8 mi upstream from mouth, 1.1 mi north of Wolcott, and 1.7 mi downstream from Muddy Creek. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- March 2000. ${\tt REMARKS.--No}$ water-quality data at this site before March 2000. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE
MAR | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPEF
ATURE
WATEF
(DEG C | E DIS
R SOLV
C) (MG, | S- (MG
VED AS
/L) CAC | S CALC AL DIS /L SOL (MG 03) AS | IUM SI
- DI
VED SOL
:/L (MG
CA) AS | VED SOLV
/L (MG
MG) AS | - SORP-
ED TION
/L RATIO
NA) | |-------------|--|--|---|--|--|---|--|---|--|--|---| | 15 | 1230 | 1.4 | 1110 | 8.4 | 2.5 | 10.4 | 1 54 | 0 10 | 9 64. | 2 56. | 7 1 | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CO3 | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFAT
DIS-
SOLVE
(MG/I
AS SO4 | DIS-
ED SOLV
L (MG, | E, RID
- DI
/ED SOL
/L (MG
CL) AS | E, DIS
S- SOL
VED (MG
/L AS
F) SIO | - CONS
VED TUEN
/L DI
SOL
(MG | OF SOLI TI- DI TS, SOL S- (TO VED PE E/L) AC- | S- DIS-
VED SOLVED
NS (TONS
R PER
FT) DAY) | | MAR
15 | 3.2 | 351 | 11 | 310 | 331 | 11.6 | 5 .2 | 8. | 6 76 | 8 1.0 | 4 2.86 | | DAT | G
NIT
D
SO
TE (M
AS | EEN, RITE NO IS- LVED S IG/L (IN) A | GEN, G
2+NO3 AMM
DIS- I
OLVED SC
MG/L (M
S N) AS | GEN, (IONIA ORG
DIS- IOLVED SC
IG/L (IONIA) | GEN, C
GANIC M
DIS- C
DLVED
MG/L
S N) | NITRO-
GEN,AM-
MONIA +
DRGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | MAR
15 | | 001 . | 010 .0 | 103 | .16 | . 20 | .17 | .021 | <.006 | .001 | 3.7 | | DAY | CAD
D
SO
FE (U
AS | MIUM CO
DIS- D
LVED S
G/L ((| IF PPER, TC IS- RE OLVED EF UG/L (U S CU) AS | CON,
DTAL LI
CCOV- I
CABLE SO
JG/L (I
S FE) AS | EAD,
DIS-
DLVED
UG/L
S PB) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | MAR
15 | . < | .1 | <1 5 | 30 | <1 | 121 | 119 | <.2 | E2.3 | <1 | <20 | #### SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | MAR
15 | 1230 | 1.4 | 2.5 | 31 | .12 | # 394220106431500 EAGLE RIVER BELOW MILK CREEK NEAR WOLCOTT, CO (Eagle River Watershed Retrospective Assessment Program) #### WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}42^{\circ}20^{\circ}$, long $106^{\circ}43^{\circ}15^{\circ}$, in $SW^{1}/_{4}NW^{1}/_{4}$ sec. 17, T.4S, R.83W., Eagle County, Hydrologic Unit 14010003, at U.S. Highway 6, 0.75 mi downstream from Milk Creek, and 2.3 mi west of Wolcott. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD.--May to August 1976, October 1999 to September 2000. REMARKS.--The following remark codes may appear in the tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |---|--|--|---|---|---|---|--|---|---|--|--| | NOV
02
29 | 0915
1605 | 154
112 | 667
960 | 8.3
8.2 | 2.4
3.1 | 11.8
10.5 | | | 210
230 | 59.3
66.1 | 13.9
16.3 | | DEC 20 | 1320 | 96 | 1030 | 8.2 | .2 | 12.6 | | | 240 | 69.7 | 16.1 | | JAN
25 | 1110 | 116 | 1010 | 8.3 | 1.2 | 11.4 | | | 250 | 72.2 | 18.0 | | FEB 24 | 1230 | 99 | 1120 | 8.8 | 4.5 | 11.2 | | | 250 | 70.0 | 18.1 | | MAR
15 | 1530 | 104 | 954 | 8.6 | 4.2 | 11.0 | | | 250 | 71.5 | 17.9 | | APR
10 | 1410 | 265 | 499 | 8.4 | 10.1 | 9.2 | | | 160 | 45.0 | 12.0 | | MAY
16
24 | 0950
1416 | 1240
2810 | 214
117 | 8.1
7.9 | 7.7
7.4 | 9.4
10.2 | | | 81
46 | 23.1
13.2 | 5.72
3.16 | | JUN
12
29 | 1430
1710 | 1690
876 | 184
263 | 8.1
8.4 | 10.4
14.3 | 8.9
8.0 | | | 62
83 | 17.7
23.9 | 4.23
5.58 | | JUL
19 | 1520 | 490 | 405 | 9.0 | 17.9 | 8.8 | | | 100 | 29.3 | 6.63 | | AUG
14 | 1500 | 145 | 750 | 8.5 | 20.1 | 7.7 | 230 | К6 | 190 | 55.3 | 12.1 | | SEP
19 | 1450 | 137 | 823 | 8.7 | 16.2 | 9.3 | | | 210 | 62.8 | 13.7 | | | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
02
29 | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3 | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | NOV
02
29
DEC
20 |
DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
02
29
DEC
20
JAN
25 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
02
29
DEC
20
JAN
25
FEB
24 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
49.2
88.9 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
105
101 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
75.2
145 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.3
6.5 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
02
29
DEC
20
JAN
25
FEB
24
MAR
15 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
49.2
88.9
105
98.1 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.8
3.1 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
105
101
119 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
128
123
143 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
102
125
131 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
75.2
145
165 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.3
6.5
8.7 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
376
515
574 | | NOV
02
29
DEC
20
JAN
25
FEB
24
MAR
15
APR | DIS-
SOLVED
(MG/L
AS NA)
(00930)
49.2
88.9
105
98.1 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.8
3.1
3.5
4.0 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
105
101
119
119 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
128
123
143
143 | BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
102
125
131
129
138 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
75.2
145
165
152 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.3
6.5
8.7
8.0
6.2 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
376
515
574
558 | | NOV
02
29
DEC
20
JAN
25
FEB
24
MAR
15
APR
10
MAY
16 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
49.2
88.9
105
98.1
114 | AD-
SORP-
TION
RATIO
(00931)
1
3
3
3 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.8
3.1
3.5
4.0 | LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086)
105
101
119
119
115
113 | BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453)
128
123
143
143
124 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 7 5 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
102
125
131
129
138 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
75.2
145
165
152
176 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.1 .1 .2 .2 .2 .2 .1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.3
6.5
8.7
8.0
6.2
5.4 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
376
515
574
558
601
548 | | NOV 02 29 DEC 20 JAN 25 FEB 24 MAR 15 APR 10 MAY 16 24 JUN 12 29 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
49.2
88.9
105
98.1
114
95.6
42.0 | AD-
SORP-
TION
RATIO
(00931)
1 3 3 3 3 3 3 15 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.8
3.1
3.5
4.0
3.6
1.8 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 101 119 119 115 113 85 65 | BONATE WATER DIS 1T FIELD MG/L AS HCO3 (00453) 128 123 143 143 144 127 93 78 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 7 5 5 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
102
125
131
129
138
132
68.0
19.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
75.2
145
165
152
176
148
64.0 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.3
6.5
8.7
8.0
6.2
5.4
6.2 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
376
515
574
558
601
548
292 | | NOV 02 29 DEC 20 JAN 25 FEB 24 MAR 15 APR 10 MAY 16 24 JUN 12 29 JUL 19 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
49.2
88.9
105
98.1
114
95.6
42.0
10.7
4.9 | AD-
SORP-
TION
RATIO
(00931)
1
3
3
3
3
1
.5 | SIUM,
DIS-
SOIVED
(MG/L
AS K)
(00935)
2.2
2.8
3.1
3.5
4.0
3.6
1.8 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 101 119 119 115 113 85 65 38 50 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 128 123 143 143 124 127 93 78 46 60 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 7 5 5 7 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
102
125
131
129
138
132
68.0
19.9
9.6 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
75.2
145
165
152
176
148
64.0
15.3
6.7
13.0 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.1
.2
.2
.2
.2
.1
.1
<.1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.3
6.5
8.7
8.0
6.2
5.4
6.2
5.8
4.6 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
376
515
574
558
601
548
292
120
66 | | NOV 02 29 DEC 20 JAN 25 FEB 24 MAR 15 APR 10 MAY 16 24 JUN 12 29 JUL | DIS-
SOLVED
(MG/L
AS NA)
(00930)
49.2
88.9
105
98.1
114
95.6
42.0
10.7
4.9
9.3
17.4 | AD-
SORP-
TION
RATIO
(00931)
1
3
3
3
3
1
.5
.3
.5
.8 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.2
2.8
3.1
3.5
4.0
3.6
1.8
.8
.7 | LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 105 101 119 119 115 113 85 65 38 50 55 | BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 128 123 143 143 124 127 93 78 46 60 59 | BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) 7 5 5 4 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
102
125
131
129
138
132
68.0
19.9
9.6
14.9
26.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
75.2
145
165
152
176
148
64.0
15.3
6.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.1
.2
.2
.2
.1
.1
<.1 | DIS-
SOLVED (MG/L
AS SIO2) (00955) 7.3 6.5 8.7 8.0 6.2 5.4 6.2 5.8 4.6 4.8 4.5 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
376
515
574
558
601
548
292
120
66
95
136 | 394220106431500 EAGLE RIVER BELOW MILK CREEK NEAR WOLCOTT, CO--Continued (Eagle River Watershed Retrospective Assessment Program) | | | | NITRO- | NITRO- | NITRO- | NITRO- | NITRO- | | | PHOS- | | |------------------|---|---|---|--|---|--|---|---|--|--|--| | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | (70303) | | | | (00608) | (00625) | (00623) | (00665) | (00666) | (00671) | (00681) | | NOV
02
29 | .51
.70 | 156
156 | .009 | .647
.834 | .034 | .22 | .25
.12 | .073
.102 | .063 |
.054 |
 | | DEC 20 | .78 | 149 | .015 | 1.08 | .076 | .23 | .21 | .155 | .143 | .129 | | | JAN
25 | .76 | 175 | .017 | 1.39 | .102 | 1.3 | .25 | .185 | .167 | .151 | | | FEB 24 | .82 | 161 | .061 | 1.30 | .177 | .51 | .43 | .210 | .196 | .189 | | | MAR
15 | .75 | 154 | .029 | 1.24 | .255 | .56 | .50 | .178 | .187 | .179 | 2.3 | | APR
10 | .40 | 209 | .005 | .499 | .021 | .44 | .21 | .130 | .052 | .045 | | | MAY
16 | .16 | 403 | .001 | .138 | .010 | .14 | .15 | .009 | .011 | .008 | | | 24
JUN | .09 | 503 | <.001 | .122 | <.002 | .44 | .17 | .102 | .011 | .005 | 4.6 | | 12
29 | .13
.19 | 432
322 | .003 | .148
.169 | .003
.010 | .13
.16 | .10
.12 | .020
.026 | .009
.018 | .004 | 2.3 | | JUL
19
AUG | .23 | 228 | .009 | .150 | .018 | . 25 | .16 | .036 | .020 | .013 | | | 14
SEP | .54 | 156 | .010 | .611 | .018 | .27 | .19 | .092 | .079 | .072 | 1.9 | | 19 | .61 | 167 | .006 | .689 | .016 | .22 | .13 | .073 | .065 | .054 | | | | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | | | | | N | VC | | | | | | | | | | | | M | 29
AR | <.1 | | E1 | 120 | | <1 | 40 | | | | | M | 15
AY | <.1 | | E1 | 210 | | <1 | 93 | | | | | | 24
UG | <.1 | | 1 | 1420 | | <1 | 198 | | | | | | 14 | <.1 | <.8 | 2 | 110 | 30 | <1 | 39 | | | | | | D# | NE
D
SO
ATE (U
AS | IS- D
LVED SO
G/L (U
MN) AS | LVED SC
G/L (U
HG) AS | KEL, NI
S- I
DLVED SO
IG/L (U
NI) AS | DIS- D
DLVED SC
JG/L (U
S SE) AS | DIS- I
DLVED SO
IG/L (U
BAG) AS | INC,
DIS-
DLVED
JG/L
S ZN)
L090) | | | | | | NOV
29 | . 3 | 2 < | .2 | <2 | 2.4 < | :1 | 28 | | | | | | MAR
15 | . 8 | 7 < | .2 | <2 | 2.4 < | 1 | 40 | | | | | | MAY
24 | . 1 | 9 < | .2 | <2 | 2.4 < | 1 E | E17 | | | | | | AUG
14 | . 1 | 3 E | .1 < | :1 < | <.7 < | 1 F | E17 | | | #### 09069000 EAGLE RIVER AT GYPSUM, CO #### WATER-OUALITY RECORDS LOCATION.--Lat 39°39'00", long 106°57'06", Eagle County, Hydrologic Unit 14010003, at bridge at Gypsum, about 400 ft upstream from Gypsum Creek, about 520 ft upstream from bridge on U.S. Highways 6 and 24, and about 550 ft upstream from gaging DRAINAGE AREA.--944 mi^2 , at gaging station. PERIOD OF RECORD. -- April 1947 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: April 1947 to March 31, 1995. WATER TEMPERATURE: April 1949 to March 31, 1995. REMARKS.--Records of discharge are given for Eagle River below Gypsum (station 09070000), located 550 ft downstream from Eagle River at Gypsum (station 09069000). Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 2,200 microsiemens Mar. 9, 1990; minimum daily, 130 microsiemens June 9-10, 1976. WATER TEMPERATURE: Maximum daily, 24°C Aug. 24, 1949, several days in Aug. 1988, and July 27, 1990; minimum daily, 0.0°C on many days during winter months. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |-----------|------|---|--|---|---|--|---|--|--|---|---|---| | NOV | | | | | | | | | | | | | | 02
DEC | 1110 | 236 | 767 | 8.4 | 4.5 | 11.1 | | | 300 | 89.5 | 17.6 | 43.6 | | 02 | 0810 | 201 | 1030 | 8.2 | 2.0 | 10.4 | K2 | K1 | 330 | 98.3 | 20.2 | 76.7 | | 20
JAN | 0920 | 168 | 1080 | 8.2 | .6 | 12.0 | | | 340 | 101 | 20.2 | 80.8 | | 27
FEB | 1445 | 231 | 1010 | 8.5 | 3.1 | 11.3 | <1 | K2 | 330 | 98.7 | 20.6 | 76.6 | | 24
MAR | 0915 | 201 | 1130 | 8.4 | 2.9 | 11.2 | | | 330 | 95.8 | 20.9 | 89.3 | | 13
APR | 1115 | 173 | 994 | 8.8 | 5.5 | 12.6 | K1 | K10 | 320 | 95.6 | 20.9 | 81.1 | | 10
MAY | 1015 | 348 | 703 | 8.3 | 9.3 | 9.5 | | | 240 | 71.3 | 15.5 | 56.2 | | 16 | 1345 | 1310 | 261 | 8.3 | 11.7 | 8.8 | | | 100 | 30.5 | 6.72 | 11.7 | | 25
JUN | 0752 | 3370 | 151 | 7.9 | 6.8 | 11.2 | 83 | K10 | 63 | 18.9 | 3.88 | 5.0 | | 12 | 1030 | 1710 | 230 | 8.1 | 11.1 | 9.3 | к8 | K5 | 83 | 24.8 | 5.10 | 9.2 | | 29 | 0920 | 640 | 361 | 8.3 | 12.8 | 9.2 | | | 130 | 38.3 | 7.58 | 19.0 | | JUL
19 | 1230 | 524 | | 8.5 | 17.4 | 8.9 | | | 170 | 51.6 | 9.49 | 23.6 | | AUG
14 | 0905 | 146 | 898 | 8.2 | 16.1 | 8.5 | K53 | K67 | 330 | 100 | 18.2 | 54.1 | | SEP
19 | 1630 | 177 | 962 | 8.7 | 18.1 | 9.4 | | | 330 | 100 | 18.5 | 60.8 | | ±2 | 1000 | ±// | 202 | 0.7 | TO.T | J. T | | | 550 | ±00 | 10.5 | 00.0 | ### 09069000 EAGLE RIVER AT GYPSUM, CO--Continued | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | |---|--|--|--|--|---|---|--|--|---|---|---| | NOV
02 | 1 | 2.3 | 124 | 147 | 2 | 177 | 65.9 | .1 | 8.5 | 481 | .65 | | DEC
02
20 | 2
2 | 2.7
2.8 | 136
132 | 163
159 | | 204
208 | 121
125 | .2 | 7.8
9.8 | 615
631 | .84
.86 | | JAN
27
FEB | 2 | 3.2 | 129 | 140 | 7 | 191 | 118 | .2 | 8.9 | 598 | .81 | | 24
MAR | 2 | 3.5 | 131 | 150 | 4 | 201 | 140 | .1 | 6.9 | 639 | .87 | | 13
APR | 2 | 3.3 | 132 | 139 | 10 | 195 | 125 | .2 | 6.2 | 610 | .83 | | 10
MAY | 2 | 2.3 | 104 | 123 | 1 | 122 | 83.2 | .1 | 6.6 | 422 | .57 | | 16
25
JUN | .5 | .9 | 72
43 | 87
51 | | 35.8
17.8 | 16.0
6.4 | <.1
<.1 | 6.2
5.1 | 151
84 | .21 | | 12
29 | .4 | .9
1.2 | 55
73 | 66
88 | | 29.5
56.7 | 11.9
24.9 | <.1
<.1 | 5.0
5.0 | 119
197 | .16
.27 | | 19
AUG | .8 | 1.3 | 76 | 82 | 5 | 81.1 | 34.0 | <.1 | 4.3 | 251 | .34 | | 14
SEP | 1 | 2.7 | 138 | 166 | | 197 | 84.3 | .1 | 7.4 | 548 | .74 | | 19 | 1 | 3.1 | 124 | 122 | 13 | 215 | 96.0 | .1 | 6.9 | 576 | .78 | | | | | | | | | | | | | | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) |
CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV 02 | DIS-
SOLVED
(TONS
PER
DAY) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | NOV
02
DEC
02
20 | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
02
DEC
02
20
JAN
27 | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) E.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV 02 DEC 02 20 JAN 27 FEB 24 | DIS-
SOLVED (TONS
PER
DAY) (70302)
307
334
286 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)006 .011 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.406
.775
.900 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .005 .018 .041 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .10 .15 .17 | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
E.10
E.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.041
.076
.098 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.027 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
02
DEC
02
20
JAN
27
FEB
24
MAR
13 | DIS-
SOLVED (TONS
PER DAY) (70302)
307
334
286 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.406
.775
.900 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .005 .018 .041 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625)
.10
.15
.17 | GEN, AM-
MONITA +
ORGANIC
DIS.
(MG/L
AS N)
(00623)
E.10
E.10
.13 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.041
.076
.098 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.031
.062
.092 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.027
.051
.077 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
02
DEC
02
20
JAN
27
FEB
24
MAR
13
APR
10 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
307
334
286
373 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 1 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 006 .011 .025 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.406
.775
.900
.975 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .005 .018 .041 .037 .016 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .10 .15 .17 .18 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) E.10 E.10 .13 .18 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.041
.076
.098
.126 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.031
.062
.092
.114 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.027
.051
.077
.100 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
02
DEC
02
20
JAN
27
FEB
24
MAR
13
APR
10
MAY
16
25 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
307
334
286
373
347 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 006 .011 .025 .019 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .406 .775 .900 .975 .986 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .005 .018 .041 .037 .016 .043 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .10 .15 .17 .18 .35 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) E.10 E.10 .13 .18 .22 .24 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.041
.076
.098
.126
.085 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.031
.062
.092
.114
.094 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.027
.051
.077
.100
.088 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV 02 DEC 02 20 JAN 27 FEB 24 MAR 13 APR 10 MAY 16 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
307
334
286
373
347
285
397 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 1 5 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 006 .011 .025 .019 .018 .007 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .406 .775 .900 .975 .986 .915 .618 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .005 .018 .041 .037 .016 .043 .026 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .10 .15 .17 .18 .35 .41 .60 .17 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) E.10 E.10 .13 .18 .22 .24 .21 .18 | PHORUS TOTAL (MG/L AS P) (00665) .041 .076 .098 .126 .085 .125 .213 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.031
.062
.092
.114
.094
.100 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.027
.051
.077
.100
.088
.092
.050 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
02
DEC
02
20
JAN
27
FEB
24
MAR
13
APR
10
MAY
16
25
JUN
12
29
JUL
19 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
307
334
286
373
347
285
397
534
762
552 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 1 5 129 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 006 .011 .025 .019 .018 .007 .001 <.001 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .406 .775 .900 .975 .986 .915 .618 .130 .119 .133 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .005 .018 .041 .037 .016 .043 .026 .005 <.002 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .10 .15 .17 .18 .35 .41 .60 .17 .70 | GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) E.10 E.10 .13 .18 .22 .24 .21 .18 .15 E.10 | PHORUS TOTAL (MG/L AS P) (00665) .041 .076 .098 .126 .085 .125 .213 .009 .191 .019 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .031 .062 .092 .114 .094 .100 .059 .018 .014 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.027
.051
.077
.100
.088
.092
.050 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
02
DEC
02
20
JAN
27
FEB
24
MAR
13
APR
10
MAY
16
25
JUN
12
29 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
307
334
286
373
347
285
397
534
762
552
340 | TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530) 1 5 129 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 006 .011 .025 .019 .018 .007 .001 <.001 .003 .005 | GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .406 .775 .900 .975 .986 .915 .618 .130 .119 .133 .171 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) .005 .018 .041 .037 .016 .043 .026 .005 <.002 .007 .013 | GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .10 .15 .17 .18 .35 .41 .60 .17 .70 .14 | GEN, AM- MONITA + ORGANIC DIS. (MG/L AS N) (00623) E.10 E.10 .13 .18 .22 .24 .21 .18 .15 E.10 .11 | PHORUS TOTAL (MG/L AS P) (00665) .041 .076 .098 .126 .085 .125 .213 .009 .191 .019 .020 | PHORUS DIS- SOLVED (MG/L AS P) (00666) .031 .062 .092 .114 .094 .100 .059 .018 .014 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.027
.051
.077
.100
.088
.092
.050
.007
.008 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | 177 ### 09069000 EAGLE RIVER AT GYPSUM, CO--Continued | | ANTI | - | III DAIA, | WAIER | | ERYL- | JJ 10 . | | IUM CHR | | RO- | |------------------|-------------------------------------|-------------------------------------|--|---|--|---------------------------------------|-----------------------------------|--|---|--|-----------------------------------| | DATE | MONY
DIS
SOLV
(UG/
AS S | ARSE DI SOL L (UGSB) AS | S- ARSE
VED TOT
/L (UG
AS) AS | NIC DIS
AL SOLV
L/L (UC
AS) AS | IUM, L:
S- D:
VED SC
G/L (U
BA) AS | IUM,
IS-
DLVED
JG/L
S BE) | DIS-
SOLVI
(UG/I
AS CI | JM WAT
- UNFL
ED TOT
L (UG
D) AS | ER MIU
TRD DIS
AL SOL | M, TO
- RE
VED ER
/L (U
CR) AS | TAL
COV-
ABLE
G/L
CR) | | NOV | | | | | | | | | | | | | 02
DEC | | | | | | | | - | | | | | 02
20 | <1
 | | | | 5 | <2
 | <.1
 | <.
- | | | 1 | | FEB
24
MAR | | - |
 - | | | | - | | - | | | 13
APR | <1 | <2. | 0 <3 | 5! | 5 • | <2 | <.1 | <. | 1 <. | 8 < | 1 | | 10
MAY | | - | | | | | | - | | | | | 25
JUN | <1 | | | | | <2 | <.1 | | 6 <. | | 3 | | 12
29 | | | | | | | | - | | | | | AUG
14
SEP | <1 | <2. | 0 <3 | 6: | 3 • | <2 | <.1 | <. | 1 E. | 4 E | 1 | | 19 | | - | | | | | | - | | - | | | DA ^r | | RECOV-
ERABLE
(UG/L
AS CU) | (UG/L
AS CU) | SOLVED
(UG/L
AS FE) | ERABLI
(UG/L
AS PB | E SO:
(U)
) AS | LVED
G/L
PB) | SOLVED
(UG/L
AS MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | ERABLE
(UG/L
AS HG) | | | NOV
02 | | | | 40 | | | | 22 | | | | | DEC
02 | | E1 | <1 | 20 | <1 | < | 1 | 21 | <.2 | <.3 | | | 20
FEB | | | | 20 | | | | 17 | | | | | 24
MAR | | | | E10 | | | | 34 | | | | | 13
APR | | E1 | E1 | <10
40 | <1 | < | 1 | 38
77 | <.2 | <.3 | | | 10
MAY
25 | | 8 | E1 | 50 | 14 | < | | 15 | <.2 | <.3 | | | JUN
12 | | | | 30 | | | | 12 | | | | | 29
AUG | | | | 40 | | | | 16 | | | | | 14
SEP | | 1 | 1 | 10 | E1 | < | | 20 | E.1 | <.3 | | | 19 | | | | 20 | | | | 16 | | | | | DA ⁽ | | (UG/L
AS NI) | RECOV-
ERABLE
(UG/L | | NIUM,
TOTAL
(UG/L
AS SE | SO:
(U)
AS | VER,
IS-
LVED
G/L
AG) | ERABLE
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN) | | | | NOV 02 | | | | | | | | | | | | | DEC 02 | | <1 | <2 | <2.4 | <3 | < | . 2 | <1 | E19 | 40 | | | 20
FEB | | | | | | | | | | | | | 24
MAR | | | |
m1 0 | | | | | | | | | 13
APR | | <1 | E2
 | E1.2 | <3 | | . 2 | <1
 | <20 | 42 | | | 10
MAY
25 | | <1 | 4 | <2.4 | <3 | | .2 | <1 | E14 | 152 | | | JUN
12 | | | | | | | | | | | | | 29
AUG | | | | | | | | | | | | | 14
SEP | | <1 | <2 | <2.4 | <3 | | . 2 | <1 | <20 | E17 | | | 19 | | | | | | | | | | | | 09069000 EAGLE RIVER AT GYPSUM, CO--Continued SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | . , , | |------|---|---|---| | | | | | | 0810 | 201 | 4 | 2.1 | | 1115 | 172 | 1 | 2.0 | | 1115 | 1/3 | 4 | 2.0 | | 0752 | 3370 | 244 | 2220 | | | | | | | 1030 | 1710 | 19 | 89 | | 1020 | F04 | _ | 6.9 | | 1230 | 524 | 5 | 0.9 | | 0905 | 146 | 6 | 2.5 | | | 0810
1115
0752
1030
1230 | CHARGE, INST. CUBIC FEET PER SECOND (00061) 0810 201 1115 173 0752 3370 1030 1710 1230 524 | TIME CHARGE, INST. SEDI-CUBIC MENT, FEET SUS-PENDED (MG/L) (80154) 0810 201 4 1115 173 4 0752 3370 244 1030 1710 19 1230 524 5 | #### 09070000 EAGLE RIVER BELOW GYPSUM, CO LOCATION.--Lat 39°38'58", long 106°57'11", in $SW^1/_4NW^1/_4$ sec.5, T.5 S., R.85 W., Eagle County, Hydrologic Unit 14010003, on right bank 20 ft downstream from bridge on U.S. Highways 6 and 24 at Gypsum and 150 ft downstream from Gypsum Creek. DRAINAGE AREA.--944 mi². PERIOD OF RECORD.--October 1946 to current year. REVISED RECORDS.--WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,275.11 ft, above sea level. REMARKS.--Records good except for estimated daily discharges, which are fair. Transmountain diversions upstream from station, see elsewhere in this report. Transbasin diversions upstream from station from Robinson Reservoir (capacity, 2,520 acre-ft) to Tenmile Creek for mining development. Many small diversions for irrigation of hay meadows upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data for Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND, N | WATER YE
MEAN VA | | R 1999 TC | SEPTEMBE | ER 2000 | | | |--|---|--|--|---|------------------------------|--|---|--|-----------------------------------|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 271 | 246 | 198 | 181 | 207 | 167 | 195 | 870 | 3510 | 743 | 229 | 304 | | 2 | 262 | 241 | 207 | 195 | 204 | 169 | 191 | 928 | 3100 | 718 | 219 | 280 | | 3 | 252 | 227 | 208 | 177 | 207 | 172 | 189 | 1210 | 2860 | 675 | 213 | 254 | | 4 | 243 | 227 | 189 | e170 | 207 | 175 | 184 | 1470 | 2690 | 629 | 213 | 237 | | 5 | 229 | 232 | 156 | e150 | 201 | 179 | 199 | 1840 | 2570 | 569 | 215 | 220 | | 6 | 225 | 232 | 165 | e120 | 203 | 184 | 239 | 2130 | 2340 | 526 | 212 | 229 | | 7 | 241 | 230 | 180 | e130 | 196 | 179 | 260 | 2140 | 2360 | 506 | 206 | 254 | | 8 | 303 | 227 | e150 | 174 | 189 | 188 | 261 | 2120 | 2300 | 493 | 192 | 276 | | 9 | 286 | 223 | e145 | 202 | 191 | 183 | 281 | 1730 | 2240 | 567 | 192 | 297 | | 10 | 278 | 214 | 160 | 194 | 194 | 180 | 327 | 1500 | 1950 | 582 | 181 | 291 | | 11 | 269 | 209 | e145 | e180 | 205 | 169 | 336 | 1910 | 1730 | 527 | 186 | 261 | | 12 | 252 | 209 | e170 | e170 | 197 | 179 | 323 | 2050 | 1620 | 483 | 205 | 242 | | 13 | 245 | 214 | 164 | e160 | 193 | 174 | 343 | 1570 | 1480 | 462 | 207 | 216 | | 14 | 239 | 205 | 174 | e150 | 194 | 172 | 385 | 1350 | 1280 | 438 | 204 | 205 | | 15 | 228 | 198 | 133 | 192 | 193 | 180 | 430 | 1260 | 1400 | 442 | 187 | 191 | | 16 | 230 | 198 | 184 | 205 | 186 | 180 | 375 | 1280 | 1540 | 530 | 191 | 182 | | 17 | 231 | 200 | 205 | 210 | 185 | 172 | 355 | 1620 | 1360 | 614 | 223 | 179 | | 18 | 226 | 210 | 175 | 222 | 186 | 170 | 414 | 1390 | 1200 | 702 | 265 | 180 | | 19 | 245 | 197 | 183 | 234 | 178 | 163 | 447 | 1210 | 1320 | 527 | 309 | 183 | | 20 | 243 | 180 | 184 | 219 | 166 | 175 | 391 | 1170 | 1920 | 454 | 330 | 177 | | 21 | 259 | 206 | 194 | 214 | 181 | 175 | 390 | 1160 | 1480 | 402 | 303 | 185 | | 22 | 250 | 211 | 177 | 213 | 181 | 171 | 444 | 1280 | 1200 | 361 | 290 | 300 | | 23 | 247 | 193 | 182 | 208 | 175 | 170 | 487 | 1940 | 1120 | 334 | 284 | 340 | | 24 | 242 | 164 | 181 | 197 | 178 | 175 | 495 | 3090 | 1020 | 309 | 256 | 310 | | 25 | 236 | 150 | 181 | 214 | 176 | 176 | 428 | 3410 | 997 | 301 | 275 | 286 | | 26
27
28
29
30
31 | 237
236
241
258
259
241 | 207
221
211
204
205 | 189
196
184
179
185
179 | 222
218
198
182
163
165 | 158
168
169
171
 | 182
185
194
214
205
205 | 441
514
721
890
967 | 2990
2450
2340
3310
4010
3850 | 1020
1180
971
872
805 | 291
281
268
254
248
241 | 299
295
284
311
318
323 | 275
254
236
220
228 | | TOTAL | 7704 | 6291 | 5502 | 5829 | 5439 | 5562 | 11902 | 60578 | 51435 | 14477 | 7617 | 7292 | | MEAN | 249 | 210 | 177 | 188 | 188 | 179 | 397 | 1954 | 1714 | 467 | 246 | 243 | | MAX | 303 | 246 | 208 | 234 | 207 | 214 | 967 | 4010 | 3510 | 743 | 330 | 340 | | MIN | 225 | 150 | 133 | 120 | 158 | 163 | 184 | 870 | 805 | 241 | 181 | 177 | | AC-FT | 15280 | 12480 | 10910 | 11560 | 10790 | 11030 | 23610 | 120200 | 102000 | 28720 | 15110 | 14460 | | STATIST | FICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1947 | - 2000, | , BY WATER | YEAR (WY | () | | | | | MEAN | 262 | 242 | 199 | 182 | 175 | 190 | 352 | 1347 | 2307 | 1019 | 388 | 270 | | MAX | 526 | 382 | 277 | 243 | 252 | 297 | 862 | 2722 | 4134 | 2989 | 1096 | 625 | | (WY) | 1962 | 1985 | 1985 | 1984 | 1986 | 1986 | 1962 | 1984 | 1984 | 1957 | 1984 | 1984 | | MIN | 129 | 169 | 150 | 139 | 125 | 138 | 183 | 528 | 742 | 251 | 150 | 141 | | (WY) | 1957 | 1990 | 1992 | 1990 | 1992 | 1965 | 1983 | 1977 | 1954 | 1977 | 1977 | 1956 | | SUMMAR | Y STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | F | FOR 2000 W | ATER YEAR | 2 | WATER YE | ARS 1947 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN F ANNUAL M ANNUAL M F DAILY ME DAILY ME SEVEN-DA FANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 204922
561
2640
133
156
406500
1730
262
181 | Jun 24
Dec 15
Dec 9 | | 189628
518
4010
e120
156
4500
7.9
376100
1420
229
174 | May 30
Jan 6
Dec 9
May 30
5 May 30 | | 579
1082
264
6580
78
99
7020
9.46
419100
1580
244
160 | May 2
Dec 1
Aug 2
May 2
May 2 | 1984
1977
25 1984
10 1994
29 1990
25 1984
25 1984 | e Estimated. #### 09070500 COLORADO RIVER NEAR DOTSERO, CO LOCATION.--Lat $39^\circ38^\circ38^\circ$, long $107^\circ04^\circ38^\circ$, in $NW^1/_4$ $SE^1/_4$ sec.6, T.5 S., R.86 W., Eagle County, Hydrologic Unit- 14010001, on left bank about 500 ft south of Interstate Highway 70, 1.5 mi west of Dotsero, and 1.5 mi downstream from Eagle River. DRAINAGE AREA. -- 4,394 mi². PERIOD OF RECORD.--October 1940 to current year. Water-quality data available, May 1962 to September 1984, and October 1995 to GAGE.--Water-stage recorder with satellite telemetry and crest-stage gages. Elevation of gage is 6,130 ft above sea level, from topographical map. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transmountain
diversions, storage reservoirs, power development, diversions for irrigation of about 68,000 acres upstream from station, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data for Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER Y
MEAN V | EAR OCTOBI
ALUES | ER 1999 TO |) SEPTEMB | ER 2000 | | | |--|---|--|--|--|------------------------------|--|--|---|--------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1960 | 1900 | 987 | e820 | 903 | 965 | 1100 | 2840 | 7930 | 2570 | 1470 | 1610 | | 2 | 1940 | 1790 | 1000 | e880 | 950 | 970 | 1050 | 2940 | 7580 | 2410 | 1490 | 1570 | | 3 | 1870 | 1630 | 994 | e810 | 974 | 987 | 1030 | 3430 | 7070 | 2280 | 1600 | 1590 | | 4 | 1850 | 1480 | 962 | e800 | 960 | 977 | 1030 | 3940 | 6370 | 2360 | 1720 | 1750 | | 5 | 1640 | 1380 | 851 | e720 | 950 | 985 | 1130 | 4570 | 5500 | 2180 | 1710 | 1730 | | 6 | 1550 | 1260 | 906 | e570 | 934 | 1010 | 1230 | 5200 | 5030 | 1990 | 1690 | 1720 | | 7 | 1790 | 1110 | 1010 | e610 | 947 | 1010 | 1410 | 5460 | 4940 | 1850 | 1680 | 1600 | | 8 | 2060 | 1120 | e890 | e800 | 926 | 1020 | 1500 | 5600 | 4620 | 1800 | 1660 | 1570 | | 9 | 2040 | 1120 | e860 | e910 | 916 | 1010 | 1480 | 5140 | 4420 | 1890 | 1660 | 1550 | | 10 | 2020 | 1110 | e890 | e890 | 952 | 997 | 1610 | 4620 | 4000 | 1960 | 1640 | 1510 | | 11 | 2000 | 1100 | | e870 | 955 | 968 | 1660 | 4950 | 3590 | 1880 | 1640 | 1450 | | 12 | 1980 | 1080 | | e810 | 967 | 994 | 1490 | 5280 | 3400 | 1750 | 1670 | 1430 | | 13 | 1780 | 1100 | | e760 | 993 | 990 | 1550 | 4790 | 3180 | 1700 | 1680 | 1410 | | 14 | 1720 | 1070 | | e720 | 986 | 971 | 1610 | 4350 | 2920 | 1590 | 1680 | 1400 | | 15 | 1770 | 1070 | | e860 | 987 | 988 | 1730 | 4020 | 3390 | 1580 | 1650 | 1410 | | 16 | 1790 | 1070 | e840 | e930 | 1000 | 1010 | 1660 | 3770 | 3510 | 1640 | 1590 | 1450 | | 17 | 1840 | 1060 | e930 | e960 | 1000 | 981 | 1540 | 3740 | 3430 | 1750 | 1690 | 1560 | | 18 | 1830 | 1070 | e800 | e1000 | 1020 | 970 | 1610 | 3380 | 3290 | 1910 | 1790 | 1560 | | 19 | 1850 | 1070 | e840 | 1060 | 981 | 955 | 1680 | 3130 | 3340 | 1690 | 1870 | 1580 | | 20 | 1860 | 1010 | e840 | 1050 | 953 | 980 | 1600 | 2990 | 4160 | 1490 | 1900 | 1580 | | 21 | 1890 | 1010 | e880 | 1020 | 978 | 974 | 1540 | 2890 | 4670 | 1380 | 1720 | 1590 | | 22 | 1870 | 1030 | e820 | 984 | 991 | 954 | 1610 | 3030 | 3950 | 1330 | 1640 | 1790 | | 23 | 1860 | 1020 | e840 | 961 | 996 | 970 | 1770 | 3860 | 3630 | 1340 | 1550 | 1850 | | 24 | 1860 | 888 | e840 | 909 | 988 | 991 | 1890 | 5620 | 3360 | 1410 | 1510 | 1680 | | 25 | 1860 | 847 | e840 | 973 | 974 | 998 | 1880 | 6560 | 3130 | 1440 | 1460 | 1620 | | 26
27
28
29
30
31 | 1870
1950
1900
1930
2000
1960 | 967
1100
1030
1020
1010 | e850
e890
e880
e830
e840
e820 | 962
974
880
e860
e860
866 | 949
963
971
970
 | 1020
1050
1080
1140
1130
1130 | 1860
2010
2500
2810
2920 | 6620
6210
6190
7120
8110
7990 | 3110
3350
3220
3090
2820 | 1470
1510
1470
1440
1410
1490 | 1620
1740
1730
1780
1880
1830 | 1520
1210
1170
1150
1170 | | TOTAL | 58090 | 34522 | 27210 | 27079 | 28034 | 31175 | 49490 | 148340 | 126000 | 53960 | 51940 | 45780 | | MEAN | 1874 | 1151 | 878 | 874 | 967 | 1006 | 1650 | 4785 | 4200 | 1741 | 1675 | 1526 | | MAX | 2060 | 1900 | 1010 | 1060 | 1020 | 1140 | 2920 | 8110 | 7930 | 2570 | 1900 | 1850 | | MIN | 1550 | 847 | 760 | 570 | 903 | 954 | 1030 | 2840 | 2820 | 1330 | 1460 | 1150 | | AC-FT | 115200 | 68470 | 53970 | 53710 | 55610 | 61840 | 98160 | 294200 | 249900 | 107000 | 103000 | 90800 | | STATIS | TICS OF M | ONTHLY MEA | AN DATA F | OR WATER | EARS 1941 | - 2000 |), BY WATER | R YEAR (WY | ") | | | | | MEAN | 1215 | 1091 | 955 | 912 | 924 | 1050 | 1876 | 4860 | 6429 | 3170 | 1729 | 1306 | | MAX | 2038 | 1664 | 1503 | 1473 | 1603 | 1961 | 5601 | 10770 | 13440 | 9354 | 4055 | 2616 | | (WY) | 1963 | 1963 | 1985 | 1985 | 1962 | 1962 | 1962 | 1984 | 1984 | 1983 | 1984 | 1984 | | MIN | 759 | 677 | 521 | 504 | 529 | 610 | 1039 | 1436 | 1373 | 1021 | 1050 | 737 | | (WY) | 1943 | 1978 | 1943 | 1941 | 1943 | 1964 | 1964 | 1977 | 1954 | 1963 | 1958 | 1942 | | SUMMAR | Y STATIST | ICS | FOR | 1999 CALEN | IDAR YEAR | | FOR 2000 V | WATER YEAR | 2 | WATER | YEARS 1941 | - 2000 | | LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER | MEAN T ANNUAL ANNUAL M T DAILY ME DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 778450
2133
7920
725
744
1544000
5750
1520
865 | Jun 9
Mar 14
Mar 12 | | 8110
e570
741
8790
8.1
1352000
3660
1500
880 | May 30
Jan 6
Jan 2
May 30
07 May 30 |) | 2129
4173
1117
20800
4350
417
22200
14.
1543000
4990
1260
760 | Jan
Jan
May | 1984
1977
25 1984
5 1944
13 1944
25 1984
25 1984 | a Also occurred Jan 1, 1995. #### 181 COLORADO RIVER MAIN STEM #### 09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO #### WATER-OUALITY RECORDS LOCATION.--Lat 39°33'32", long $107^{\circ}17'25$ ", in $NW^{1}/_{4}SE^{1}/_{4}$ sec.2, T.6 S., R.89 W., Garfield County, Hydrologic Unit 14010001, 0.25 mi upstream from No Name Creek and 2.0 mi above Glenwood Springs. DRAINAGE AREA. -- 4,556 mi². PERIOD OF RECORD. -- December 1985 to current year. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: December 1985 to current year. WATER TEMPERATURE: December 1985 to current year INSTRUMENTATION. -- Water-quality monitor since December 1985. REMARKS.--Discharge obtained by subtracting the flow in Roaring Fork River at Glenwood Springs (station 09085000) from the flow in the Colorado River below Glenwood Springs (station 09085100). Water-quality data collection was moved downstream to the site downstream from No Name Creek previous site 09071100 on Dec. 12, 1985. Water-quality data collection was relocated upstream 0.25 mi above No Name Creek on Oct. 19, 1995. Water-quality data collected at this site are considered equivalent to data collected at old site. Previous to Oct. 1995, daily maximum and minimum specific-conductance data available in district office. Daily specific-conductance records are good except Nov. 23, Dec. 4-6, 8, and April 1-2 which are fair. Daily water temperature records are good. Interruptions in record are due to equipment malfunctions or sensors affected by slush ice. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,740 microsiemens, Aug. 21, 1990; minimum, 181 microsiemens, June 21, 1996. WATER TEMPERATURE: Maximum, 22.5°C, July 26, 1987; minimum, 0.0°C on many days during the winter months. EXTREMES FOR CURRENT YEAR.- SPECIFIC CONDUCTANCE: Maximum, 1,450 microsiemens/cm, Aug. 11; minimum, 196 microsiemens/cm, May 8. WATER TEMPERATURE: Maximum, 21.3° C, July 15; minimum, 0.0° C, on many days. | DA | TE T | CHA
II
CU
I
IME I
SI | NST.
UBIC
FEET
PER
ECOND (| ANCE
US/CM) | (STAND-
ARD
UNITS) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |---|--|--|--|--|---|--|--|---|--|---|---| | OCT | | | | | | | | | | | | | 28
DEC | . 0: | 940 23 | 110 | 534 | 8.5 | 6.3 | 10.2 | 160 | 46.1 | 10.1 | 39.8 | | 02
JAN | . 1 | 145 13 | 150 | 730 | 8.3 | 3.1 | 11.0 | 190 | 58.5 | 11.2 | 66.9 | | 28 | . 1 | 030 | 974 | 703 | | .6 | 11.9 | 170 | 50.1 | 10.6 | 68.1 | | MAR
16
APR | . 0 | 815 10 | 060 | 673 | 8.2 | 4.7 | 10.4 | 180 | 52.4 | 10.9 | 64.9 | | 11 | . 1 | 600 18 | 850 | 526 | 8.3 | 10.2 | 9.2 | 160 | 45.6 | 10.5 | 44.8 | | MAY
23
JUN | . 0 |
940 3' | 730 | 332 | 8.1 | 12.4 | 8.7 | 110 | 32.6 | 7.42 | 22.9 | | 12 | . 0 | 815 3: | 210 | 338 | 8.2 | 13.6 | 8.5 | 100 | 30.1 | 6.54 | 25.2 | | JUL
20 | . 1 | 015 19 | 910 | 566 | 8.4 | 19.4 | 8.2 | 150 | 46.3 | 9.23 | 47.4 | | AUG
30 | . 1 | 120 20 | 040 | 501 | 8.1 | 18.4 | 7.3 | 140 | 41.4 | 8.10 | 36.8 | | | | | | | | | | | | | | | DA | SOI
T:
TE RA' | AD- S
RP- I
ION SC
TIO (I | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) (| FET
LAB
CACO3
MG/L) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT | SOI
T
TE RA | AD- 8
RP- 1
ION SC
TIO (1
A:
931) (00 | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) ((| INITY
AT.DIS S
FET
LAB
CACO3
MG/L) 2 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
28
DEC | SOI
TE RA'
(000 | AD- S
RP- I
ION SO
TIO (I
AS
931) (00 | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) (
0935) (| INITY (AT.DIS S FET LAB CACO3 MG/L) 29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
28 | SOI
TE RA'
(000 | AD- S
RP- I
ION SO
TIO (I
AS
931) (00 | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) ((| INITY
AT.DIS S
FET
LAB
CACO3
MG/L) 2 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
28
DEC
02 | SOI
T.TE RA'
(000) | AD- S RP- 1 ION S TIO (I A 931) (00 | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) (
0935) (| INITY (AT.DIS S FET LAB CACO3 MG/L) 29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT 28 DEC 02 JAN 28 MAR 16 | SOID TI TE RA' (000) | AD- : RP- I I I I I I I I I I I I I I I I I I I | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) (1
0935) (| INITY AT.DIS S FET LAB CACO3 MG/L) 29801) 91 108 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
78.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
55.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.7 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
1720 | | OCT 28 DEC 02 JAN 28 MAR 16 APR 11 | SOID T TABLE RAY (000) . 1 . 2 . 2 | AD- : RP- I I I I I I I I I I I I I I I I I I I | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) (1
0935) (| INITY AT.DIS S FET LAB CACO3 MG/L) 29801) 91 108 101 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
78.7
90.0
81.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
55.8
108 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.7
8.5
9.6 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
295
412 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
1720
1280
1120 | | OCT 28 DEC 02 JAN 28 MAR 16 APR 11 MAY 23 | SOID TT. TTE RA' (000) . 1 . 2 . 2 . 2 | AD- 19 | OTAS- L
SIUM, W
DIS-
OLVED
MG/L
S K) (1
0935) (
2.2
2.3
2.4 | INITY AT.DIS S FET LAB CACO3 MG/L) 29801) 91 108 101 103 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
78.7
90.0
81.5 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
55.8
108
101 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.7
8.5
9.6
8.0 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
295
412
383
382 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.40
.56
.52 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
1720
1280
1120
1090 | | OCT 28 DEC 02 JAN 28 MAR 16 APR 11 MAY 23 JUN 12 | SOUTH RAY (000) . 1 . 2 . 2 . 2 . 2 | AD- 8 | OTAS- L
STUM, W
DIS-
DIVS-
DIVED
MG/L
(0935) (
2.2
2.3
2.4
2.6
3.0 | INITY AT.DIS S FET LAB CACO3 MG/L) 29801) 91 108 101 103 100 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
78.7
90.0
81.5
82.3
74.8 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
55.8
108
101
101 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.3
.3
.3 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.7
8.5
9.6
8.0
9.0 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
295
412
383
382
310 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.40
.56
.52
.52 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
1720
1280
1120
1090 | | OCT 28 DEC 02 JAN 28 MAR 16 APR 11 MAY 23 JUN 12 JUL 20 | SOID T T TABLE (000) . 1 . 2 . 2 . 2 . 2 . 1 | AD- S RP- 11 10N S S T 10 (1 AS 931) (00 | OTAS- L
SIUM, W
DIS-
OLIVED
MG/L
S K) (
0935) (
2.2
2.3
2.4
2.6
3.0 | INITY AT.DIS SFET LAB CACO3 MG/L) 29801) 91 108 101 103 100 84 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
78.7
90.0
81.5
82.3
74.8
38.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
55.8
108
101
101
62.4
30.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.3
.3
.3
.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.7
8.5
9.6
8.0
9.0 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
295
412
383
382
310 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.40
.56
.52
.52 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
1720
1280
1120
1090
1580
2030 | | OCT 28 DEC 02 JAN 28 MAR 16 APR 11 MAY 23 JUN 12 JUL | SOUTH RAY (000) . 1 . 2 . 2 . 2 . 2 . 1 . 2 | AD- 18 | OTAS- L SIUM, W DIS- DIS- DIVED MG/L S K) ((09935) (2.2 2.3 2.4 2.6 3.0 1.3 | INITY AT.DIS S FET LAB CACO3 MG/L) 91 108 101 103 100 84 78 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
78.7
90.0
81.5
82.3
74.8
38.9
35.0 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
55.8
108
101
101
62.4
30.8
33.5 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950) .3 .3 .3 .2 .2 .1 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
7.7
8.5
9.6
8.0
9.0
8.2 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 295 412 383 382 310 192 187 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.40
.56
.52
.52
.42
.26 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
1720
1280
1120
1090
1580
2030
1620 | 09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | PECIFIC | CONDUCTA | IVCE (PIECE | (ODIENEIND) | UM AI ZJ | DEG. C/, | WAIER IEE | ak octob | ER IJJJ | IO SEPIEME | EK ZUUU | | |---|--|---|---|--|--|---|--|--
---|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 452 | 443 | 449 | 472 | 461 | 468 | 716 | 691 | 702 | | | | | 2 | 454 | 446 | 450 | 493 | 472 | 485 | 717 | 691 | 705 | 764 | 725 | 740 | | 3 | 462 | 450 | 458 | 516 | 493 | 510 | 712 | 701 | 706 | | | | | 4 | 454 | 446 | 450 | 550 | 516 | 530 | 709 | 699 | 703 | | | | | 5 | 505 | 446 | 459 | 578 | 550 | 568 | 754 | 713 | 727 | | | | | 6 | 554 | 505 | 541 | 598 | 571 | 584 | 783 | | | | | | | 7 | 518 | 471 | 482 | 662 | 598 | 644 | 826 | 754 | 783 | | | | | 8
9 | 471
448 | 425
440 | 441
444 | 665
653 | 636
635 | 655
645 | 807 | 711
 | 747 | | | | | 10 | 451 | 441 | 447 | 654 | 643 | 648 | | | | | | | | 11 | 449 | 444 | 447 | 676 | 643 | 663 | 804 | 696 | 735 | 693 | 667 | 675 | | 12 | 451 | 444 | 449 | 675 | 643 | 663 | | | | 673 | 656 | 664 | | 13 | 492 | 444 | 468 | 670 | 644 | 660 | | | | | | | | 14
15 | 536
538 | 492
527 | 516
533 | 687
680 | 626
668 | 663
674 | | | | 696
705 | 665
661 | 685
687 | | | | | | | | | | | | | | | | 16 | 537 | 527 | 534 | 677 | 666 | 672 | | | | 702 | 656 | 682 | | 17
18 | 532
527 | 525
518 | 528
524 | 674
702 | 663
668 | 670
687 | | | | 691
666 | 655
654 | 668
660 | | 19 | 532 | 519 | 529 | 682 | 655 | 666 | | | | 664 | 654 | 659 | | 20 | 529 | 519 | 525 | 682 | 663 | 672 | | | | 673 | 646 | 655 | | 21 | 522 | 514 | 519 | 714 | 676 | 701 | | | | 673 | 627 | 651 | | 22 | 526 | 514 | 521 | 714 | 688 | 701 | | | | 696 | 661 | 671 | | 23 | 529 | 517 | 525 | 702 | 672 | 685 | | | | 701 | 654 | 683 | | 24 | 529 | 520 | 525 | | | | | | | 745 | 688 | 703 | | 25 | 527 | 519 | 524 | | | | | | | 745 | 642 | 691 | | 26 | 530 | 519 | 525 | 834 | 762 | 793 | | | | 699 | 685 | 693 | | 27 | 521 | 501 | 517 | 779 | 683 | 711 | | | | 698 | 674 | 683 | | 28 | 512 | 498 | 506 | 693 | 660 | 671 | | | | 741 | 668 | 693 | | 29 | 507 | 453 | 484 | 703 | 680 | 692 | | | | | | | | 30
31 | 472
463 | 454
458 | 466
460 | 700 | 682
 | 690
 | MONTH | 554 | 425 | 492 | 834 | 461 | 645 | 826 | 691 | 726 | 764 | 627 | 680 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | 766 | FEBRUARY | 734 | 692 | MARCH
682 | 687 | | APRIL
637 | | 356 | MAY
334 | 339 | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4 | 766
738
711
704 | 711
697
653
632 | 734
716
684
673 | 692
690
689
689 | MARCH
682
680
676
676 | 687
686
680
683 |
664
682 | APRIL
637

663 |
673
 | 356
349
337
309 | MAY
334
334
288
283 | 339
343
317
296 | | 1
2
3 | 766
738
711 | 711
697
653 | 734
716
684 | 692
690
689 | MARCH
682
680
676 | 687
686
680 |
664
682 | APRIL
637

663 |

673 | 356
349
337 | MAY
334
334
288 | 339
343
317 | | 1
2
3
4
5 | 766
738
711
704
699 | 711
697
653
632
629 | 734
716
684
673
669 | 692
690
689
689
691 | MARCH
682
680
676
676
681 | 687
686
680
683
686 |
664
682 | APRIL
637

663 |
673
 | 356
349
337
309
283 | MAY
334
334
288
283
238 | 339
343
317
296
266 | | 1
2
3
4 | 766
738
711
704
699
706
709 | 711
697
653
632 | 734
716
684
673 | 692
690
689
689 | MARCH
682
680
676
676 | 687
686
680
683 |
664
682
 | APRIL
637

663
 |
673
 | 356
349
337
309 | MAY
334
334
288
283 | 339
343
317
296 | | 1
2
3
4
5 | 766
738
711
704
699
706
709
705 | 711
697
653
632
629
636
634
633 | 734
716
684
673
669
675
675
669 | 692
690
689
689
691
690
689 | MARCH 682 680 676 676 681 678 668 669 | 687
686
680
683
686
684
679
673 | 664
682
 | APRIL 637 663 | 673

 | 356
349
337
309
283
243
232
213 | MAY 334 334 288 283 238 217 202 196 | 339
343
317
296
266
233
216
200 | | 1
2
3
4
5
6
7
8
9 | 766
738
711
704
699
706
709
705
724 | 711
697
653
632
629
636
634
633
628 | 734
716
684
673
669
675
675
669
676 | 692
690
689
689
691
690
689
680
681 | MARCH 682 680 676 676 681 678 668 669 671 | 687
686
680
683
686
684
679
673
677 |
664
682

 | 637

663

 | 673

 | 356
349
337
309
283
243
232
213
260 | MAY
334
334
288
283
238
217
202
196
200 | 339
343
317
296
266
233
216
200
243 | | 1
2
3
4
5 | 766
738
711
704
699
706
709
705 | 711
697
653
632
629
636
634
633 | 734
716
684
673
669
675
675
669 | 692
690
689
689
691
690
689 | MARCH 682 680 676 676 681 678 668 669 | 687
686
680
683
686
684
679
673
677 | 664
682
 | APRIL 637 663 | 673

 | 356
349
337
309
283
243
232
213 | MAY 334 334 288 283 238 217 202 196 | 339
343
317
296
266
233
216
200 | | 1
2
3
4
5
6
7
8
9
10 | 766
738
711
704
699
706
709
705
724
728
691 | 711
697
653
632
629
636
634
633
628
630 | 734
716
684
673
669
675
675
669
676
677 | 692
690
689
689
691
690
689
681
679 | MARCH 682 680 676 676 681 678 668 669 671 669 | 687
686
680
683
686
684
679
673
677 |
664
682

 | APRIL 637 663 | 673

 | 356
349
337
309
283
243
232
213
260
281 | MAY 334 334 288 283 238 217 202 196 200 258 | 339
343
317
296
266
233
216
200
243
268 | | 1
2
3
4
5
6
7
8
9
10 | 766
738
711
704
699
706
709
705
724
728 | 711
697
653
632
629
636
634
633
628
630 | 734
716
684
673
669
675
675
669
676
677 | 692
690
689
689
691
690
689
680
681
679 | MARCH 682 680 676 676 681 678 668 669 671 669 673 676 | 687
686
680
683
686
684
679
673
677
673 |
664
682

 | APRIL 637 663 | 673 | 356
349
337
309
283
243
232
213
260
281 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 | 339
343
317
296
266
233
216
200
243
268
273
261 | | 1
2
3
4
5
6
7
8
9
10 | 766
738
711
704
699
706
709
705
724
728
691
677
672 | 711
697
653
632
629
636
634
633
628
630
668
663
652 | 734
716
684
673
669
675
669
676
677
680
670
660 | 692
690
689
689
691
690
689
680
681
679 | MARCH 682 680 676 676 681 678 668 669 671 669 | 687
686
680
683
686
679
673
677
673
679
688 |
664
682

 | APRIL 637 663 | 673 | 356
349
337
309
283
243
232
213
260
281
287
275
313 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 | 339
343
317
296
266
233
216
200
243
268
273
261
296 | | 1
2
3
4
5
6
7
8
9
10 | 766
738
711
704
699
706
709
705
724
728 | 711
697
653
632
629
636
634
633
628
630 | 734
716
684
673
669
675
675
669
676
677 | 692
690
689
689
691
690
689
680
681
679 | MARCH 682 680 676 676 681 678 668 669 671 669 673 676 | 687
686
680
683
686
684
679
673
677
673 |
664
682

 | APRIL 637 663 | 673 | 356
349
337
309
283
243
232
213
260
281 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 | 339
343
317
296
266
233
216
200
243
268
273
261 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660 | 711
697
653
632
629
636
634
633
628
630
668
663
652
652
651 | 734
716
684
673
669
675
669
676
677
680
670
660
659
657 | 692
690
689
689
691
690
689
680
681
679
686
696
691
691 | MARCH 682 680 676 676 681 678 668 669 671 669 673 676 674 682 683 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690 |
664
682

517 | APRIL 637 663 |
673

508 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660 | 711
697
653
632
629
636
634
633
628
630
668
663
652
652
651 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657 | 692
690
689
689
691
690
680
681
679
686
696
691
691
695 | MARCH 682 680 676 676 681 678 668 669 671 669 673 676 674 682 683 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690 |
664
682

517 | APRIL 637 663 489 485 |
673

508 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671 | 711
697
653
632
629
636
634
633
628
630
668
663
652
652
651 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657 | 692
690
689
689
691
690
689
680
681
679
686
696
691
695 | MARCH 682 680 676 676 681 678 668 669 673 676 682 683 678 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690 |
664
682

517
496
525 | APRIL 637 663 489 485 496 |
673

508
491
513 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
664 | 711
697
653
632
629
636
634
633
628
630
668
663
652
652
651
645
647
648 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657 | 692
690
689
689
691
690
680
681
679
686
696
691
691
695 | MARCH 682 680 676 676 681 678 6689 671 669 673 676 674 682 683 678 678 678 680 683 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690 |
664
682

517
496
525
540
518 | APRIL 637 663 489 485 496 518 498 |
673

508
491
513
531
505 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
365
350
365 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 350 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664 | 711
697
653
632
629
636
634
633
628
630
668
663
652
651
645
647
644 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657 | 692
690
689
689
691
690
689
680
681
679
686
696
691
695 | MARCH 682 680 676 676 681 678 668 669 671 669 673 676 674 682 683 678 678 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690 |
664
682

517
496
525
540 | APRIL 637 663 489 485 496 518 |
673

508
491
513
531 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
350 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
668
690 | 711
697
653
632
629
636
634
633
628
630
668
663
652
651
645
647
644
648
668 | 734
716
684
673
669
675
675
676
677
680
670
660
657
653
654
676 | 692
690
689
689
691
690
689
680
681
679
686
696
691
691
695 | MARCH 682 680 676 676 681 678 668 669 671 669 673 676 683 678 683 678 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690 |
664
682

517
496
525
540
518
505 | APRIL 637 663 489 485 496 518 498 484 |
673

508
491
513
531
505
491 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
365
376 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 350 365 | 339
343
317
296
266
233
216
200
243
268
273
261
296
335
355
361
346
335
357
372 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
21
22 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
668
690 | 711
697
653
632
629
636
634
633
628
630
668
663
652
651
645
647
644
648
668 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657
653
656
651
676 | 692
690
689
689
691
690
680
681
679
686
696
691
695
694
699
696
707
712 | MARCH 682 680 676 676 681 678 668 669 671 669 673 676 682 683 678 680 683 687 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690
684
686
693
699 | 664 682 517 496 525 540 518 505 | APRIL 637 663 489 485 496 518 498 484 505 503 |
673

508
491
513
505
491
511
511 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
350
365
376 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 330 350 365 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
377
372 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
668
690 | 711
697
653
632
629
636
634
633
628
630
668
663
652
651
645
647
644
648
668 | 734
716
684
673
669
675
675
676
677
680
670
660
657
653
654
676
676 | 692
690
689
689
691
690
689
680
681
679
686
696
691
695
694
699
696
707
712 | MARCH 682 680 676 681 678 668 669 671 669 673 676 683 678 6883 678 680 683 691 691 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690
684
686
693
699 | 664 682 517 496 525 540 518 505 | APRIL 637 663 489 485 496 518 498 484 505 503 476 |
673

508
491
513
531
505
491
511
516
488 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
350
365
376 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 350 365 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
368
330 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
668
690
703
704
701
689 | 711
697
653
632
629
636
634
633
628
630
668
6652
651
645
647
648
668 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657
653
656
651
654
676 | 692
690
689
689
691
690
681
679
686
696
691
691
695
694
699
696
707
712
705
706
699
702 | MARCH 682 680 676 676 681 678 6689 671 669 673 676 674 682 683 678 678 678 678 679 683 687 | 687
686
680
683
686
684
677
673
677
673
689
681
687
690
684
684
684
686
693
699 | 664 682 517 496 525 540 518 505 518 505 518 525 503 476 | APRIL 637 663 489 485 496 518 498 484 505 503 476 467 |

673

508
491
513
531
505
491
516
488
472 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
376 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 365 371 356 294 236 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
37
372
382
368
330
264 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
668
690
703
704
701
689
690 | 711
697
653
632
629
636
634
633
628
630
668
663
652
651
645
647
644
648
668 | 734
716
684
673
669
675
675
676
677
680
670
660
657
653
654
676
681
677
682 | 692
690
689
689
691
690
689
680
681
679
686
696
691
695
694
699
696
707
712
705
706
699
702
693 | MARCH 682 680 676 681 678 668 669 671 669 673 676 683 678 6883 678 680 683 691 691 | 687
686
680
683
686
684
679
673
677
673
679
688
681
687
690
684
686
693
699
698
694
694
686 | 664 682 517 496 525 540 518 505 518 525 503 476 479 | APRIL 637 663 489 485 496 518 498 484 505 503 476 467 |
673

508
491
513
531
505
491
511
516
488
472
475 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
350
365
376
388
375
356
295
381 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 350 365 371 356 294 236 232 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
388
330
264
249 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
26
27
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
668
690
703
704
701
689
690 | 711 697 653 632 629 636 634 633 628 630 668 6652 651 645 647 644 648 668 681 671 672 668 677 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657
653
655
651
654
676
689
687
682
687 | 692
690
689
689
691
690
681
679
686
696
691
691
695
694
699
696
707
712
705
706
699
702
693 | MARCH 682 680 676 681 678 668 669 671 669 673 676 674 682 683 678 678 680 683 687 683 691 691 684 679 | 687
686
680
683
686
684
677
673
677
673
689
681
687
690
684
684
686
693
699
698
694
694
686 | 664 682 517 496 525 540 518 505 518 505 518 525 503 476 479 | APRIL 637 663 489 485 496 518 498 484 505 503 476 467 467 |
673

508
491
513
531
505
491
511
516
488
472
475 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
376
388
375
350
365
376 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 365 371 356 294 236 232 238 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
368
330
264
249 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
671
668
690
703
704
701
689
690 | 711 697 653 632 629 636 634 633 628 630 668 663 652 652 651 645 647 644 648 668 681 671 672 668 677 | 734
716
684
673
669
675
675
676
677
680
670
659
657
653
656
651
654
676
681
677
682 | 692
690
689
689
691
690
680
681
679
686
691
695
694
699
696
707
712
705
706
699
702
693 | MARCH 682 680 676 681 678 668 669 671 669 673 676 682 683 678 680 683 687 681 680 681 681 681 681 681 681 681 681 | 687
686
680
683
686
684
677
673
677
673
679
688
681
687
690
684
686
693
699
698
698
694
686 | 664 682 517 496 525 540 518 505 518 525 503 476 479 494 | APRIL 637 663 489 485 496 5188 484 505 503 476 467 467 474 458 | 508 491 513 531 5491 511 516 488 472 475 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
376
388
375
356
295
381 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 350 365 371 356 294 236 232 238 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
368
330
264
249 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
668
690
703
704
701
689
690 | 711 697 653 632 629 636 634 633 628 630 668 663 652 651 645 647 644 648 668 681 671 672 668 677 682 686 681 | 734
716
684
673
669
675
675
676
677
680
670
660
659
657
651
654
676
681
677
682 | 692
690
689
689
691
690
689
681
679
686
691
691
695
694
699
696
707
712
705
706
699
702
693 | MARCH 682 680 676 681 678 668 669 671 669 673 676 682 683 678 680 683 678 680 681 691 684 679 668 668 | 687
686
680
683
686
684
677
673
677
673
679
688
681
687
690
684
686
693
699
698
694
694
686 | 664 682 517 496 525 540 518 505 518 505 518 525 503 476 479 494 490 458 | APRIL 637 663 489 485 496 518 498 484 505 503 476 467 467 474 458 396 |
673

508
491
513
531
505
491
511
516
488
472
475
486
480
431 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
350
365
376
388
375
356
295
381 | MAY 334 334 238 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 350 365 371 356 294 236 232 238 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
368
330
264
249
245
245
268 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
27
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
664
671
668
690
703
704
701
689
690 | 711 697 653 632 629 636 634 633 628 630 668 663 652 652 651 645 647 644 648 668 681 671 672 668 677 | 734
716
684
673
669
675
675
676
677
680
670
659
657
653
656
651
654
676
681
677
682 | 692
690
689
689
691
690
680
681
679
686
696
691
691
695
707
712
705
706
699
699
690
679
670
679
671
657 | 682
683
676
671
669
671
669
673
676
674
682
683
678
678
678
679
683
691
691
691
694
679 | 687
686
680
683
686
684
677
673
677
673
689
681
687
690
684
684
686
693
699
698
694
686 | 664 682 517 496 525 540 518 505 518 505 518 525 503 476 479 494 490 458 396 | APRIL 637 663 489 485 498 484 505 503 476 467 467 474 458 3360 | 508
491
511
516
488
472
475
486
480
431
374 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
376
388
375
350
365
376 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 365 371 356 294 236 232 238 254 278 240 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
368
330
264
249 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
668
690
703
704
701
689
690 | 711 697 653 632 629 636 634 633 628 630 668 6652 651 645 647 644 648 668 681 671 672 668 677 | 734
716
684
673
669
675
669
676
677
680
670
660
659
657
653
654
676
689
687
681
677
682 |
692
690
689
689
691
690
689
681
679
686
691
691
695
694
699
696
707
712
705
706
699
702
693 | MARCH 682 680 676 681 678 668 669 671 669 673 676 682 683 678 680 683 678 680 681 691 684 679 668 668 | 687
686
680
683
686
684
677
673
677
673
679
688
681
687
690
684
686
693
699
698
694
694
686 | 664 682 517 496 525 540 518 505 518 505 518 525 503 476 479 494 490 458 | APRIL 637 663 489 485 496 518 498 484 505 503 476 467 467 474 458 396 |
673

508
491
513
531
505
491
511
516
488
472
475
486
480
431 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
350
365
376
388
375
356
295
381 | MAY 334 334 238 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 350 365 371 356 294 236 232 238 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
368
330
264
249
245
245
268 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 766
738
711
704
699
706
709
705
724
728
691
677
672
663
660
664
671
668
690
703
704
701
689
690 | 711 697 653 632 629 636 634 633 628 630 668 663 652 652 651 645 647 644 668 681 671 672 682 686 681 677 | 734
716
684
673
669
675
675
676
677
680
670
659
657
653
656
651
654
676
682
687
682
687 | 692
690
689
689
691
690
680
681
679
686
691
691
691
692
707
712
705
706
699
702
693 | MARCH 682 680 676 681 678 668 669 671 669 673 676 682 683 678 680 687 688 680 687 688 680 687 683 691 691 691 691 691 693 693 693 | 687
686
680
683
686
684
677
673
677
673
679
688
681
687
690
684
686
693
699
698
694
694
686 | 664 682 517 496 525 540 518 505 518 505 518 525 540 479 494 490 458 396 352 | APRIL 637 663 489 485 496 518 484 505 503 476 467 467 474 458 396 350 332 | 508 491 511 516 488 472 475 486 480 431 374 3344 | 356
349
337
309
283
243
232
213
260
281
287
275
313
348
359
365
365
376
388
375
356
350
328
328
328
328
328
328
328
328
328
328 | MAY 334 334 288 283 238 217 202 196 200 258 259 256 275 313 347 356 328 330 365 371 356 294 236 232 238 254 278 240 225 | 339
343
317
296
266
233
216
200
243
268
273
261
296
333
355
361
346
335
357
372
382
368
330
264
249
245
273
284
225
233 | ### COLORADO RIVER MAIN STEM 183 ### 09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | SI | PECIFIC | CONDUCTA | NCE (MI | CROSLEMENS | CM AI 25 | DEG. C) | , WAILK ILA | AR OCTOB | EK 1999 | IO SEPIEME | SER 2000 | | |---|---|---|--|---|---|---|---|---|--|--|---|--| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2 | 231
227 | 218
214 | 223
219 | 425
439 | 388
423 | 410
427 | 610
609 | 601
599 | 605
604 | 547
545 | 503
538 | 536
540 | | 3
4 | 222
240 | 213
221 | 217
227 | 452
455 | 434
434 | 439
444 | 603
575 | 574
544 | 585
558 | 544
521 | 521
489 | 541
500 | | 5 | 262 | 240 | 250 | 497 | 435 | 473 | 551 | 543 | 547 | 518 | 492 | 513 | | 6 | 270 | 262 | 266 | 507 | 496 | 501 | 553 | 547 | 550 | 523 | 517 | 521 | | 7
8 | 271
276 | 253
260 | 262
268 | 534
551 | 507
534 | 526
542 | 554
552 | 549
546 | 552
549 | 564
559 | 520
533 | 550
544 | | 9
10 | 285
303 | 274
282 | 279
293 | 552
539 | 530
508 | 544
521 | 558
561 | 548
555 | 551
557 | 552
567 | 537
548 | 548
560 | | 11 | 326 | 303 | 319 | 526 | 510 | 520 | 1450 | 546 | 777 | 584 | 555 | 574 | | 12 | 338 | 326 | 332 | 548 | 526 | 534 | 662 | 572 | 606 | 594 | 581 | 590 | | 13
14 | 345
369 | 331
344 | 342
357 | 568
585 | 548
560 | 559
576 | 640
556 | 556
544 | 576
548 | 599
603 | 590
590 | 594
597 | | 15 | 369 | 320 | 350 | 598 | 580 | 593 | 546 | 540 | 543 | 596 | 585 | 592 | | 16
17 | 347
337 | 316
317 | 331
330 | 595
579 | 579
547 | 589
565 | 554
564 | 542
543 | 550
558 | 591
582 | 582
552 | 587
561 | | 18
19 | 346
353 | 325
334 | 335
348 | 550
548 | 502
501 | 528
518 | 592
541 | 532
525 | 545
532 | 552
554 | 546
550 | 549
553 | | 20 | 354 | 281 | 315 | 587 | 548 | 566 | 531 | 514 | 525 | 553 | 548 | 550 | | 21 | 297 | 279 | 286 | 612 | 587 | 606 | 542 | 510 | 528 | 549 | 536 | 545 | | 22
23 | 324
341 | 297
322 | 310
334 | 628
641 | 612
621 | 622
632 | 556
588 | 542
556 | 550
576 | 554
555 | 542
512 | 548
534 | | 24
25 | 355
356 | 325
348 | 337
353 | 629
601 | 595
593 | 602
597 | 579
629 | 563
566 | 568
584 | 530
528 | 517
522 | 527
526 | | 26 | 359 | 353 | 357 | 621 | 598 | 611 | 710 | 569 | 600 | 539 | 527 | 533 | | 27
28 | 358
363 | 342
342 | 353
355 | 618
607 | 588
593 | 598
599 | 761
584 | 551
522 | 633
532 | 642
636 | 539
617 | 603
625 | | 29 | 380 | 362 | 369 | 615 | 602 | 611 | 537 | 515 | 528 | 643 | 622 | 636 | | 30
31 | 397
 | 379
 | 387 | 628
631 | 614
605 | 623
617 | 527
517 | 497
491 | 511
502 | 654
 | 631
 | 642 | | MONTH | 397 | 213 | 310 | 641 | 388 | 551 | 1450 | 491 | 565 | 654 | 489 | 561 | | | 1.450 | 100 | F 40 | | | | | | | | | | | YEAR | 1450 | 196 | 540 | | | | | | | | | | | YEAR | 1450 | | | WATER (DEC | G. C), WA | TER YEAR | OCTOBER 19 | 999 TO S | EPTEMBER | 2000 | | | | YEAR
DAY | 1450
MAX | | | WATER (DEC | G. C), WA | TER YEAR
MEAN | OCTOBER 1 | 999 TO S
MIN | EPTEMBER
MEAN | 2000
MAX | MIN | MEAN | | | | TEMPE | RATURE,
MEAN | MAX | | | MAX | | | | MIN
JANUARY | | | DAY
1 | MAX
11.0 | TEMPE MIN OCTOBER 9.4 | RATURE, MEAN 9.9 | MAX
1
6.8 | MIN
NOVEMBER
5.8 | MEAN | MAX
DI
2.2 | MIN
ECEMBER
1.3 | MEAN | MAX | JANUARY | . 0 | | DAY 1 2 3 | MAX
11.0
11.0
10.9 | TEMPE MIN OCTOBER 9.4 9.9 9.5 | 9.9
10.3
10.0 | MAX
1
6.8
6.8
6.3 | MIN
NOVEMBER
5.8
5.6
4.6 | MEAN
6.2
6.1
5.4 | MAX D1 2.2 2.7 2.7 | MIN
ECEMBER
1.3
2.0
2.1 | MEAN 1.5 2.3 2.5 | MAX .1 .1 .0 | JANUARY
.0
.0
.0 | .0 | | DAY
1
2 | MAX 11.0 11.0 10.9 10.4 | TEMPE
MIN
OCTOBER
9.4
9.9
9.5
9.1 | 9.9
10.3
10.0
9.6 | MAX
6.8
6.8
6.3
5.7 | MIN
NOVEMBER
5.8
5.6
4.6
4.2 | MEAN 6.2 6.1 5.4 4.9 | MAX DI 2.2 2.7 2.7 2.2 | MIN
ECEMBER
1.3
2.0
2.1
.9 | 1.5
2.3
2.5
1.4 | .1
.1
.0 | JANUARY . 0 . 0 . 0 . 0 . 0 | .0.0.0 | | DAY 1 2 3 4 5 | MAX
11.0
11.0
10.9
10.4
10.4 | TEMPE
MIN
OCTOBER
9.4
9.9
9.5
9.1 | 9.9
10.3
10.0
9.6
9.6 | MAX
6.8
6.8
6.3
5.7
5.6 | MIN
NOVEMBER
5.8
5.6
4.6
4.2
4.1 | MEAN 6.2 6.1 5.4 4.9 4.9 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 | MIN
ECEMBER
1.3
2.0
2.1
.9 | MEAN 1.5 2.3 2.5 1.4 .3 | .1
.1
.0
.0 | JANUARY .0 .0 .0 .0 .0 .0 | .0.0.0.0 | | DAY 1 2 3 4 5 6 7 | MAX 11.0 11.0 10.9 10.4 10.4 | TEMPE
MIN
OCTOBER
9.4
9.9
9.5
9.1
9.1
9.1 | PATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.3 9.9 | MAX
6.8
6.3
5.7
5.6 | MIN
NOVEMBER
5.8
5.6
4.6
4.2
4.1
4.0
4.0 | MEAN 6.2 6.1 5.4 4.9 4.9 4.9 | MAX DI 2.2 2.7 2.7 2.2 1.3 .2 1.1 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 | 1.5
2.3
2.5
1.4
.3 | .1 .1 .0 .0 .0 .0 .0 .0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .0 .0 .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 | MAX
11.0
11.0
10.9
10.4
10.7
10.4
10.2 | TEMPE
MIN
OCTOBER
9.4
9.9
9.5
9.1
9.1
9.1
9.8
9.7
9.2 | PATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.3 9.9 10.3 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 |
MIN
NOVEMBER
5.8
5.6
4.6
4.2
4.1
4.0
4.0
4.1
4.3 | 6.2
6.1
5.4
4.9
4.9
4.7
4.5 | MAX DI 2.2 2.7 2.7 2.2 1.3 .2 .1 .6 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 10 | MAX
11.0
11.0
10.9
10.4
10.7
10.7
10.9
11.4 | TEMPE
MIN
OCTOBER
9.4
9.9
9.5
9.1
9.1
9.7
9.2
9.7 | PATURE, MEAN 9.9 10.3 10.0 9.6 10.3 9.9 9.6 10.1 10.5 | MAX
6.8
6.8
6.3
5.7
5.6
5.5
4.9
5.0
5.0 | MIN
NOVEMBER
5.8
5.6
4.6
4.2
4.1
4.0
4.0
4.1
4.3
4.0 | 6.2
6.1
5.4
4.9
4.9
4.7
4.5
4.6 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 | MAX
11.0
11.0
10.9
10.4
10.7
10.4
10.2 | TEMPE
MIN
OCTOBER
9.4
9.9
9.5
9.1
9.1
9.1
9.8
9.7
9.2 | PATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.3 9.9 10.3 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 | MIN
NOVEMBER
5.8
5.6
4.6
4.2
4.1
4.0
4.0
4.1
4.3 | 6.2
6.1
5.4
4.9
4.9
4.7
4.5 | MAX DI 2.2 2.7 2.7 2.2 1.3 .2 .1 .6 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 | MAX 11.0 11.0 10.9 10.4 10.7 10.4 10.2 10.9 11.4 11.4 11.4 11.9 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.1 10.5 10.8 10.5 10.2 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 4.7 4.3 3.8 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.0 4.1 4.3 4.0 3.9 3.2 2.6 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 .5 .3 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.3
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | MAX
11.0
11.0
10.9
10.4
10.7
10.4
10.2
10.9
11.4
11.4 | TEMPE
MIN
OCTOBER
9.4
9.9
9.5
9.1
9.1
9.8
9.7
9.2
9.7
10.0 | PATURE, MEAN 9.9 10.3 10.0 9.6 10.3 9.6 10.1 10.5 10.8 10.5 | MAX
6.8
6.8
6.3
5.7
5.6
5.5
5.3
4.9
5.0
5.0 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.0 4.1 4.3 4.0 3.9 3.2 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 | MAX DI 2.2 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 .5 .3 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .1 | 1.5
2.3
2.5
1.4
.3
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | MAX 11.0 11.0 10.9 10.4 10.7 10.4 10.2 10.9 11.4 11.4 11.4 11.9 10.8 10.6 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.1 10.5 10.8 10.5 10.8 10.1 9.6 8.5 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 5.0 4.7 4.3 3.8 3.3 3.0 2.9 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 | 6.2
6.1
5.4
4.9
4.9
4.7
4.5
4.6
4.4
4.2
3.6
3.1
2.7
2.5 | MAX DI 2.2 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 .5 .3 .0 .0 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.3
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .3 .2 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | MAX 11.0 11.0 10.9 10.4 10.4 10.2 10.9 11.4 11.4 11.9 10.8 10.6 9.5 8.3 7.0 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 6.1 6.0 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.1 10.5 10.8 10.5 10.2 10.1 9.6 8.5 6.9 6.3 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 4.7 4.3 3.8 3.3 3.0 2.9 3.8 4.2 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 3.6 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 1.6 .0 .3 .5 .3 .0 .0 .0 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.3
.0
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .2 .3 .4 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | MAX 11.0 11.0 10.9 10.4 10.4 10.2 10.9 11.4 11.4 11.6 11.6 9.5 8.3 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 6.1 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.3 9.9 9.6 10.1 10.5 10.8 10.5 10.2 10.1 9.6 8.5 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 4.7 4.3 3.8 3.3 3.0 2.9 3.8 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 .5 .3 .0 .0 .0 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.0
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .3 .2 .3 .4 1.1 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | MAX 11.0 11.0 10.9 10.4 10.4 10.2 10.9 11.4 11.4 10.9 10.8 10.6 9.5 8.3 7.0 7.0 7.2 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 6.1 6.0 5.6 6.2 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.1 10.5 10.8 10.5 10.2 10.1 9.6 8.5 6.9 6.3 6.0 6.6 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 4.7 4.3 3.8 3.3 3.0 2.9 3.8 4.2 4.1 2.7 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 3.6 2.5 1.8 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 2.9 2.0 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 .5 .3 .0 .0 .0 .0 .0 .0 .0 .1 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.3
.0
.0
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .2 .3 .4 1.1 1.1 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | MAX 11.0 11.0 11.0 10.9 10.4 10.4 10.2 10.9 11.4 11.4 11.6 11.6 9.5 8.3 7.0 7.0 7.2 7.6 7.7 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 6.1 6.0 5.6 6.2 6.3 6.5 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.3 9.9 9.6 10.1 10.5 10.2 10.1 9.6 8.5 6.9 6.3 6.0 6.6 6.8 7.0 | 6.8
6.8
6.8
6.3
5.7
5.6
5.5
5.3
4.9
5.0
5.0
4.7
4.3
3.8
3.3
3.0
2.9
3.8
4.2
4.1
2.7 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 3.6 2.5 1.8 1.6 1.8 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 2.9 2.0 1.9 2.0 | MAX DD 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .0 .3 .5 .3 .0 .0 .0 .0 .0 .0 .0 .1 | MIN ECEMBER 1.3 2.0 2.11 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .3 .4 1.1 1.1 1.3 1.3 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | MAX 11.0 11.0 11.0 10.9 10.4 10.7 10.4 10.2 10.9 11.4 11.4 11.9 10.8 10.6 9.5 8.3 7.0 7.2 7.6 7.7 7.8 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 6.1 6.0 5.6 6.2 6.3 6.5 6.5 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.1 10.5 10.8 10.5 10.2 10.1 9.6 8.5 6.9 6.3 6.0 6.6 6.8 7.0 7.0 6.8 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 4.7 4.3 3.8 3.3 3.0 2.9 3.8 4.2 4.1 2.7 2.1 2.2 2.0 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.5 3.6 2.5 1.8 1.6 1.8 .8 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 2.9 2.0 1.9 2.0 1.9 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 .5 .3 .0 .0 .0 .0 .0 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .0 .0 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 1.5 2.3 2.5 1.4 3 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .3 .4 1.1 1.1 1.3 1.3 1.3 1.9 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | MAX 11.0 11.0 11.0 10.9 10.4 10.4 10.2 10.9 11.4 11.4 10.9 10.8 10.6 9.5 8.3 7.0 7.0 7.2 7.6 7.7 8 7.6 7.4 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 6.1 6.0 5.6 6.2 6.3 6.5 6.3 6.3 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.1 10.5 10.8 10.5 10.2 10.1 9.6 8.5 6.9 6.3 6.0 6.6 6.8 7.0 6.8 6.8 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 4.7 4.3 3.8 3.3 3.0 2.9 3.8 4.2 4.1 2.7 2.1 2.00 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 3.6 2.5 1.8 1.6 1.8 .0 .0 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 2.9 2.0 1.9 2.0 1.30 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN ECEMBER 1.3
2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .3 .4 1.1 1.1 1.3 1.3 1.2 .9 1.3 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | MAX 11.0 11.0 11.0 10.9 10.4 10.7 10.4 10.2 10.9 11.4 11.4 11.9 10.8 10.6 9.5 8.3 7.0 7.2 7.6 7.7 7.8 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 6.1 6.0 5.6 6.2 6.3 6.5 6.5 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.1 10.5 10.8 10.5 10.2 10.1 9.6 8.5 6.9 6.3 6.0 6.6 6.8 7.0 7.0 6.8 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 4.7 4.3 3.8 3.3 3.0 2.9 3.8 4.2 4.1 2.7 2.1 2.2 2.0 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 3.6 2.5 1.8 1.6 1.8 .8 .0 .0 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 2.9 2.0 1.9 2.0 1.9 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .3 .5 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 1.5 2.3 2.5 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .3 .4 1.1 1.1 1.3 1.3 1.3 1.9 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | MAX 11.0 11.0 11.0 10.9 10.4 10.4 10.2 10.9 11.4 11.4 11.9 10.8 10.6 9.5 8.3 7.0 7.0 7.2 7.6 7.7 7.8 7.6 7.4 7.4 7.4 7.3 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 6.1 6.0 5.6 6.2 6.3 6.5 6.3 6.3 6.2 6.2 6.2 | RATURE, MEAN 9.9 10.3 10.0 9.6 10.3 9.6 10.1 10.5 10.8 10.5 10.2 10.1 9.6 8.5 6.9 6.3 6.0 6.6 6.8 7.0 7.0 6.8 6.8 | MAX 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 5.0 4.7 4.3 3.8 3.3 3.0 2.9 3.8 4.2 4.1 2.7 2.1 2.2 2.0 0 2.1 2.3 2.3 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 3.6 2.5 1.8 1.6 1.8 0.0 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 2.9 2.0 1.9 2.0 1.30 .8 2.1 2.0 | MAX DI 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN ECEMBER 1.3 2.0 2.1 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .3 .4 1.1 1.1 1.3 1.3 1.2 .9 1.3 1.9 2.1 1.5 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | MAX 11.0 11.0 11.0 10.9 10.4 10.4 10.2 10.9 11.4 11.4 11.4 10.9 10.8 10.6 9.5 8.3 7.0 7.0 7.2 7.6 7.7 7.8 7.6 7.4 7.4 | TEMPE MIN OCTOBER 9.4 9.9 9.5 9.1 9.1 9.8 9.7 9.2 9.7 10.0 10.2 10.0 9.7 9.5 8.8 7.8 6.1 6.0 5.6 6.2 6.3 6.5 6.3 6.3 6.3 | RATURE, MEAN 9.9 10.3 10.0 9.6 9.6 10.3 9.9 9.6 10.1 10.5 10.2 10.1 9.6 8.5 6.9 6.3 6.0 6.6 6.8 7.0 7.0 6.8 6.8 6.7 | MAX 6.8 6.8 6.8 6.3 5.7 5.6 5.5 5.3 4.9 5.0 6.8 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3 | MIN NOVEMBER 5.8 5.6 4.6 4.2 4.1 4.0 4.0 4.1 4.3 4.0 3.9 3.2 2.6 2.3 2.1 2.1 2.5 3.6 2.5 1.8 1.6 1.8 .8 .0 .0 .0 1.9 | MEAN 6.2 6.1 5.4 4.9 4.9 4.7 4.5 4.6 4.4 4.2 3.6 3.1 2.7 2.5 2.4 2.8 3.8 2.9 2.0 1.9 2.0 1.30 .8 2.1 | MAX DD 2.2 2.7 2.7 2.7 2.2 1.3 .2 .1 .6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN ECEMBER 1.3 2.0 2.11 .9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.5
2.3
2.5
1.4
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | MAX .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .2 .2 .2 .2 .3 .4 1.1 1.1 1.3 1.3 1.2 .9 1.3 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | MONTH 11.4 5.6 8.4 6.8 .0 3.3 2.7 .0 .3 2.1 .0 .3 09071750 COLORADO RIVER ABOVE GLENWOOD SPRINGS, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | TEMPE | RAIURE, | WATER (DE | G. C), W | ALEK YEAK | OCTOBER . | 1999 10 8 | PELIEMBER | 2000 | | | |---|--|---|--|--|--|--|---|--|--|--|--|---| | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | .4
.5
.5
1.0 | .0 | .1
.2
.3
.6 | 5.3
5.1
6.0
6.7
6.6 | 4.2
4.3
4.9
5.3
5.4 | 4.8
4.7
5.3
6.0
6.0 | 6.4
7.3
7.3
 | | 5.8
6.7
6.6
 | 11.7
13.1
13.4
13.4
13.0 | 9.6
10.6
11.3
11.1 | 10.6
11.6
12.4
12.3
12.0 |
 6
7
8
9
10 | 1.2
1.8
1.9
1.9 | .3
.4
.6
.9 | .8
1.1
1.3
1.3 | 6.5
6.8
6.1
6.1 | 5.3
5.8
5.3
4.3
3.9 | 5.8
6.2
5.8
5.2
4.6 | | |

 | 12.4
11.5
10.7
10.4
12.0 | 10.7
10.4
8.4
7.6
9.6 | 11.4
10.8
9.5
8.7
10.6 | | 11
12
13
14
15 | 1.9
2.4
2.0
2.0
3.1 | 1.0
1.6
1.3
1.6 | 1.7
2.1
1.6
1.8
2.5 | 4.8
6.0
6.1
6.5 | 3.5
4.1
4.5
5.1
4.8 | 4.1
4.8
5.1
5.7
5.6 |

10.8 |

9.2 |

9.9 | 11.9
11.4
8.8
10.2
11.4 | 10.8
8.4
6.6
7.9
9.6 | 11.5
9.2
7.5
8.8
10.3 | | 16
17
18
19
20 | 5.0
3.1
2.8
3.3
2.9 | 2.6
2.2
2.2
2.2
2.0 | 3.2
2.7
2.4
2.8
2.5 | 5.8
5.9
5.3
5.0 | 4.4
4.8
4.0
3.8
4.5 | 4.9
5.4
4.8
4.3
5.2 | 10.0
11.3
11.7
9.4
9.0 | 8.9
9.7
9.4
7.2
6.7 | 9.4
10.3
10.7
8.2
7.7 | 12.5
12.3
9.0
10.8
12.6 | 10.5
9.0
7.8
8.0
10.4 | 11.4
10.6
8.3
9.1
11.3 | | 21
22
23
24
25 | 3.6
4.3
3.7
4.4
3.9 | 2.3
3.4
2.8
3.4
2.4 | 3.0
3.9
3.3
3.9
3.3 | 5.9
6.0
6.5
7.6
8.3 | 4.4
5.1
4.9
5.8
6.9 | 4.9
5.6
5.4
6.8
7.4 | 10.0
10.1
9.2
9.7 | 9.0
8.6
7.9
9.0
8.9 | 9.5
9.4
8.5
9.3 | 12.9
13.8
14.0
14.0 | 11.0
11.6
12.2
11.5
10.5 | 12.0
12.6
13.2
12.4
10.8 | | 26
27
28
29
30
31 | 2.9
3.2
4.5
5.0 | 1.5
2.1
3.0
3.7 | 2.4
2.6
3.9
4.3 | 8.4
9.1
9.1
8.8
8.8
8.0 | 7.2
7.6
7.9
7.6
7.6
5.6 | 7.7
8.2
8.5
8.1
8.2
6.7 | 11.1
12.9
13.2
13.3
11.5 | 10.0
11.1
12.0
10.9
10.1 | 10.3
11.8
12.7
11.8
10.7 | 10.5
11.9
13.5
13.5
13.3 | 9.7
9.0
10.9
12.5
11.6
11.7 | 9.9
10.1
12.0
13.0
12.4
12.4 | | MONTH | 5.0 | .0 | 2.1 | 9.1 | 3.5 | 5.9 | 13.3 | 5.1 | 9.4 | 14.0 | 6.6 | 10.9 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
13.1
13.2
13.5
13.8
14.5 | | MEAN
12.4
12.6
12.7
13.0
13.4 | 18.4
18.5
18.5
18.5 | | 17.7
17.9
17.8
18.0
17.4 | | | 20.1
20.2
19.7
19.5
19.8 | 17.8
16.8
16.6
16.9 | | | | 1
2
3
4 | 13.1
13.2
13.5
13.8 | JUNE 11.8 12.1 12.0 12.3 | 12.4
12.6
12.7
13.0
13.4
13.6
14.0
14.6
14.2 | 18.4
18.5
18.5
18.5
19.3
19.3
19.0
19.9 | JULY 16.9 17.1 17.2 17.5 16.6 | 17.7
17.9
17.8
18.0
17.4 | 20.6
20.8
20.3
20.1 | AUGUST 19.7 19.8 19.4 18.8 | 20.1
20.2
19.7
19.5 | 17.8
16.8
16.6
16.9 | 16.3
15.6
15.3
15.7 | 17.0
16.2
15.8
16.1 | | 1
2
3
4
5
6
7
8
9
10 | 13.1
13.2
13.5
13.8
14.5
14.8
15.1
15.4
15.2
14.8 | JUNE 11.8 12.1 12.0 12.3 12.6 12.5 13.0 13.7 13.6 12.8 | 12.4
12.6
12.7
13.0
13.4
13.6
14.0
14.2
13.8
14.1 | 18.4
18.5
18.5
18.5
18.4
18.5
19.3
19.4 | JULY 16.9 17.1 17.2 17.5 16.6 17.2 18.1 18.4 18.4 18.5 | 17.7
17.9
17.8
18.0
17.4
17.8
18.5
18.8
19.0 | 20.6
20.8
20.3
20.1
20.2
20.2
20.3
19.9
20.1
20.6 | AUGUST 19.7 19.8 19.4 18.8 19.3 18.7 18.7 18.2 18.6 19.5 19.8 19.7 | 20.1
20.2
19.7
19.5
19.8
19.5
19.3
18.9
19.2 | 17.8
16.8
16.6
16.9
17.0
16.6
16.5
16.7
16.0
15.9 | SEPTEMBE 16.3 15.6 15.3 15.7 15.9 15.3 14.8 15.2 14.7 | 17.0
16.2
15.8
16.1
16.5
15.8
15.5
15.8
15.5
16.0
15.2
15.3
15.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.1
13.2
13.5
13.8
14.5
14.8
15.1
15.2
14.8
15.3
15.3
15.3
15.5 | JUNE 11.8 12.1 12.0 12.3 12.6 12.5 13.0 13.7 13.6 12.8 13.0 13.5 13.5 | 12.4
12.6
12.7
13.0
13.4
13.6
14.0
14.6
14.2
13.8
14.1
14.4 | 18.4
18.5
18.5
18.5
19.3
19.4
19.0
19.9
20.2
20.4
20.0
21.1 | JULY 16.9 17.1 17.2 17.5 16.6 17.2 18.1 18.4 18.4 18.5 19.5 19.2 18.8 20.0 | 17.7
17.9
17.8
18.0
17.4
17.8
18.5
18.5
18.8
19.0
19.8
19.7
19.3
20.5 | 20.6
20.8
20.3
20.1
20.2
20.2
20.3
19.9
20.1
20.6
21.1
21.1
20.2
20.4 | AUGUST 19.7 19.8 19.4 18.8 19.3 18.7 18.7 18.6 19.5 19.8 19.7 19.8 | 20.1
20.2
19.7
19.5
19.8
19.5
19.3
18.9
19.2
19.9
20.4
20.3
19.5 | 17.8
16.8
16.6
16.9
17.0
16.6
16.5
16.7
16.0
15.9
15.9
15.8
16.3 | SEPTEMBE 16.3 15.6 15.3 15.7 15.9 15.3 14.8 15.2 14.7 14.7 14.5 14.7 15.1 15.3 | 17.0
16.2
15.8
16.1
16.5
15.8
15.8
15.2
15.3
15.2
15.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 13.1
13.2
13.5
13.8
14.5
14.8
15.1
15.2
14.8
15.3
15.3
15.3
15.6
16.4
16.4
15.8
15.7 | JUNE 11.8 12.1 12.0 12.3 12.6 12.5 13.0 13.7 13.6 12.8 13.5 13.5 14.4 14.6 13.6 13.7 14.0 | 12.4
12.6
12.7
13.0
13.4
13.6
14.6
14.2
13.8
14.1
14.4
14.4
15.4
15.4 | 18.4
18.5
18.5
18.5
19.3
19.4
19.0
19.9
20.2
20.4
20.0
21.1
21.3
21.0
20.9
19.5 | JULY 16.9 17.1 17.2 17.5 16.6 17.2 18.1 18.4 18.4 18.5 19.5 19.2 18.8 20.0 20.0 20.0 19.0 18.5 18.9 | 17.7
17.9
17.8
18.0
17.4
17.8
18.5
18.8
19.0
19.8
19.7
19.3
20.5
20.8
20.5
20.0
18.9
19.3 | 20.6
20.8
20.3
20.1
20.2
20.2
20.3
19.9
20.1
20.6
21.1
21.1
20.2
20.4
20.3 | AUGUST 19.7 19.8 19.4 18.8 19.3 18.7 18.7 18.6 19.5 19.8 19.7 19.0 18.9 19.2 19.5 18.8 18.2 18.2 | 20.1
20.2
19.7
19.5
19.8
19.5
19.3
18.9
19.2
19.9
20.4
20.3
19.5
19.5
19.6 | 17.8
16.8
16.6
16.9
17.0
16.6
16.5
16.7
16.0
15.9
15.8
16.3
16.7
16.9
17.1 | SEPTEMBE 16.3 15.6 15.3 15.7 15.9 15.3 14.8 15.2 14.7 14.7 14.5 14.7 15.3 15.3 15.3 15.6 15.8 15.3 | 17. 0
16. 2
15. 8
16. 1
16. 5
15. 8
15. 5
16. 0
15. 2
15. 3
15. 3
15. 3
15. 2
16. 1
16. 2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 13.1
13.2
13.5
13.8
14.5
14.8
15.1
15.2
14.8
15.3
15.3
15.3
15.6
16.4
16.4
15.8
15.0
14.6
15.9
15.9
15.9 | JUNE 11.8 12.1 12.0 12.3 12.6 12.5 13.0 13.7 13.6 12.8 13.0 13.5 13.5 14.4 14.6 13.6 13.7 14.0 13.0 13.4 14.4 15.2 14.7 | 12.4
12.6
12.7
13.0
13.4
13.6
14.0
14.2
13.8
14.1
14.4
14.4
15.4
15.4
14.7
14.6
14.7
14.6
15.1
15.1 | 18.4
18.5
18.5
18.5
19.3
19.4
19.0
19.9
20.2
20.4
20.0
21.1
21.3
21.0
20.9
21.1
21.3
21.9
20.9
20.9
20.9 | JULY 16.9 17.1 17.2 17.5 16.6 17.2 18.1 18.4 18.5 19.5 19.2 18.8 20.0 20.0 20.0 20.0 19.0 18.8 19.0 19.0 18.8 19.0 | 17.7
17.9
17.8
18.0
17.4
17.8
18.5
18.8
19.0
19.8
19.7
19.3
20.5
20.0
18.9
19.3
19.4
19.3
19.4 | 20.6
20.8
20.3
20.1
20.2
20.2
20.3
19.9
20.1
20.6
21.1
21.1
20.2
20.4
20.3
20.4
20.0
19.9
19.8
19.8
19.8 | AUGUST 19.7 19.8 19.4 18.8 19.3 18.7 18.7 18.6 19.5 19.8 19.7 19.0 18.9 19.2 19.5 18.8 18.2 18.2 18.8 18.3 17.6 17.4 17.7 | 20.1
20.2
19.7
19.5
19.8
19.5
19.3
18.9
19.2
19.9
20.4
20.3
19.5
19.5
19.6
19.3
18.8
18.9
19.2 | 17.8
16.8
16.6
16.9
17.0
16.6
16.5
16.7
16.0
15.9
15.8
16.3
16.7
16.9
17.1
16.8
16.3
15.8
13.9 | SEPTEMBE 16.3 15.6 15.3 15.7 15.9 15.3 14.8 15.2 14.7 14.7 14.5 14.7 15.3 15.3 15.3 15.6 15.8 15.3 15.6 12.6 12.6 12.4 10.6 | 17. 0
16. 2
15. 8
16. 1
16. 5
15. 8
15. 5
15. 2
15. 3
15. 2
15. 7
16. 1
16. 2
16. 1
16. 3
16. 2
15. 7
16. 1
16. 3
16. 2
15. 7
16. 1
16. 3
16. 3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 13.1
13.2
13.5
13.8
14.5
14.8
15.1
15.2
14.8
15.3
15.2
15.6
16.4
16.4
15.8
15.7
14.6
15.9
15.9
15.9
15.9
15.9
15.9
15.9
15.9 | JUNE 11.8 12.1 12.0 12.3 12.6 12.5 13.0 13.7 13.6 12.8 13.0 13.5 14.4 14.6 13.6 13.7 13.5 14.4 14.6 13.7 13.5 14.7 15.1 14.2 13.1 13.5 15.7 | 12.4
12.6
12.7
13.0
13.4
13.6
14.0
14.6
14.2
13.8
14.1
14.4
15.4
15.4
15.4
15.5
14.6
15.1
15.6
15.0
14.6
15.0
16.0
16.0
16.0 | 18.4
18.5
18.5
18.5
19.3
19.0
19.9
20.2
20.4
20.0
21.1
21.3
21.0
20.9
19.5
19.7
19.8
20.1
19.9
20.1
19.9
20.1 | JULY 16.9 17.1 17.2 17.5 16.6 17.2 18.1 18.4 18.4 18.5 19.5 19.2 18.8 20.0 20.0 20.0 19.0 18.5 19.0 18.8 19.0 19.4 18.7 18.8 19.4 19.2 | 17.7
17.9
17.8
18.0
17.4
17.8
18.5
18.8
19.0
19.8
19.7
19.3
20.5
20.0
18.9
19.3
19.3
19.4
19.3
19.5
19.5
19.7
19.5 |
20.6
20.8
20.3
20.1
20.2
20.2
20.3
19.9
20.1
20.6
21.1
21.1
20.2
20.4
20.3
20.4
20.0
19.9
19.8
19.8
19.8
19.1
18.7
19.0
19.8
20.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0
1 | AUGUST 19.7 19.8 19.4 18.8 19.3 18.7 18.7 18.6 19.5 19.8 19.7 19.0 18.9 19.2 19.5 18.8 18.2 18.8 18.2 18.8 18.2 18.8 18.2 18.8 18.2 18.8 18.1 17.6 17.4 17.1 18.4 17.1 | 20.1
20.2
19.7
19.5
19.8
19.5
19.3
18.9
19.2
19.9
20.4
20.3
19.5
19.6
19.9
19.3
18.8
18.9
19.2
18.1
17.8
18.1
17.8
18.1
17.8
19.1 | 17.8
16.8
16.6
16.9
17.0
16.6
16.5
16.7
16.0
15.9
15.8
16.3
16.7
16.9
17.1
16.9
17.1
16.9
17.1
11.5
12.6
10.7 | SEPTEMBE 16.3 15.6 15.3 15.7 15.9 15.3 14.8 15.2 14.7 14.7 14.5 14.7 15.1 15.3 15.3 15.6 15.8 15.3 15.0 13.6 12.6 12.4 10.6 9.7 10.2 10.8 12.0 13.2 | 17.0
16.2
15.8
16.1
16.5
15.8
15.5
16.0
15.2
15.3
15.2
15.3
16.1
16.2
16.1
16.3
16.2
15.7
14.5
13.2
15.7 | #### 09073300 ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN, CO LOCATION.--Lat 39°08'28", long 106°46'25", Pitkin County, Hydrologic Unit 14010004, on left bank in the White River National Forest at Difficult Creek Campground, 0.45 mi upstream from Difficult Creek tributary, and 4.25 mi southeast of Aspen. DRAINAGE AREA. -- 75.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1979 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,120 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Transmountain diversion 11 mi upstream through Twin Lakes Tunnel to Arkansas River basin since May 24, 1935 (42,060 acre-ft diverted during current year, provided by Colorado Division of Water Resources). | | | DISCHAR | GE, CUBI | C FEET PE | R SECOND, W | VATER YE
MEAN VA | | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--------------------------------------|--|---|---|--|--------------------------------------|---|--|-------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 76
74
64
55
56 | 43
40
39
40
41 | e30
e30
e31
e28
e22 | 17
17
e16
e15
16 | e14
e13
e15
e15
e14 | 14
14
15
14
16 | 19
18
18
19
23 | 72
e86
e105
e125
e148 | e280
234
231
225
e215 | 48
47
45
41
38 | 25
49
50
49
47 | 45
42
40
37
45 | | 6
7
8
9
10 | 52
57
62
71
66 | 40
41
42
42
39 | e26
e27
e28
e24
27 | 15
e14
15
16
15 | e14
e14
e14
e14
e15 | 14
15
14
16
16 | 26
28
29
34
37 | 171
160
149
128
136 | e205
e195
e192
e190
187 | 36
35
35
35
33 | 45
40
36
33
32 | 53
57
60
65
45 | | 11
12
13
14
15 | 61
55
54
50
49 | 37
35
33
34
35 | 29
e26
e22
e24
e16 | 15
15
e14
e14
e14 | e15
e15
e14
e15
e15 | 18
17
16
16
17 | 34
35
41
45
43 | 182
174
137
106
98 | 135
135
114
106
106 | 30
29
29
30
34 | 33
35
40
41
41 | 36
34
34
33
33 | | 16
17
18
19
20 | 48
44
48
47
46 | 33
36
35
26
35 | 26
27
26
24
e23 | e15
e15
e17
e17
e16 | e15
16
16
e14
e14 | 16
16
16
22
17 | 39
44
51
46
43 | 119
143
100
90
92 | 108
90
78
88
97 | 54
75
54
44
40 | 40
41
42
44
40 | 31
30
32
33
32 | | 21
22
23
24
25 | 45
46
47
43
42 | 33
36
33
e25
e28 | e22
e22
22
22
19 | e16
e15
e14
e14
e15 | 16
16
15
15 | 16
16
17
17
17 | 47
48
46
45
44 | 100
142
228
257
e230 | 77
70
67
64
68 | 39
36
34
e32
32 | 39
42
43
40
41 | 31
47
48
42
e42 | | 26
27
28
29
30
31 | 41
41
40
41
40
42 | 35
34
32
31
31 | 20
19
19
17
17
e16 | e16
e15
e14
e13
e9.0
e11 | e12
e14
14
14
 | 18
18
20
20
20
20 | 49
65
82
87
85 | e200
e180
e210
e290
e330
e320 | 70
66
62
56
51 | 31
30
28
28
27
26 | 46
49
43
48
47
45 | e41
e39
e34
e39
e37 | | TOTAL MEAN MAX MIN AC-FT STATIST | 1603
51.7
76
40
3180 | 1064
35.5
43
25
2110 | 731
23.6
31
16
1450
N DATA F | 460.0
14.8
17
9.0
912
OR WATER | 421
14.5
16
12
835
YEARS 1980 | 517
16.7
22
14
1030 | 1270
42.3
87
18
2520 | 5008
162
330
72
9930
YEAR (WY) | 3862
129
280
51
7660 | 1155
37.3
75
26
2290 | 1286
41.5
50
25
2550 | 1217
40.6
65
30
2410 | | MEAN
MAX
(WY)
MIN
(WY) | 30.7
53.3
1987
15.8
1995 | 22.7
43.3
1985
12.5
1995 | 18.0
31.0
1985
10.9
1995 | 15.6
24.4
1985
10.6
1995 | 14.9
21.1
1998
10.8
1981 | 16.4
24.4
1997
9.60
1981 | 31.3
53.8
1985
14.9
1983 | 144
512
1984
57.4
1995 | 399
939
1984
103
1989 | 182
872
1995
37.3
2000 | 62.6
145
1995
21.2
1981 | 40.0
83.7
1986
17.7
1981 | | SUMMARY | Y STATISTI | CS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1980 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | | AN
AN
IN
MINIMUM
AK FLOW
AK STAGE
IC-FT) | | 42793
117
1340
e11
12
84880
249
41
14 | Jun 24
Jan 27
Jan 26 | | e330
e9.0
13
c569
c3.16
36880
107
35 | May 30
Jan 30
Jan 27
May 30
May 30 | | a132
194
35.7
1930
b8.0
9.2
d2350
5.10
a95630
178
28 | Jan 1
Mar 2
Jun | 1984
1981
8 1985
11 1980
22 1981
8 1985
8 1985 | e Estimated. E ESCINATED. A Includes Twin Lakes Tunnel. b Also occurred Dec 31, 1994. c Maximum recorded, may have been higher during periods of no gage-height record, May 25 to Jun 1, and Jun 5-9. d From rating curve extended above 910 ft³/s. #### 09073300 ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1996 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: December 1999 to June 2000 (seasonal only, discontinued). WATER TEMPERATURE: December 1999 to June 2000 (seasonal only, discontinued). INSTRUMENTATION.--Water-quality monitor December 1999 to June 2000 (discontinued). REMARKS. -- Specific conductance record is good. Water temperature record is good. Period of missing record are caused by sensor fouling or instrument malfunction. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR CURRENT YEAR (seasonal only).-- SPECIFIC CONDUCTANCE: Maximum, 79 microsiemens, Apr. 2; minimum, 24 microsiemens, May 30, 31. WATER TEMPERATURE: Maximum, 9.9° C, May 23; minimum, 0.0° C, on several days. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------|---|---|--|--|--|---|--|--|--|--| | DEC
08 | 1025 | 28 | 74 | 7.6 | .6 | 12.3 | <1 | <1 | 29 | 9.01 | | JAN
13 | 1625 | 18 | 74 | 8.1 | 1.0 | 11.2 | <1 | <1 | | | | APR
25 | 1040 | 37 | 64 | 8.2 | 1.9 | 10.9 | | | 27 | 8.39 | | JUN
05 | 1700 | 185 | 34 | 7.7 | 8.5 | 8.8 | K1 | K1 | 14 | 4.45 | | JUL
25 | 1235 | 33 | 59 | 8.0 | 12.8 | 8.5 | K2 | K1 | | | | AUG
21 | 1620 | 39 | 72 | 7.9 | 12.4 | 8.6 | 8 | К4 | 29 | 9.14 | | DATE |
MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | DEC
08
JAN | 1.52 | 1.9 | .2 | . 4 | 29 | 5.7 | . 4 | .5 | 8.2 | 46 | | 13
APR | | | | | | | | | | | | 25
JUN | 1.38 | 1.8 | .2 | . 4 | 26 | 4.0 | .3 | . 4 | 7.3 | 40 | | 05
JUL | .80 | 1.1 | .1 | .3 | 15 | 1.6 | <.3 | .3 | 5.6 | 24 | | 25
AUG | | | | | | | | | | | | 21 | 1.49 | 1.7 | .1 | . 4 | 27 | 7.2 | <.3 | .4 | 6.6 | 43 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | DEC | 0.5 | 2 44 | . 001 | 105 | . 000 | . 10 | . 10 | . 000 | . 006 | . 001 | | 08
JAN | .06 | 3.44 | <.001 | .105 | <.002 | <.10 | <.10 | <.008 | <.006 | <.001 | | 13
APR | | | <.001 | .114 | <.002 | <.10 | <.10 | <.008 | <.006 | <.001 | | 25
JUN | .05 | 4.00 | <.001 | .075 | .003 | .11 | E.10 | <.008 | <.006 | .003 | | 05
JUL | .03 | 11.8 | .001 | .017 | <.002 | .14 | E.10 | E.004 | E.003 | .002 | | 25
AUG | | | <.001 | .025 | .003 | E.10 | E.10 | <.008 | <.006 | .001 | | 21 | .06 | 4.57 | <.001 | .048 | <.002 | E.10 | <.10 | <.008 | E.003 | .001 | # 09073300 ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |------------------|---|---|--|---|--|---|---|--|---|---| | DEC 08 | <.1 | E1 | 30 | <1 | E3 | E2 | <.2 | <2.4 | <.2 | <20 | | APR
25
JUN | <.1 | 1 | 90 | <1 | 4 | 4 | <.2 | <2.4 | <.2 | <20 | | 05
AUG | <.1 | E1 | 70 | <1 | 3 | <2 | <.2 | <2.4 | <.2 | <20 | | 21 | <.1 | E1 | 50 | <1 | 4 | <2 | <.2 | <2.4 | <.2 | <20 | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|--------|------|-----|--------|------|-----|---------|------| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | 70 | | | | | | 9 | | | | | | | 73 | 69 | 71 | | | | | 10 | | | | | | | 71 | 70 | 71 | | | | | 11 | | | | | | | 71 | 70 | 70 | | | | | 12 | | | | | | | 72 | 70 | 71 | | | | | 13 | | | | | | | 72 | 70 | 71 | | | | | 14 | | | | | | | 72 | 70 | 71 | | | | | 15 | | | | | | | | 71 | | | | | | 16 | | | | | | | 72 | 70 | 72 | | | | | 17 | | | | | | | 72 | 71 | 71 | | | | | 18 | | | | | | | 73 | 71 | 72 | | | | | 19 | | | | | | | 72 | 71 | 72 | | | | | 20 | | | | | | | 72 | 71 | 71 | | | | | 21 | | | | | | | 72 | 71 | 72 | | | | | 22 | | | | | | | 72 | 71 | 72 | | | | | 23 | | | | | | | 73 | 71 | 72 | | | | | 24 | | | | | | | 72 | 69 | 71 | | | | | 25 | | | | | | | 72 | 70 | 71 | | | | | 26 | | | | | | | 72 | 70 | 71 | | | | | 27 | | | | | | | 72 | 70 | 71 | | | | | 28 | | | | | | | 72 | 70 | 71 | | | | | 29 | | | | | | | 73 | 71 | 72 | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | | | | | | | | | | | | | 09073300 ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | SP | PECIFIC | CONDUCTA | INCE (MIC | KOSTEMENS/ | CM AI 23 | DEG. C), | WATER YEA | AK OCTOB | . CCC1 | IO DEL TEME | DIC 2000 | | |---|----------|--------------|--------------|------------------------------|-------------|------------------|--------------|---------------|-----------|------------------------------|----------------------|---------------| | DAY | MAX | MIN | MEAN | | | | | | | Manau | | | 3 DD 77 | | | 24277 | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | 76 | 74 | 75 | 75 | 73 | 74 | 53 | 50 | 51 | | 2 | | | | 76
75 | 74
75 | 75
75 | 79
76 | 72
73 | 74
75 | | 48 | | | 4 | | | | 75
76 | 75
73 | 75
75 | 76
78 | 73 | 75
74 | | | | | 5 | | | | 75 | 73 | 74 | 75 | 71 | 73 | | | | | 6 | | | | 76 | 74 | 75 | 70 | C 0 | 70 | | | | | 7 | | | | 76
75 | 74
72 | 75
74 | 72
69 | 68
66 | 68 | | | | | 8 | | | | 75 | 73 | 74 | 69 | 64 | 66 | | | | | 9 | | | | 75 | 73 | 75 | 66 | 61 | 64 | | | | | 10 | | | | 75 | 74 | 75 | 62 | 60 | 61 | 44 | | | | 11 | | | | 76 | 74 | 75 | 64 | 62 | 63 | 40 | 37 | 38 | | 12
13 | | | | 75
77 | 74
74 | 75
75 | 66 | 61
57 | 64 | 40 | 37 | 39
42 | | 14 | | | | 78 | 73 | 75
75 | 61
60 | 53 | 60
57 | 42
48 | 40
42 | 43 | | 15 | | | | 77 | 73 | 75 | 59 | 56 | 57 | 44 | 43 | 43 | | 1.0 | | | | 77 | 74 | 75 | 60 | 59 | CO | 4.4 | 20 | 42 | | 16
17 | | 74 | | 77
77 | 74 | 75
75 | 62
60 | 59
54 | 60
59 | 44
41 | 39
38 | 42 | | 18 | 75 | 75 | 75 | 77 | 74 | 75 | 55 | 52 | 54 | 42 | 41 | 42 | | 19 | | 73 | | | 73 | | 57 | 50 | 54 | 44 | 42 | 44 | | 20 | | 73 | | 77 | 74 | 76 | 59 | 57 | 58 | 47 | 44 | 45 | | 21 | 76 | 74 | 75 | 76 | 75 | 76 | 57 | 55 | 56 | 45 | 42 | 44 | | 22 | 76 | 74 | 75 | 76 | 75 | 75 | 55 | 53 | 55 | 43 | 36 | 41 | | 23
24 | 76
75 | 75
74 | 75
75 | 76
75 | 74
74 | 75
74 | 62
59 | 54
56 | 57
58 | 39
35 | 31
31 | 36
33 | | 25 | 76 | 74 | 75 | 76 | 73 | 74 | 61 | 58 | 59 | | 30 | | | 26 | 7.0 | 77 | 75 | 7.5 | 7.4 | 7.4 | F.0 | 5 4 | | | | | | 26
27 | 76
77 | 73
74 | 75
75 | 75
76 | 74
72 | 74
74 | 58
54 | 54
48 | 57
53 | | | | | 28 | 76 | 75 | 75 | 74 | 70 | 72 | 50 | 47 | 49 | | | | | 29 | 75 | 74 | 75 | 73 | 71 | 73 | 50 | 47 | 49 | | | | | 30
31 | | | | 73
74 | 71
71 | 72
73 | 50
 | 47 | 49 | | 24 | | | 31 | | | | , 1 | / 1 | 75 | | | | | | | | MONTH | | | | | 70 | | 79 | 47 | 61 | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | | | MEAN | | | | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R
 | | 1
2 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R
 | | 1 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R
 | | 1
2
3 | | JUNE

 |
 |
 | JULY |
 |

 | AUGUST | |
 | SEPTEMBE | R

 | | 1
2
3
4
5 | | JUNE |

 |

 | JULY |

 | | AUGUST | |

 | SEPTEMBE | R

 | | 1
2
3
4 |

 | JUNE |

 |

 | JULY |

 |

 | AUGUST |

 | | SEPTEMBE

 | R | | 1
2
3
4
5 | | JUNE | | | JULY |

 |

 | AUGUST | |

 | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9 | | JUNE |

 |

 | JULY |

 | | AUGUST | |

 | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9 | | JUNE | |

 | JULY | | | AUGUST | |

 | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | |

 | JULY | | | AUGUST | |

 | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | |

 |
JULY |

 | | AUGUST | |

 | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | |

 | JULY | | | AUGUST | |

 | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | JUNE | |

 | JULY | | | AUGUST | |

 | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |---|---|--|---|--|--|--|---|---|---|---|---|--| | | | OCTOBER | | | JOVEMBER | | | ECEMBER | | | JANUARY | | | - | | | | | | | | | | | | | | 1
2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4
5 | 6
7 | | | | | | | | | | | | | | 8 | | | | | | | .9 | .3 | .8 | | | | | 9 | | | | | | | . 4 | .0 | .1 | | | | | 10 | | | | | | | 1.1 | .0 | .5 | | | | | 11 | | | | | | | .8 | .1 | .6 | | | | | 12
13 | | | | | | | .7
1.2 | .1 | . 4
. 4 | | | | | 14 | | | | | | | .3 | .0 | .1 | | | | | 15 | | | | | | | .3 | .0 | .0 | | | | | 16 | | | | | | | 1.1 | .1 | .8 | | | | | 17 | | | | | | | 1.2 | .6 | 1.0 | | | | | 18 | | | | | | | 1.4 | .3 | .8 | | | | | 19
20 | | | | | | | 1.1
1.0 | .6
.2 | .8
.6 | | | | | | | | | | | | | | | | | | | 21 | | | | | | | .8 | .1 | .5 | | | | | 22
23 | | | | | | | .9
1.1 | . 2 | . 5
. 7 | | | | | 24 | | | | | | | .9 | .3 | .5 | | | | | 25 | | | | | | | 1.1 | .3 | .7 | | | | | 26 | | | | | | | 1.2 | . 4 | .8 | | | | | 27 | | | | | | | 1.1 | . 4 | .7 | | | | | 28
29 | | | | | | | 1.2 | .5 | .8 | | | | | 30 | | | | | | | | | | | | | | 31 | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | DAY
1
2 | | | | MAX
2.7
2.7 | MARCH | MEAN
1.4
1.9 | MAX
4.3
2.8 | | MEAN
2.1
1.5 | MAX 7.5 | | MEAN 4.3 | | 1
2
3 | | FEBRUARY | | 2.7
2.7
3.1 | MARCH .4 1.3 .8 | 1.4
1.9
1.9 | 4.3
2.8
4.6 | APRIL .5 .5 .5 | 2.1
1.5
2.3 | 7.5
 | MAY
1.7
2.4 | 4.3 | | 1
2
3
4 |

 | FEBRUARY |

 | 2.7
2.7
3.1
3.1 | MARCH .4 1.3 .8 .1 | 1.4
1.9
1.9 | 4.3
2.8
4.6
5.8 | APRIL .5 .5 .5 .5 .5 | 2.1
1.5
2.3
2.9 | 7.5

 | MAY
1.7
2.4
 | 4.3 | | 1
2
3 | | FEBRUARY | | 2.7
2.7
3.1 | MARCH .4 1.3 .8 | 1.4
1.9
1.9 | 4.3
2.8
4.6 | APRIL .5 .5 .5 | 2.1
1.5
2.3 | 7.5
 | MAY
1.7
2.4 | 4.3 | | 1
2
3
4
5 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7 | MARCH .4 1.3 .8 .1 .6 | 1.4
1.9
1.9
1.5
1.6 | 4.3
2.8
4.6
5.8
5.9 | APRIL .5 .5 .5 .5 .1 .3 2.0 | 2.1
1.5
2.3
2.9
3.2 | 7.5

 | MAY 1.7 2.4 | 4.3 | | 1
2
3
4
5 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7 | MARCH .4 1.3 .8 .1 .6 | 1.4
1.9
1.9
1.5
1.6 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4 | APRIL .5 .5 .5 .5 .1 .3 .2 .0 2 .1 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7 | 7.5

 | MAY 1.7 2.4 | 4.3 | | 1
2
3
4
5
6
7
8 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0 | MARCH | 1.4
1.9
1.9
1.5
1.6
1.7
1.6
1.4 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4 | 7.5 | MAY 1.7 2.4 | 4.3 | | 1
2
3
4
5 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 | 1.4
1.9
1.9
1.5
1.6 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9 | 7.5

 | MAY 1.7 2.4 | 4.3 | | 1
2
3
4
5
6
7
8 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0 | MARCH | 1.4
1.9
1.9
1.5
1.6
1.7
1.6
1.4 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4 | 7.5 | MAY 1.7 2.4 | 4.3 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3 | MARCH | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.2 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9 | 7.5

9.2
7.9
4.1 | MAY 1.7 2.4 3.4 1.5 | 4.3

5.4
2.8 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 | 1.4
1.9
1.9
1.5
1.6
1.7
1.6
1.4
1.2 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7 | APRIL .5 .5 .5 .5 .1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.2 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9 | 7.5

9.2
7.9
4.1
6.0 | MAY 1.7 2.4 3.4 1.5 | 4.3

5.4
2.8
3.4 | | 1
2
3
4
5
6
7
8
9
10 | |
FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3 | MARCH | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.2 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9 | 7.5

9.2
7.9
4.1 | MAY 1.7 2.4 3.4 1.5 | 4.3

5.4
2.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.6
3.5
1.4 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 | 1.4
1.9
1.9
1.5
1.6
1.7
1.6
1.4
1.6
1.2
1.2 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7
7.0
6.4
6.0
4.0 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.2 1.4 1.5 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 | 4.3

5.4
2.8
3.4
4.9
5.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.3
2.6
2.1
4 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 | 1.4
1.9
1.5
1.6
1.7
1.6
1.2
1.2
1.3
1.6
.8 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.2 1.4 1.5 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 | 4.3

5.4
2.8
3.4
4.9
5.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
3.5
1.4
2.6
2.5
1.7 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.2
1.2
1.3
1.3
1.6
.8 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7
7.0
6.4
6.0
4.0 | APRIL .5 .5 .5 .5 .1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.9
3.4
2.7 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 | 4.3

5.4
2.8
4.9
5.7
6.5
4.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 |

2.1 | FEBRUARY | | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.3
2.6
2.1
4
2.6
2.5
1.4 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.6
1.2
1.3
1.6
.8 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.9
4.3
3.4
2.7 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 |

2.1
1.0 | FEBRUARY 1.2 .8 .0 .0 |

1.3
.4 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
3.5
1.4
2.6
2.5
1.7
2.8
3.2 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .1 .2 .0 .1 1.2 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.2
1.2
1.3
1.3
1.6
8
1.3
1.1 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.1
2.4
7.4 | APRIL .5 .5 .5 .5 .1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.9
3.4
2.7
3.9
4.3
3.2
1.8
3.9 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0
8.8 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
4.7
6.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 |

2.1
1.0
1.8 | FEBRUARY 1.2 .8 .0 .0 1.0 |

1.3
.4
.9 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.3
2.6
2.1
4.4 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .1 .2 .5 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.6
1.2
1.2
1.3
1.6
.8 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.1
2.4
7.4 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.4
2.7
3.9
4.3
3.2
1.8
3.9 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0
8.8 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
6.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 |

2.1
1.0
1.8
3.3
1.6 | FEBRUARY |

1.3
4.9
2.0 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
2.0
2.3
2.6
2.0
2.5
1.4
2.6
2.5
1.7
2.8
3.2 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 .2 .5 .6 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.6
1.2
1.3
1.3
1.3
1.6
8
1.1
9
1.2
2.0 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.0
4.0
7.1
7.6
5.1
2.4
7.4 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 2.0 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.6
3.4
2.7
3.9
3.2 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0
8.8 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 3.6 4.2 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
6.4
6.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

2.1
1.0
1.8
3.3
1.6
2.7
2.6 | FEBRUARY 1.2 .8 .0 .0 1.0 1.0 .4 .9 |

1.3
.4
.9
2.0
1.3
1.5 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.3
2.6
2.0
2.3
2.6
3.5
1.4
2.6
2.5
1.7
2.8
3.2
4.4
3.2
4.4
3.2
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 .2 .0 .1 .2 .7 .1 .0 .6 .1 .1 .1 .1 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.6
1.2
1.2
1.3
1.6
.8
1.3
1.1
.9
1.2
2.0
2.2
1.8
2.7 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.1
2.4
7.4 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 .2 1.1 1.6 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.9
4.3
3.4
2.7
3.9
3.2
1.8
3.9 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0
8.8 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 3.6 4.2 3.6 4.2 4.1 3.9 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
7.0
6.7 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |

2.1
1.0
1.8
3.3
1.6
2.7 | FEBRUARY 1.2 .8 .0 .0 1.0 1.0 |

1.3
.4
.9
2.0
1.3 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
3.5
1.4
2.6
2.5
1.7
2.8
3.2 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 1.2 | 1.4
1.9
1.5
1.6
1.7
1.64
1.2
1.2
1.3
1.3
1.6
.8
1.3
1.1
.9
2.0 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0
7.6
5.1
2.4
7.4
5.6
3.3
4.3 | APRIL .5 .5 .5 .5 .5 .1.3 2.0 2.1 .5 .1.2 1.0 1.8 1.2 1.2 1.4 1.5 1.5 1.5 1.8 1.7 1.0 1.3 1.8 2.1 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.9
3.4
3.6
3.4
2.7
3.9
3.2
1.8
3.7
2.9
3.2 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0
8.8 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 3.6 4.2 4.1 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.7
6.4
6.5
7.0
6.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 |

2.1
1.0
1.8
3.3
1.6
2.7
2.6 | FEBRUARY 1.2 .8 .0 .0 1.0 1.0 .4 .9 |

1.3
.4
.9
2.0
1.3
1.5 |
2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.3
2.6
2.0
2.3
2.6
3.5
1.4
2.6
2.5
1.7
2.8
3.2
4.4
3.2
4.4
3.2
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 .2 .0 .1 .2 .7 .1 .0 .6 .1 .1 .1 .1 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.6
1.2
1.2
1.3
1.6
.8
1.3
1.1
.9
1.2
2.0
2.2
1.8
2.7 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.1
2.4
7.4 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 .2 1.1 1.6 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.9
4.3
3.4
2.7
3.9
3.2
1.8
3.9 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0
8.8 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 3.6 4.2 3.6 4.2 4.1 3.9 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
7.0
6.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY |

1.3
4.9
2.0
1.3
1.5
1.6
4.4 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
2.0
2.3
2.6
2.0
2.5
1.4
2.6
2.5
1.7
2.8
3.2
4.4
3.2
4.8
4.7 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 .2 .0 .1 .2 .1 .2 .5 .6 .7 .1 .1 .0 .6 .7 | 1.4
1.9
1.5
1.6
1.7
1.6
1.2
1.3
1.3
1.3
1.1
1.9
1.2
2.0
2.2
1.8
2.6
2.7
2.6 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.4
7.4
5.6
3.3
4.3
4.3
4.3
4.4
7.2
8.5
8.5 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 2.1 1.6 6 2.3 2.2 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.6
3.4
2.7
3.2
1.8
3.9
3.2
1.8
3.7
2.0
2.1
2.0
2.1
2.0
2.1
2.0
2.1
3.6
3.7
3.7
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 7.5 9.2 7.9 4.1 6.0 7.7 9.2 6.3 4.8 7.0 8.8 9.1 9.8 9.9 8.3 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 3.6 4.2 4.1 3.9 3.5 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
6.5
7.0
6.7
5.8 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |

2.1
1.0
1.8
3.3
1.6
2.7
2.6
.9 | FEBRUARY |

1.3
.4
.9
2.0
1.3
1.5
1.6
.4 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
2.0
2.3
2.6
3.5
1.4
2.5
1.7
2.8
3.2
4.4
4.6
4.7
4.0
5.2
3.8 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 1.2 .5 .6 .7 1.1 .7 1.6 .7 1.0 | 1.4
1.9
1.5
1.6
1.7
1.6
1.4
1.2
1.3
1.3
1.6
.8
1.3
1.1
.9
1.2
2.0
2.2
1.8
2.6
2.7
2.6 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.1
7.4
5.3
4.3
4.4
7.2
8.5
8.6
6.6 | APRIL .5 .5 .5 .5 .5 1.3 2.0 2.1 .5 5.2 1.0 1.8 1.2 1.0 1.8 1.2 1.1 1.5 1.5 1.5 1.8 1.7 1.0 1.3 1.8 2.1 1.6 6 2.3 2.2 2.1 | 2.1
1.5
2.3
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.6
3.4
2.7
3.9
3.2
1.8
3.7
2.1
2.7
3.2
1.8
3.7
2.1
3.2
1.8
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7
3.7 | 7.5

9.2
7.9
4.1
6.0
7.1
7.7
9.2
6.3
4.8
7.0
8.8
9.1
9.9
8.3
 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 3.6 4.2 4.1 3.9 3.5 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.7
6.5
7.0
6.7
5.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY |

1.3
4.9
2.0
1.3
1.5
1.6
4.4 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
2.0
2.3
2.6
2.0
2.5
1.4
2.6
2.5
1.7
2.8
3.2
4.4
3.2
4.8
4.7 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 .2 .0 .1 .2 .1 .2 .5 .6 .7 .1 .1 .0 .6 .7 | 1.4
1.9
1.5
1.6
1.7
1.6
1.2
1.3
1.3
1.3
1.1
1.9
1.2
2.0
2.2
1.8
2.6
2.7
2.6 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.8
6.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.4
7.4
5.6
3.3
4.3
4.3
4.3
4.4
7.2
8.5
8.5 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 2.1 1.6 6 2.3 2.2 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.6
3.4
2.7
3.2
1.8
3.9
3.2
1.8
3.7
2.0
2.1
2.0
2.1
2.0
2.1
2.0
2.1
3.6
3.7
3.7
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0 | 7.5 9.2 7.9 4.1 6.0 7.7 9.2 6.3 4.8 7.0 8.8 9.1 9.8 9.9 8.3 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 3.6 4.2 4.1 3.9 3.5 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
6.5
7.0
6.7
5.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 |

2.1
1.0
1.8
3.3
1.6
2.7
2.6
.9 | FEBRUARY 1.2 .8 .0 .0 1.0 1.0 .4 .9 .1 .0 .0 1.3 .8 |

1.3
.4
.9
2.0
1.3
1.5
1.6
.4 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.3
2.6
3.5
1.4
2.6
2.5
1.7
2.8
3.2
4.4
3.2
4.8
4.7
4.0
5.2
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .5 .6 .7 .1 1.2 .5 .6 .7 .1 .7 1.6 .7 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 . | 1.4
1.9
1.5
1.6
1.7
1.6
1.2
1.2
1.3
1.6
1.3
1.1
2.0
2.2
1.8
2.7
2.6
2.7
2.6 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
3.3
4.4
7.2
8.5
8.6
6.5 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 .2 1.1 1.6 .6 2.3 2.2 2.1 2.1 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.9
3.2
1.8
3.9
3.7
2.0
2.1
2.7
3.6
5.0
9.1
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1 | 7.5 9.2 7.9 4.1 6.0 7.1 7.7 9.2 6.3 4.8 9.1 9.8 9.1 9.9 8.3 | MAY 1.7 2.4 3.4 1.5 .7 2.7 3.8 4.1 3.3 2.2 2.8 4.2 3.6 4.2 3.6 4.2 3.5 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
7.0
6.5
7.0
6.5
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | 1.3 .4 .9 2.0 1.3 1.5 1.6 .4 .6 1.1 1.9 1.6 | 2.7
2.7
3.1
3.1
2.7
3.2
2.8
2.6
3.0
2.3
2.6
2.0
2.5
1.4
2.6
2.5
1.7
2.8
3.2
4.4
3.2
4.8
4.6
4.7 | MARCH .4 1.3 .8 .1 .6 .2 .7 .5 .7 .1 .0 .6 .1 .0 .2 .1 .2 .0 .1 .1 .2 .5 .6 .7 .1 .1 .0 .6 .7 .1 .0 .6 .6 .7 .7 .1 .6 .7 .6 .6 .7 .6 .6 .7 .6 .6 .6 | 1.4
1.9
1.5
1.6
1.7
1.6
1.2
1.3
1.3
1.6
8
1.3
1.1
9
1.2
2.0
2.2
1.8
2.6
2.7
2.6 | 4.3
2.8
4.6
5.8
5.9
6.5
6.4
5.7
5.7
7.0
6.4
6.0
4.0
7.1
7.6
5.4
7.4
5.6
3.3
4.3
4.3
4.3
4.4
6.6
6.5
5.0 | APRIL .5 .5 .5 .5 1.3 2.0 2.1 .5 1.2 1.0 1.8 1.2 1.4 1.5 1.5 1.8 1.7 1.0 1.3 1.8 .2 .1 1.6 .6 2.3 2.2 2.1 2.6 | 2.1
1.5
2.9
3.2
3.8
3.7
2.9
3.4
2.9
3.4
2.7
3.6
3.4
2.7
3.2
1.8
3.9
3.7
2.0
2.1
7.3
6
5.0
6
6
6
7.0
6
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 7.5 9.2 7.9 4.1 6.0 7.7 9.2 6.3 4.8 9.1 9.8 9.9 8.3 | MAY 1.7 2.4 3.4 1.5 2.7 3.8 4.1 3.3 2.2 2.8 4.2 3.6 4.2 4.1 3.9 3.5 | 4.3

5.4
2.8
3.4
4.9
5.7
6.5
4.1
3.5
7.0
6.7
5.8 | ### 09073300 ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |-------|-----|------|------|-----|------|------|-----|-------|------|-----|---------|------| | | | JUNE | | | JULY | | A | UGUST | | S | EPTEMBE | R | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | 8.8 | | | | | | | | | | | | | 3 | 0.0 | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | 20 | | | | | | | | | | | | | | 0.1 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | |
 | | | | | | 31 | MONTH | | | | | | | | | | | | | #### 09073400 ROARING FORK RIVER NEAR ASPEN, CO LOCATION.--Lat 39°10'48", long 106°48'05", T. 10 S., R. 84 W., Pitkin County, Hydrologic Unit 14010004, on right bank 25 ft upstream from private bridge, 115 ft upstream from Salvation ditch headgate, 1.0 mi southeast of Aspen, and 2.0 mi upstream from Hunter Creek. DRAINAGE AREA. -- 108 mi². PERIOD OF RECORD. -- October 1964 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,014.01 ft above sea level. Prior to Apr. 25, 1968, at site 85 ft upstream, at datum 1.16 ft higher. REMARKS.--Records fair except for estimated daily discharges, which are poor. Transmountain diversion 14 mi upstream through Twin Lakes tunnel to Arkansas River basin since May 24, 1935, (42,060 acre-ft diverted during current year, provided by Colorado Division of Water Resources). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | C FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMB | ER 2000 | | | |---|----------------------------|---|--------------------------------------|--|---------------------------|----------------------------------|--|--|-------------------------------|--|----------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 101 | 62 | 41 | 26 | e24 | 24 | 39 | 114 | 462 | 81 | 37 | 59 | | 2 | 95 | 56 | 42 | 26 | e23 | 25 | 39 | 131 | 405 | 79 | 58 | 55 | | 3 | 87 | 55 | 41 | 26 | e25 | e25 | 40 | 158 | 385 | 75 | 63 | 51 | | 4 | 78 | 56 | 40 | e25 | e25 | e27 | 41 | 179 | 369 | 69 | 62 | 47 | | 5 | 81 | 56 | e31 | 26 | e25 | e29 | 44 | 199 | 342 | 64 | 60 | 53 | | 6 | 77 | 53 | e35 | 24 | e24 | e27 | 47 | 211 | 329 | 59 | 58 | 66 | | 7 | 88 | 53 | e37 | e23 | 24 | e28 | 49 | 210 | 314 | 57 | 52 | 71 | | 8 | 88 | 56 | e38 | 25 | 24 | 26 | 50 | 215 | 299 | 58 | 47 | 73 | | 9 | 97 | 57 | e34 | 25 | 25 | 27 | 53 | 205 | 295 | 62 | 42 | 85 | | 10 | 93 | 51 | 38 | 25 | 26 | 27 | 58 | 212 | 256 | 59 | 41 | 63 | | 11 | 87 | 50 | 37 | 25 | 26 | 27 | 57 | 251 | 225 | 52 | 41 | 48 | | 12 | 82 | 47 | 36 | 23 | 25 | 29 | 56 | 222 | 209 | 51 | 44 | 45 | | 13 | 82 | 45 | e30 | 24 | 25 | 28 | 61 | 176 | 196 | 51 | 53 | 43 | | 14 | 73 | 45 | e34 | e24 | 26 | 29 | 64 | 165 | 183 | 52 | 50 | 41 | | 15 | 71 | 47 | e22 | e24 | 25 | 30 | 66 | 167 | 179 | 64 | 51 | 41 | | 16 | 68 | 45 | 35 | e25 | 24 | 30 | 62 | 187 | 171 | 102 | 52 | 39 | | 17 | 61 | 47 | 35 | e26 | 25 | 30 | 65 | 197 | 156 | 130 | 56 | 38 | | 18 | 69 | 48 | 35 | 27 | 25 | 31 | 72 | 166 | 143 | 93 | 57 | 43 | | 19 | 68 | 34 | 35 | 28 | 24 | 30 | 70 | 152 | 154 | 72 | 62 | 44 | | 20 | 65 | 44 | 34 | 26 | 24 | 32 | 67 | 153 | 181 | 64 | 53 | 41 | | 21 | 64 | 44 | e30 | 27 | 25 | 32 | 71 | 167 | 147 | 60 | 51 | 44 | | 22 | 63 | 45 | e30 | 27 | 25 | 33 | 73 | 214 | 130 | 56 | 57 | 73 | | 23 | 61 | 40 | 31 | 25 | 25 | 33 | 75 | 317 | 118 | 53 | 56 | 65 | | 24 | 59 | 36 | e29 | 25 | 26 | 34 | 75 | 402 | 110 | 51 | 52 | 59 | | 25 | 57 | 38 | e28 | 27 | 24 | 35 | 72 | 371 | 106 | 49 | 54 | 59 | | 26
27
28
29
30
31 | 57
57
56
60
56 | 44
44
43
42 | 29
29
e28
e27
e26
e25 | 27
27
24
23
e16
e18 | 24
25
25
25
 | 36
37
39
39
40
39 | 75
88
107
117
122 | 312
284
350
461
529
512 | 113
123
110
95
86 | 46
45
42
41
40
39 | 62
67
58
63
62
60 | 58
55
52
56
53 | | TOTAL | 2262 | 1427 | 1022 | 769 | 718 | 958 | 1975 | 7589 | 6391 | 1916 | 1681 | 1620 | | MEAN | 73.0 | 47.6 | 33.0 | 24.8 | 24.8 | 30.9 | 65.8 | 245 | 213 | 61.8 | 54.2 | 54.0 | | MAX | 101 | 62 | 42 | 28 | 26 | 40 | 122 | 529 | 462 | 130 | 67 | 85 | | MIN | 56 | 34 | 22 | 16 | 23 | 24 | 39 | 114 | 86 | 39 | 37 | 38 | | AC-FT | 4490 | 2830 | 2030 | 1530 | 1420 | 1900 | 3920 | 15050 | 12680 | 3800 | 3330 | 3210 | | | | | | | | | BY WATER | | | 225 | F1 0 | F1 0 | | MEAN | 44.6 | 35.6 | 30.3 | 27.1 | 25.9 | 27.9 | 49.2 | 199 | 435 | 206 | 71.2 | 51.8 | | MAX | 80.0 | 61.6 | 47.5 | 44.6 | 41.1 | 44.3 | 79.7 | 554 | 1017 | 1057 | 186 | 94.0 | | (WY) | 1966 | 1985 | 1987 | 1997 | 1997 | 1997 | 1985 | 1984 | 1984 | 1995 | 1995 | 1999 | | MIN | 23.5 | 20.7 | 18.6 | 17.0 | 15.4 | 16.6 | 26.2 | 97.0 | 119 | 48.4 | 29.3 | 23.8 | | (WY) | 1978 | 1978 | 1977 | 1977 | 1977 | 1977 | 1973 | 1983 | 1977 | 1977 | 1977 | 1977 | | SUMMARY | STATISTI | CS | FOR 1 | .999 CALEN | IDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1965 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | CAN CAN AN MINIMUM CAK FLOW CAK STAGE CAC-FT) CDS CDS | | 53978
148
1150
e17
23
107100
395
58
25 | Jun 21
Jan 29
Jan 9 | | 28328
77.4
529
e16
22
639
3.32
56190
179
52
25 | May 30
Jan 30
Jan 28
May 30
May 30 | | a154
229
42.1
1900
12
15
b2230
5.97
a111600
252
41
23 | Nov 2
Feb
Jul 1 | 1984
1977
10 1995
28 1976
1 1977
11 1995
11 1995 | a Includes diversions through Twin Lakes Tunnel. b Also occurred Jun 9, 1985. #### 09074000 HUNTER CREEK NEAR ASPEN, CO LOCATION.--Lat $39^{\circ}12^{\circ}21^{\circ}$, long $106^{\circ}47^{\circ}49^{\circ}$, Pitkin County, Hydrologic Unit 14010004, on right bank 280 ft upstream from headgate of Red Mountain ditch, 1.5 mi upstream from mouth, and 1.5 mi northeast of Aspen. DRAINAGE AREA.--41.1 mi². PERIOD OF RECORD.--June 1950 to September 1956, September 1969 to current year. Statistical summary computed for 1980 to current GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,610 ft above sea level, from topographic map. Prior to Sept. 1, 1969, at site 220 ft downstream, at different datum, Sept. 1, 1969 to July 10, 1991 at datum 1.0 ft lower. REMARKS.--Records fair except for estimated daily discharges, which are poor. Transmountain diversion upstream from station to Charles H. Boustead tunnel by feeder conduit. Several small diversions upstream from station for irrigation of hay meadows upstream and downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | SECOND,
DAILY | WATER YE
MEAN VA | EAR OCTOBER
ALUES | R 1999 TO | SEPTEMBE | R 2000 | | | |---|---|---|--|--|--------------------------------------|--|--------------------------------------|--|------------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 36
34
33
30
30 | 24
20
19
18
18 | e10
e10
e10
e6.0
e4.6 | e5.0
e5.2
e5.0
e4.4
e4.9 | e4.5
e4.1
e4.4
e4.4
e4.4 | e4.8
e4.9
e5.0
e5.4
e5.6 | 5.5
5.3
5.3
6.4 | 65
96
149
199
262 | 250
200
199
173
145 | 67
64
57
49
43 | 16
15
14
13 | 13
11
9.5
8.9
8.6 | | 6
7
8
9
10 | 30
40
42
48
43 | | | e4.8
e4.2
e4.5
e4.8
e4.7 | | | | | | 41
40
41
46
43 | | 12
13
11
17
12 | | 11
12
13
14
15 | 39
34
31
30
28 | | | e4.5
e4.5
e4.3
e4.2
e4.2 | e4.6
e4.5
e4.4
e4.5
e4.7 | e4.3
e4.7
e4.4
4.5
4.4 | 23
23
27
33
36 | 270
198
87
83
85 | 214
192
160
98
52 | 36
34
31
35
61 | 8.8
9.9
13
10 | 9.2
8.2
7.7
7.2
6.8 | | 16
17
18
19
20 | 25
19
26
23
22 | 11
10
10
e9.4
e10 | e5.8
e6.2
e5.4
e5.6
e5.4 | e4.5
e4.5
e5.0
e5.2
e4.9 | e4.6
e4.9
e4.8
e4.4
e4.4 | 4.7
4.6
4.2
e3.9
4.4 | | | | | 11
13
22
25
18 | 6.3
6.0
7.4
8.1
6.9 | | 21
22
23
24
25 | 22
21
20
19
18 | e10
e11
e9.2
e7.6
e8.4 | e5.0
e5.0
e5.2
e4.9
e4.8 | e4.8
e4.7
e4.3
e4.3
e4.7 | | | | | | 33
29
26
25
24 | | 9.1
34
20
16
15 | | 26
27
28
29
30
31 | 18
19
19
22
22
24 | e13
e12
e11
e10
e10 | e4.9
e4.9
e4.9
e4.8
e4.6
e4.4 | e4.8
e4.7
e4.1
e3.9
e2.8
e3.3 | e4.3
e4.7
e5.0
e4.8 | 5.4
6.1
7.1
6.8
6.3
5.6 | 30
48
73
86
82 | 175
141
207
424
454
370 | 48
49
45
52
72 | 22
21
20
19
18
17 | 12
17
13
14
14 | 16
12
11
16
18 | | TOTAL
MEAN
MAX
MIN
AC-FT | 867
28.0
48
18
1720 |
401.6
13.4
24
7.6
797 | | 139.7
4.51
5.2
2.8
277 | | | 907.5
30.2
86
5.3
1800 | 5686
183
454
65
11280 | 3259
109
258
43
6460 | | 422.3
13.6
25
8.4
838 | 356.9
11.9
34
6.0
708 | | STATIST | CICS OF M | ONTHLY ME | | OR WATER Y | | | | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 16.9
32.7
1985
5.35
1990 | 11.0
25.1
1985
3.32
1990 | 7.19
14.4
1985
2.33
1981 | 6.09
11.3
1987
2.74
1981 | 5.64
9.21
1985
2.89
1990 | 6.76
11.3
1997
3.66
1990 | 20.0
40.8
1989
7.68
1983 | 126
287
1996
44.8
1995 | 209
462
1996
72.6
1989 | 80.4
271
1995
30.4
1994 | 32.7
74.4
1995
10.6
1980 | 19.8
42.1
1999
7.03
1980 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | E | FOR 2000 W | ATER YEAR | | WATER YE | ARS 1980 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ANNUAL DAILY ME SEVEN-DA ANEOUS P | EAN EAN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | | Jun 24
Dec 15
Dec 25 | | 3.9 | May 30
Jan 30
Jan 28
May 29
May 29 | | a45.2
81.2
27.2
786
1.8
1.9
b1170
c2.33
32740
120
13
5.0 | Jun
Dec :
Dec :
Jun
Jun | 1996
1994
6 1988
20 1980
20 1980
8 1985
8 1985 | E BELLHIELEG. A Average discharge for 16 years (water years 1951-1956, 1970-1979), 50.7 ft³/s; 36730 acre-ft/yr, prior to diversion through Charles H. Boustead tunnel. From rating curve extended above 300 ft³/s. Maximum gage height for period of record, 4.30 ft, Nov 30, 1984, backwater from ice. #### 09080190 RUEDI RESERVOIR NEAR BASALT, CO LOCATION.--Lat $39^{\circ}21^{\circ}50^{\circ}$, long $106^{\circ}49^{\circ}05^{\circ}$, in $NW^{1}/_{4}$ sec.18, T.8 S., R.84 W., Pitkin County, Hydrologic Unit 14010004, in gatehouse of Ruedi Dam just upstream from Rocky Fork Creek, and 13 mi east of Basalt. DRAINAGE AREA. -- 223 mi². PERIOD OF RECORD. -- May 1968 to current year. GAGE.--Water-stage recorder. Datum of gage is 7766.00 ft above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by an earthfill dam. Storage began in May 1968; dam completed July 16, 1968. Capacity, 102,300 acre-ft, 1969 survey, between elevations 7,540.00 ft, sill of auxiliary outlet and 7,766.00 ft, crest of spillway. Dead storage below elevation 7,540.00 ft, 61 acre-ft. Figures given are total contents. COOPERATION .-- Records provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 104,000 acre-ft, June 11, 12, 2000, elevation, 7,767.62 ft; minimum after first filling, 32,430 acre-ft, Apr. 24, 1996, elevation, 7,670.17 ft. EXTREMES (AT 2400) FOR CURRENT YEAR.--Maximum contents, 104,000 acre-ft, June 11 and 12, elevation, 7,767.62 ft; minimum contents, 63,640 acre-ft, Apr. 25 and 26, elevation, 7,721.08 ft. #### MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation (feet) | Contents (acre-feet) | Change in contents (acre-feet) | |---|---|---|--| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 7758.30
7745.28
7740.83
7736.66 | 94.880
83,040
79,210
75,740 | -11,840
-3,830
-3,470 | | CAL YR 1999 | - | - | +4,910 | | Jan. 31. Feb. 29. Mar 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 7732.45
7728.49
7724.38
7722.86
7759.12
7766.79
7762.24
7748.00
7742.09 | 72,320
69,210
66,090
64,950
95,660
103,160
98,670
85,430
80,280 | -3,420
-3,110
-3,120
-1,140
+30,710
+7,500
-4,490
-13,240
-5,150 | | WATER YEAR 2000 | _ | - | -14,600 | #### 09080400 FRYINGPAN RIVER NEAR RUEDI, CO LOCATION.--Lat $39^{\circ}21^{\circ}56^{\circ}$, long $106^{\circ}49^{\circ}30^{\circ}$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec.12, T.8 S., R.85 W., Pitkin County, Hydrologic Unit 14010004, on right bank 0.4 mi downstream from Rocky Fork Creek and Ruedi Dam, 1.5 mi west of former site of Ruedi, and 12.5 mi east of DRAINAGE AREA. -- 238 mi². PERIOD OF RECORD.--October 1964 to current year. Statistical summary computed for 1969 to current year. GAGE.--Water-stage recorder with satellite telemetry and concrete control. Datum of gage is 7,473.25 ft above sea level, (levels by U.S. Bureau of Reclamation). Prior to Nov. 7, 1970, at site 2.0 mi downstream at different datum. REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of hay meadows upstream from station. Transmountain diversions upstream from station to Arkansas River basin through Busk-Ivanhoe Tunnel since June 1925 and Charles H. Boustead Tunnel since May 16, 1972 (see elsewhere in this report). Flow regulated by Ruedi Reservoir (station 09080190) since May 18, 1968. Several observations of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBIC | C FEET PE | | WATER YE
MEAN VA | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | ER 2000 | | | |----------|------------|-----------------------|-----------|------------|------------|---------------------|----------------------|-----------------|------------|-------------|------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 218 | 268 | 96 | 94 | 96 | 98 | 97 | 192 | 181 | 273 | 284 | 206 | | 2 | 218 | 232 | 96 | 94 | 96 | 98 | 97 | 192 | 189 | 266 | 284 | 206 | | 3 | 218 | 211 | 96 | 94 | 96 | 98 | 146 | 193 | 221 | 259 | 284 | 209 | | 4 | 217 | 188 | 96 | 94 | 96 | 98 | 185 | 191 | 218 | 247 | 284 | 209 | | 5 | 224 | 172 | 96 | 94 | 96 | 98 | 192 | 143 | 216 | 251 | 284 | 209 | | 6
7 | 241 | 141 | 96 | 94 | 96 | 98 | 192 | 126 | 211 | 284 | 284 | 209 | | 8 | 241
240 | 141
87 | 96
96 | 94
94 | 96
96 | 98
98 | 192
189 | 127
127 | 209
208 | 266
228 | 284
282 | 208
205 | | 9 | 240 | 64 | 96
96 | 94 | 96
96 | 98 | 189 | 127 | 208 | 230 | 308 | 205 | | 10 | 240 | 64 | 96 | 94 | 97 | 98 | 189 | 124 | 318 | 219 | 364 | 202 | | 11 | 239 | 64 | 96 | 95 | 96 | 97 | 189 | 129 | 375 | 181 | 361 | 203 | | 12 | 268 | 89 | 95 | 96 | 96 | 98 | 189 | 142 | 394 | 181 | 361 | 203 | | 13 | 296 | 98 | 95 | 96 | 96 | 97 | 187 | 170 | 388 | 181 | 361 | 203 | | 14 | 295 | 98 | 96 | 96 | 96 | 97 | 187 | 168 | 373 | 193 | 360 | 202 | | 15 | 296 | 98 | 96 | 96 | 96 | 97 | 186 | 171 | 354 | 230 | 360 | 202 | | 16 | 296 | 98 | 97 | 96 | 96 | 97 | 187 | 172 | 347 | 230 | 339 | 201 | | 17
18 | 295
295 | 97
96 | 97
97 | 96
96 | 96
96 | 97
96 | 187
187 | 175
173 | 330
318 | 230 | 297
302 | 201 | | 19 | 295
295 | 96
96 | 97 | 96
96 | 96 | 96
97 | 185 | 173 | 318 | 230
231 | 302 | 201
201 | | 20 | 293 | 96
96 | 97
97 | 96 | 96 | 97
97 | 185 | 173 | 340 | 231 | 302 | 197 | | 21 | 291 | 96 | 97 | 96 | 97 | 97 | 186 | 172 | 332 | 187 | 288 | 176 | | 22 | 291 | 96 | 96 | 96 | 97 | 96 | 186 | 174 | 320 | 251 | 254 | 158 | | 23 | 291 | 96 | 97 | 96 | 97 | 97 | 187 | 180 | 311 | 258 | 255 | 80 | | 24 | 291 | 96 | 97 | 96 | 97 | 97 | 184 | 191 | 304 | 257 | 256 | 81 | | 25 | 290 | 96 | 96 | 96 | 97 | 97 | 184 | 192 | 300 | 256 | 256 | 82 | | 26 | 290 | 96 | 97 | 97 | 97 | 97 | 184 | 182 | 292 | 265 | 256 | 82 | | 27 | 290 | 96 | 96 | 97 | 97 | 97 | 184 | 178 | 299 | 284 | 256 | 82 | | 28 | 289 | 96 | 95 | 96 | 98 | 98 | 184 | 178 | 298 | 284 | 256 | 82 | | 29 | 290 | 96 | 94 | 96 | 98 | 98 | 185 | 183 | 290 | 284 | 256 | 82 | | 30
31 | 290
292 | 96
 | 94
94 | 96
96 | | 98
97 | 188 | 186
185 | 283 | 284
284 | 242
206 | 82
 | | TOTAL | 8360 | 3458 | 2976 | 2957 | 2796 | 3019 | 5389 | 5186 | 8760 | 7534 | 9068 | 5066 | | MEAN | 270 | 115 | 96.0 | 95.4 | 96.4 | 97.4 | 180 | 167 | 292 | 243 | 293 | 169 | | MAX | 296 | 268 | 90.0 | 97 | 98 | 98 | 192 | 193 | 394 | 284 | 364 | 209 | | MIN | 217 | 64 | 94 | 94 | 96 | 96 | 97 | 124 | 181 | 181 | 206 | 80 | | AC-FT | 16580 | 6860 | 5900 | 5870 | 5550 | 5990 | 10690 | 10290 | 17380 | 14940 | 17990 | 10050 | | STATIST | CICS OF MO | ONTHLY MEA | N DATA FO | OR WATER | YEARS 1969 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 155 | 126 | 136 | 132 | 135 | 145 | 165 | 274 | 372 | 272 | 168 | 148 | | MAX | 366 | 185 | 224 | 228 | 250 | 280 | 370 | 669 | 950 | 812 | 293 | 255 | | (WY) | 1970 | 1985 | 1996 | 1996 | 1996 | 1996 | 1971 | 1970 | 1984 | 1995 | 2000 | 1998 | | MIN | 54.8 | 44.0 | 38.2 | 36.8 | 36.3 | 33.6 | 39.1 | 116 | 115 | 95.9 | 57.1 | 49.1 | | (WY) | 1978 | 1969 | 1969 | 1969 | 1969 | 1977 | 1969 | 1990 | 1992 | 1977 | 1977 | 1977 | | SUMMARY | STATIST | ICS | FOR 1 | .999 CALEI | NDAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1969 | - 2000 | | ANNUAL | TOTAL | | | 66964 | | | 64569 | | | | | | | ANNUAL | | | | 183 | | | 176 | | | a186 | | | | | ' ANNUAL N | | | | | | | | | 288 | | 1984 | | | ANNUAL ME | | | | | | | | | 83.9 | | 1977 | | | DAILY ME | | | 766 | Jun 30 | | 394 | Jun 12 | | 1390 | | 25 1983 | | | DAILY MEA | | | 64 | Nov 9 | | 64 | Nov 9 | | b28 | | 14 1995 | | | SEVEN-DAY | Y MINIMUM | | 79 | Jan 1 | | 81
400 | Nov 8
Jun 12 | | 29
c1400 | | 5 1981
16 1976 | | | | EAK FLOW
EAK STAGE | | | | | 2.47 | | | d3.50 | | 16 1976 | | | RUNOFF (A | | | 132800 | | | 128100 | 0011 12 | | 134600 | ьср | 10 10,0 |
| | ENT EXCE | | | 291 | | | 295 | | | 305 | | | | | ENT EXCE | | | 132 | | | 181 | | | 154 | | | | 90 PERC | ENT EXCE | EDS | | 81 | | | 96 | | | 82 | | | | | | | | | | | | | | | | | Subsequent to completion of Ruedi Reservoir. Minimum daily discharge for period of record, 16 ft³/s, Feb 2, 1968 (result of storage in Ruedi Reservoir); minimum daily discharge prior to construction of Ruedi Reservoir, 28 ft³/s, Mar 4, 1966. Maximum discharge and stage for period of record, 2690 ft³/s, Jun 18, 1965, gage height 5.16 ft, site and datum then in use. d Maximum gage height for statistical period, 3.89 ft, Jun 24, 1983. #### 392110107011300 ROARING FORK RIVER NEAR BASALT, CO #### WATER-QUALITY RECORDS LOCATION.-- Lat $39^{\circ}21^{\circ}10^{\circ}$, long $107^{\circ}01^{\circ}13^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec. 17, T. 8 S., R. 86 W., Pitkin County, Hydrologic Unit 14010004, on left bank at Altamira Ranch Road bridge, 1.2 mi upstream from the Fryingpan River, and 1.3 mi southeast of Basalt. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- December 1999 to June 2000 (seasonal records only). PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: December 1999 to June 2000 (seasonal records only). WATER TEMPERATURE: December 1999 to June 2000 (seasonal records only). INSTRUMENTATION.--Water quality monitor with satellite telemetry December 1999 to June 2000. REMARKS.--Specific conductance record is good. Water temperature record is good. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR CURRENT YEAR (seasonal only).-- SPECIFIC CONDUCTANCE: Maximum, 498 microsiemens/cm, Jan. 30; minimum, 129 microsiemens/cm, May 31. WATER TEMPERATURE: Maximum, 14.4° C, June 15; minimum, 0.0° C, on many days. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | |-----------|------|---|-----|--|-----------|--| | DEC | | | | | | | | 22 | 1035 | e174 | 472 | 8.2 | .0 | 3.8 | | 29 | 1445 | e172 | 455 | 8.2 | .0 | 4.8 | | JAN | | | | | | | | 13 | 0830 | e154 | 477 | | . 0 | 5.5 | | 13 | 1330 | e182 | 476 | 8.6 | .0
2.9 | 4.7
4.7 | | 26
FEB | 1400 | 165 | 448 | 8.0 | 2.9 | 4.7 | | 16 | 1430 | 133 | 470 | 8.9 | 2.5 | 4.9 | | MAR | 1430 | 133 | 470 | 0.5 | 2.5 | 4.5 | | 09 | 1130 | 137 | 470 | 8.9 | 2.8 | 4.9 | | APR | | | | | | | | 12 | 1330 | 198 | 393 | 8.8 | 9.3 | 2.5 | | MAY | | | | | | | | 11 | 1400 | e922 | 213 | 8.4 | 9.6 | 1.2 | | JUN | 1620 | -600 | 207 | 0 5 | 12.0 | 1 0 | | 27 | 1630 | e680 | 307 | 8.5 | 13.2 | 1.9 | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|-----|--------|------|-----|---------|------|-----|---------|------| | | | OCTOBER | | NC | VEMBER | | DE | ECEMBER | | | JANUARY | | | 1 | | | | | | | | | | 461 | 434 | 442 | | 2 | | | | | | | | | | 443 | 435 | 440 | | 3 | | | | | | | | | | 462 | 443 | 452 | | 4 | | | | | | | | | | 487 | 457 | 470 | | 5 | | | | | | | | | | 457 | 440 | 447 | | 6 | | | | | | | | | | 458 | 444 | 453 | | 7 | | | | | | | | 428 | | 492 | 450 | 473 | | 8 | | | | | | | | 424 | | 472 | 444 | 455 | | 9 | | | | | | | 454 | | | 452 | 441 | 446 | | 10 | | | | | | | 439 | 415 | 433 | 449 | 433 | 442 | | 11 | | | | | | | 433 | | | 443 | 429 | 437 | | 12 | | | | | | | 443 | | | 445 | 434 | 438 | | 13 | | | | | | | 460 | 436 | 451 | 457 | 437 | 447 | | 14 | | | | | | | 454 | 424 | 443 | 457 | 440 | 448 | | 15 | | | | | | | 474 | 454 | 465 | 457 | 433 | 439 | | 16 | | | | | | | 460 | 434 | 446 | 441 | 428 | 433 | | 17 | | | | | | | 441 | | | 445 | 437 | 441 | | 18 | | | | | | | | | | 445 | 438 | 441 | | 19 | | | | | | | 433 | | | 446 | 437 | 442 | | 20 | | | | | | | 440 | 432 | 435 | 448 | 432 | 443 | | 21 | | | | | | | 445 | 439 | 442 | 448 | 438 | 442 | | 22 | | | | | | | | 436 | | 442 | 434 | 436 | | 23 | | | | | | | | | | 460 | 432 | 442 | | 24 | | | | | | | | | | 459 | 435 | 447 | | 25 | | | | | | | | | | 446 | 433 | 438 | | 26 | | | | | | | | | | 443 | 429 | 437 | | 27 | | | | | | | | | | 449 | 434 | 439 | | 28 | | | | | | | | | | 453 | 437 | 444 | | 29 | | | | | | | 460 | | | | 450 | | | 30 | | | | | | | 463 | 436 | 451 | 498 | | | | 31 | | | | | | | 473 | 445 | 459 | 483 | 451 | 468 | | MONTH | | | | | | | 474 | 415 | 447 | 498 | 428 | 446 | ### 392110107011300 ROARING FORK RIVER NEAR BASALT, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | SF | ECIFIC | CONDUCTA | TACE (MITCH | OSTEMENS/ | UM AI ZJ | DEG. C), | WAIER IEF | AK OCIOE | DER IDDO | 10 SEPIEMB | ER 2000 | | |---|--|--|--|--------------|-------------|------------------|--------------|---------------|------------|----------------------|--------------------------|--------------| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | , | | MARCH | | | APRIL | | | MAY | | | | | | | | | | | | | | | | | 1 | 455 | 437 | 444 | 462 | 448 | 455 | 463 | 443 | 452 | 308 | 284 | 295 | | 2 | 461
447 | 436
427 | 449
438 | 464
464 | 447
448 | 454
457 | 466
472 | 440
438 | 454
454 | 310
293 | 281
243 | 291
255 | | 4 | 444 | 423 | 437 | 472 | 448 | 459 | 466 | 438 | 453 | 250 | 220 | 231 | | 5 | 447 | 422 | 435 | 475 | 447 | 457 | 466 | 423 | 444 | 228 | 193 | 208 | | 6 | 459 | 425 | 440 | 467 | 446 | 456 | 440 | 415 | 427 | 208 | | | | 7 | 465 | 433 | 445 | 467 | 443 | 456 | 426 | 393 | 411 | | | | | 8 | 467 | 425 | 446 | 465 | 443 | 452 | 417 | 395 | 407 | | | | | 9 | 463
457 | 434
420 | 444
434 | 470
463 | 445
442 | 458
453 | 416
395 | 385
365 | 397
378 | | | | | 10 | 437 | 420 | 434 | 403 | 442 | 400 | 393 | 303 | 370 | | | | | 11 | 446 | 429 | 433 | 479 | 448 | 463 | 376 | 366 | 371 | 214 | | | | 12 | 445 | 437 | 441 | 480 | 439 | 452 | 392 | 372 | 379 | 233 | 190 | 204 | | 13
14 | 446
449 | 436
441 | 441
444 | 483
483 | 448
447 | 460
459 | 393
377 | 365
349 | 378
361 | 255
267 | 233
254 | 247
259 | | 15 | 451 | 436 | 442 | 477 | 446 | 457 | 357 | 334 | 347 | 271 | 260 | 264 | | | | | | | | | | | | | | | | 16
17 | 475
474 | 439
443 | 451
449 | 468
472 | 441
450 | 451
459 | 371
372 | 349
356 | 357
365 | 271
260 | 255
225 | 262
236 | | 18 | 455 | 444 | 450 | 474 | 443 | 454 | 368 | 328 | 344 | 266 | 248 | 258 | | 19 | 477 | 448 | 458 | 496 | 449 | 465 | 345 | 333 | 337 | 282 | 266 | 273 | | 20 | 481 | 453 | 466 | 496 | 432 | 454 | 366 | 345 | 352 | 284 | 274 | 279 | | 21 | 478 | 438 | 448 | 479 | 449 | 461 | 369 | 339 | 354 | 284 | 267 | 273 | | 22 | 457 | 445 | 452 | 480 | 448 | 462 | 350 | 331 | 341 | 276 | 247 | 257 | | 23 | 461 | 447 | 453 | 485 | 445 | 464 | 356 | 334 | 344 | 247 | 192 | 213 | | 24
25 | 461
462 | 448
450 | 456
453 | 485
479 | 444
448 | 468
465 | 355
371 | 343
352 | 347
360 | 192
181 | 163
156 | 172
168 | | 23 | 102 | 430 | 455 | 475 | 110 | 403 | 371 | 332 | 300 | 101 | 130 | 100 | | 26 | 472 | 449 | 460 | 476 | 441 | 462 | 369 | 350 | 358 | 193 | 172 | 182 | | 27 | 478 | 443 | 456 | 476 | 445 | 460 | 361 | 320 | 336 | 213 | 193 | 203 | | 28
29 | 478
458 | 443
444 | 453
453 | 469
461 | 435
428 | 451
445 | 326
291 | 287
272 | 299
279 | 205
177 | 177
146 | 197
161 | | 30 | | | | 460 | 433 | 446 | 284 | 270 | 276 | 162 | 131 | 145 | | 31 | | | | 455 | 434 | 445 | | | | 167 | 129 | 148 | | MONTH | 481 | 420 | 447 | 496 | 428 | 457 | 472 | 270 | 372 | 310 | 129 | 227 | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 174 | JUNE
134 | 155 | | JULY | | | AUGUST | | | SEPTEMBE | ER
 | | 1
2 | 174
182 | JUNE
134
152 | 155
167 | | JULY | | | AUGUST | | | SEPTEMBE | ER
 | | 1
2
3 | 174
182
186 | JUNE
134
152
155 | 155
167
170 |
 | JULY | |

 | AUGUST | |
 | SEPTEMBE | ER

 | | 1
2 | 174
182 | JUNE
134
152 | 155
167 | | JULY | | | AUGUST | | | SEPTEMBE | ER
 | | 1
2
3
4
5 | 174
182
186
189
191 | JUNE 134 152 155 157 162 | 155
167
170
173
177 |

 | JULY |

 | | AUGUST |

 | | SEPTEMBE

 | ER | | 1
2
3
4
5 | 174
182
186
189
191 | JUNE 134 152 155 157 162 173 | 155
167
170
173
177 |

 | JULY |

 |

 | AUGUST | |

 | SEPTEMBE | ER | | 1
2
3
4
5 | 174
182
186
189
191
198
201 | JUNE 134
152 155 157 162 173 168 | 155
167
170
173
177
185
185 |

 | JULY |

 | | AUGUST |

 | | SEPTEMBE

 |

 | | 1
2
3
4
5 | 174
182
186
189
191 | JUNE 134 152 155 157 162 173 | 155
167
170
173
177 |

 | JULY |

 | | AUGUST | |

 | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8 | 174
182
186
189
191
198
201
207 | JUNE 134 152 155 157 162 173 168 178 | 155
167
170
173
177
185
185
192 |
 | JULY |

 |

 | AUGUST | |

 | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9 | 174
182
186
189
191
198
201
207
203
203 | JUNE 134 152 155 157 162 173 168 178 178 | 155
167
170
173
177
185
185
192
192
188 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9 | 174
182
186
189
191
198
201
207
203 | JUNE 134 152 155 157 162 173 168 178 178 | 155
167
170
173
177
185
185
192
192 |

 | JULY |

 |

 | AUGUST | |

 | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10 | 174
182
186
189
191
198
201
207
203
203
212
218
228 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 | 155
167
170
173
177
185
185
192
192
188
201
207
216 | | JULY | | | AUGUST | |

 | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 174
182
186
189
191
198
201
207
203
203
212
218
228
252 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 223 | 155
167
170
173
177
185
185
192
192
188
201
207
216
232 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10 | 174
182
186
189
191
198
201
207
203
203
212
218
228 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 | 155
167
170
173
177
185
185
192
192
188
201
207
216 | | JULY | | | AUGUST | |

 | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 174
182
186
189
191
198
201
207
203
203
212
218
228
252 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 223 | 155
167
170
173
177
185
185
192
192
188
201
207
216
232 | | JULY |

 | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 174
182
186
189
191
198
201
203
203
212
218
228
252
254 | JUNE 134 152 155 157 162 173 168 178 172 191 196 206 203 240 236 254 | 155
167
170
173
177
185
185
192
192
192
207
207
216
232
248 | | JULY | | | AUGUST | | | SEPTEMBE | GR | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | 174
182
186
189
191
198
201
207
203
203
212
218
228
252
254
259
269
276 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 | 155
167
170
173
177
185
185
192
192
188
201
207
216
232
248
246
260
269 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 174
182
186
189
191
198
201
203
203
212
218
228
252
254 | JUNE 134 152 155 157 162 173 168 178 172 191 196 206 203 240 236 254 | 155
167
170
173
177
185
185
192
192
192
207
207
216
232
248 | | JULY | | | AUGUST | | | SEPTEMBE | GR | | 1 2 3 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 174
182
186
189
191
198
201
207
203
203
212
218
228
252
254
259
269
276
279
264 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 | 155
167
170
173
177
185
185
192
192
188
201
207
216
232
248
246
260
269
270
255 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 174
182
186
189
191
198
201
207
203
203
212
218
228
252
254
259
269
279
264 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 | 155
167
170
173
177
185
185
192
192
192
207
207
216
232
248
246
260
269
270
255 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1 2 3 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 174
182
186
189
191
198
201
207
203
203
212
218
228
252
254
259
269
276
279
264 | JUNE 134 152 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 | 155
167
170
173
177
185
185
192
192
188
201
207
216
232
248
246
260
269
270
255 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24 | 174
182
186
189
191
198
201
207
203
203
212
218
225
254
259
269
279
264
279
292
292
292 | JUNE 134 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 263 275 281 296 | 155
167
170
173
177
185
185
192
192
198
201
207
216
232
248
246
260
269
270
255
270
282
291
298 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1 2 3 3 4 5 5 6 7 8 8 9 10 11 12 13 114 15 16 17 18 19 20 21 22 23 | 174
182
186
189
191
198
201
203
203
212
218
228
252
254
259
269
276
279
292
299 | JUNE 134 152 155 157 162 173 168 178 172 191 196 206 223 240 236 254 265 262 245 263 275 281 | 155
167
170
173
177
185
185
192
192
188
201
207
216
232
248
246
260
269
270
255 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
17
18
19
20
21
22
23
24 | 174
182
186
189
191
198
201
207
203
203
212
218
225
254
259
269
279
264
279
292
292
292 | JUNE 134 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 263 275 281 296 | 155
167
170
173
177
185
185
192
192
198
201
207
216
232
248
246
260
269
270
255
270
282
291
298 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | 174
182
186
189
191
198
201
203
203
212
218
228
252
254
259
276
279
269
279
299
304
308 | JUNE 134 152 155 157 162 173 168 178 172 191 196 206 223 240 236 254 265 245 263 275 281 296 293 300 291 | 155
167
170
173
177
185
185
192
192
192
1207
216
232
248
246
260
269
270
255
270
282
291
298
302 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 174
182
186
189
191
198
201
203
203
212
218
252
254
259
269
276
279
269
279
299
304
308 | JUNE 134 152 155 157 162 173 168 178 172 191 196 203 240 236 254 265 262 245 263 275 281 296 293 300 291 | 155
167
170
173
177
185
185
192
192
192
207
216
207
216
260
269
270
255
270
282
291
298
302 | | JULY | | | AUGUST | | | SEPTEMBE | GR | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 174
182
186
189
191
198
201
203
203
212
218
228
252
254
259
269
276
279
292
299
292
299
304
308 | JUNE 134 152 155 157 162 173 168 178 172 191 196 206 223 240 236 254 265 245 263 275 281 296 293 300 291 | 155
167
170
173
177
185
185
192
192
192
1207
216
232
248
246
260
269
270
255
270
282
291
298
302 | | JULY | | | AUGUST | | | SEPTEMBE | CR | | 1
2
3
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 174
182
186
189
191
198
201
203
203
212
218
225
254
259
269
279
264
279
292
299
304
308 | JUNE 134 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 263 275 281 296 293 300 291 | 155
167
170
173
177
185
185
185
192
192
198
201
207
216
232
248
246
260
269
270
255
270
282
291
298
302 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
31
31
41
25
25
26
27
27
27
27
27
27
27
27
27
27
27
27
27 |
174
182
186
189
191
198
201
203
203
212
218
228
252
254
259
269
279
264
279
292
299
304
308 | JUNE 134 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 263 275 281 296 293 300 291 | 155
167
170
173
177
185
185
192
192
198
201
207
216
232
248
246
260
269
270
255
270
282
291
298
302 | | JULY | | | AUGUST | | | SEPTEMBE | GR | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 174 182 186 189 191 198 201 207 203 203 212 218 228 252 254 259 269 276 279 264 279 292 299 304 308 309 | JUNE 134 152 155 157 162 173 168 178 172 191 196 206 223 240 236 254 265 245 263 275 281 296 293 300 291 | 155
167
170
173
177
185
185
192
192
192
188
201
207
216
232
248
246
260
269
270
255
270
282
291
298
302 | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
31
31
31
41
25
25
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 174
182
186
189
191
198
201
203
203
212
218
228
252
254
259
269
279
264
279
292
299
304
308 | JUNE 134 155 157 162 173 168 178 178 172 191 196 206 223 240 236 254 265 262 245 263 275 281 296 293 300 291 | 155
167
170
173
177
185
185
192
192
198
201
207
216
232
248
246
260
269
270
255
270
282
291
298
302 | | JULY | | | AUGUST | | | SEPTEMBE | ER | > 392110107011300 ROARING FORK RIVER NEAR BASALT, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |---|---|--|--|---|---|--|--|--|--|---|---|---| | | | OCTOBER | | N | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | | | | | | | | | | .0 | .0 | .0 | | 2 | | | | | | | | | | .0 | .0 | .0 | | 3
4 | | | | | | | | | | .0 | .0 | .0 | | 5 | | | | | | | | | | .0 | .0 | .0 | | 6 | | | | | | | | | | .0 | .0 | .0 | | 7
8 | | | | | | | .2 | .1 | .1 | .0 | .0 | .0 | | 9 | | | | | | | .0 | .0 | .0 | .0 | .0 | .0 | | 10 | | | | | | | .0 | .0 | .0 | .0 | .0 | .0 | | 11 | | | | | | | .0 | .0 | .0 | .0 | .0 | .0 | | 12
13 | | | | | | | .0 | .0 | .0 | .0 | .0 | .0 | | 14 | | | | | | | .0 | .0 | .0 | .0 | .0 | .0 | | 15 | | | | | | | .0 | .0 | . 0 | .0 | .0 | .0 | | 16 | | | | | | | .0 | .0 | .0 | 2.1 | .0 | .6 | | 17 | | | | | | | .0 | .0 | .0 | 3.2 | 1.9 | 2.6 | | 18
19 | | | | | | | .0 | .0 | .0 | 2.9
4.0 | 2.6
2.2 | 2.8
2.9 | | 20 | | | | | | | .0 | .0 | .0 | 3.1 | 1.2 | 2.2 | | 21 | | | | | | | .0 | .0 | .0 | 1.9 | 1.3 | 1.6 | | 22 | | | | | | | .1 | .1 | .1 | 2.4 | .9 | 1.5 | | 23 | | | | | | | | | | 1.3 | .0 | .5 | | 24
25 | | | | | | | | | | .6
1.7 | .0
.6 | .2
1.1 | | | | | | | | | | | | | | | | 26
27 | | | | | | | | | | 3.0
2.5 | 1.1
.9 | 2.1 | | 28 | | | | | | | | | | ∠.5
.9 | .0 | 1.8 | | 29 | | | | | | | .1 | .1 | .1 | .0 | .0 | .0 | | 30
31 | | | | | | | .0 | .0 | .0 | .0 | .0 | .0 | | | | | | | | | | | | | | | | MONTH | | | | | | | .2 | .0 | .0 | 4.0 | .0 | .6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY
1 | | | MEAN | MAX | | MEAN | MAX
8.5 | | MEAN
5.2 | MAX
11.8 | | MEAN | | 1
2 | .0 | FEBRUARY
.0
.0 | .0 | 4.5
4.8 | MARCH
.9
2.8 | 2.8
3.5 | 8.5
6.7 | APRIL 2.4 3.1 | 5.2
4.8 | 11.8
13.2 | MAY
4.6
6.3 | 8.1
9.7 | | 1
2
3 | .0 | FEBRUARY
.0
.0
.0 | .0 | 4.5
4.8
6.8 | MARCH
.9
2.8
1.9 | 2.8
3.5
4.1 | 8.5
6.7
9.4 | APRIL 2.4 3.1 2.6 | 5.2
4.8
5.7 | 11.8
13.2
12.4 | MAY
4.6
6.3
6.2 | 8.1
9.7
9.6 | | 1
2 | .0 | FEBRUARY
.0
.0 | .0 | 4.5
4.8 | MARCH
.9
2.8 | 2.8
3.5 | 8.5
6.7 | APRIL 2.4 3.1 | 5.2
4.8 | 11.8
13.2 | MAY
4.6
6.3 | 8.1
9.7 | | 1
2
3
4
5 | .0 | .0
.0
.0
.0
.0 | .0.0.0.0 | 4.5
4.8
6.8
6.4
5.2 | MARCH
.9
2.8
1.9
.8
1.6 | 2.8
3.5
4.1
3.6
3.3 | 8.5
6.7
9.4
11.5
11.7 | APRIL 2.4 3.1 2.6 2.7 4.9 | 5.2
4.8
5.7
6.8
8.2 | 11.8
13.2
12.4
12.3
11.7 | MAY 4.6 6.3 6.2 5.9 5.3 | 8.1
9.7
9.6
9.3
8.8 | | 1
2
3
4 | .0 | .0
.0
.0
.0 | .0 | 4.5
4.8
6.8
6.4 | MARCH
.9
2.8
1.9
.8 | 2.8
3.5
4.1
3.6 | 8.5
6.7
9.4
11.5 | APRIL 2.4 3.1 2.6 2.7 | 5.2
4.8
5.7
6.8 | 11.8
13.2
12.4
12.3 | MAY
4.6
6.3
6.2
5.9 | 8.1
9.7
9.6
9.3 | | 1
2
3
4
5 | .0
.0
.0
.0
.2
2.0
2.2
2.4 | .0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0 | .9
2.8
1.9
.8
1.6 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5 | | 1
2
3
4
5
6
7
8
9 | .0
.0
.0
.2
2.0
2.2
2.4
2.2 | .0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
3.1 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1 | 2.4
3.1
2.6
2.7
4.9
6.5
6.2
3.8
4.8 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4 | | 1
2
3
4
5
6
7
8
9 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0 | .0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.0
5.1 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1 | 2.4
3.1
2.6
2.7
4.9
6.5
6.2
3.8
4.8
5.7 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.8 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4 | | 1
2
3
4
5
6
7
8
9
10 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.0
.1
.1
.1
.0
.1
.1 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
3.1
2.9 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8 | 2.4
3.1
2.6
2.7
4.9
6.5
6.2
3.8
4.8
5.7 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.8 |
11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 4.5 6.9 6.6 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9 | | 1
2
3
4
5
6
7
8
9 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0 | .0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.0
5.1 | MARCH .9 2.8 1.9 8 1.6 1.2 3.0 1.2 1.9 .9 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8 | 2.4
3.1
2.6
2.7
4.9
6.5
6.2
3.8
4.8
5.7 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.8 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
3.5 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.0
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4
6.5 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .3 .8 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.2
3.7 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8
10.1
12.2
11.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.8
8.4
8.3
8.7 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 4.5 6.9 6.6 4.1 2.9 5.4 | 8.1
9.7
9.6
9.3
8.8
8.1
6.5
7.4
9.9
8.9
5.7
6.0
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | .0
.0
.0
.2
2.2
2.4
2.2
2.0
3.4
3.7
2.7 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.9
1.0
1.1
1.0 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4 | MARCH .9 2.8 1.9 8 1.6 1.2 3.0 1.2 1.9 .9 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.2 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.4
8.4
8.3 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 6.9 6.6 4.1 2.9 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.8
.9
1.0
1.1
1.0
1.6
2.1
2.5
1.6 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4
6.5
4.1 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .3 .8 1.3 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.7
2.7 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8
10.1
12.2
11.7
11.3
8.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.8
8.4
8.3
8.7
7.1 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 6.9 6.6 4.1 2.9 5.4 6.7 7.0 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
5.7
6.0
7.8
8.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.7
2.7
2.7
3.5
4.0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.1
.1
.1
.1
.1
.1
.2
.1
.2
.1
.2
.1 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4
6.5
4.1 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .3 .8 1.3 .9 1.0 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.2
2.7
2.7 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8
10.1
12.2
11.7
11.3
8.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 6.4 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.8
8.4
8.3
8.7
7.1 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 6.9 6.6 4.1 2.9 5.4 6.7 7.0 6.3 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
5.7
6.0
7.8
8.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.8
.9
1.0
1.1
1.0
1.6
2.1
2.5
1.6 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4
6.5
4.1 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .0 1.3 .3 .8 1.3 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.7
2.7 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8
10.1
12.2
11.7
11.3
8.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 | 5.2
4.8
5.7
6.8
8.2
8.9
8.6
7.5
8.3
8.8
8.4
8.3
8.7
7.1 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 6.9 6.6 4.1 2.9 5.4 6.7 7.0 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
5.7
6.0
7.8
8.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | .0
.0
.0
.2
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.0
.1
.1
.1
.1
.1
.1
.7
.2
.1
.2
.1
.2
.1
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2 | 4.5
4.8
6.8
6.4
5.2
5.0
5.0
5.1
5.2
5.3
6.4
6.5
4.1
6.8
5.0 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .3 .8 1.3 .9 1.0 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.2
2.7 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
11.5
12.1
11.8
10.1
12.2
11.7
11.3
8.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 4.8 6.4 6.5 | 5.2
4.8
5.7
6.8
8.2
8.6
7.5
8.3
8.6
8.7
7.1
8.0
9.8
8.1 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 6.9 6.6 4.1 2.9 5.4 6.7 7.0 6.3 5.6 | 8.1
9.7
9.3
8.8
8.1
8.0
6.54
9.9
8.9
5.7
6.0
7.8
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
2.7 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.1
.1
1.0
1.6
2.1
1.7
2.1
2.5
1.6
2.1
2.1
1.0 | 4.5
4.8
6.8
6.4
5.2
5.0
5.1
5.2
5.3
6.4
6.5
4.1
6.8
5.0
5.1
5.6 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .8 1.3 .9 1.0 1.11 .0 3.0 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.2
3.7
2.7
2.7
4.1 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 4.8 6.4 6.5 4.5 3.5 | 5.2
4.8
5.7
6.8
8.2
8.6
7.5
8.3
8.8
8.4
8.3
8.6
7.1
8.0
9.8
8.1
7.4 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0 | MAY 4.6 6.3 6.2 5.9 5.3 5.2 6.0 5.8 4.5 6.9 6.6 4.1 2.9 5.4 6.7 7.0 6.3 5.6 6.0 7.5 | 8.1
9.7
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
5.7
6.0
7.8
6.7
8.4
10.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
2.7
4.0
2.8
2.6
3.1,7
1.7 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.1
.1
1.0
1.6
2.1
1.7
2.1
2.5
1.6
2.1
2.1
2.1
2.5 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.5
4.1
6.8
5.0
5.1
5.2 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9
.9 .0 1.3 .8 1.3 .9 1.0 1.1 0 3.0 2.2 2.1 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.7
2.7
4.1
4.7
3.6 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 5.7 6.4 4.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 6.5 5.5 5.5 | 5.2
4.8
5.7
6.8
8.2
8.6
7.5
8.8
8.4
8.3
8.7
7.1
8.0
9.8
8.1
4.7
4.4 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0
12.8 | MAY 4.63 6.32 5.9 5.3 5.2 6.0 5.8 4.5 6.9 6.6 4.1 2.9 5.4 6.7 7.0 6.3 5.6 6.7 7.5 6.8 7.5 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
5.7
6.0
7.5
6.7
8.6 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
2.7
1.7 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.1
1.0
1.6
2.1
1.7
2.5
1.6
2.1
2.1
1.0
6
2.2
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4
6.5
4.1
6.8
5.0
5.1
5.7
7.7
7.7
8.1 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .3 .8 1.3 .9 1.0 1.1 .0 3.0 2.2 2.1 1.6 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.2
2.7
2.7
4.1
4.7
3.6
4.7 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 4.8 6.5 3.5 5.5 5.0 4.3 | 5.2
4.8
5.7
6.8
8.2
8.6
7.5
8.8
8.4
8.3
8.6
7.1
8.8
8.7
7.4
7.8
8.1
7.4
7.8
6.5 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0
12.8 | MAY 4.63 6.32 5.9 5.3 5.2 6.08 4.5 6.9 6.61 2.9 5.4 6.7 7.5 6.8 7.5 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
5.7
6.0
7.8
8.6
10.0
7.5
6.7
8.4
10.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
2.7
1.7 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.8
.9
1.0
1.1
1.0
1.6
2.1
2.1
2.5
1.6
2.1
1.0
6
2.1
2.1
2.1
2.2
3.0
6 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.5
4.1
6.8
5.0
5.1
5.6
7 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .8 1.3 .9 1.0 1.1 .0 3.0 2.2 2.1 1.6 3.4 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.7
2.7
4.1
4.7
4.7
6.0 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 6.3 6.3 4.8 6.4 6.5 3.5 5.0 4.3 5.4 | 5.2
4.8
5.2
8.9
8.5
8.3
8.4
8.3
8.7
7.1
8.0
9.8
8.1
7.4
7.4
7.8
6.2
5.7 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0
12.8
12.7
13.2
13.1
11.3 | MAY 4.6 6.3 5.9 5.3 5.2 6.0 8.4.5 6.9 6.61 2.9 6.7 7.0 6.3 6.0 7.5 6.8 7.5 7.5 7.5 7.5 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
5.7
6.7
7.8
8.6
10.0
7.5
6.7
7.5
8.4
10.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
2.7
1.7 | .0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | .0
.0
.0
.0
.0
.0
.0
.1
.1
.1
.1
.1
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.1
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2
.2 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4
6.5
4.1
6.8
5.1
5.6
7
7.7
5.2
8.1
9.4 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .3 8 1.3 .9 1.0 1.1 .0 3.0 2.2 2.1 1.6 3.4 2.7 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.2
2.7
2.7
4.7
2.7
4.7
6.0
5.7 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8
9.4
7.6
8.9
9.2
11.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 6.5 4.5 5.5 6.3 6.3 4.8 6.4 6.5 4.5 3.5 | 5.2
4.8
5.7
6.8
8.2
8.6
7.5
8.8
8.4
8.3
8.6
7.1
8.8
8.7
7.1
8.9
8.1
4.7
7.4
7.4
7.2
6.5
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0
7.0 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0
12.8
12.7
13.2
13.1
11.3
9.7 | MAY 4.63 6.32 5.9 5.2 6.08 4.1 2.9 6.7 7.3 5.6 6.7 7.5 7.3 6.7 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
7.6.0
7.5
6.7
8.6
10.0
9.9
10.5
10.4
8.9
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
2.7
1.7 | FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.8
.9
1.0
1.1
1.0
1.6
2.1
1.7
2.1
2.5
1.6
2.1
1.0
.6
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.5
4.1
6.8
5.0
5.1
5.6
7
7.7
5.2
8.5
9.4
8.5 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .8 1.3 .9 1.0 2.1 1.0 3.0 2.2 2.1 1.6 3.4 2.7 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.7
2.7
4.1
4.7
6.0
5.7
6.6 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8
9.4
7.6
8.9
9.2
11.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 6.4 6.5 4.5 3.5 5.0 4.3 5.4 3.1 6.1 | 5.2
4.8
5.2
8.9
8.5
8.3
8.4
8.3
8.7
7.1
8.0
9.8
8.7
7.4
7.8
6.2
5
7.0
7.2
9.3 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0
12.8
12.7
13.2
13.1
11.3
9.7 | MAY 4.63 6.32 5.93 5.2 6.08 4.5 6.6 4.1 25.4 6.7 7.03 6.67 7.5 6.7 5.7 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
5.7
7.4
9.9
5.7
6.0
7.8
8.6
10.0
7.5
8.4
10.0
9.9
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
1.7
1.7
4.7
3.1
4.9
2.1
4.9
2.1
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9 | FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.1
.1
1.0
1.6
2.1
1.7
2.1
2.5
1.6
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.4
6.5
4.1
6.8
5.1
5.6
7
7.7
5.2
8.1
9.4
8.5 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .3 8 1.3 .9 1.0 1.1 .0 3.0 2.2 2.1 1.6 3.4 2.7 4.6 3.0 4.3 | 2.8
3.5
4.1
3.6
3.3
3.9
3.1
2.9
2.6
3.3
3.2
2.7
3.1
2.7
4.7
6.0
5.7
6.6
6.0 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8
9.4
7.6
8.9
9.2
11.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 6.5 5.5 6.3 5.5 6.3 6.7 7.0 | 5.2
4.8
5.7
6.8
8.2
8.6
7.5
8.8
8.6
7.1
8.8
8.7
7.1
8.8
8.7
7.1
8.8
8.1
4.7
7.2
9.3
10.7
9.4 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0
12.8
12.7
13.2
13.1
11.3
9.7 | MAY 4.63 6.32 5.3 5.2 6.08 4.1 2.9 4.6 7.3 6.7 7.3 6.7 7.3 6.7 7.3 6.7 7.3 6.7 7.3 | 8.1
9.7
9.3
8.8
8.1
8.0
6.54
9.9
8.6
7.5
6.7
8.6
10.0
7.8
10.4
8.9
7.8
8.9
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
2.7
1.7 | FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 |
.0
.0
.0
.0
.0
.0
.8
.9
1.0
1.1
1.0
1.6
2.1
2.1
2.5
1.6
2.1
2.1
2.1
2.2
3.0
3.1
.8 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.5
4.1
6.8
5.0
7.7
5.2
8.5
9.0
10.2
7.7
9.9 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .8 1.3 .9 1.0 3.0 2.2 2.1 1.6 3.4 2.7 4.6 3.0 4.3 4.6 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.7
2.7
4.1
4.7
6.0
5.7
6.5
6.5
6.8 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8 | APRIL 2.4 3.16 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 4.8 5.5 5.0 4.3 5.4 3.1 6.1 6.7 7.0 6.5 | 5.2
4.8
5.7
6.8
8.2
8.9
8.5
8.3
8.8
8.7
7.1
8.0
9.8
6.2
57.0
7.2
9.3
10.3
8.6 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
11.0
12.8
12.7
13.2
13.1
11.3
9.7 | MAY 4.63 6.32 5.3 5.2 6.08 4.5 6.7 7.03 6.7 7.5 7.7 6.8 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
5.7
7.4
9.9
5.7
6.0
7.5
8.4
10.0
9.9
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
30
30
30
30
30
30
30
30
30
30
30
30
30 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
1.7
1.7
4.7
3.1
4.9
2.1
4.9
2.1
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9 | FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.1
.1
1.0
1.6
2.1
1.7
2.1
2.5
1.6
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1
2.1 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.5
4.1
6.8
5.0
5.1
5.2
7.7
7.7
8.1
9.0
10.2
7.7
9.9
8.7 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .8 1.3 .9 1.0 1.1 1.6 3.0 2.2 2.1 1.6 3.4 2.7 4.6 3.0 4.3 4.6 4.1 | 2.8
3.5
4.1
3.6
3.3
3.6
3.1
2.9
2.6
3.3
3.7
2.7
4.1
4.7
3.6
4.7
6.5
6.0
6.0
6.2 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8
9.4
7.6
8.9
9.2
11.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 5.7 6.4 4.8 5.5 6.3 6.3 4.8 6.5 5.5 6.3 5.5 6.3 6.7 7.0 | 5.2
4.8
5.7
6.8
8.2
8.6
7.5
8.8
8.6
7.1
8.8
8.7
7.1
8.8
8.7
7.1
8.8
8.1
4.7
7.2
9.3
10.7
9.4 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
7.9
11.0
12.8
12.7
13.2
13.1
11.3
9.7 | MAY 4.63 6.32 5.3 5.2 6.8 6.9 6.61 2.94 7.0 6.3 6.0 7.5 7.3 7.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
6.5
7.4
9.9
8.9
7.8
8.6
10.0
7.5
6.7
10.0
9.9
10.5
10.4
9.9
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | .0
.0
.0
.2
2.0
2.2
2.4
2.2
2.0
3.4
3.7
2.7
3.5
4.0
2.8
2.6
3.1
1.7
4.7
3.1
5.1
4.9
2.1 | FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0
.0
.1
.1
1.0
1.6
2.1
2.1
2.5
1.6
2.1
2.1
2.1
2.5
1.0
3.1
.6 | 4.5
4.8
6.8
6.4
5.2
5.9
5.0
5.1
5.2
5.3
6.5
4.1
6.8
5.0
7.7
5.2
8.5
9.0
10.2
7.7
9.9 | MARCH .9 2.8 1.9 .8 1.6 1.2 3.0 1.2 1.9 .9 .0 1.3 .8 1.3 .9 1.0 3.0 2.2 2.1 1.6 3.4 2.7 4.6 3.0 4.3 4.6 | 2.8
3.5
4.1
3.6
3.3
3.6
3.9
3.1
2.9
2.6
3.3
3.7
2.7
4.1
4.7
6.0
5.7
6.5
6.5
6.8 | 8.5
6.7
9.4
11.5
11.7
12.1
11.8
10.1
12.2
11.7
11.3
8.7
11.7
13.4
9.8
7.0
11.8
9.4
7.6
8.9
9.2
11.7 | APRIL 2.4 3.1 2.6 2.7 4.9 6.5 6.2 3.8 4.8 5.7 6.4 4.8 5.5 6.3 4.8 5.5 5.0 4.3 5.5 5.0 4.3 6.1 6.7 7.0 6.5 6.9 | 5.2
4.8
5.2
8.6
8.2
8.6
7.3
8.8
8.4
8.3
8.7
7.1
8.9
8.1
4
7.4
7.8
6.2
6.5
7.2
9.3
9.4
8.2 | 11.8
13.2
12.4
12.3
11.7
10.1
9.5
8.4
10.1
13.0
10.9
8.0
9.3
9.5
10.2
13.1
10.9
11.0
12.8
12.7
13.2
13.1
11.3
9.7 | MAY 4.63 6.32 5.3 5.2 6.08 4.5 6.7 7.03 6.7 7.5 7.7 6.8 | 8.1
9.7
9.6
9.3
8.8
8.1
8.0
5.7
7.4
9.9
5.7
6.0
7.5
8.4
10.0
9.9
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | ### 392110107011300 ROARING FORK RIVER NEAR BASALT, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|----------------------------------|--------------------------------------|----------|--------------|--------------|--------------|--------------|----------|--------------|----------|--------------| | | | JUNE | | | JULY | | | AUGUST | | S | EPTEMBE | lR. | | 1
2
3
4
5 | 11.8
11.9
12.4
12.5
11.3 | 5.9
6.5
6.7
6.6
6.9 | 8.9
9.2
9.5
9.6
9.3 |

 | | |

 | | |

 | | | | 6
7
8
9 | 12.4
13.3
11.8
12.3
12.2 | 7.2
7.3
8.2
8.4
6.7 | 9.9
10.4
10.2
10.2
9.5 |

 |

 | | 11
12
13
14
15 | 13.0
12.1
11.9
13.1
14.4 | 7.4
7.5
8.3
7.4
8.4 | 10.2
10.1
10.1
10.3
11.4 |

 |

 |

 |

 | |

 |

 | | | | 16
17
18
19
20 | 13.5
13.2
13.1
11.9
14.2 | 8.5
7.9
8.0
9.6
8.3 | 11.2
10.7
10.8
10.2
11.0 |

 |

 | | 21
22
23
24
25 | 14.3
14.0
13.5
14.3
13.9 | 8.3
9.1
9.8
8.8
10.0 | 11.4
11.7
11.6
11.7
12.0 |

 |

 |

 |

 |

 | |

 | |

 | | 26
27
28
29
30
31 | 12.3 | 10.3
9.4

 | 10.9 |

 |

 |

 |

 |

 |

 |

 |

 |

 | | MONTH
YEAR | 14.4
14.4 | 5.9 | 10.5
4.9 | | | | | | | | | | #### 09081000 ROARING FORK RIVER NEAR EMMA, CO LOCATION.--Lat $39^{\circ}22^{\circ}24^{\circ}$, long $107^{\circ}05^{\circ}00^{\circ}$, in $SW^{1}/_{4}NW^{1}/_{4}$ sec.11, T.8 S., R.87 W., Eagle County, Hydrologic Unit 14010004, on left bank 10 ft upstream from bridge on Hooks Lane, 1.2 mi downstream from Sopris Creek, and 1.2 mi northwest of Emma. DRAINAGE AREA.--853 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1908 to September 1909 (monthly discharge only, published in WSP 1313), March 1998 to current year. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 6,470 ft above sea level, from topographic map. Prior to Mar. 1998, nonrecording gage at different datum. REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of about 16,000 acres above station. Transmountain diversions to Arkansas River basin through Busk-Ivanhoe tunnel since 1925 and through Twin Lakes tunnel since 1935. Transmountain diversion from headwaters of Fryingpan River through Charles H. Boustead Tunnel to Arkansas River basin began May 16, 1972. Natural flow of stream affected by storage in Ruedi Reservoir on Fryingpan River (station 09080190) since May 1968. DISCHARGE. CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND, V
DAILY | WATER YE
MEAN VA | | 1999 TO | SEPTEMBE | ER 2000 | | | |---------|------------|------------|------------|---------------|----------------------|---------------------|-------------|------------|--------------|------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | | 001 | 0.00 | 0.7.4 | 001 | 000 | 61.0 | 0050 | 0.75 | 400 | 4.45 | | 1
2 | 566
550 | 552
476 | 281
283 | 279
278 | 274
261 | 231
235 | 230
219 | 612
622 | 2260
2070 | 876
856 | 493
487 | 447
439 | | 3 | 527 | 464 | 283
276 | 278 | 263 | 235 | 219 | 739 | 2070 | 809 | 494 | 422 | | | | | | 270 | 263
257 | | 262
334 | 739
878 | | | 494 | | | 4 | 498 | 417 | 259 | | | 232 | | | 1950 | 761 | | 415 | | 5 | 482 | 411 | 232 | 291 | 251 | 242 | 386 | 1010 | 1880 | 708 | 490 | 414 | | 6 | 497 | 355 | 252 | 265 | 246 | 236 | 416 | 1120 | 1790 | 708 | 491 | 429 | | 7 | 547 | 351 | 266 | 227 | 243 | 246 | 424 | 1080 | 1760 | 662 | 481 | 437 | | 8
9 | 555 | 326 | 280 | 309 | 238 | 241 | 421 | 1110 | 1700 | 589 | 470 | 441 | | 10 | 569
555 | 278
266 | 241
262 | 286
281 | 243
259 | 237
235 | 434
462 | 928
869 | 1740
1760 | 637
634 | 469
541 | 462
434 | | 10 | 555 | ∠00 | 202 | 281 | 259 | 235 | 402 | 809 | 1/60 | 034 | 541 | 434 | | 11 | 536 | 267 | 280 | 285 | 262 | 220 | 453 | 1090 | 1660 | 525 | 530 | 404 | | 12 | 541 | 274 | 260 | 278 | 246 | 247 | 441 | 1090 | 1630 | 493 | 540 | 389 | | 13 | 579 | 295 | 254 | 266 | 252 | 228 | 453 | 857 | 1520 | 476 | 568 | 379 | | 14 | 575 | 299 | 285 | 264 | 244 | 230 | 470 | 773 | 1380 | 486 | 547 | 370 | | 15 | 571 | 298 | 232 | 271 | 248 | 238 | 470 | 745 | 1300 | 625 | 540 | 359 | | 16 | 569 | 292 | 287 |
273 | 239 | 236 | 437 | 747 | 1300 | 891 | 548 | 354 | | 17 | 555 | 293 | 304 | 262 | 246 | 229 | 440 | 888 | 1170 | 1020 | 498 | 348 | | 18 | 565 | 298 | 283 | 268 | 239 | 231 | 484 | 759 | 1090 | 870 | 516 | 361 | | 19 | 575 | 271 | 292 | 277 | 227 | 213 | 475 | 690 | 1180 | 740 | 555 | 354 | | 20 | 573 | 281 | 284 | 260 | 227 | 234 | 441 | 663 | 1290 | 676 | 553 | 341 | | 21 | 583 | 284 | 273 | 262 | 249 | 224 | 448 | 677 | 1150 | 592 | 544 | 336 | | 22 | 582 | 288 | 282 | 265 | 245 | 223 | 483 | 797 | 1070 | 615 | 508 | 414 | | 23 | 593 | 272 | 271 | 252 | 239 | 224 | 533 | 1190 | 1030 | 617 | 506 | 336 | | 24 | 583 | 237 | 266 | 252 | 240 | 236 | 517 | 1770 | 990 | 596 | 505 | 322 | | 25 | 562 | 245 | 279 | 264 | 237 | 234 | 475 | 1900 | 979 | 580 | 504 | 309 | | 26 | 553 | 295 | 276 | 271 | 231 | 248 | 474 | 1710 | 998 | 565 | 512 | 310 | | 27 | 545 | 290 | 272 | 262 | 234 | 253 | 515 | 1460 | 1020 | 582 | 533 | 309 | | 28 | 541 | 286 | 268 | 249 | 240 | 261 | 602 | 1540 | 990 | 568 | 511 | 315 | | 29 | 568 | 284 | 267 | 239 | 238 | 269 | 666 | 2120 | 925 | 553 | 511 | 332 | | 30 | 547 | 284 | 260 | 204 | | 265 | 683 | 2490 | 914 | 540 | 504 | 339 | | 31 | 556 | | 261 | 238 | | 254 | | 2420 | | 521 | 455 | | | TOTAL | 17198 | 9529 | 8368 | 8180 | 7118 | 7364 | 13548 | 35344 | 42526 | 20371 | 15898 | 11321 | | MEAN | 555 | 318 | 270 | 264 | 245 | 238 | 452 | 1140 | 1418 | 657 | 513 | 377 | | MAX | 593 | 552 | 304 | 309 | 274 | 269 | 683 | 2490 | 2260 | 1020 | 568 | 462 | | MIN | 482 | 237 | 232 | 204 | 227 | 213 | 219 | 612 | 914 | 476 | 455 | 309 | | AC-FT | 34110 | 18900 | 16600 | 16230 | 14120 | 14610 | 26870 | 70100 | 84350 | 40410 | 31530 | 22460 | | STATIST | rics of M | ONTHLY MEA | AN DATA F | OR WATER | YEARS 1998 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 499 | 298 | 256 | 258 | 241 | 249 | 420 | 1079 | 1795 | 1126 | 633 | 472 | | MAX | 555 | 318 | 270 | 264 | 245 | 260 | 551 | 1177 | 2476 | 1495 | 741 | 547 | | (WY) | 2000 | 2000 | 2000 | 2000 | 2000 | 1999 | 1998 | 1998 | 1999 | 1999 | 1999 | 1999 | | MIN | 443 | 278 | 242 | 252 | 236 | 238 | 258 | 920 | 1418 | 657 | 513 | 377 | | (WY) | 1999 | 1999 | 1999 | 1999 | 1999 | 2000 | 1999 | 1999 | 2000 | 2000 | 2000 | 2000 | | SUMMARY | Y STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1998 | 3 - 2000 | | ANNUAL | TOTA T | | | 253875 | | | 196765 | | | | | | | ANNUAL | | | | 453875
696 | | | 538 | | | 609 | | | | | r ANNUAL 1 | MEAN | | 050 | | | 330 | | | 680 | | 1999 | | | ANNUAL M | | | | | | | | | 538 | | 2000 | | | C DAILY M | | | 3320 | Jun 25 | | 2490 | May 30 | | 3320 | .Tiin | 25 1999 | | | DAILY ME. | | | 189 | Feb 12 | | 204 | Jan 30 | | e170 | | 23 1998 | | | | Y MINIMUM | | 221 | Feb 19 | | 225 | Mar 17 | | 209 | | 6 1998 | | | | EAK FLOW | | | | | 2950 | May 30 | | 8070 | | 19 1909 | | | | EAK STAGE | | | | | 8.81 | May 30 | | a10.40 | | 19 1909 | | | RUNOFF (| | | 503600 | | | 390300 | | | 441100 | | | | | CENT EXCE | | | 1880 | | | 1040 | | | 1510 | | | | | CENT EXCE | | | 464 | | | 436 | | | 488 | | | | | CENT EXCE | | | 231 | | | 238 | | | 238 | | | | | | | | | | | | | | | | | e Estimated. a Datum then in use ### 09081000 ROARING FORK RIVER NEAR EMMA, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- January 1998 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. | DATE | TIME | CUBIC
FEET
PER
SECOND | CIFIC
CON-
DUCT-
ANCE | FIELD
(STAND-
ARD
UNITS) | ATURE
WATER
(DEG C) | SOLVED (MG/L) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | UREASE
(COL /
100 ML) | NESS
TOTAL
(MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS CA) | |-----------|---|--|--|---|--|---|---|--|---|---| | DEC
03 | 1220 | 274 | 374 | 8.5 | 3.5 | 10.8 | K2 | K1 | 190 | 59.2 | | JAN
12 | 1155 | 276 | 380 | 8.7 | 1.9 | 12.4 | К2 | 7 | | | | APR 24 | 1630 | 506 | 313 | 8.7 | 9.5 | 10.0 | К6 | 170 | 150 | 45.7 | | JUN
07 | 1000 | 1780 | 200 | 8.2 | 7.8 | 9.8 | 93 | 100 | 91 | 28.9 | | JUL
25 | 1500 | 576 | 319 | 8.6 | 15.1 | 8.5 | 54 | 67 | | | | AUG
22 | | 508 | | | | 9.7 | | 30 | 150 | 48.2 | | 22 | 0313 | 300 | 331 | 0.5 | 10.5 | J., | 00 | 30 | 130 | 10.2 | | DATE | DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED | SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | WAT.DIS
FET
LAB
CACO3
(MG/L) | SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | | DEC
03 | 9.91 | 3.7 | .1 | 1.1 | 98 | 87.8 | 2.6 | .2 | 7.1 | 231 | | JAN
12 | | | | | | | | | | | | APR 24 | 7.56 | 3.1 | .1 | .9 | 84 | 67.6 | 2.0 | .2 | 7.1 | 185 | | JUN
07 | 4.49 | 1.8 | .1 | .7 | 60 | 35.5 | .9 | .1 | 5.8 | 114 | | JUL
25 | | | | | | | | | | | | AUG
22 | 8.13 | 3.1 | .1 | 1.1 | 94 | 69.7 | 2.0 | .3 | 7.9 | 197 | | DATE | SOLVED
(TONS
PER
AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | | DEC 03 | .31 | 171 | .001 | .203 | <.002 | E.10 | E.10 | .024 | .019 | .012 | | JAN
12 | | | .002 | .179 | <.002 | .14 | <.10 | .029 | .024 | .019 | | APR 24 | .25 | 252 | .001 | .060 | .012 | .21 | .11 | .028 | .009 | .009 | | JUN
07 | .16 | 550 | .001 | .113 | <.002 | .12 | E.10 | .024 | .007 | .003 | | JUL
25 | | | .003 | .097 | .011 | .16 | .12 | .015 | .010 | .007 | | AUG
22 | .27 | 271 | .002 | .119 | .005 | .16 | .12 | .019 | .012 | .006 | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | DEC | | | | | | | | | | | | 03
APR | <.1 | <1 | 50 | <1 | 6 | E2 | <.2 | E1.2 | <0.2 | <20 | | JUN | <.1 | <1 | 180 | <1 | 14 | 4 | <.2 | <2.4 | <0.2 | <20 | | 07
AUG | <.1 | <1 | 220 | <1 | 14 | 3 | <.2 | <2.4 | <0.2 | <20 | | 22 | <.1 | <1 | 80 | <1 | 10 | 3 | <.2 | <2.4 | <0.2 | E12 | ### 09081000 ROARING FORK RIVER NEAR EMMA, CO--Continued ### MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------|------|---|--|---|-----------|---|--|---| | NOV | | | | | JUN | | | | | 30 | 1600 | 286 | 379 | 4.6 | 27 1400 | 999 | 281 | 12.9 | | MAR | | | | | JUL | | | | | 08 | 1225 | 239 | 382 | 4.0 | 13 1200 | 477 | 333 | 13.3 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | DEC
03 | 1220 | 274 | 3.5 | 2 | 1.7 | | APR | | | | | | | 24
JUN | 1630 | 506 | 9.5 | 9 | 12 | | 07 | 1000 | 1780 | 7.8 | 13 | 62 | | 27 | 1400 | 999 | 12.9 | 4 | 11 | | JUL | | | | | | | 25 | 1500 | 576 | 15.1 | 6 | 9.5 | | AUG | | | | | | | 22 | 0945 | 508 | 10.3 | 3 | 3.6 | ### 09081600 CRYSTAL RIVER ABOVE AVALANCHE CREEK, NEAR REDSTONE, CO LOCATION.--Lat $39^{\circ}13^{\circ}56^{\circ}$, long $107^{\circ}13^{\circ}36^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec.33, T.9 S., R.88 W., Pitkin County, Hydrologic Unit 14010004, on right bank 1.2 mi upstream from Avalanche Creek, and 3.6 mi north of Redstone. DRAINAGE AREA.--167 mi². ### WATER-DISCHARGE
RECORDS PERIOD OF RECORD. -- October 1955 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,905 ft above sea level, from river-profile map. REMARKS.--Records good except for estimated daily discharges, which are poor. A few small diversions for irrigation upstream from station. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--|--|--------------------------------------|---|--------------------------------------|-------------------------------------|---|--|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 122
114
110
105
101 | 75
70
70
70
70 | 59
60
61
55
44 | 47
48
45
41
46 | 42
38
42
42
41 | 45
45
46
49
53 | 66
65
63
66
89 | 435
545
680
793
901 | 1450
1360
1310
1240
1230 | 325
324
310
286
248 | 109
107
104
107
102 | 103
101
94
88
89 | | 6
7
8
9
10 | 100
106
109
110
105 | 68
66
67
68
64 | 52
54
59
48
55 | 45
39
42
45
44 | 40
40
40
40
42 | 50
51
49
49
49 | 112
126
139
160
191 | 938
887
e940
e700
e580 | 1200
1190
1150
1200
992 | 237
228
216
269
258 | 101
94
90
89
90 | 103
e121
e105
163
122 | | 11
12
13
14
15 | 101
96
93
93 | 65
63
61
61
62 | 58
52
44
51
32 | 43
43
40
40
40 | 43
42
41
42
44 | 45
50
47
48
50 | 193
203
236
248
230 | e680
714
567
497
474 | 914
862
765
689
724 | 226
213
195
197
273 | 107
101
100
96
96 | 107
97
94
90
87 | | 16
17
18
19
20 | 87
83
85
83
82 | 60
62
62
55
61 | 55
58
51
53
51 | 42
43
48
49
46 | 43
46
45
41
41 | 49
49
48
45
50 | 195
204
243
207
188 | 508
608
497
435
429 | 712
605
547
644
605 | 336
447
285
230
197 | 99
115
110
133
136 | 84
85
92
84
80 | | 21
22
23
24
25 | 81
79
78
77
75 | 60
62
54
44
50 | 48
48
48
46
45 | 45
44
40
41
44 | 46
45
44
44 | 48
49
48
50
52 | 214
236
237
239
238 | 515
704
1050
1360
1380 | 539
503
463
424
407 | 178
162
151
142
140 | 126
119
114
101
141 | 89
124
104
106
96 | | 26
27
28
29
30
31 | 75
75
73
79
71
75 | 76
68
63
61
61 | 46
46
46
45
44 | 11 | 40
44
46
45
 | 59
65
75
75
72
70 | 280
377
466
477
456 | 1180
941
1100
1490
1690
1570 | 419
383
363
349
342 | 138
133
130
124
120
115 | 123
127
114
111
110
109 | 93
87
84
102
107 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2813
90.7
122
71
5580 | 1899
63.3
76
44
3770 | 1555
50.2
61
32
3080 | 1311
42.3
49
26
2600 | 1233
42.5
46
38
2450 | 1630
52.6
75
45
3230 | 6444
215
477
63
12780 | 25788
832
1690
429
51150 | 23581
786
1450
342
46770 | 6833
220
447
115
13550 | 3381
109
141
89
6710 | 2981
99.4
163
80
5910 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 100
223
1998
49.7
1978 | 73.0
152
1987
39.5
1978 | 56.5
95.9
1986
36.3
1978 | 49.8
85.3
1985
34.1
1978 | 49.4
89.9
1986
28.3
1964 | 67.0
184
1986
32.4
1964 | 194
464
1962
83.4
1964 | 766
1223
1984
288
1977 | 1287
2019
1957
375
1977 | 636
1872
1957
96.9
1977 | 202
640
1995
74.6
1977 | 127
253
1986
59.8
1956 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALEN | DAR YEAR | F | 'OR 2000 WA' | TER YEAR | | WATER YEA | RS 1956 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN
'ANNUAL M
ANNUAL ME
'DAILY ME
DAILY MEA | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT) | | 98346
269
1570
32
45
195100
1030
108
48 | Jun 22
Dec 15
Dec 25 | | 79449
217
1690
26
36
2010
4.34
157600
619
89
44 | May 30
Jan 30
Jan 28
May 30
May 30 | | 301
468
107
3500
a22
27
4180
6.12
218200
957
96
44 | Dec
Feb 1
Jun 2 | 1957
1977
25 1983
5 1955
11 1964
25 1983
25 1983 | e Estimated. a Also occurred Feb 15, 1964, Jan 2 and Feb 17-18, 1978. # 09081600 CRYSTAL RIVER ABOVE AVALANCHE CREEK, NEAR REDSTONE, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1996 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value: K, based on non-ideal colony count; M, presence of material verified but not quantified. | | WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | | | | | |------------------|---|---|--|---|--|---|---|--|---|---| | DATE | TIME | | CIFIC
CON-
DUCT-
ANCE | | ATURE
WATER
(DEG C) | DIS-
SOLVED
(MG/L) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | | TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | DEC 03 | 0940 | 61 | 652 | 7.6 | 4.0 | 10.9 | K1 | K1 | 290 | 97.9 | | JAN
13 | 1050 | 40 | 720 | 7.8 | 3.1 | 11.1 | <1 | K1 | | | | APR 25 | 1630 | 227 | 387 | 8.2 | 11.2 | 9.1 | | | 160 | 52.2 | | JUN
07 | 1420 | 1020 | 169 | 8.0 | 10.3 | 8.9 | К3 | К3 | 73 | 23.7 | | JUL
25 | 1720 | 139 | 386 | 7.9 | 16.0 | 7.9 | 14 | 22 | | | | AUG
22 | 1520 | 113 | 445 | 8.0 | 18.0 | 7.7 | K31 | К15 | 180 | 59.6 | | DATE | DIS- | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP- | DIS- | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED | SOLVED | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | DIS- | DIS-
SOLVED
(TONS | | DEC | | (00930) | | | (00945) | (00940) | (00950) | (00955) | (70301) | (70303) | | 03
JAN | 10.8 | 23.5 | .6 | 1.9 | 192 | 10.8 | .3 | 9.6 | 425 | .58 | | 13
APR | | | | | | | | | | | | 25
JUN | 7.98 | 12.0 | . 4 | 1.1 | 76.5 | 3.3 | .1 | 7.1 | 227 | .31 | | 07
JUL | 3.24 | 3.4 | .2 | .5 | 23.0 | .9 | .1 | 4.5 | 94 | .13 | | 25
AUG | | | | | | | | | | | | 22 | 7.68 | 15.2 | .5 | 1.4 | 107 | 5.6 | .3 | 7.7 | 269 | .37 | | DATE | DI
SOL
(TO
PE
DA | DS, GE
S- NITR
VED DI
NS SOL
R (MG | ITE NO2+1
S- DIS
VED SOLV
/L (MG,
N) AS 1 | N, GE: NO3 AMMO: S- DI: VED SOL' /L (MG N) AS 1 | NIA MONI
S- ORGA
VED TOT
/L (MG
N) AS 1 | AM- GEN,
A + MONI
NIC ORGA
AL DIS
/L (MG
N) AS | A + PHO NIC PHOR . TOT /L (MG N) AS | US DI
PAL SOL
P) AS | US ORT
S- DIS
VED SOLV
/L (MG/
P) AS P | HO,
-
ED
L
) | | DEC
03
JAN | 70 | .1 <.0 | 01 .078 | .00 | 2 <.1 | 0 <.1 | 0 <.0 | 08 <.0 | 06 <.0 | 01 | | 13
APR | - | - <.0 | 01 .093 | .00 | 9 E.1 | 0 <.1 | 0 <.0 | 0.> | 06 <.0 | 01 | | 25
JUN | 139 | <.0 | 01 .05 | 5 .00 | 5 .1 | 7 E.1 | 0 .0 | 21 <.0 | 06 <.0 | 01 | | 07
JUL | 260 | .0 | 01 .085 | 5 .00 | 6 E.1 | 0 <.1 | 0 .0 | 19 <.0 | 06 .0 | 02 | | 25
AUG | - | - <.0 | 01 .03 | 7 .05 | 1 E.1 | 0 E.1 | 0 <.0 | 0.0 | 06 .0 | 04 | | 22 | 82 | .1 <.0 | 01 .053 | 3 .01 | 1 .2 | 0 <.1 | 0 .0 | 76 <.0 | 06 .0 | 01 | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | DEC 03 | <.1 | <1 | 60 | <1 | 11 | 11 | <.2 | <2.4 | <1 | <20 | | APR 25 | <.1 | <1 | 480 | <1 | 14 | 5 | <.2 | <2.4 | <1 | <20 | | JUN
07 | <.1 | <1 | 340 | <1 | 13 | 3 | E.1 | <2.4 | <1 | <20 | | AUG
22 | <.1 | <1 | 2110 | <1 | 45 | 8 | <.2 | <2.4 | <1 | E12 | ### 09081600 CRYSTAL RIVER ABOVE AVALANCHE CREEK, NEAR REDSTONE, CO--Continued ### MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO
SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---|-----------|------|---|--|---| | DEC 01 | 1110 | 58 | 663 | 4.4 | JUN
28 | 0845 | 378 | 251 | 8.5 | | MAR
08 | 0935 | 49 | 719 | 3.5 | | | | | | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | SEDI- | |------|------|---------|---------|---------|---------| | | | CHARGE, | | | MENT, | | | | INST. | | SEDI- | DIS- | | | | CUBIC | TEMPER- | MENT, | CHARGE, | | | | FEET | ATURE | SUS- | SUS- | | DATE | TIME | PER | WATER | PENDED | PENDED | | | | SECOND | (DEG C) | (MG/L) | (T/DAY) | | | | (00061) | (00010) | (80154) | (80155) | | | | | | | | | AUG | | | | | | | 22 | 1520 | 113 | 18.0 | 102 | 31 | #### 09083800 CRYSTAL RIVER BELOW CARBONDALE, CO LOCATION.--Lat $39^{\circ}24^{\circ}29^{\circ}$, long $107^{\circ}13^{\circ}47^{\circ}$, in $\mathrm{NE}^{1}/_{4}\mathrm{NW}^{1}/_{4}$ sec.33, T.7 S., R.88 W., Garfield County, Hydrologic Unit 14010004, on left bank at downstream side of bridge on County Road 108, 1.0 mi upstream from mouth, and 1.0 mi northwest of Carbondale. DRAINAGE AREA. -- 350 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May to September 2000. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 6,120 ft above sea level, from topographical map. REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of about 4,000 acres upstream and downstream from station. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period May to September, 3,510 ${\rm ft}^3/{\rm s}$ at 0030 May 30, gage height, 4.40 ${\rm ft}$; minimum daily, 38 ${\rm ft}^3/{\rm s}$, Sept. 20. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-----|-----|-----|-----|-----|-------|-------|-------|------|------| | 1 | | | | | | | | | 2500 | 405 | 70 | 82 | | 2 | | | | | | | | | 2320 | 396 | 60 | 87 | | 3 | | | | | | | | | 2170 | 377 | 57 | 79 | | 4 | | | | | | | | | 2010 | 336 | 56 | 69 | | 5 | | | | | | | | | 1950 | 278 | 52 | | | 5 | | | | | | | | | 1950 | 278 | 54 | 63 | | 6 | | | | | | | | | 1820 | 242 | 52 | 75 | | 7 | | | | | | | | | 1830 | 226 | 49 | 98 | | 8 | | | | | | | | | 1760 | 200 | 43 | 81 | | 9 | | | | | | | | | 1860 | 265 | 47 | 155 | | 10 | | | | | | | | | 1470 | 251 | 50 | 120 | | 10 | | | | | | | | | 1470 | 231 | 30 | 120 | | 11 | | | | | | | | | 1310 | 212 | 55 | 127 | | 12 | | | | | | | | | 1210 | 193 | 54 | 110 | | 13 | | | | | | | | | 1050 | 176 | 57 | 96 | | 14 | | | | | | | | | 874 | 166 | 51 | 71 | | 15 | | | | | | | | | 950 | 255 | 49 | 53 | | | | | | | | | | | | | | | | 16 | | | | | | | | | 973 | 348 | 52 | 50 | | 17 | | | | | | | | | 778 | 550 | 68 | 47 | | 18 | | | | | | | | 676 | 676 | 361 | 67 | 56 | | 19 | | | | | | | | 555 | 862 | 280 | 96 | 44 | | 20 | | | | | | | | 522 | 865 | 231 | 119 | 38 | | 20 | | | | | | | | 322 | 005 | 231 | 117 | 30 | | 21 | | | | | | | | 637 | 718 | 197 | 116 | 42 | | 22 | | | | | | | | 929 | 651 | 177 | 115 | 109 | | 23 | | | | | | | | 1650 | 604 | 162 | 92 | 86 | | 24 | | | | | | | | 2420 | 554 | 151 | 74 | 87 | | 25 | | | | | | | | 2470 | 523 | 140 | 101 | 74 | | | | | | | | | | | | | | | | 26 | | | | | | | | 2110 | 545 | 123 | 112 | 77 | | 27 | | | | | | | | 1560 | 509 | 123 | 156 | 73 | | 28 | | | | | | | | 1780 | 478 | 116 | 143 | 72 | | 29 | | | | | | | | 2600 | 438 | 114 | 128 | 74 | | 30 | | | | | | | | 2980 | 425 | 102 | 136 | 93 | | 31 | | | | | | | | 2770 | | 85 | 124 | | | 31 | | | | | | | | 2,,,0 | | 03 | | | | TOTAL | | | | | | | | | 34683 | 7238 | 2501 | 2388 | | MEAN | | | | | | | | | 1156 | 233 | 80.7 | 79.6 | | MAX | | | | | | | | | 2500 | 550 | 156 | 155 | | MIN | | | | | | | | | 425 | 85 | 43 | 38 | | AC-FT | | | | | | | | | 68790 | 14360 | 4960 | 4740 | | | | | | | | | | | 00.20 | 11000 | 100 | 1,10 | ### 09083800 CRYSTAL RIVER BELOW CARBONDALE, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1976 to January 1978. January to September 2000. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. | DATE | TIME | PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ARD
UNITS) | ATURE
WATER | DIS-
SOLVED
(MG/L) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | (COL /
100 ML) | TOTAL
(MG/L | (MG/L
AS CA) | |-------------------------------------|---|---|--|---|--|---|---|--|---|---| | JAN
12 | 1445 | 102 | 626 | 8.5 | 5.2 | 11.6 | K1 | <1 | 290 | 94.9 | | APR
25 | 1350 | 328 | 367 | 8.5 | 8.8 | 9.8 | | | 160 | 50.1 | | JUN
06 | 1530 | 1520 | 189 | 8.2 | 11.2 | 8.8 | K12 | K21 | 83 | 26.7 | | JUL
26 | 0915 | 121 | 499 | 8.3 | 12.6 | 8.7 | 47 | | | 20.7 | | AUG
22 | 1235 | 104 | 534 | 8.3 | 16.6 | 7.7 | 300 | 480 | 240 | 77.1 | | 22 | 1233 | 104 | 334 | 0.5 | 10.0 | ,., | 300 | 400 | 240 | //.1 | | DATE | DIS-
SOLVED
(MG/L
AS MG) | DIS-
SOLVED
(MG/L
AS NA) | AD-
SORP-
TION
RATIO | DIS-
SOLVED
(MG/L
AS K) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | | JAN
12
APR | 13.6 | 17.6 | .4 | 2.0 | 172 | 7.3 | .2 | 11.3 | 405 | .55 | | 25 | 8.08 | 9.7 | .3 | 1.1 | 72.4 | 2.7 | .1 | 8.4 | 217 | .29 | | JUN
06
JUL
26
AUG
22 | 3.85 | 3.4 | .2 | .6 | 26.7 | 1.2 | .1 | 5.1 | 107 | .15 | | | | | | | | | | | | | | | 12.4 | 11.0 | .3 | 1.8 | 113 | 4.3 | .2 | 11.2 | 330 | .45 | | DATE | DIS-
SOLVED
(TONS
PER
DAY) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS- | ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | JAN
12 | 111 | <.001 | .124 | <.002 | | E.10 | <.10 | <.008 | <.006 | <.001 | | APR
25 | 192 | <.001 | .089 | .006 | .10 | .27 | .11 | .080 | <.006 | .005 | | JUN
06 | 438 | .001 | .112 | .002 | | .11 | <.10 | .029 | E.003 | .002 | | JUL
26 | | .001 | .182 | .009 | | .23 | E.10 | .012 | E.004 | .003 | | AUG 22 | 92.6 | .001 | .317 | .020 | | .66 | E.10 | .196 | E.005 | .004 | | | | | | | | | | | | | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | JAN
12 | <.1 | <1 | 50 | <1 | 5 | 2 | <.2 | <2.4 | <1 | <20 | | APR
25 | <.1 | <1 | 1100 | <1 | 37 | E1 | <.2 | <2.4 | <1 | <20 | | JUN
06
AUG | <.1 | <1 | 420 | <1 | 17 | 3 | E.1 | <2.4 | <1 | <20 | | 22 | <.1 | <1 | 7380 | <1 | 162 | 2 | <.2 | <2.4 | <1 | E11 | # ROARING FORK RIVER BASIN 207 # 09083800 CRYSTAL RIVER BELOW CARBONDALE, CO--Continued # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |--|--|---|---|--
--|--| | 691 | 288 | 6.0 | AUG
04 1100 | 50 | 565 | 15.3 | | | | | 04 1100 | 39 | 303 | 13.3 | | (| CHARGE, INST. CUBIC FEET FEET SECOND | CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- E PER ANCE SECOND (US/CM) (00061) (00095) 0 691 288 | CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- ATURE E PER ANCE WATER SECOND (US/CM) (DEG C) (00061) (00095) (00010) 0 691 288 6.0 | CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- PER ANCE WATER SECOND (US/CM) (DEG C) (00061) (00095) (00010) AUG 0 691 288 6.0 04 1100 | CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- EVALUATION ATURE E PER ANCE WATER SECOND (US/CM) (DEG C) (00061) (00095) (00010) AUG O 691 288 6.0 CHARGE, INST. CUBIC INST. CUBIC FEET CUBIC FEET FEET FEET SECOND (00061) AUG AUG O 691 288 6.0 CHARGE, INST. CHARGE, INST. CHARGE, INST. AUG O AUG INST. CUBIC FEET FEET FEET SECOND (00061) SECOND (00061) | CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- ATURE PER ANCE WATER SECOND (US/CM) (DEG C) (00061) (00095) (00010) AUG O 691 288 6.0 CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- FEET DUCT- FEET DUCT- SECOND (US/CM) (DEG C) (00061) (00095) (00010) AUG O 691 288 6.0 CHARGE, SPE- INST. CIFIC SUBIC CON- FEET DUCT- SECOND (US/CM) (00061) (00095) AUG O 691 288 6.0 O 4 1100 59 565 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | SEDI- | |------|------|---------|---------|---------|---------| | | | CHARGE, | | | MENT, | | | | INST. | | SEDI- | DIS- | | | | CUBIC | TEMPER- | MENT, | CHARGE, | | | | FEET | ATURE | SUS- | SUS- | | DATE | TIME | PER | WATER | PENDED | PENDED | | | | SECOND | (DEG C) | (MG/L) | (T/DAY) | | | | (00061) | (00010) | (80154) | (80155) | | | | | | | | | AUG | | | | | | | 22 | 1235 | 104 | 16.6 | 397 | 111 | #### 09085000 ROARING FORK RIVER AT GLENWOOD SPRINGS, CO LOCATION.--Lat 39°32'37", long $107^\circ19'44$ ", in $SW^1/_4SE^1/_4$ sec.9, T.6 S., R.89 W., Garfield County, Hydrologic Unit 14010004, on left bank at Glenwood Springs, 2,100 ft upstream from mouth. DRAINAGE AREA. -- 1,451 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1905 to September 1909, September 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. Prior to October 1960, published as Roaring Fork at Glenwood Springs. Statistical summary computed for 1972 to current year. REVISED RECORDS. -- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,720.73 ft above sea level. Prior to Nov. 20, 1915, nonrecording gage on highway bridge 800 ft downstream, at different datum. Nov. 20, 1915 to Oct. 26, 1917, nonrecording gage at present site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 35,000 acres. Transmountain diversions to Arkansas River basin through Busk-Ivanhoe tunnel since 1925, Twin Lakes tunnel since 1935, and Charles H. Boustead tunnel since 1972. Natural flow of stream affected by storage in Ruedi Reservoir on Fryingpan River (station 09080190) since May 1968. | on Fryingp | an River | (station | 09080190 |) since M | lay 1968. | | | | | | | | |------------|-------------------|------------|------------|-------------|-------------|--------------------|----------------------|--------------|--------------|---------------|------------|------------| | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
MEAN V | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBI | ER 2000 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 926 | 839 | 545 | 462 | 447 | 417 | 473 | 1390 | 4720 | 1430 | 654 | 746 | | 2 | 890 | 783 | 554 | 474 | 418 | 422 | 469 | 1460 | 4300 | 1400 | 628 | 730 | | 3 | 850 | 777 | 547 | 463 | 439 | 417 | 466 | 1770 | 4160 | 1340 | 636 | 707 | | 4 | 832 | 721 | 517 | 422 | 433 | 418 | 541 | 2070 | 3890 | 1250 | 650 | 689 | | 5 | 800 | 713 | 473 | 480 | 428 | 431 | 614 | 2430 | 3770 | 1150 | 658 | 662 | | 6 | 797 | 667 | 482 | e450 | 421 | 432 | 683 | 2600 | 3540 | 1120 | 674 | 687 | | 7
8 | 849
923 | 645 | 507 | e380 | 412 | 437
445 | 720 | 2540 | 3560 | 1080 | 668 | 725 | | 9 | 923
899 | 626
592 | 531
490 | e500
485 | 412
421 | 445 | 743
787 | 2620
2140 | 3410
3500 | 1010
1090 | 650
639 | 751
792 | | 10 | 888 | 570 | 493 | 455 | 439 | 435 | 863 | 1860 | 3290 | 1080 | 667 | 784 | | | | | | | | | | | | | | | | 11 | 856 | 563 | 533 | 462 | 475 | 407 | 876 | 2230 | 2970 | 962 | 695 | 752 | | 12
13 | 840 | 559 | 501 | 457 | 449 | 443 | 876 | 2280 | 2870 | 899 | 706 | 714 | | 13 | 879
873 | 569
571 | 482
513 | 438
430 | 451
437 | 429
424 | 926
1010 | 1820
1610 | 2650
2340 | 865
829 | 737
758 | 689
663 | | 15 | 864 | 573 | 477 | 438 | 443 | 432 | 1040 | 1500 | 2340 | 1010 | 750 | 613 | | 13 | | | | | | 432 | | | | | | | | 16 | 864 | 570 | 592 | 446 | 433 | 435 | 947 | 1490 | 2330 | 1280 | 763 | 589 | | 17 | 867 | 573 | 531 | 441 | 447 | 422 | 915 | 1790 | 2040 | 1590 | 757 | 578 | | 18 | 866 | 586 | 501 | 453 | 445 | 420 | 1030 | 1580 | 1870 | 1370 | 764 | 587 | | 19 | 869 | 549 | 503 | 483 | 423 | 397 | 1010 | 1420 | 2070 | 1130 | 811 | 590 | | 20 | 865 | 546 | 496 | 463 | 400 | 435 | 927 | 1310 | 2260 | 1010 | 829 | 566 | | 21 | 877 | 574 | 483 | 457 | 438 | 428 | 952 | 1410 | 1980 | 911 | 836 | 556 | | 22 | 888 | 577 | 483 | 460 | 441 | 428 | 1020 | 1690 | 1840 | 869 | 810 | 644 | | 23 | 887 | 550 | 481 | 437 | 431 | 425 | 1100 | 2520 | 1760 | 863 | 786 | 660 | | 24 | 868 | 503 | 469 | 426 | 427 | 439 | 1130 | 3870 | 1670 | 834 | 776 | 655 | | 25 | 847 | 489 | 477 | 457 | 428 | 441 | 1050 | 4230 | 1650 | 824 | 748 | 607 | | 26 | 836 | 569 | 475 | 465 | 406 | 464 | 1090 | 3720 | 1670 | 798 | 788 | 574 | | 27 | 818 | 584 | 464 | 455 | 414 | 489 | 1240 | 2930 | 1670 | 800 | 846 | 561 | | 28 | 812 | 563 | 463 | 429 | 423 | 516 | 1500 | 3020 | 1620 | 784 | 827 | 546 | | 29 | 834 | 552 | 457 | 405 | 418 | 535 | 1580 | 4350 | 1520 | 764 | 799 | 541 | | 30
31 | 823
824 | 547
 | 450
441 | 375
373 | | 520
507 | 1540 | 5320
5130 | 1470 | 734
710 | 809
781 | 586
 | | TOTAL | 26611 | 18100 | 15411 | 13821 | 12499 | 13722 | 28118 | 76100 | 78660 | 31786 | 22900 | 19544 | | MEAN | 858 | 603 | 497 | 446 | 431 | 443 | 937 | 2455 | 2622 | 1025 | 739 | 651 | | MAX | 926 | 839 | 592 | 500 | 475 | 535 | 1580 | 5320 | 4720 | 1590 | 846 | 792 | | MIN | 797 | 489 | 441 | 373 | 400 | 397 | 466 | 1310 | 1470 | 710 | 628 | 541 | | AC-FT | 52780 | 35900 | 30570 | 27410 | 24790 | 27220 | 55770 | 150900 | 156000 | 63050 | 45420 | 38770 | | STATIST | ICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1972 | - 2000 | , BY WATER | YEAR (WY) | | | | | | MEAN | 750 | 674 | 574 | 509 | 483 | 542 | 833 | 2264 | 4138 | 2448 | 1009 | 751 | | MAX | 1159 | 969 | 790 | 677 | 689 | 861 | 1602 | 4663 | 7383 | 7483 | 2676 | 1160 | | (WY) | 1985 | 1985 | 1985 | 1996 | 1986 | 1986 | 1985 | 1984 | 1984 | 1995 | 1995 | 1995 | | MIN | 384 | 411 | 382 | 371 | 315 | 298 | 352 | 593 | 1139 | 422 | 316 | 363 | | (WY) | 1978 | 1978 | 1978 | 1978 | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | | | Y STATIS | rics | FOR | | JENDAR YEAR | | FOR 2000 W | ATER YEAR | 2 | WATER Y | EARS 197 | 2 - 2000 | | ANNUAL | | | | 440887 | | | 357272 | | | 1050 | | | | ANNUAL | mean
'ANNUAL I | ME AN | | 1208 | | | 976 | | | a1250
2092 | | 1984 | | | ANNUAL M | | | | | | | | | 485 | | 1977 | | | DAILY M | | | 5650 | Jun 25 | | 5320 | May 30 | | b11800 | .Tu1 | 12 1995 | | | DAILY ME | | | 397 | Feb 12 | | 373 | Jan 31 | | c,d248 | | 11 1977 | | ANNUAL | SEVEN-DA | Y MINIMUM | | 435 | Mar 8 | | 412 | Jan 28 | | 258 | | 9 1977 | | | ANEOUS P | | | | | | 6240 | May 30 | | f13000 | Jul | 13 1995 | | | | EAK STAGE | | | | | | May 30 | | g8.31 | Jul | 13 1995 | | | RUNOFF (| | | 874500 | | | 708600 | | | 905400 | | | | | ENT EXCE | | | 3350 | | | 2000 | | | 3020 | | | | | ENT EXCE | | | 800 | | | 689 | | | 685 | | | | 90 PERC | ENT EXCE | FDS | | 451 | | | 431 | | | 439 | | | e Estimated. Average discharge for 65 years (water years 1906-09, 1911-71), 1368 ft³/s; 991100 acre-ft/yr, prior to diversion Average discharge for 65 years (water years 1900-09, 1911-71), 1500 ft /s/ 991100 acte-16/yr, prior to diversity through Charles H. Boustead tunnel. Maximum daily discharge for period of record, 16600 ft³/s, Jun 30, 1957. Minimum daily discharge for period of record, 179 ft³/s, Jan 21, 1935; minimum discharge during the day of Jan 21, 1935, 145 ft³/s, gage height, 0.65 ft. Also occurred Aug 12, 1977. Maximum discharge for period of record, 19000 ft³/s, Jul 1, 1957, gage height, 8.65 ft. Maximum gage height for period of record, 8.7 ft, Jun 14, 1921, from floodmarks. #### 209 ROARING FORK RIVER BASIN #### 09085000 ROARING FORK RIVER AT GLENWOOD SPRINGS, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. --November 1958 to August 1961, May 1962 to September 1967, January 1970 to May 1972, January 1980 to September 1984, October 1993 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: May 1962 to September 1967, January 1980 to September 1984. WATER TEMPERATURE: May 1962 to May 1967, January 1980 to September 1984.
INSTRUMENTATION:.--Water-quality monitor January 1980 to September 1984. REMARKS.--Daily maximum and minimum specific-conductance data available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. # EXTREMES FOR PERIOD OF DAILY RECORD. -- EXEMPS FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,160 microsiemens, July 12, 1981; minimum, 132 microsiemens, July 9, 1983, WATER TEMPERATURE: Maximum, 23.0°C Aug. 3, 1981; minimum, 0.0°C on many days during winter months. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------|---|---|--|--|--|---|--|--|--|--| | DEC
02 | 1440 | 560 | 595 | 8.7 | 5.6 | 10.9 | 30 | K18 | 250 | 79.2 | | JAN
14 | 1140 | 428 | 588 | 8.7 | 2.2 | 14.2 | K14 | К14 | | | | APR 24 | 1230 | 1130 | 391 | 8.3 | 7.9 | 10.0 | K18 | 45 | 160 | 50.9 | | JUN
06 | 1150 | 3620 | 233 | 8.2 | 9.6 | 9.4 | 44 | 55 | 97 | 30.9 | | JUL
26
AUG | 1110 | 806 | 545 | 8.7 | 14.6 | 10.3 | 73 | | | | | 21 | 1225 | 841 | 562 | 8.3 | 14.6 | 8.8 | 670 | 630 | 220 | 66.9 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | DEC
02
JAN | 13.1 | 25.7 | .7 | 1.5 | 132 | 126 | 32.4 | .2 | 8.9 | 367 | | 14
APR | | | | | | | | | | | | 24
JUN | 8.71 | 11.4 | . 4 | 1.2 | 101 | 74.1 | 10.3 | .1 | 8.0 | 226 | | 06
JUL | 4.76 | 5.7 | .3 | .7 | 67 | 36.9 | 5.6 | .1 | 5.8 | 131 | | 26
AUG | | | | | | | | | | | | 21 | 11.7 | 22.9 | .7 | 1.7 | 132 | 105 | 29.5 | .2 | 9.8 | 328 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | | DEC
02 | .50 | 554 | .002 | .159 | <.002 | E.10 | .10 | .009 | E.005 | <.001 | | JAN
14 | | | .002 | .189 | <.002 | .14 | <.10 | .013 | E.004 | <.001 | | APR 24 | .31 | 690 | .003 | .141 | .020 | .41 | .14 | .071 | .009 | .008 | | JUN
06 | .18 | 1280 | .001 | .116 | .005 | .17 | E.10 | .033 | .007 | .003 | | JUL
26 | | | .001 | .078 | .007 | .19 | .13 | .013 | .007 | .004 | | AUG
21 | .45 | 744 | .002 | .187 | .017 | 1.3 | .13 | .381 | .009 | .015 | 210 ROARING FORK RIVER BASIN # 09085000 ROARING FORK RIVER AT GLENWOOD SPRINGS, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |------------------------|---|---|--|---|--|---|---|--|---|---| | DEC
02
APR
24 | <.1 | <1
<1 | 50
870 | <1
<1 | 6
40 | 3 | <.2 | <2.4 | <.2 | <20
<20 | | JUN
06
AUG | <.1 | <1 | 420 | <1 | 20 | 4 | <.2 | <2.4 | <.2 | <20 | | 21 | <.1 | E1 | 10500 | <1 | 316 | 3 | <.2 | <2.4 | <.2 | <20 | # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|-------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | OCT | | | | | MAR | | | | | | 05 | 1430 | 804 | 546 | 10.5 | 10 | 1025 | 443 | 584 | 3.5 | | NOV | 1130 | 001 | 340 | 10.5 | JUL | 1023 | 113 | 304 | 3.3 | | 15 | 1250 | 571 | 621 | 4.7 | 14 | 0945 | 809 | 535 | 15.4 | | | | | 022 | | | 33 13 | | 555 | | # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SEDI-
MENT,
SUS-
PENDED
(MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDEI
(T/DAY) | |------|------|--|--|--| | AUG | | (00061) | (80154) | (80155) | | 21 | 1225 | 841 | 681 | 1550 | # 09085100 COLORADO RIVER BELOW GLENWOOD SPRINGS, CO LOCATION.--Lat $39^{\circ}33^{\circ}18^{\circ}$, long $107^{\circ}20^{\circ}13^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.9, T.6 S., R.89 W., Garfield County, Hydrologic Unit 14010005, on left bank 0.6 mi downstream from Roaring Fork River and 1.0 mi northwest of Post Office in Glenwood Springs. DRAINAGE AREA.--6,013 mi^2 . PERIOD OF RECORD. -- October 1966 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,700.75 ft above sea level, Colorado State Highway Department benchmark. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation of 110,000 acres. | | | DISCHAR | RGE, CUBI | C FEET PER | | WATER Y
MEAN V | | ER 1999 TO | SEPTEMB | ER 2000 | | | |---|--|--|--|---|------------------------------|--|--|--|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3090 | 2970 | 1660 | 1420 | 1380 | 1460 | 1650 | 4290 | 12100 | 3910 | 2390 | 2410 | | 2 | 3050 | 2810 | 1680 | 1520 | 1380 | 1450 | 1610 | 4380 | 11400 | 3730 | 2340 | 2380 | | 3 | 2940 | 2660 | 1670 | 1480 | 1430 | 1460 | 1590 | 5150 | 10700 | 3560 | 2440 | 2340 | | 4 | 2880 | 2480 | 1620 | 1230 | 1470 | 1460 | 1540 | 5950 | 9860 | 3510 | 2570 | 2460 | | 5 | 2810 | 2290 | 1480 | 1420 | 1460 | 1480 | 1630 | 6880 | 8870 | 3300 | 2570 | 2450 |
| 6 | 2470 | 2200 | 1400 | 1400 | 1440 | 1490 | 1850 | 7720 | 8160 | 3100 | 2550 | 2480 | | 7 | 2720 | 2040 | 1490 | 1190 | 1440 | 1510 | 2130 | 7960 | 8040 | 2940 | 2500 | 2390 | | 8 | 3100 | 2030 | 1620 | 1340 | 1430 | 1520 | 2270 | 8170 | 7600 | 2800 | 2460 | 2340 | | 9 | 3140 | 1880 | 1510 | 1480 | 1430 | 1510 | 2290 | 7380 | 7490 | 2940 | 2440 | 2380 | | 10 | 3120 | 1870 | 1450 | 1540 | 1480 | 1500 | 2460 | 6590 | 6980 | 3060 | 2450 | 2330 | | 11 | 3080 | 1840 | 1620 | 1570 | 1510 | 1460 | 2560 | 7110 | 6340 | 2860 | 2500 | 2200 | | 12 | 3040 | 1820 | 1530 | 1600 | 1500 | 1480 | 2410 | 7500 | 6060 | 2690 | 2510 | 2090 | | 13 | 2960 | 1840 | 1420 | 1520 | 1520 | 1490 | 2490 | 6710 | 5660 | 2630 | 2570 | 2080 | | 14 | 2810 | 1820 | 1410 | 1480 | 1500 | 1450 | 2640 | 6070 | 5180 | 2510 | 2580 | 2060 | | 15 | 2830 | 1810 | 1240 | 1500 | 1510 | 1540 | 2750 | 5630 | 5400 | 2660 | 2540 | 2030 | | 16 | 2830 | 1820 | 1460 | 1530 | 1510 | 1420 | 2660 | 5420 | 5630 | 2960 | 2500 | 2010 | | 17 | 2870 | 1810 | 1730 | 1560 | 1520 | 1450 | 2510 | 5600 | 5330 | 3670 | 2540 | 2120 | | 18 | 2870 | 1810 | 1560 | 1580 | 1530 | 1450 | 2650 | 5170 | 5090 | 3650 | 2660 | 2150 | | 19 | 2910 | 1810 | 1620 | 1650 | 1490 | 1410 | 2710 | 4700 | 5200 | 3270 | 2790 | 2150 | | 20 | 2900 | 1740 | 1660 | 1610 | 1430 | 1450 | 2580 | 4470 | 6070 | 2850 | 2840 | 2130 | | 21 | 2960 | 1730 | 1630 | 1600 | 1470 | 1450 | 2530 | 4480 | 6360 | 2670 | 2690 | 2140 | | 22 | 2970 | 1770 | 1600 | 1550 | 1510 | 1430 | 2610 | 4910 | 5740 | 2580 | 2570 | 2400 | | 23 | 2940 | 1730 | 1500 | 1490 | 1500 | 1440 | 2840 | 6370 | 5200 | 2550 | 2450 | 2490 | | 24 | 2930 | 1560 | 1450 | 1420 | 1490 | 1470 | 3020 | 9160 | 4990 | 2630 | 2410 | 2250 | | 25 | 2900 | 1390 | 1400 | 1520 | 1480 | 1490 | 2960 | 10500 | 4670 | 2620 | 2350 | 2180 | | 26
27
28
29
30
31 | 2910
2970
2940
2960
3020
3010 | 1610
1830
1780
1720
1710 | 1410
1380
1380
1400
1370
1340 | 1530
1520
1410
1300
1250
1210 | 1430
1430
1470
1460 | 1520
1570
1610
1770
1700
1680 | 2970
3230
3940
4340
4450 | 10200
9160
9110
11000
12800
12500 | 4630
4870
4700
4510
4220 | 2570
2660
2570
2520
2430
2450 | 2510
2700
2680
2660
2800
2710 | 2090
1790
1700
1670
1700 | | TOTAL | 90930 | 58180 | 46690 | 45420 | 42600 | 46570 | 77870 | 223040 | 197050 | 90850 | 79270 | 65390 | | MEAN | 2933 | 1939 | 1506 | 1465 | 1469 | 1502 | 2596 | 7195 | 6568 | 2931 | 2557 | 2180 | | MAX | 3140 | 2970 | 1730 | 1650 | 1530 | 1770 | 4450 | 12800 | 12100 | 3910 | 2840 | 2490 | | MIN | 2470 | 1390 | 1240 | 1190 | 1380 | 1410 | 1540 | 4290 | 4220 | 2430 | 2340 | 1670 | | AC-FT | 180400 | 115400 | 92610 | 90090 | 84500 | 92370 | 154500 | 442400 | 390800 | 180200 | 157200 | 129700 | | STATIS | TICS OF M | ONTHLY MEA | AN DATA F | OR WATER Y | ZEARS 1967 | - 2000 | , BY WATE | R YEAR (WY |) | | | | | MEAN | 2153 | 1919 | 1616 | 1521 | 1502 | 1730 | 2742 | 7075 | 10500 | 5735 | 2925 | 2302 | | MAX | 3082 | 2703 | 2487 | 2192 | 2209 | 2814 | 5113 | 15570 | 20710 | 15180 | 5975 | 3716 | | (WY) | 1985 | 1985 | 1985 | 1985 | 1986 | 1986 | 1996 | 1984 | 1984 | 1995 | 1984 | 1984 | | MIN | 1394 | 1186 | 1162 | 1142 | 1023 | 1018 | 1571 | 2146 | 2781 | 1755 | 1674 | 1647 | | (WY) | 1978 | 1978 | 1967 | 1995 | 1981 | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | | SUMMAR | Y STATIST | CICS | FOR | 1999 CALEN | NDAR YEAR | | FOR 2000 | WATER YEAR | | WATER Y | EARS 1967 | 7 - 2000 | | LOWEST
HIGHES'
LOWEST
ANNUAL
INSTAN
INSTAN
ANNUAL
10 PER
50 PER | MEAN T ANNUAL M T DAILY ME DAILY ME SEVEN-DA TANEOUS F | MEAN MEAN MEAN MEAN MEAK FLOW MEAK STAGE AC-FT) MEDS MEDS MEDS | | 1255660
3440
12300
1200
1280
2491000
9350
2550
1410 | Jun 9
Feb 12
Mar 9 | | 1063860
2907
12800
1190
1340
13800
8.
2110000
5640
2390
1440 | May 30
Jan 7
Jan 28
May 30
41 May 30 | | 3482
6276
1638
30200
870
978
31500
12.4
2522000
8040
2120
1350 | Feb
Mar
May | 1984
1977
25 1984
10 1977
25 1984
25 1984 | 212 DIVIDE CREEK BASIN #### 09089500 WEST DIVIDE CREEK NEAR RAVEN, CO LOCATION.--Lat $39^{\circ}19^{\circ}52^{\circ}$, long $107^{\circ}34^{\circ}46^{\circ}$, in $NE^{1}/_{4}SW^{1}/_{4}$ sec.29, T.8 S., R.91 W., Mesa County, Hydrologic Unit 14010005, on left bank 10 ft downstream from private road bridge, 0.8 mi upstream from Brook Creek, 8 mi south of Raven, and 16 mi south of Silt. DRAINAGE AREA. -- 64.6 mi². PERIOD OF RECORD.--October 1955 to September 1999. October 1999 to September 2000 (seasonal records only). Water-quality data available, May 1986 to September 1990. Sediment data available, October 1989 to September 1990. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,050 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by water imported from Thompson Creek (Roaring Fork basin), Muddy Creek (Muddy Creek basin), and Buzzard Creek (Plateau Creek basin). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,410 $\rm ft^3/s$, May 14, 1984, from rating curve extended above 670 $\rm ft^3/s$, gage height, 5.83 $\rm ft$; minimum daily, no flow at times in most years. EXTREMES FOR CURRENT YEAR (seasonal only).--Maximum discharge, 316 ${\rm ft}^3/{\rm s}$, at 2145 May 5, gage height, 4.12 ${\rm ft}$; minimum daily, 0.10 ${\rm ft}^3/{\rm s}$, Aug. 11. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CODIC | . PEBI FEN | | MEAN VAI | | K 1999 10 | SEF TENDI | SIC 2000 | | | |-------|------|---------|-----------|------------|-----|----------|------|-----------|-----------|----------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 3.5 | | | | | | e12 | 173 | 118 | 13 | .31 | 1.1 | | 2 | 3.4 | | | | | | e13 | 182 | 103 | 12 | .25 | 1.0 | | 3 | 3.3 | | | | | | e13 | 190 | 99 | 11 | .23 | .72 | | 4 | 3.1 | | | | | | e17 | 215 | 92 | 8.4 | .25 | .58 | | 5 | 3.1 | | | | | | e25 | 239 | 88 | 6.9 | .26 | .54 | | 6 | 3.1 | | | | | | e33 | 223 | 80 | 6.1 | .24 | .57 | | 7 | 3.8 | | | | | | e40 | 217 | 75 | 5.5 | .21 | .71 | | 8 | 3.9 | | | | | | e48 | 207 | 70 | 5.3 | .18 | .95 | | 9 | 3.5 | | | | | | e58 | 174 | 66 | 7.5 | .13 | .95 | | 10 | 3.4 | | | | | | e70 | 172 | 58 | 6.8 | .13 | .96 | | 11 | 3.2 | | | | | | e67 | 188 | 51 | 4.9 | .10 | .69 | | 12 | 3.0 | | | | | | e76 | 167 | 44 | 3.9 | .12 | .55 | | 13 | 2.9 | | | | | | e88 | 149 | 40 | 3.6 | .12 | .47 | | 14 | 2.8 | | | | | | 102 | 128 | 36 | 3.2 | .11 | .39 | | 15 | 2.7 | | | | | | 96 | 121 | 33 | 2.8 | .15 | .30 | | 16 | 2.6 | | | | | | 71 | 124 | 30 | 2.4 | .17 | .26 | | 17 | 2.4 | | | | | | 95 | 129 | 28 | 3.0 | . 29 | .24 | | 18 | 2.9 | | | | | | 110 | 110 | 26 | 4.4 | .52 | .41 | | 19 | 3.0 | | | | | | 78 | 100 | 35 | 2.6 | 1.2 | .50 | | 20 | 2.7 | | | | | | 69 | 102 | 47 | 1.8 | 1.5 | .54 | | 21 | 2.8 | | | | | | 95 | 106 | 30 | 1.4 | 1.7 | .64 | | 22 | 3.0 | | | | | | e90 | 111 | 26 | 1.2 | 4.7 | 1.2 | | 23 | 3.0 | | | | | | e98 | 123 | 23 | .98 | 2.8 | 1.2 | | 24 | 2.9 | | | | | | e108 | 131 | 23 | .74 | 1.6 | 1.3 | | 25 | 2.8 | | | | | | e112 | 130 | 20 | .70 | 1.1 | 1.2 | | 26 | 2.8 | | | | | | e130 | 114 | 22 | .68 | 1.0 | 1.1 | | 27 | 2.8 | | | | | | e155 | 105 | 24 | .58 | .86 | 1.0 | | 28 | 2.8 | | | | | | e180 | 104 | 18 | .53 | 1.0 | .89 | | 29 | 4.0 | | | | | | 189 | 109 | 16 | .45 | 1.3 | .92 | | 30 | 3.3 | | | | | | 173 | 109 | 15 | .39 | 1.5 | 1.1 | | 31 | 4.0 | | | | | | | 126 | | .35 | 1.5 | | | TOTAL | 96.5 | | | | | | 2511 | 4578 | 1436 | 123.10 | 25.53 | 22.98 | | MEAN | 3.11 | | | | | | 83.7 | 148 | 47.9 | 3.97 | .82 | .77 | | MAX | 4.0 | | | | | | 189 | 239 | 118 | 13 | 4.7 | 1.3 | | MIN | 2.4 | | | | | | 12 | 100 | 15 | .35 | .10 | .24 | | AC-FT | 191 | | | | | | 4980 | 9080 | 2850 | 244 | 51 | 46 | e Estimated. #### 09095500 COLORADO RIVER NEAR CAMEO, CO LOCATION.--Lat $39^{\circ}14^{\circ}20^{\circ}$, long $108^{\circ}16^{\circ}00^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.30, T.9 S., R.97 W., Mesa County, Hydrologic Unit 14010006, on left bank 100 ft north of Interstate 70, 0.5 mi upstream from Jackson Canyon, 5.9 mi upstream from Grand Valley project diversion dam, and 7 mi northeast of Cameo. DRAINAGE AREA.--8,050 mi², approximately. WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1933 to current year. REVISED RECORDS. -- WRD Colo. 1973: 1970. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Datum of gage is 4,813.73 ft above sea level, (levels by Colorado Department of Highways). Prior to Oct. 10, 1934, nonrecording gage on river and water-stage recorder on Highline Canal, about 10 mi downstream at different datum. Oct. 10, 1934 to Feb. 27, 1958, water-stage recorder at site 3.0 mi downstream at datum 22.55 ft lower. REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversion for irrigation of about 160,000 acres. | | | DISCHA | ARGE, CUB | IC FEET PE | | WATER Y | YEAR OCTOBE | ER 1999 TC | SEPTEMB | ER 2000 | | | |--|---|---|--
--|---|--|---|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3080
3050
2970
2890
2850 | 3040
2970
2820
2710
2560 | 1900
1870
1920
1880
1790 | 1640
1750
1830
1720
1510 | 1580
1710
1710
1770
1780 | 1780
1770
1750
1770
1790 | 2160
2120
2070
2070
2010 | 4420
4340
4850
5890
7120 | 14700
13900
13000
11900
10600 | 4170
3950
3790
3650
3620 | 2300
2230
2260
2400
2530 | 2750
2550
2480
2520
2620 | | 6
7
8
9
10 | 2650
2700
2980
3120
3110 | 2470
2350
2230
2220
2120 | 1620
1620
1770
1840
1680 | 1760
1550
1470
1800
1950 | 1750
1730
1740
1720
1790 | 1800
1840
1900
1980
1970 | 2240
2490
2740
2840
2880 | 8500
9150
9410
9060
7540 | 9560
9110
8700
8300
8030 | 3380
3240
3070
3040
3170 | 2500
2480
2500
2510
2520 | 2620
2610
2620
2590
2550 | | 11
12
13
14
15 | 3060
3020
3000
2870
2850 | 2090
2060
2030
2040
2010 | 1690
1860
1740
1610
1560 | 1940
1890
1870
1780
1770 | 1970
1920
1920
1880
1840 | 1890
1850
1900
1870
1840 | 3030
3030
e3050
3060
e3100 | 7350
8300
7890
6700
6000 | 7080
6460
6030
5460
5150 | 3100
2910
2750
2660
2570 | 2560
2620
2690
2700
2660 | 2440
2340
2270
2220
2180 | | 16
17
18
19
20 | 2880
2920
2960
2980
2980 | 2020
2030
2020
2020
1990 | 1470
1810
1980
1840
1880 | 1800
1910
1970
2020
2090 | 1800
1970
2010
1890
1830 | 1980
1810
1830
1800
1800 | e3080
3020 | 5630
5670
5740
4980
4600 | 5590
5420
5190
5080
5820 | 2770
3160
3360
3150
2800 | 2590
2570
2680
2860
2880 | 2130
2160
2320
2370
2360 | | 21
22
23
24
25 | 3000
3000
2980
2970
2950 | 1970
2030
2010
1940
1730 | 1890
1920
1870
1780
1730 | 2010
2000
1900
1820
1820 | 1770
1840
1870
1840
1830 | 1860
1830
1800
1830
1860 | 2980
2980
3120
3280
3320 | 4540
4850
6070
9270
12100 | 6550
6330
5340
5220
4740 | 2490
2370
2310
2330
2430 | 2870
2690
2580
2490
2470 | 2350
2490
2740
2650
2500 | | 26
27
28
29
30
31 | 2960
2950
3000
2980
3010
3040 | 1620
1940
2060
1980
1930 | 1680
1640
1630
1640
1690
1660 | 2070
1970
1870
1730
1580
1540 | 1760
1730
1840
1840
 | 1880
1950
2010
2150
2280
2200 | 3320
3370
3740
4280
4510 | 12700
11600
10700
12200
15000
15400 | 4660
4830
4840
4700
4460 | 2420
2410
2460
2360
2320
2280 | 2470
2710
2810
2750
2870
2970 | 2430
2340
2030
1960
1980 | | TOTAL
MEAN
MAX
MIN
AC-FT | 91760
2960
3120
2650
182000 | 65010
2167
3040
1620
128900 | 54460
1757
1980
1470
108000 | 56330
1817
2090
1470
111700 | 52630
1815
2010
1580
104400 | 58570
1889
2280
1750
116200 | | 247570
7986
15400
4340
491100 | 216750
7225
14700
4460
429900 | 90490
2919
4170
2280
179500 | 80720
2604
2970
2230
160100 | 72170
2406
2750
1960
143100 | | STATIS | TICS OF I | MONTHLY ME | EAN DATA | FOR WATER | YEARS 193 | 4 - 2000 | O, BY WATER | R YEAR (WY | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2156
3732
1985
1084
1935 | 1958
3253
1985
1038
1935 | 1713
3002
1985
1004
1935 | 1600
2621
1985
940
1964 | 1611
2775
1986
941
1935 | 1822
3365
1986
1020
1935 | | 9212
20290
1984
2536
1977 | 12630
25830
1984
2959
1977 | 5902
17430
1957
1515
1934 | 2871
6571
1984
1332
1940 | 2217
4271
1984
1243
1934 | | SUMMAR | Y STATIS | TICS | FOR | 1999 CALE | NDAR YEAR | | FOR 2000 V | WATER YEAR | <u> </u> | WATER Y | EARS 193 | 4 - 2000 | | ANNUAL
HIGHES
LOWEST
HIGHES
LOWEST
ANNUAL
INSTAN
INSTAN
ANNUAL
10 PER
50 PER | T ANNUAL I
ANNUAL I
T DAILY M
DAILY M
SEVEN-DA
TANEOUS I | MEAN
MEAN
EAN
AY MINIMUN
PEAK FLOW
PEAK STAGE
(AC-FT)
EEDS | 4
5 | 1388260
3803
15100
1470
1520
2754000
10800
2750
1700 | Jun 10
Mar 11
Mar 9 | | 1175700
3212
15400
1470
1650
16400
9.1
2332000
5840
2470
1760 | May 31
Dec 16
Dec 26
May 30
14 May 30 | | 3913
7605
1937
38000
700
852
39300
14.3
2835000
9670
2150
1380 | May
Dec
Dec
May
6 May | 1984
1977
26 1984
29 1939
24 1939
26 1984
26 1984 | e Estimated. #### 09095500 COLORADO RIVER NEAR CAMEO, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1933 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: December 1935 to current year. WATER TEMPERATURE: April 1949 to current year. INSTRUMENTATION. -- Water-quality monitor since October 1982. REMARKS.--Daily water temperature record is good except for the period of July 24-27, which is poor. Daily specific conductance record is good, except for the period Aug. 13 to Sept. 9, which is fair, and July 18-23, which is poor. Missing daily data were due to sensor fouling or instrument malfunctions. Previous to water year 1995, daily maximum and minimum specific conductance data are available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 1,970 microsiemens, Jan. 19, 1940; minimum, 190 microsiemens, June 17-18, 1993. WATER TEMPERATURE: Maximum, 28.5°C July 22, 1989; minimum, 0.0°C on many days during winter months. EXPECTFIC CONDUCTANCE: Maximum, 1,320 microsiemens, Dec. 29; minimum, 269 microsiemens, May 31, June 1. WATER TEMPERATURE: Maximum, 24.9°C, July 15; minimum, 0.0°C, on many days. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |--|---|---|--|--|--|--|--|--|--|---| | OCT | | | | | | | | | | | | 05
NOV | 1230 | 2840 | 793 | 8.6 | 11.7 | 9.4 | 190 | 55.3 | 13.0 | 81.7 | | 30
JAN | 1320 | 1920 | 1100 | 8.5 | 3.4 | 11.5 | 250 | 70.7 | 17.8 | 120 | | 20 | 1245 | 2040 | 1080 | 8.3 | 4.2 | 11.1 | 230 | 62.8 | 17.0 | 123 | | MAR
08
APR | 1045 | 1920 | 1080 | 8.2 | 6.1 | 8.6 | 240 | 65.4 | 17.7 | 134 | | 21
MAY | 1115 | 2940 | 732 | 8.4 | 11.1 | 9.3 | 180 | 50.7 | 12.1 | 77.7 | | МАY
09 | 1030 | 9240 | 333 | 8.0 | 9.7 | 8.7 | 100 | 30.7 | 6.81 | 24.3 | | 31
JUL | 1205 | 15100 | 282 | 8.0 | 13.9 | 8.2 | 96 | 28.5 | 6.12 | 16.5 | | 27
SEP | 0940 | 2400 | 885 | 8.3 | 20.7 | 7.4 | 200 | 57.8 | 13.0 | 92.1 | | 01 | 0945 | 2840 | 805 | 8.1 | 17.9 | 7.3 | 190 | 56.9 | 12.3 | 80.5 | | | | | | | | | | | | | | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) |
SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
05 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY WAT.DIS FET LAB CACO3 (MG/L) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | | OCT
05
NOV
30 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
05
NOV
30
JAN
20 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
05
NOV
30
JAN
20 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
117 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
98.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
441
614 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
3380
3180 | | OCT
05
NOV
30
JAN
20
MAR
08
APR
21 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.6
3.6
3.8 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
117
148 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
98.9
135 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
113
171 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.4
7.4 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
441
614 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.60
.84 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
3380
3180
3360 | | OCT
05
NOV
30
JAN
20
MAR
08
APR
21
MAY
09
31 | AD-
SORP-
TION
RATIO
(00931)
3
3
4 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.6
3.6
3.6 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
117
148
142 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
98.9
135
134 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
113
171
175 | RIDE,
DIS-
SOLVED (MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.4
7.4
9.3
7.1 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
441
614
610
626 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.60
.84
.83 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
3380
3180
3360
3240 | | OCT
05
NOV
30
JAN
20
MAR
08
APR
21
MAY | AD-
SORP-
TION
RATIO
(00931)
3
3
4
4
4 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
2.6
3.6
3.6
3.8
3.6 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
117
148
142
146
119 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
98.9
135
134
138
85.9
34.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
113
171
175
172
104
30.1 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.3
.3
.3
.3 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.4
7.4
9.3
7.1
8.0 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
441
614
610
626
413 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.60
.84
.83
.85
.56 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
3380
3180
3360
3240
3280
4620 | 09095500 COLORADO RIVER NEAR CAMEO, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |---|--|--|---|---|---|--|---|---|---|---|--|---| | | | OCTOBER | | : | NOVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 740
743
749
793
795 | 722
728
734
743
782 | 731
735
741
763
788 | 784
791
825
856
894 | 775
772
785
820 | 779
781
803
834
867 | 1100
1110
1110
1110
1120 | 1090
1100
1100
1100
1100 | 1090
1100
1110
1100
1100 | 1220
1220
1180
1180
1180 | 1180
1170
1140
1150
1150 | 1200
1190
1160
1160
1170 | | 6
7
8
9
10 | 822
894
886
809
757 | 788
822
809
740
744 | 798
868
843
760
750 | 937
960
1020
1120
1060 | 883
923
960
1020 | 913
937
977
1060
1040 | 1140
1200
1220
1190
1150 | | 1130
1190
1200
1170
1140 | | 1180
1190
1200
1240
1150 | 1240
1220
1230
1270
1200 | | 11
12
13
14 | 762
767
775
799
838 | 743 | 752
757
765
775
815 | 1070
1080
1080
1090
1070 | 1060
1060
1020
1060
1050 | 1060
1070
1040
1070
1060 | 1190
1180
1140
1200
1260 | | 1180
1170
1120
1170
1220 | | 1000 | 1130
1090
1120
1060
1100 | | 1.0 | 839 | | | 1080
1090
1080
1080
1080 | 1060 | | 1250
1280
1210
1100
1150 | | 1240
1250
1130
1080
1120 | | 1120
1110
1090
1090
1070 | | | 21
22
23
24
25 | 826 | 813
804
803
809
810 | | 1090
1100
1100
1100
1120 | | | 1100
1080
1100
1110
1170 | | 1080
1070
1080
1100
1140 | 1070
1080
1070 | 1050
1060
1040
1070
1050 | 1060
1070
1060
1080
1080 | | 26
27
28
29
30
31 | 833
837
834
822
821
786 | 815
816
816
803
786
766 | | 1200
1240
1180
1080
1100 | | 1170
1220
1130
1070
1080 | 1190
1220
1220
1320
1240
1220 | 1130
1160
1170
1180
1170
1170 | 1160
1190
1190
1210
1210
1200 | 1050
1010
1030
1020
1060
1150 | 1070
1050
961
1000
1010
1010
1020
1060 | 1020
1010
1020
1020
1050
1100 | | MONTH | 894 | 722 | 798 | 1240 | 772 | | 1320 | 1050 | | | 961 | 1120 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | | FEBRUARY | | 1150
1150
1140
1130
1140 | MARCH | | | APRIL | | 505
518
512
462 | MAY
462
502
462
401 | 496
510
491
425
383 | |
1
2
3
4 | 1110
1110
1040
1030 | 1100
1040
1020
981
968 | 1100
1090
1030
1020
986 | | MARCH
1120
1130
1120
1100
1110 | 1140
1140
1130
1130
1120 | 945
952
960
977
982
998
971
917
841
811 | 930
938
943
953
958 | 937
945
954
964
972 | 505
518
512
462 | MAY
462
502
462
401 | 496
510
491
425 | | 1
2
3
4
5
6
7
8
9 | 1110
1110
1040
1030
997
984
988
988
977
975 | FEBRUARY 1100 1040 1020 981 968 966 966 974 966 | 1100
1090
1030
1020
986
977
977
979
974
965 | 1150
1150
1140
1130
1140 | MARCH 1120 1130 1120 1100 1110 1100 1090 1070 1000 932 | 1140
1140
1130
1130
1120 | 945
952
960
977
982 | 930
938
943
953
958 | 937
945
954
964
972
969
921
872
822
797 | 505
518
512
462 | MAY 462 502 462 401 362 336 324 318 321 354 | 496
510
491
425
383
350
329
325
335 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1110
1110
1040
1030
997
984
988
977
975
971
965
1040
1070 | FEBRUARY 1100 1040 1020 981 968 966 966 974 966 940 935 946 956 1040 | 1100
1090
1030
1020
986
977
977
979
974
965
956
953
1000 | 1150
1150
1140
1130
1140
1120
1110
1070
1000
981
982
999
985 | MARCH 1120 1130 1120 1100 1110 1100 1090 1070 1000 932 960 962 976 960 | 1140
1140
1130
1130
1120
1110
1100
1080
1050
958
971
977
986
973 | 945
952
960
977
982
998
971
917
841
811
800
768
779 | 930
938
943
953
958
945
889
841
808
787
763
747
736
740 | 937
945
954
964
972
969
921
872
822
797
779
757
751
753 | 505
518
512
462
401
362
336
331
354
429
413
391
404
450 | MAY 462 502 462 401 362 336 324 318 321 354 391 366 360 404 | 496
510
491
425
383
350
329
325
335
386
401
374
428 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 1110
1110
1040
1030
997
984
988
977
975
971
965
1040
1070
1100 | FEBRUARY 1100 1040 1020 981 968 966 966 974 966 940 935 946 956 1040 1070 1100 1110 1110 | 1100
1090
1030
1020
986
977
977
979
965
956
953
1000
1060
1080
1130
1130
1120 | 1150
1150
1140
1130
1140
1120
1110
1070
1000
981
982
999
985
991
989
978
1010
978 | MARCH 1120 1130 1120 1100 1110 1100 1090 1070 1000 932 960 962 976 960 967 973 944 961 957 | 1140
1140
1130
1130
1120
1110
1100
1080
1050
958
971
977
986
973
985
982
962
978
970 | 945
952
960
977
982
998
971
917
841
811
800
768
779
778
742 | 930
938
943
953
958
945
889
841
808
787
763
747
736
740
708 | 937
945
954
964
972
969
921
872
822
797
779
757
751
753
719 | 505
518
512
462
401
362
336
331
354
429
413
391
404
450
492
504
509
492
501 | MAY 462 502 462 401 362 336 324 318 321 354 391 366 360 404 450 492 492 453 465 | 496
510
491
425
383
350
329
325
335
386
401
374
428
473
498
504
464
483 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 1110
1110
1040
1030
997
984
988
988
977
975
1040
1170
1140
1140
1140
1150
1150
1160
1160
1160
1160 | FEBRUARY 1100 1040 1020 981 968 966 966 974 966 940 935 946 956 1040 1070 1100 1110 1110 1110 1110 1120 112 | 1100
1090
1030
1020
986
977
977
979
974
965
956
953
1000
1060
1130
1130
1130
1130
1130
113 | 1150
1150
1140
1130
1140
1120
1110
1000
981
982
999
985
991
989
978
1010
982
977
978
978
978
978
978 | MARCH 1120 1130 1120 1100 1110 1100 1090 1070 1000 932 960 962 976 960 967 973 944 961 957 958 971 964 964 964 964 963 963 963 963 963 960 918 | 1140
1140
1130
1130
1120
1110
1100
1050
958
971
977
986
973
985
962
970
970
970
971
973
969 | 945
952
960
977
982
998
971
917
841
811
800
768
779
778
742

766
766
766
738
760
769
761
726
675
652
652
652
652
653
654
491 | APRIL 930 938 943 953 958 945 889 841 808 787 763 747 736 740 708 751 728 734 757 698 636 645 638 633 564 476 468 | 937
945
954
964
972
969
921
872
822
797
751
753
719

758
746
733
746
762
746
687
655
644
609
520
479 | 505
518
512
462
401
362
336
331
354
429
413
391
404
450
492
504
509
492
501
524
532
528
499
433
338
338 | MAY 462 502 462 401 362 336 324 318 321 354 391 366 360 404 450 492 493 493 493 493 493 493 493 493 493 493 | 496
510
491
425
383
350
329
325
335
386
401
374
374
374
464
467
483
515
529
518
475
384
310
304
320
354
320
325
335
335
335
335
346
347
347
347
347
347
347
347
347
347
347 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 1110
1110
1040
1030
997
984
988
977
975
1040
1170
1140
1140
1150
1150
1140
1140
1150
1140
114 | FEBRUARY 1100 1040 1020 981 968 966 974 966 940 935 946 956 1040 1070 1110 1110 1110 1110 1120 1120 112 | 1100
1090
1030
1020
986
977
977
979
974
965
956
953
1000
1060
1130
1130
1130
1130
1130
113 | 1150
1150
1140
1130
1140
1120
1110
1070
1000
981
982
999
985
991
989
978
974
980
982
977
978
978
978
977 | MARCH 1120 1130 1120 1100 1110 1100 1090 1070 1000 932 960 962 976 960 967 973 944 961 957 958 971 964 962 964 964 963 963 963 | 1140
1140
1130
1130
1120
1110
1100
1050
958
971
977
986
973
985
962
978
970
970
971
973
969
971
973
969 | 945
952
960
977
982
998
971
841
811
800
768
779
778
742

766
766
766
766
769
769
761
726
675 | 930
938
943
953
958
945
889
841
808
787
763
740
708

751
735
728
734
757
698
636
645
638
633
564
476 | 937
945
954
964
972
969
921
872
822
797
779
7551
753
719

758
746
733
746
762
746
687
655
645
644
609
520 | 505
518
512
462
401
362
336
331
354
429
413
391
404
450
492
504
509
492
501
524
532
528
499
433
338
341
341
360
357 | MAY 462 502 462 401 362 336 324 318 321 354 391 366 360 404 450 492 453 465 501 523 499 433 327 299 294 305 341 312 | 496
510
491
425
383
350
329
325
335
386
401
374
428
473
498
504
464
483
515
529
518
475
384
310 | MONTH 13.4 6.3 9.7 8.3 .2 # 09095500 COLORADO RIVER NEAR CAMEO, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |---|--|--|---|--|--|---|--|---|--|--|---|---| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 2 | 288
292 | 269
275 | 279
286 | 596
621 | 575
596 | 584
607 | 921
917 | 908
906
 915
910 | 828
886 | 820
819 | 823
851 | | 3 | 296 | 282 | 290 | 637 | 620 | 627 | 922 | 913 | 918 | 923 | 872 | 887 | | 4
5 | 306
329 | 284
300 | 297
317 | 655
667 | 637
654 | 645
659 | 922
888 | 888
847 | 905
868 | 939
939 | 877
839 | 890
863 | | | | | | | | | | | | | | | | 6
7 | 352
368 | 323
346 | 340
356 | 722
737 | 653
720 | 682
726 | 847
837 | 835
824 | 839
831 | 897
860 | 819
845 | 851
850 | | 8 | 369 | 346 | 358 | 769 | 737 | 751 | 835 | 825 | 830 | 923 | 841 | 855 | | 9
10 | 381
383 | 361
366 | 370
374 | 794
790 | 768
767 | 782
783 | 831
827 | 816
819 | 824
822 | 912
881 | 868
865 | 881
872 | | 11 | 416 | 381 | 400 | 767 | 751 | 760 | 824 | 808 | 816 | 888 | 861 | 871 | | 12 | 444 | 412 | 430 | 790 | 754 | 770 | 1040 | 804 | 825 | 909 | 875 | 887 | | 13
14 | 455
484 | 432
451 | 444
466 | 810
834 | 790
810 | 799
828 | 1100
840 | 840
813 | 935
822 | 928
982 | 897
928 | 909
953 | | 15 | 512 | 478 | 495 | 850 | 824 | 841 | 822 | 790 | 800 | 949 | 895 | 916 | | 16 | 506 | 469 | 486 | 847 | 813 | 837 | 798 | 786 | 791 | 959 | 938 | 948 | | 17 | 476 | 467 | 469 | 813 | 776 | 791 | 806 | 791 | 797 | 963 | 945 | 954 | | 18
19 | 491
531 | 471
488 | 484
506 | 779
738 | 728
726 | 750
732 | 827
842 | 791
803 | 811
822 | 962
928 | 927
910 | 943
919 | | 20 | 527 | 478 | 503 | 775 | 731 | 748 | 825 | 805 | 813 | 920 | 890 | 908 | | 21 | 478 | 435 | 457 | 828 | 770 | 799 | 807 | 788 | 797 | 914 | 906 | 910 | | 22 | 453 | 428 | 439 | 862 | 828 | 843 | 804 | 779 | 788 | 924 | 912 | 917 | | 23
24 | 497
506 | 453
497 | 474
502 | 880
895 | 862
869 | 870
880 | 817
851 | 799
815 | 807
827 | 924
866 | 859
850 | 897
859 | | 25 | 538 | 497 | 518 | 903 | 877 | 890 | 869 | 851 | 859 | 882 | 856 | 872 | | 26 | 547 | 533 | 540 | 880 | 867 | 875 | 886 | 869 | 876 | 903 | 882 | 889 | | 27 | 546 | 539 | 543
538 | 901
903 | 879
878 | 889
890 | 891 | 871
847 | 883 | 918
984 | 899
918 | 905 | | 28
29 | 547
550 | 531
530 | 544 | 890 | 881 | 886 | 882
861 | 808 | 865
829 | 1040 | 918 | 931
1020 | | 30 | 576 | 548 | 561 | 903 | 887 | 892 | 818 | 798 | 807 | 1040 | 1020 | 1030 | | 31 | | | | 921 | 903 | 910 | 852 | 790 | 827 | | | | | MONTH | 576 | 269 | 436 | 921 | 575 | 785 | 1100 | 779 | 841 | 1040 | 819 | 902 | | YEAR | 1320 | 269 | 860 | TEMPE | RATURE, | WATER (DE | G. C), W | ATER YEAF | R OCTOBER I | 1999 TO : | SEPTEMBEF | R 2000 | | | | DAY | MAX | TEMPE
MIN | RATURE,
MEAN | WATER (DE | G. C), W | ATER YEAF
MEAN | R OCTOBER I | 1999 TO : | SEPTEMBEF
MEAN | R 2000
MAX | MIN | MEAN | | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | | | | | | | | MIN
OCTOBER | MEAN | MAX | MIN
NOVEMBER | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | | | 1 | 12.7 | MIN
OCTOBER
9.9 | MEAN | MAX
8.3 | MIN
NOVEMBER
6.3 | MEAN | MAX
1
3.6 | MIN
DECEMBER
2.2 | MEAN | MAX | JANUARY | .0 | | 1
2
3 | 12.7
12.9
13.3 | MIN
OCTOBER
9.9
10.4
10.7 | MEAN
11.2
11.6
12.0 | MAX
8.3
8.0
7.7 | MIN
NOVEMBER
6.3
6.3
5.6 | MEAN 7.2 7.1 6.5 | MAX
3.6
4.4
4.1 | MIN DECEMBER 2.2 2.7 2.6 | MEAN 3.0 3.6 3.4 | .0
.8
.5 | JANUARY
.0
.0
.0 | .0
.2
.1 | | 1
2 | 12.7
12.9
13.3
12.9 | MIN
OCTOBER
9.9
10.4
10.7
10.2 | MEAN 11.2 11.6 12.0 11.5 | 8.3
8.0
7.7
7.5 | MIN
NOVEMBER
6.3
6.3
5.6
5.3 | 7.2
7.1
6.5
6.3 | 3.6
4.4
4.1
3.0 | MIN DECEMBER 2.2 2.7 2.6 1.4 | MEAN 3.0 3.6 3.4 2.2 | .0
.8
.5 | JANUARY .0 .0 .0 .0 .0 | .0 .2 .1 .0 | | 1
2
3
4
5 | 12.7
12.9
13.3
12.9
12.7 | MIN
OCTOBER
9.9
10.4
10.7
10.2
9.8 | MEAN 11.2 11.6 12.0 11.5 11.3 | 8.3
8.0
7.7
7.5
7.6 | MIN
NOVEMBER
6.3
6.3
5.6
5.3
5.0 | 7.2
7.1
6.5
6.3
6.3 | 3.6
4.4
4.1
3.0
2.1 | MIN DECEMBER 2.2 2.7 2.6 1.4 .3 | 3.0
3.6
3.4
2.2 | .0
.8
.5
.0 | JANUARY .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0 | | 1
2
3
4 | 12.7
12.9
13.3
12.9 | MIN
OCTOBER
9.9
10.4
10.7
10.2 | MEAN 11.2 11.6 12.0 11.5 | MAX
8.3
8.0
7.7
7.5
7.6
7.6 | MIN
NOVEMBER
6.3
6.3
5.6
5.3
5.0
4.9
5.0 | 7.2
7.1
6.5
6.3
6.3
6.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 | MIN DECEMBER 2.2 2.7 2.6 1.4 | 3.0
3.6
3.4
2.2
1.3 | .0
.8
.5 | JANUARY .0 .0 .0 .0 .0 | .0 .2 .1 .0 | | 1
2
3
4
5
6
7
8 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1 | MIN
OCTOBER
9.9
10.4
10.7
10.2
9.8
10.8
11.2
10.3 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.4 | MIN
NOVEMBER
6.3
6.3
5.6
5.3
5.0
4.9
5.0
5.2 | 7.2
7.1
6.5
6.3
6.3
6.3
6.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 | MIN DECEMBER 2.2 2.7 2.6 1.4 .3 .0 .0 | 3.0
3.6
3.4
2.2
1.3 | .0
.8
.5
.0
.0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .2 .1 .0 .0 .0 .0 .0 .0 | | 1
2
3
4
5 | 12.7
12.9
13.3
12.9
12.7 | MIN
OCTOBER
9.9
10.4
10.7
10.2
9.8 | MEAN 11.2 11.6 12.0 11.5 11.3 | MAX
8.3
8.0
7.7
7.5
7.6
7.6 | MIN
NOVEMBER
6.3
6.3
5.6
5.3
5.0
4.9
5.0 | 7.2
7.1
6.5
6.3
6.3
6.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 | MIN DECEMBER 2.2 2.7 2.6 1.4 .3 .0 .0 | 3.0
3.6
3.4
2.2
1.3 | .0
.8
.5
.0
.0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .2 .1 .0 .0 | | 1
2
3
4
5
6
7
8
9 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 | 11.2
11.6
12.0
11.5
11.3
11.7
11.7
11.6
11.8 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.4
7.8
7.9 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 | 7.2
7.1
6.5
6.3
6.3
6.3
6.5
6.9 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 1.4 .7 .8 | MIN DECEMBER 2.2 2.7 2.6 1.4 .3 .0 .0 .0 .0 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6 | .0
.8
.5
.0
.0 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .2 .1 .0 .0 .0 .0 .0 .0 .0 | | 1
2
3
4
5
6
7
8
9
10 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.4
7.8
7.9
7.3 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 | 7.2
7.1
6.5
6.3
6.3
6.3
6.3
6.5
6.9 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 1.4 .7 .8 1.7 | MIN DECEMBER 2.2 2.7 2.6 1.4 .3 .0 .0 .0 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .2 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 | | 1
2
3
4
5
6
7
8
9
10 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 10.8 | 11.2
11.6
12.0
11.5
11.3
11.7
11.6
11.8
11.9 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.8
7.9
7.3 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.2 5.7 4.9 4.8 4.1 3.7 | 7.2
7.1
6.5
6.3
6.3
6.3
6.5
6.9
6.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 | MIN DECEMBER 2.2 2.7 2.6 1.4 .3 .0 .0 .0 .0 .0 .1 .2 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6
.1
.3 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .1 .2 1.2 2.5 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0
.2
.1
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.4
7.8
7.9
7.3 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 | 7.2
7.1
6.5
6.3
6.3
6.3
6.3
6.5
6.9 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 1.4 .7 .8 1.7 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 0 0 .1 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6
.1
.3 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .2 | JANUARY | .0 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 10.8 10.4 9.9 | 11.2
11.6
12.0
11.5
11.3
11.7
11.6
11.8
11.9
12.1
11.9 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.4
7.8
7.9
7.0
6.6
6.0
5.7 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 6.0 5.5 6.9 4.6 4.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .1 .2 .0 .0 .0 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6
.1
.3 | .0
.8
.5
.0
.0
.0
.0
.0
.0
.0
.2
1.2
2.5
2.4
2.9 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9 | MIN OCTOBER
9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 10.8 10.4 9.9 8.5 6.9 | 11.2
11.6
12.0
11.5
11.3
11.7
11.6
11.8
11.9
12.1
11.9
12.1
11.9
10.9 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.4
7.8
7.9
7.3
7.0
6.6
6.0
5.7
5.4 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 | 7.2 7.1 6.5 6.3 6.3 6.3 6.3 6.5 6.9 6.3 6.0 5.5 5.0 4.6 4.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .1 .2 .0 .0 .0 .0 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6
.1
.3
.9
1.0
.4
.0 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.9 | MEAN 11.2 11.6 12.0 11.5 11.7 11.7 11.6 11.8 11.9 12.1 11.9 11.6 10.9 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.4 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.4 5.3 5.1 5.9 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 6.0 5.5 6.9 4.6 4.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .2 .2 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6
.1
.3
.9
1.0
.4
.0 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 3.8 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.5
1.5
1.6
2.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 10.8 10.4 9.9 8.5 6.9 | 11.2
11.6
12.0
11.5
11.3
11.7
11.6
11.8
11.9
12.1
11.9
12.1
11.9
10.9 | MAX
8.3
8.0
7.7
7.5
7.6
7.6
7.4
7.8
7.9
7.3
7.0
6.6
6.0
5.7
5.4 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 | 7.2 7.1 6.5 6.3 6.3 6.3 6.3 6.5 6.9 6.3 6.0 5.5 5.0 4.6 4.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .1 .2 .0 .0 .0 .0 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6
.1
.3
.9
1.0
.4
.0 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 11.0 10.4 9.9 8.5 6.9 6.7 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 12.1 12.1 11.9 11.6 10.9 9.5 8.1 7.7 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.4 5.3 5.1 5.9 5.1 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 3.3 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 6.0 4.6 4.3 4.2 4.2 5.0 4.3 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .2 .2 .2 | MIN DECEMBER 2.2 2.7 2.6 1.4 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 3.0
3.6
3.4
2.2
1.3
.7
.4
.6
.1
.3
.9
1.0
.0 | .00
.88
.55
.00
.00
.00
.00
.00
.00
.22
1.22
5.2.4
2.9
2.7
3.28
4.6 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.5
1.5
1.6
2.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0
10.5
9.2
9.1
8.8
9.3
9.4 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.9 6.7 6.4 6.8 7.2 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 12.1 11.9 12.1 11.9 17.9 7.7 7.6 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.4 5.3 5.1 5.9 5.1 4.0 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 3.3 2.4 1.3 2.4 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 6.0 5.5 5.0 4.6 4.3 4.2 5.0 4.3 3.0 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .9 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .2 .2 .2 .2 .6 .6 .5 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.0 3.6 3.4 2.2 1.3 .7 .4 .6 .1 .3 .9 1.0 .4 .0 .0 .0 .0 .0 .0 .2 .2 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.8 4.6 4.7 4.4 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.5
1.6
2.0
2.7
3.3
3.8
3.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0
10.5
9.2
9.1
8.5
8.8 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.7 6.4 6.8 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 12.1 12.1 11.9 11.6 10.9 9.5 8.1 7.7 7.6 7.9 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.4 5.3 5.1 4.0 2.8 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 2.9 3.1 4.1 3.3 2.4 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 4.6 4.3 4.2 4.2 4.2 5.0 4.3 3.0 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .2 .2 .6 .6 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.0 3.6 3.4 2.2 1.3 .7 .4 .6 .1 .3 .9 1.0 .0 .0 .0 .0 .0 .2 .2 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 4.6 4.7 3.7 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0
10.5
9.2
9.1
8.5
8.8 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.7 6.4 6.8 7.2 7.2 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 12.1 11.9 11.6 10.9 9.5 8.1 7.9 7.7 7.6 7.9 8.2 8.3 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.4 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.4 5.3 5.1 4.0 2.8 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 3.3 2.4 1.3 2.2 1.3 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.5 6.9 4.6 4.3 4.2 4.2 5.0 4.3 3.0 2.1 2.8 2.2 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .2 .2 .2 .6 .6 .5 .1 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.0 3.6 3.4 2.2 1.3 .7 .4 .6 .1 .3 .9 1.0 .0 .0 .0 .0 .0 .2 .2 .1 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 3.8 4.6 4.7 3.7 4.4 3.5 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.5
1.5
1.6
2.0
2.5
2.7
3.3
3.8
3.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0
10.5
9.2
9.1
8.5
8.8
9.3
9.4
9.3
9.2 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.7 6.4 6.8 7.2 7.1 6.9 6.8 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 12.1 11.9 11.6 10.9 9.5 8.1 7.9 7.7 7.6 7.9 8.2 8.3 8.1 8.0 7.9 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.6 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.4 5.3 5.1 4.0 2.8 3.4 2.8 2.1 1.6 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 3.3 2.4 1.3 2.2 1.3 4.2 2.2 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 4.6 4.3 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .0 .2 .2 .6 .6 .5 .1 .1 .4 .5 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.0 3.6 3.4 2.2 1.3 .7 4.6 .1 .3 .9 1.0 .0 .0 .0 .0 .0 .0 .1 .1 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 4.6 4.7 3.7 4.4 3.5 3.0 2.7 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
27 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0
10.5
9.2
9.1
8.8
9.3
9.4
9.4
9.3
9.2
9.0
9.0 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.6 10.7 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.7 6.4 6.8 7.2 7.1 6.9 6.8 6.9 | 11.2
11.6
12.0
11.5
11.3
11.7
11.7
11.6
11.8
11.9
12.1
11.9
12.1
11.9
17.9
7.7
7.6
7.9
8.3
8.3
8.1
8.0 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.6 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.1 5.9 5.1 4.0 2.8 2.1 1.6 2.1 3.5 | MIN NOVEMBER 6.3 6.3 5.6 5.3
5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 3.3 2.4 1.3 3.3 2.4 1.3 3.4 1.3 2.2 1.3 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 4.6 4.3 4.2 5.0 4.6 4.3 3.0 2.1 2.8 2.2 1.4 .9 1.2 2.6 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .2 .2 .2 .2 .6 .6 .5 .1 .1 .4 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.0 3.6 3.4 2.2 1.3 .7 .4 .6 .1 .3 .9 1.0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .1 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .0 .2 2.5 2.4 2.9 2.7 3.2 3.8 4.6 4.7 3.7 4.4 3.5 3.0 2.7 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.5
1.6
2.0
2.5
2.7
3.3
3.5
2.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.9
12.0
10.5
9.2
9.1
8.5
8.8
9.3
9.4
9.3
9.2
9.0
9.0
8.1
8.5 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.7 6.4 6.8 7.2 7.1 6.9 6.8 6.9 6.9 6.7 7.4 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 12.1 11.9 11.6 10.9 9.5 8.1 7.9 7.7 7.6 7.9 8.2 8.3 8.1 8.0 7.9 7.9 7.8 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.6 7.8 7.9 7.3 7.0 6.6 6.0 5.7 5.4 5.3 5.1 4.0 2.8 3.4 2.8 2.1 1.6 2.1 3.5 4.6 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 3.3 2.4 1.3 2.2 1.3 .4 .2 1.8 2.2 1.8 2.1 2.5 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 6.0 5.5 6.9 4.6 4.3 3.0 2.1 2.8 2.2 1.4 9 1.2 2.6 3.1 3.6 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .0 .2 .2 .6 .6 .5 .1 .1 .4 .5 .4 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.0 3.6 3.4 2.2 1.3 .7 .4 .6 .1 .3 .9 1.0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 3.8 4.6 4.7 3.7 4.4 3.5 3.0 2.7 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .00
.22
.11
.00
.00
.00
.00
.00
.00
.00
.15
1.66
2.00
2.5
2.7
3.3
3.8
3.9
3.3
3.5
2.6
2.5
2.6
2.5
3.0
2.6
2.6
2.6
2.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3.6
3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 12.7
12.9
13.3
12.9
12.7
12.6
12.5
13.1
13.2
13.3
13.4
13.2
13.1
12.0
10.5
9.2
9.1
8.5
8.8
9.3
9.4
9.3
9.4
9.3
9.2
9.0
8.1 | MIN OCTOBER 9.9 10.4 10.7 10.2 9.8 10.8 11.2 10.3 10.6 10.7 11.0 11.0 10.8 10.4 9.9 8.5 6.9 6.7 6.4 6.8 7.2 7.1 6.9 6.8 6.9 6.9 | MEAN 11.2 11.6 12.0 11.5 11.3 11.7 11.6 11.8 11.9 12.1 11.9 11.6 10.9 9.5 8.1 7.9 7.7 7.6 7.9 8.2 8.3 8.1 8.0 7.9 7.6 | MAX 8.3 8.0 7.7 7.5 7.6 7.6 7.6 7.6 7.6 6.0 5.7 5.4 5.3 5.1 4.0 2.8 2.1 1.6 2.1 3.5 4.1 | MIN NOVEMBER 6.3 6.3 5.6 5.3 5.0 4.9 5.0 5.2 5.7 4.9 4.8 4.1 3.7 3.2 2.9 2.9 3.1 4.1 3.3 2.4 1.3 2.4 1.3 2.4 1.3 2.4 2.2 1.3 | 7.2 7.1 6.5 6.3 6.3 6.3 6.5 6.9 6.3 6.5 5.0 4.6 4.3 4.2 5.0 4.3 3.0 2.1 2.8 2.2 1.4 9 | MAX 3.6 4.4 4.1 3.0 2.1 1.4 .7 .8 1.7 1.9 1.2 .0 .0 .0 .2 .2 .2 .6 .6 .5 .1 .1 .4 .5 | MIN DECEMBER 2.2 2.7 2.6 1.4 3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.0 3.6 3.4 2.2 1.3 .7 .4 .6 .1 .3 .9 1.0 .0 .0 .0 .0 .0 .0 .1 .1 .1 | MAX .0 .8 .5 .0 .0 .0 .0 .0 .0 .0 .2 1.2 2.5 2.4 2.9 2.7 3.2 3.8 4.6 4.7 3.7 4.4 3.5 3.0 2.7 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.5
1.5
2.0
2.7
3.3
3.8
3.9
2.6
2.5 | 4.5 4.4 .0 .6 4.7 .0 1.6 217 # 09095500 COLORADO RIVER NEAR CAMEO, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | TEMPE | RATURE, | WATER (DE | . C), W. | ATER YEAR | OCTOBER | 1999 10 | SEPTEMBER | 2000 | | | |---|--|---|--|--|---|--|--|---|--|--|---|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 2 | 2.2 | .3
.6
.5 | 1.7 | 6.8
7.5 | 5.2
5.5 | 6.1
6.5
6.9
7.5
6.9 | 10.6 | 6.6
7.8 | 8.6
9.1 | 13.7
14.7 | $11.1 \\ 12.1$ | 12.5
13.4 | | 3
4 | 3.1
3.0 | 1.2 | 1.9
2.2 | 7.5
8.6
9.1 | 5.3
5.7 | 6.9
7.5 | 11.1
12.5 | 7.8
6.8
7.8
9.1 | 9.0
10.0 | 15.4
15.4 | 12.7
12.6 | 14.1
14.2 | | 5 | 3.0 | 1.1 | 2.1 | 8.6 | 6.3 | | | | 11.3 | 15.1 | 12.3 | 13.9 | | 6
7 | 3.6
4.3 | 1.1
1.6 | 2.4 | 6.8
7.2
6.5
7.3 | 5.0
6.5 | 5.9
6.8 | 14.5
14.2
13.5
13.7
14.0 | 10.8
10.6 | 12.6
12.4
11.9
11.9 | 14.2
13.3 | 12.0
11.8 | 13.2
12.4 | | 8 | 4.2 | 2.0 | 3.3 | 6.5 | 5.3
5.7 | 6.0
6.4 | 13.5
13.7 | 10.2 | 11.9 | 11.8
11.9 | 10.3 | 10.9 | | 10 | 3.0 | 2.0 | 2.4 | 7.9 | 5.0 | 6.3 | 14.0 | 10.4 | 12.1 | 13.3 | 10.5 | 11.9 | | 11 | 3.9 | 2.3 | 3.1 | 7.3 | 4.4 | 5.9 | 14.3 | 10.6 | 12.4 | 12.9 | 11.5 | 12.2 | | | 3.8
3.5 | 2.3
3.1
2.6 | 3.5 | 9.3 | 5.9
6.1 | 5.9
7.1
7.6
7.9
6.9 | 14.5 | 11.0
11.1 | 12.7
12.7 | 12.0
11.0 | 10.4 | 11.4
9.7 | | 14
15 | 4.4
5.4 | 3.0
3.2 | 3.1
3.5
3.2
3.6
4.1 | 7.3
8.4
9.3
9.5
8.6 | 6.1
5.8 | 7.9
6.9 | 14.3
14.5
14.6
13.0
11.7 | $\frac{11.4}{11.0}$ | $\frac{12.2}{11.4}$ | 11.3
12.9 | 8.6
9.8 | $10.1 \\ 11.4$ | | 16 | 4.8 | | | 8.1 | 4.5 | 6.3 | | | | 13.3 | 11.3 | 12.3 | | 17
18 | 4.6
4.8 | 3.3
4.2
3.4 | 4.2
4.3
4.1
4.4 | 7.3
7.9
7.4 | 5.6
4.9 | 6.7
6.3 | 12.8 | | | 13.6
12.1 | 11.7
10.2 | 12.5
10.9 | | 19
20 | 5.7
5.1 | 3.1
3.4 | 4.4 | 7.4
7.0 | 4.4
5.1 | 6.1
5.8 | 11.0
12.1 | 9.1
7.8 | 10.0
9.8 | 13.0
14.7 | 9.7
11.9 | 11.3
13.2 | | 21 | 5.3 | | | 7.8 | | | | | 10.9 | 15.0 | 13.0 | 14.1 | | 22 | 6.5 | 4.6
4.2 | 4.4
5.4
5.3
5.6
4.1 | 7.6 | 5.4 | 5.9
6.6
7.0
8.9 | 11.7
12.2
13.0
13.7
13.2 | 10.1 | 11.1
11.3 | 16.0 | 13.5 | 14.8 | | 24 | 6.1
5.9 | 4.2 | 5.3 | 7.6
8.3
10.9
11.1 | 5.5
7.0 | 8.9 | 13.0 | 10.8 | 12.0 | 16.7
16.2 | 14.0
13.7 | 15.5
14.7 | | 25 | 4.8 | | | | | | | | 11.5 | 13.7 | 12.2 | 12.9 | | 26
27 | 4.7
5.9 | 2.4 | 3.7
4.4 | 11.9
12.4 | 8.6
8.7
9.5 | 10.3
10.6 | 13.3
15.5
15.6
14.4
13.6 | 10.8
11.5 | 12.0
13.4
14.2
13.6
12.3 | 12.6
13.0 | 10.7
9.7 | 11.4
11.3 | | 28
29 | 6.3
7.1 | 4.8
4.9 | 5.6
6.1 | 11.1 | 9.5
8.4 | 10.1
9.8 | 15.6
14.4 | 13.1
12.8 | 14.2 | 15.1
15.8 | 11.3
13.1 | 13.1
14.4 | | 30
31 | | | | 12.4
11.1
11.2
10.2
8.1 | 8.1
7.2 | 9.3
7.7 | 13.6 | 10.9 | 12.3 | 14.9
14.8 | 12.7
12.3 | 13.9
13.6 | | MONTH | 7.1 | .3 | 3.7 | 12.4 | 4.0 | 7.7 | 15.6 | 6.6 | 11.6 | 16.7 | | 12.6 | DAY | MAX | MIN | MEAN | | DAY | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | |
DAY
1
2 | MAX
14.9
15.3 | | 13.5 | 21.4 | | 19.9 | 24.1 | AUGUST | 21.9 | MAX
19.6
19.4 | SEPTEMBE | IR
18.5 | | 1
2
3 | 14.9
15.3
15.5 | JUNE
12.0
12.1
12.2 | 13.5
13.8
14.0 | 21.4 | JULY
18.7
19.2
18.9 | 19.9
20.1
19.9 | 24.1
24.2
23.8 | AUGUST
19.9
20.9
20.4 | 21.9
22.5
22.0 | 19.6
19.4
19.2 | 17.4
16.5
16.1 | 18.5
17.8
17.7 | | 1
2 | 14.9
15.3 | JUNE
12.0
12.1 | 13.5
13.8 | 21.4 | JULY
18.7
19.2 | 19.9
20.1
19.9
19.8
19.3 | 24.1
24.2
23.8
24.4
23.7 | AUGUST 19.9 20.9 20.4 21.0 20.8 | 21.9
22.5 | 19.6
19.4 | 17.4
16.5
16.1
16.1 | 18.5
17.8 | | 1
2
3
4
5 | 14.9
15.3
15.5
16.0
16.2 | JUNE 12.0 12.1 12.2 12.9 13.2 | 13.5
13.8
14.0
14.4
14.7 | 21.4
21.0
20.7
20.9
20.7 | JULY 18.7 19.2 18.9 18.7 18.1 | 19.9
20.1
19.9
19.8
19.3 | 24.1
24.2
23.8
24.4
23.7 | AUGUST 19.9 20.9 20.4 21.0 20.8 | 21.9
22.5
22.0
22.6
22.3 | 19.6
19.4
19.2
19.5
18.1 | SEPTEMBE
17.4
16.5
16.1
16.1
16.9 | 18.5
17.8
17.7
17.8
17.4 | | 1
2
3
4
5 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.8 | 21.4
21.0
20.7
20.9
20.7 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 | 19.9
20.1
19.9
19.8
19.3 | 24.1
24.2
23.8
24.4
23.7 | AUGUST 19.9 20.9 20.4 21.0 20.8 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.7 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2 | SEPTEMBE
17.4
16.5
16.1
16.1
16.9
16.4
16.1
17.1 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7 | | 1
2
3
4
5 | 14.9
15.3
15.5
16.0
16.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 | 13.5
13.8
14.0
14.4
14.7 | 21.4
21.0
20.7
20.9
20.7 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 | 19.9
20.1
19.9
19.8
19.3 | 24.1
24.2
23.8
24.4
23.7 | AUGUST 19.9 20.9 20.4 21.0 20.8 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7 | 19.6
19.4
19.2
19.5
18.1 | SEPTEMBE
17.4
16.5
16.1
16.1
16.9
16.4
16.1 | 18.5
17.8
17.7
17.8
17.4 | | 1
2
3
4
5
6
7
8
9 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4 | JUNE 12.0 12.1 12.2 12.9 13.5 13.6 14.3 14.4 13.4 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.8
15.5
15.0 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4 | 24.1
24.2
23.8
24.4
23.7
23.7
23.5
23.6
24.1
24.3 | 19.9
20.9
20.4
21.0
20.8
20.0
20.0
19.7
19.7
20.4 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.7
21.8
22.3 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2 | 17.4
16.5
16.1
16.1
16.9
16.4
16.1
17.1
15.5
15.9 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4 | | 1
2
3
4
5
6
7
8
9
10 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
16.4
16.4 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.3 14.0 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.8
15.5
15.0 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
21.6 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 19.7 19.7 20.4 20.2 21.1 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.7
21.8
22.3 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2 | SEPTEMBE 17.4 16.5 16.1 16.1 16.9 16.4 16.1 17.1 15.5 15.9 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.4
16.9
16.6
17.8 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.8
15.5
15.0
15.2
15.5
15.9 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2
23.5
23.0
24.2 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
21.6
22.0
22.9 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.3
24.4
23.1
23.4 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 29.7 19.7 20.4 20.2 21.1 19.9 20.1 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.4 15.9 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.0
18.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.9
16.6
17.8
17.6
18.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.4 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.8
15.5
15.0
15.2
15.5
16.9 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2
23.5
23.0
24.2
24.8
24.9 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
21.6
22.0
22.9 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.3
24.4
23.1
23.4 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 19.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.7
21.8
22.3
22.4
22.6
21.5
21.7 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
19.2
18.5
19.2
18.9
20.0
20.1 | SEPTEMBE 17.4 16.5 16.1 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.9 16.1 16.2 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.0
18.1
18.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.4
16.6
17.8
17.6
18.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.4 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.5
15.0
15.2
15.5
16.1
16.9 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2
23.5
23.0
24.2
24.8
24.9 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.6
22.0
22.9
22.9
22.4
21.9 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.4
23.1
23.4
23.2 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 19.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2
18.9
20.0
20.1
20.1 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.9 16.6.1 16.2 16.2 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.0
18.1
18.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.6
17.8
17.6
18.2
18.3
18.1
17.5
16.7 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.6 14.9 14.9 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.8
15.5
15.0
15.2
15.5
16.9
17.1
16.6
16.2 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
23.2
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.3 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.0
22.9
22.9
22.9
21.0
20.7 | 24.1
24.2
23.8
24.4
23.7
23.7
23.5
24.1
24.3
24.3
24.4
23.2
23.3
24.4
23.2 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 29.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.6 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.5
19.2
18.9
19.5
20.0
20.1
20.1
18.9 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.4 15.9 16.1 16.2 16.2 16.5 16.5 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.1
17.4
17.2
17.4
18.0
18.1
18.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.4
16.6
17.8
17.8
17.8
17.5
16.7 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.6 14.9 14.9 15.1 |
13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.5
15.9
16.1
16.6
16.2
16.0
16.1 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2
24.8
24.9
24.8
22.4
22.8
22.6 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.9
22.9
22.9
22.9
22.9 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.4
23.1
23.4
23.2
23.3
22.4
22.4 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 19.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.0
20.8
20.8 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
19.2
18.9
19.5
19.9
20.0
20.1
20.1
18.9
19.7
19.6 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.4 15.9 16.1 16.2 16.2 16.5 16.6 15.8 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
18.0
18.1
18.2
17.8
18.2
17.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.6
17.8
17.6
18.2
18.3
18.1
17.5
16.7 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.6 14.9 14.9 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.8
15.5
15.0
15.2
15.5
16.9
17.1
16.6
16.2 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
23.2
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.3 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.0
22.9
22.9
22.9
21.0
20.7 | 24.1
24.2
23.8
24.4
23.7
23.7
23.5
24.1
24.3
24.3
24.4
23.2
23.3
24.4
23.2 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 29.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.6 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.5
19.2
18.9
19.5
20.0
20.1
20.1
18.9 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.4 15.9 16.1 16.2 16.2 16.5 16.5 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.0
18.1
18.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.6
17.8
17.8
17.5
16.7
17.5
16.7 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.4 15.6 14.9 14.9 14.5 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.5
15.9
16.1
16.6
16.2
16.0
16.1
16.2
16.0 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
23.2
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.4
22.3
22.3 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.0
22.9
22.9
22.9
22.9
21.0
20.7
20.8 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.4
23.2
23.3
22.4
22.3 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 19.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 19.9 20.2 19.7 19.4 19.6 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.0
20.8
20.8 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2
18.9
20.0
20.1
20.1
18.9
19.7
19.6
19.7 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.4 15.9 16.1 16.2 16.2 16.5 16.6 15.8 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
18.0
18.1
18.2
17.8
18.0
18.1
17.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.4
16.6
17.8
17.6
18.2
18.3
18.1
17.5
17.6 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.6 14.9 14.9 14.9 14.9 14.5 15.6 16.0 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.0
15.2
15.5
15.9
16.1
16.6
16.2
16.6
16.2
16.1 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
23.2
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.4
22.3
22.3 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.9
22.9
22.9
22.9
21.0
20.7
20.8
21.4 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.4
23.1
23.4
23.2
23.3
22.4
22.4
22.3 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 20.0 19.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 19.9 20.2 19.7 19.4 19.6 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.0
20.8
20.8 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2
18.9
19.5
19.9
20.0
20.1
20.1
18.9
19.7
19.6
19.2 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 16.4 15.9 16.1 16.2 16.2 16.5 16.5 16.5 16.5 16.5 16.6 15.8 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.0
18.1
18.2
18.2
17.8
18.0
18.1
17.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
16.4
16.6
17.8
17.6
18.2
18.3
18.1
17.5
16.7
17.6
17.9
18.0
18.3
19.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.4 15.6 14.9 14.9 14.5 15.1 14.9 14.5 16.0 16.3 16.9 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.0
15.2
15.5
16.1
16.6
16.2
16.1
16.2
16.8
17.2
17.4
17.9 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.4
22.3
22.3
23.5
23.0
24.2
24.8
24.9 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 19.3 19.9 19.1 19.3 19.9 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.9
22.9
22.9
22.9
21.3
21.4
21.3
21.4
21.9
21.3
21.4
21.9 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.3
22.4
23.4
23.2
23.3
22.4
22.3
21.7
20.7
21.6
22.2
22.3 | AUGUST 19.9 20.4 21.0 20.8 20.0 20.0 19.7 19.7 20.4 20.2 21.1 19.5 19.9 20.1 19.5 19.9 21.1 19.5 19.9 21.1 19.6 | 21.9
22.5
22.0
22.6
22.3
21.8
21.7
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.9
20.8
20.8 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.5
19.2
18.9
19.5
20.0
20.1
20.1
18.9
19.7
19.6
19.7
19.6
19.2 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.4 15.9 16.1 16.2 16.2 16.5 16.5 16.6 15.8 15.2 13.9 11.8 10.7 10.2 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.1
17.4
17.2
17.4
18.0
18.1
18.2
17.8
18.2
17.8
18.1
17.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 14.9
15.3
16.0
16.2
16.7
17.1
17.1
16.4
16.4
16.6
17.8
17.6
18.2
18.3
18.1
17.5
16.7
17.7
17.6
18.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.4 15.6 14.9 14.9 14.9 14.9 14.9 16.0 16.3 16.9 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.5
15.0
16.1
16.6
16.2
16.6
16.2
16.1
16.2
17.1
16.6
16.2
17.4
17.9
16.3
17.5 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
23.2
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.4
22.3
22.4
22.3
22.4
22.3
22.4
22.4 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 19.1 19.3 19.4 19.9 19.0 19.8 20.3 20.5 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.6
22.0
22.9
22.9
21.0
20.7
20.7
20.8
21.4
21.9
21.0
20.7
20.7
20.7
20.7
20.7
20.7
20.9
21.0
20.7
20.7
20.9
21.0
20.7
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.9
20.7
20.7
20.7
20.7
20.9
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.8
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.4
23.1
23.4
22.3
21.7
20.7
21.6
22.2
22.3 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 19.7 19.7 20.4 20.2 21.1
19.9 20.1 19.5 19.9 20.2 19.7 19.4 19.6 19.5 18.3 18.4 18.7 19.0 19.6 18.8 19.8 | 21.9
22.5
22.6
22.3
21.8
21.7
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.0
20.8
20.8
20.5
19.6
19.9
20.5
20.7 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
19.2
18.9
19.5
19.9
20.0
20.1
20.1
18.9
19.7
19.6
19.2
17.7
19.6
19.2 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 16.6 15.8 15.2 13.9 11.8 10.7 10.2 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.0
18.1
18.2
18.2
17.8
18.0
18.1
17.6
16.1
15.1
13.5
11.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.6
17.6
18.2
18.3
18.1
17.5
17.6
17.9
18.0
18.1
19.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.4 15.6 14.9 14.9 15.1 14.9 16.0 16.3 16.9 16.0 14.9 16.2 16.8 17.8 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.0
15.2
15.5
15.0
17.1
16.6
16.2
16.8
17.2
17.4
17.9
16.7
16.3
17.5
18.0
18.9 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.4
22.3
22.3
22.3
23.5
23.1
22.3 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 19.1 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.9 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.0
22.9
22.9
22.9
21.0
20.7
20.8
21.2
21.3
21.4
21.9
21.6
22.0
22.9
22.9
22.9 | 24.1
24.2
23.8
24.4
23.7
23.5
24.3
24.3
24.3
24.3
24.3
22.4
23.2
23.3
22.4
22.3
21.7
20.7
21.6
22.2
22.3 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 20.0 19.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 19.9 20.2 19.7 19.4 19.6 19.5 18.3 18.4 18.7 19.0 19.6 18.8 19.8 19.8 | 21.9
22.5
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.0
20.8
20.8
20.5
19.6
19.9
20.5
20.7 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2
18.9
19.5
20.0
20.1
20.1
18.9
19.7
19.6
19.2
17.7
16.2
15.2
15.2
15.2
15.2
15.2 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.4 15.9 16.1 16.2 16.2 16.5 16.5 16.5 16.5 16.7 10.7 10.2 10.7 11.1 12.2 14.0 13.9 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.2
18.2
17.8
18.1
17.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
16.4
16.6
17.8
17.6
18.2
18.3
18.1
17.5
16.7
17.6
17.9
18.0
18.1
18.3
19.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.3 14.0 14.2 14.3 15.4 15.6 14.9 14.9 14.5 15.1 14.9 14.5 16.0 16.3 16.9 16.0 14.9 16.0 16.3 16.9 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.0
15.2
15.5
16.1
16.9
17.1
16.6
16.2
16.0
16.1
16.2
16.8
17.4
17.9
16.7
16.3
17.4
17.9 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.2
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.4
22.3
22.3
23.5
23.1
22.4
22.3
23.5
23.6 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 19.1 19.3 19.9 19.1 19.3 19.9 19.1 19.3 19.9 19.1 19.3 19.4 19.9 19.0 | 19.9 20.1 19.9 19.8 19.3 19.4 19.9 20.7 20.8 21.4 21.9 22.9 22.9 22.4 21.9 21.3 21.4 20.9 21.6 22.2 21.3 21.4 21.9 21.5 | 24.1
24.2
23.8
24.4
23.7
23.5
23.6
24.1
24.3
24.3
24.3
22.3
22.4
22.3
21.7
20.7
21.6
22.2
22.3 | AUGUST 19.9 20.4 21.0 20.8 20.0 20.0 19.7 19.7 20.4 20.2 21.1 19.5 19.9 20.1 19.5 19.9 21.7 19.4 19.6 19.5 18.3 18.4 18.7 19.0 19.6 18.8 19.1 19.7 18.4 | 21.9 22.5 22.0 22.6 22.3 21.8 21.7 21.7 21.8 22.3 22.4 22.6 21.5 21.7 21.4 21.6 21.7 21.9 20.8 20.8 20.5 19.6 19.9 20.5 20.7 20.9 20.6 20.8 20.8 20.4 | 19.6 19.4 19.2 19.5 18.1 18.2 19.2 18.7 18.5 19.2 18.9 19.5 20.0 20.1 20.1 18.9 19.7 16.2 17.7 16.2 15.2 13.0 13.7 14.3 15.6 16.1 17.0 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.4 15.9 16.1 16.2 16.2 16.2 16.5 16.6 15.8 15.2 13.9 11.1 10.2 10.7 11.1 12.2 14.0 13.9 | 18.5
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.0
18.1
18.2
18.2
17.6
16.1
15.1
13.5
11.7
12.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 14.9
15.3
15.5
16.0
16.2
16.7
17.1
17.1
16.4
16.6
17.6
18.2
18.3
18.1
17.5
17.6
17.9
18.0
18.1
19.2 | JUNE 12.0 12.1 12.2 12.9 13.2 13.5 13.6 14.3 14.4 13.4 13.4 13.3 14.0 14.2 14.3 15.4 15.6 14.9 14.9 15.1 14.9 16.0 16.3 16.9 16.0 14.9 16.2 16.8 17.8 | 13.5
13.8
14.0
14.4
14.7
15.0
15.4
15.5
15.0
15.2
15.5
15.0
17.1
16.6
16.2
16.8
17.2
17.4
17.9
16.7
16.3
17.5
18.0
18.9 | 21.4
21.0
20.7
20.9
20.7
20.9
21.4
22.3
22.3
23.5
23.0
24.2
24.8
24.9
24.0
22.8
22.4
22.3
22.3
22.3
23.5
23.1
22.3 | JULY 18.7 19.2 18.9 18.7 18.1 17.9 18.5 19.6 19.3 19.9 20.4 20.5 19.9 21.0 21.2 20.5 21.2 19.7 19.1 18.9 19.1 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.3 19.4 19.9 | 19.9
20.1
19.9
19.8
19.3
19.4
19.9
20.7
20.8
21.4
21.9
22.0
22.9
22.9
22.9
21.0
20.7
20.8
21.2
21.3
21.4
21.9
21.6
22.0
22.9
22.9
22.9 | 24.1
24.2
23.8
24.4
23.7
23.5
24.3
24.3
24.3
24.3
24.3
22.4
23.2
23.3
22.4
22.3
21.7
20.7
21.6
22.2
22.3 | AUGUST 19.9 20.9 20.4 21.0 20.8 20.0 20.0 19.7 19.7 20.4 20.2 21.1 19.9 20.1 19.5 19.9 20.2 19.7 19.4 19.6 19.5 18.3 18.4 18.7 19.0 19.6 18.8 19.8 19.8 | 21.9
22.5
22.6
22.3
21.8
21.7
21.8
22.3
22.4
22.6
21.5
21.7
21.4
21.6
21.7
21.0
20.8
20.8
20.5
19.6
19.9
20.5
20.7 | 19.6
19.4
19.2
19.5
18.1
18.2
19.2
18.7
18.5
19.2
18.9
19.5
20.0
20.1
20.1
18.9
19.7
19.6
19.2
17.7
16.2
15.2
15.2
15.2
15.2
15.2
15.2 | SEPTEMBE 17.4 16.5 16.1 16.9 16.4 16.1 17.1 15.5 15.9 15.5 15.4 15.9 16.1 16.2 16.2 16.5 16.5 16.5 16.5 16.7 10.7 10.2 10.7 11.1 12.2 14.0 13.9 | 18.5
17.8
17.7
17.8
17.4
17.2
17.7
17.9
17.1
17.4
17.2
17.4
18.2
18.2
17.8
18.1
17.6 | #### 09105000 PLATEAU CREEK NEAR CAMEO, CO LOCATION.--Lat $39^{\circ}11^{\circ}00^{\circ}$, long $108^{\circ}16^{\circ}02^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.18, T.10 S., R.97 W., Mesa County, Hydrologic Unit 14010005, on left bank 300 ft from State Highway 65, 1.15 mi upstream from mouth, and 4.0 mi northeast of Cameo. DRAINAGE AREA.--592 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1935 to September 1983. October 1985 to current year. Prior to May 1936, monthly discharges only, published in WSP 1313. REVISED RECORDS.--WSP 979: 1942. WSP 2124: Drainage area. WDR CO-83-2: 1973 (M), 1975 (M). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,840 ft above sea level, from topographic map. Prior to Aug. 27, 1936, nonrecording gage. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 25,000 acres, return flow from irrigated areas, and for power development. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBI | C FEET PEI | R SECOND, W
DAILY | VATER YE
MEAN VA | | R 1999 TO 8 | SEPTEMBI | ER 2000 | | | |--------------|--------------------------|------------|--------------|-------------|----------------------|---------------------|--------------|--------------|------------|------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | | | | | | | | | | | | | 1 | 162 | 123 | 115 | e96 | e79 | e130 | 185 | 408 | 159 | 59 | 44 | e56 | | 2 | 157 | 121 | 118 | e94 | e80 | e130 | 198 | 452 | 145 | 57 | 42 | e54 | | 3 | 151 | 119 | 116 | e92 | e88 | e135 | 199 | 526 | 127 | 57 | 45 | e52 | | 4
5 | 148 | 118
117 | 99 | e86
e92 | e90
e88 | e135 | 205
276 | 529 | 116
106 | 51
48 | 45
44 | e50 | | 5 | 147 | 117 | 94 | e92 | e88 | e130 | 276 | 631 | 106 | 48 | 44 | e52 | | 6 | 144 | 115 | 104 | e90 | e88 | e125 | 280 | 717 | 93 | 47 | 45 | e55 | | 7 | 150 | 115 | 114 | e88 | e89 | e120 | 329 | 580 | 85 | 44 | 43 | e62 | | 8 | 158
150 | 116
118 | 113
101 | e92
e96 | e88 | e120
e120 | 285
306 | 552
409 | 84
78 | 45
57 | 41
42 | e60
e65 | | 10 | 145 | 116 | 123 | e96 | e86
e88 | e120 | 348 | 341 | 83 | 57
57 | 44 | e76 | | | 2.42 | 115 | | 0.5 | 0.0 | 100 | 200 | 464 | 0.0 | E.4 | | | | 11 | 141 | 115 | 111 | e96 | e88 | e120 | 327 | 464 | 82 | 54 | 44 | e70 | | 12
13 | 139
137 | 113
111 | 107
105 | e92
e88 | e88
e90 | e130
e120
 323 | 395
348 | 73
68 | 52
51 | 46
46 | e66 | | 14 | 137 | 112 | 112 | e88 | e92 | e120
e120 | 367
396 | 313 | 67 | 50 | 48 | e62
e60 | | 15 | 133 | 112 | 97 | e88 | e96 | e130 | 380 | 302 | 68 | 49 | e47 | e58 | | | | | | | | | | | | | | | | 16
17 | 132 | 110
112 | 118 | e90 | e100 | e120 | 304
315 | 290 | 62
60 | 48
53 | e46 | 56 | | 18 | 131
133 | 112 | e120
e110 | e98
e100 | e110
e100 | e120
e120 | 423 | 342
308 | 55 | 53
55 | e47
e50 | 55
70 | | 19 | 133 | 99 | 106 | e100 | e100
e100 | e120 | 336 | 279 | 72 | 47 | e50
e57 | 57 | | 20 | 131 | 102 | 100 | e100 | e110 | e125 | 253 | 230 | 82 | 43 | e64 | 51 | | | | | | | | | | | | | | - | | 21 | 131 | 108 | e98 | e98 | e110 | e120 | 301 | 226 | 73 | 41 | e62 | 65 | | 22 | 130 | 121 | e96 | e92 | e110 | e120 | 323 | 239
270 | 64 | 43 | e58 | 73 | | 23
24 | 129
126 | 102
104 | e96
e94 | e88
e88 | e115
e110 | e125
140 | 290
373 | 324 | 64
66 | 41
39 | e55
e54 | 65
92 | | 25 | 127 | 105 | e90 | e90 | e110 | 144 | 382 | 338 | 65 | 43 | e55 | 72 | | | | | | | | | | | | | | | | 26 | 125 | 116 | e94 | e90 | e115 | 132 | 409 | 325 | 70 | 42 | e69 | 75 | | 27 | 124 | 121 | e92 | e88 | e120 | 172 | 453 | 284 | 90 | 41 | e68 | 71 | | 28 | 124 | 117 | e92 | e82 | e130 | 184 | 579 | 227 | 80 | 43 | e64 | 67 | | 29 | 131 | 115 | e90 | e74 | e130 | 171 | 587 | 205 | 69 | 42 | e60 | 68 | | 30
31 | 125
124 | 113 | e88
e90 | e72
e70 | | 133
201 | 467 | 194
178 | 62
 | 45
46 | e58
e58 | 70 | | | | | | | | | | | | | | | | TOTAL | 4254 | 3398 | 3203 | 2802 | 2888 | 4112 | 10199 | 11226 | 2468 | 1490 | 1591 | 1905 | | MEAN | 137 | 113 | 103 | 90.4 | 99.6 | 133 | 340 | 362 | 82.3 | 48.1 | 51.3 | 63.5 | | MAX | 162 | 123 | 123 | 110 | 130 | 201 | 587 | 717 | 159 | 59 | 69 | 92 | | MIN
AC-FT | 124
8440 | 99
6740 | 88
6350 | 70
5560 | 79
5730 | 110
8160 | 185
20230 | 178
22270 | 55
4900 | 39
2960 | 41
3160 | 50
3780 | | AC-F1 | 8440 | 6/40 | 0350 | 5560 | 5/30 | 8100 | 20230 | 22270 | 4900 | 2960 | 3100 | 3780 | | STATIST | CICS OF MC | NTHLY MEA | N DATA F | OR WATER | YEARS 1936 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 117 | 104 | 87.6 | 78.3 | 83.5 | 109 | 247 | 683 | 523 | 124 | 81.6 | 95.8 | | MAX | 333 | 207 | 148 | 117 | 148 | 220 | 759 | 1825 | 2975 | 796 | 328 | 255 | | (WY) | 1942 | 1987 | 1942 | 1998 | 1958 | 1998 | 1942 | 1942 | 1983 | 1995 | 1983 | 1997 | | MIN | 25.2 | 37.3 | 42.1 | 41.4 | 42.8 | 58.3 | 71.9 | 33.8 | 19.8 | 16.6 | 13.4 | 17.4 | | (WY) | 1978 | 1978 | 1991 | 1961 | 1978 | 1964 | 1990 | 1977 | 1977 | 1977 | 1977 | 1977 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEI | NDAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YEA | ARS 1936 | - 2000 | | ANNUAL | TOTAL | | | 68020 | | | 49536 | | | | | | | ANNUAL | | | | 186 | | | 135 | | | 196 | | | | | ANNUAL M | IEAN | | | | | | | | 542 | | 1983 | | | ANNUAL ME | | | | | | | | | 48.8 | | 1977 | | HIGHEST | DAILY ME | CAN | | 1030 | May 31 | | 717 | May 6 | | 4100 | Jun : | 25 1983 | | | DAILY MEA | | | e70 | Jan 5 | | 39 | Jul 24 | | 8.2 | | 15 1977 | | | | MINIMUM | | 73 | Jan 4 | | 41 | Jul 21 | | 9.1 | | 10 1977 | | | ANEOUS PE | | | | | | 950 | May 6 | | 5580 | | 15 1973 | | | ANEOUS PE | | | | | | 4.60 |) May 6 | | a7.99 | Jun : | 15 1973 | | | RUNOFF (A | | | 134900 | | | 98250 | | | 141700 | | | | | ENT EXCEE | | | 354 | | | 310 | | | 427
99 | | | | | CENT EXCEE
CENT EXCEE | | | 131
97 | | | 102
50 | | | 99
47 | | | | SO PERC | THI LACEE | פחי | | 97 | | | 50 | | | 4 / | | | e Estimated. a Maximum gage height, 8.73 ft, Jun 16, 1995. #### 09105000 PLATEAU CREEK NEAR CAMEO, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1968 to August 1979, November 1993 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: June 1994 to current year. WATER TEMPERATURE: June 1994 to current year. INSTRUMENTATION. -- Water-quality monitor since June 1994. REMARKS.-- Daily record of specific conductance is good, except for the periods Nov. 19 to Dec. 29, Mar. 23-28, Apr. 6-17, Sept. 15-30, which are fair, and Sept. 1, 4-7 which are poor. Daily record of water temperature is good except for the periods Apr. 21 to July 11, and Sept. 15-30, which are fair. Interruptions in daily record are due to sensor fouling or missing transmissions. Daily maximum and minimum specific conductance data from June 1994 to September 1995 available in district office. Note: The following remark codes may appear in the tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 2020 microsiemens, Aug. 11, 1999, minimum, 160 microsiemens several days in June 1995. WATER TEMPERATURE: Maximum, 27.8°C, July 26, 27, 2000; minimum, 0.0°C on many days during winter months. EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 809 microsiemens/cm, Aug. 25; minimum, 212 microsiemens/cm, May 6. WATER TEMPERATURE: Maximum, 27.8°C, July 26, 27; minimum, 0.0°C, on many days. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |---|--|---|---|---|---|--|---|--|--|--| | OCT | | | | | | | | | | | | 04
NOV | 1500 | 145 | 644 | 8.6 | 12.0 | 9.6 | 270 | 54.8 | 32.7 | 41.9 | | 30
JAN | 1450 | 108 | 694 | 8.8 | 3.1 | 11.5 | 280 | 58.1 | 33.4 | 49.1 | | 20
MAR | 1015 | 114 | 659 | 8.4 | 2.6 | 12.1 | 250 | 52.5 | 30.0 | 52.3 | | 02
APR | 1320 | 131 | 630 | 8.5 | 7.2 | 9.1 | 250 | 52.0 | 28.6 | 50.8 | | 21 | 1340 | 314 | 396 | 8.5 | 9.2 | 10.2 | 160 | 42.0 | 14.3 | 21.4 | | MAY
09 | 1315 | 404 | 299 | 8.3 | 11.5 | 9.0 | 130 | 32.5 | 10.9 | 15.8 | | JUN
01 | 1250 | 169 | 403 | 8.5 | 18.1 | 8.4 | 160 | 38.7 | 16.6 | 22.9 | | JUL
26 | 0915 | 41 | 688 | 8.4 | 20.5 | 8.0 | 240 | 34.2 | 37.3 | 57.8 | | AUG
31 | 1230 | e59 | 753 | 8.4 | 19.9 | 7.7 | 290 | 55.4 | 37.0 | 55.4 | | | | | | | | | | | | | | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
04 | AD-
SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY WAT.DIS FET LAB CACO3 (MG/L) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | | OCT
04
NOV
30 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
04
NOV
30
JAN
20 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
04
NOV
30
JAN
20
MAR
02 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) |
DIS-
SOLVED
(MG/L
AS SO4)
(00945)
55.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.5 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.9
26.6 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT
04
NOV
30
JAN
20
MAR
02
APR
21 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.0
4.1
4.5 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
282
288
292 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
55.6
73.0
81.8 | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940)
4.5
6.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.9
26.6
26.7 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
392
424
430 | DIS-
SOLVED
(TOMS)
PER
AC-FT)
(70303)
.53
.58 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
153
124 | | OCT
04
NOV
30
JAN
20
MAR
02
APR
21
MAY | AD-
SORP-
TION
RATIO
(00931)
1
1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.0
4.1
4.5
3.5 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
282
288
292
280 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
55.6
73.0
81.8
77.4 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.5
6.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.5
.5 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.9
26.6
26.7
23.3 | SUM OF CONSTI-
TUENTS, DIS-
SOLVED (MG/L) (70301) 392 424 430 410 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.58
.59 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
153
124
132 | | OCT
04
NOV
30
JAN
20
MAR
02
APR
21
MAY
09
JUN
01 | AD-
SORP-
TION
RATIO
(00931)
1
1
1
1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.0
4.1
4.5
3.5 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
282
288
292
280
184 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
55.6
73.0
81.8
77.4
28.4 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
4.5
6.7
7.3
6.5
2.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.5
.5
.4
.5 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.9
26.6
26.7
23.3 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 392 424 430 410 237 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.58
.59
.56 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
153
124
132
145 | | OCT 04 NOV 30 JAN 20 MAR 02 APR 21 MAY 09 JUN | AD-
SORP-
TION
RATIO
(00931)
1
1
1
1
.7 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
4.0
4.1
4.5
3.5
2.5 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
282
288
292
280
184
140 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
55.6
73.0
81.8
77.4
28.4 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.5
6.7
7.3
6.5
2.8
2.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.5
.5
.4
.5 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
28.9
26.6
26.7
23.3
15.2 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 392 424 430 410 237 183 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.53
.58
.59
.56
.32 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
153
124
132
145
201 | # 09105000 PLATEAU CREEK NEAR CAMEO, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | SI | PECIFIC | CONDUCTA | NCE (MIC. | ROSIEMENS/C | JM AT 25 | DEG. C), | WATER YEA | R OCTOR | ER 1999 | TO SEPTEME | ER 2000 | | |---|------------|----------------------|------------|---|--|---|---|--|---|---|--|--| | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | OCTOBER | | NO | OVEMBER | | DE | CEMBER | | | JANUARY | 7 | | - | 597 | F.C.1 | F.0.1 | 671 | 640 | 650 | 652 | 622 | 640 | 605 | F20 | 563 | | 1
2 | 611 | 561
590 | 581
600 | 671 | 642
643 | 658
659 | 653 | 633
628 | 642
639 | 530 | 530
510 | 563
517 | | 3 | 615 | 596 | 607 | 674 | 647 | 662 | 640 | 622 | 631 | | | | | 4 | 627 | 602 | 615 | 674 | 653 | 666 | 655 | 626 | 633 | | | | | 5 | 629 | 603 | 619 | 679 | 655 | 668 | 682 | 650 | 665 | | | | | | | | | | | | | | | | | | | 6 | 638 | 617 | 629 | 679 | 653 | 668 | 704 | 651 | 674 | | | | | 7
8 | 633
619 | 618
590 | 626
606 | 684
687 | 654
658 | 670
675 | 658
634 | 627
609 | 641
617 | | | | | 9 | 613 | 589 | 601 | 684 | 660 | 672 | 645 | 616 | 631 | | | | | 10 | 621 | 587 | 606 | 678 | 656 | 668 | 655 | 613 | 632 | | | | | | | | | | | | | | | | | | | 11 | 621 | 593 | 609 | 678 | 659 | 670 | 619 | 605 | 610 | | | | | 12
13 | 624
630 | 597
602 | 612
616 | 681
682 | 661
667 | 672
675 | 626
631 | 611
616 | 618
623 | | | | | 14 | 631 | 603 | 618 | 684 | 670 | 678 | 649 | 619 | 636 | | | | | 15 | 638 | 611 | 626 | 683 | 673 | 678 | 682 | 638 | 662 | | | | | | | | | | | | | | | | | | | 16 | 636 | 613 | 625 | 709 | 676 | 684 | 673 | 624 | 653 | | | | | 17 | 641 | 616 | 630 | 700 | 685 | 693 | 624 | 594 | 608 | | | | | 18
19 | 639
640 | 620
621 | 631
631 | 702
693 | 690
677 | 698
685 | 619
625 | 603
608 | 611
617 | | | | | 20 | 648 | 618 | 632 | 694 | 680 | 687 | 622 | 611 | 617 | | | | | 20 | 010 | 010 | 032 | 051 | 000 | 007 | 022 | 011 | 017 | | | | | 21 | 652 | 625 | 638 | 689 | 659 | 675 | 631 | 614 | 622 | | | | | 22 | 649 | 625 | 636 | 671 | 640 | 657 | 631 | 614 | 623 | | | | | 23 | 655 | 622 | 637 | 686 | 647 | 669 | 638 | 613 | 626 | | | | | 24
25 | 658
658 | 628
628 | 642
643 | 720
716 | 671
684 | 694
698 | 638
635 | 609
607 | 624
620 | | | | | 23 | 030 | 020 | 043 | 710 | 004 | 090 | 033 | 007 | 020 | | | | | 26 | 658 | 630 | 643 | 691 | 653 | 673 | 629 | 606 | 616 | | | | | 27 | 663 | 632 | 648 | 653 | 646 | 649 | 627 | 605 | 616 | | | | | 28 | 668 | 637 | 651 | 661 | 644 | 649 | 634 | 609 | 622 | | | | | 29 | 667 | 639 | 656 | 656 | 645 | 651 | 655
657 | 625 | 640 | | | | | 30
31 | 666
668 | 644
644 | 655
657 | 653
 | 638 | 646 | 650 | 623
600 | 641
628 | | | | | 31 | 000 | 011 | 037 | | | | 050 | 000 | 020 | | | | | MONTH | 668 | 561 | 627 | 720 | 638 | 672 | 704 | 594 | 630 | 605 | 510 | 540 | DAY | MAX | MIN | MEAN | | DAY | | | | MAX | | MEAN | | | MEAN | MAX | | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | | FEBRUARY | | | MARCH | | | APRIL | | 322 | MAY
306 | 312 | | 1
2 | | FEBRUARY
 | | | MARCH | |
 | APRIL | | 322
325 | MAY
306
291 | 312
307 | | 1
2
3 |
 | FEBRUARY

 | |

637 | MARCH 621 |

631 |
 | APRIL | | 322
325
304 | MAY
306
291
270 | 312
307
284 | | 1
2
3
4 | | FEBRUARY
 |

 |

637
645 | MARCH 621 612 |
631
631 |
 | APRIL | | 322
325
304
292 | MAY
306
291
270
263 | 312
307
284
276 | | 1
2
3 |

 | FEBRUARY

 | |

637 | MARCH 621 |

631 |

 | APRIL | | 322
325
304 | MAY
306
291
270 | 312
307
284 | | 1
2
3
4
5 | | FEBRUARY

 | |
637
645
639 | MARCH 621 612 618 597 |
631
631
626 | | APRIL | | 322
325
304
292
282 | MAY 306 291 270 263 245 | 312
307
284
276
260 | | 1
2
3
4
5 | | FEBRUARY | |
637
645
639
622
609 | MARCH 621 612 618 597 589 |
631
631
626
609
597 |

478 | APRIL 364 |

399 | 322
325
304
292
282
269
283 | MAY 306 291 270 263 245 212 216 | 312
307
284
276
260
237
248
 | 1
2
3
4
5 | | FEBRUARY | |
637
645
639
622
609
600 | MARCH 621 612 618 597 589 588 |
631
631
626
609
597
593 |

478
420 | APRIL 364 320 |

399
344 | 322
325
304
292
282
269
283
300 | MAY
306
291
270
263
245
212
216
262 | 312
307
284
276
260
237
248
275 | | 1
2
3
4
5
6
7
8 | | FEBRUARY | | 637
645
639
622
609
600
605 | MARCH 621 612 618 597 589 588 581 |
631
631
626
609
597
593
591 |

478
420
399 | APRIL 364 320 300 |

399
344
335 | 322
325
304
292
282
269
283
300
326 | MAY 306 291 270 263 245 212 216 262 300 | 312
307
284
276
260
237
248
275
313 | | 1
2
3
4
5 | | FEBRUARY | |
637
645
639
622
609
600 | MARCH 621 612 618 597 589 588 |
631
631
626
609
597
593 |

478
420 | APRIL 364 320 |

399
344 | 322
325
304
292
282
269
283
300 | MAY
306
291
270
263
245
212
216
262 | 312
307
284
276
260
237
248
275
313
331 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 637
645
639
622
609
600
605
611 | MARCH 621 612 618 597 589 588 581 587 |
631
631
626
609
597
593
591
596 |

478
420
399
409 | APRIL 364 320 300 316 |

399
344
335
373 | 322
325
304
292
282
269
283
300
326
339 | MAY 306 291 270 263 245 212 216 262 300 324 237 | 312
307
284
276
260
237
248
275
313
331 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 637
645
639
622
609
600
605
611 | MARCH 621 612 618 597 589 588 581 587 |
631
631
626
609
597
593
591
596 |

478
420
399
409
409 | APRIL 364 320 300 316 286 333 |

399
344
335
373
338
366 | 322
325
304
292
282
269
283
300
326
339 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 | 312
307
284
276
260
237
248
275
313
331 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609 | MARCH 621 612 618 597 589 588 581 587 |
631
631
626
609
597
593
591
596
597
594
597 |

478
420
399
409
409
418
393 | APRIL 364 320 300 316 286 333 344 |

399
344
335
373
338
366
376 | 322
325
304
292
282
269
283
300
326
339
324
290
314 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 | 312
307
284
276
260
237
248
275
313
331
272
282
302 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604 | MARCH 621 612 618 597 589 588 581 587 585 585 585 |
631
631
626
609
597
593
591
596
597
594
599 |

478
420
399
409
409
418
393
401 | APRIL 364 320 300 316 286 333 344 299 |

399
344
335
373
338
366
376
376 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609 | MARCH 621 612 618 597 589 588 581 587 |
631
631
626
609
597
593
591
596
597
594
597 |

478
420
399
409
409
418
393 | APRIL 364 320 300 316 286 333 344 |

399
344
335
373
338
366
376 | 322
325
304
292
282
269
283
300
326
339
324
290
314 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 | 312
307
284
276
260
237
248
275
313
331
272
282
302 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601 | MARCH 621 612 618 597 589 588 581 587 585 585 585 583 587 593 |
631
631
626
609
597
593
591
596
597
594
597
599
597 |

478
420
399
409
409
418
393
401
357 | APRIL 364 320 300 316 286 333 344 299 291 357 |

399
344
335
373
338
366
376
376 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601 | MARCH 621 612 618 597 589 588 581 587 585 585 583 587 593 |
631
631
626
609
597
593
591
596
597
594
597
599
597 |

478
420
399
409
409
418
393
401
357 | APRIL 364 320 300 316 286 333 344 299 291 357 353 |

399
344
335
373
338
366
376
346
318 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601 | MARCH 621 612 618 597 589 588 581 587 585 583 587 585 583 587 |
631
631
626
609
597
593
591
596
597
594
597
599
597 |

478
420
399
409
409
418
393
401
357
390
397
381 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 |

399
344
335
373
338
366
376
346
318
372
373
336 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
322
302
322 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601
601
599 | MARCH 621 612 618 597 589 588 581 587 585 585 585 583 587 593 |
631
631
626
609
597
593
591
596
597
597
599
597
593
593
593
582 |

478
420
399
409
409
418
393
401
357
390
397
381
375 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 313 335 |

399
344
335
373
338
366
376
318
372
373
336
346
318 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601 | MARCH 621 612 618 597 589 588 581 587 585 583 587 585 583 587 |
631
631
626
609
597
593
591
596
597
594
597
599
597 |

478
420
399
409
409
418
393
401
357
390
397
381 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 |

399
344
335
373
338
366
376
346
318
372
373
336 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
322
302
322 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601
601
599
596
593 | MARCH 621 612 618 597 589 588 581 587 585 585 585 583 587 593 |
631
631
626
609
597
593
591
596
597
594
597
599
597
593
593
582
577 |

478
420
399
409
409
418
393
401
357
390
397
381
375 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 313 335 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601
601
599
596
593 | MARCH
621 612 618 597 589 588 581 587 585 585 585 581 577 570 563 560 587 |
631
631
626
609
597
593
591
596
597
594
597
599
597
593
587
587
582
577 |

478
420
399
409
418
393
401
357
390
397
381
375
423 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 335 371 378 368 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348
362
350 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
604
601
601
599
596
593 | MARCH 621 612 618 597 589 588 581 587 585 583 587 593 585 583 587 593 |
631
631
626
609
597
593
591
596
597
594
597
599
597
593
587
582
577 |

478
420
399
409
409
418
393
401
357
397
381
375
423
428
386
402 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 335 371 378 368 375 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
388 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 355 315 | 312
307
284
276
260
237
248
275
313
331
272
282
302
326
322
302
295
319
348
362
350
328 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
601
601
601
599
596
593
599
617
606
614 | MARCH621 612 618 597 589 588 581 587 585 585 585 583 587 593 585 581 577 570 563 560 587 564 571 |
631
631
626
609
597
593
591
596
597
597
599
597
593
593
582
577 |

478
420
399
409
409
418
393
401
357
397
381
375
423
428
386
402
401 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 335 371 378 368 375 377 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
388
376
388
376
388
376 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 355 315 287 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348
362
350
350
328 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
604
601
601
599
596
593 | MARCH 621 612 618 597 589 588 581 587 585 583 587 593 585 583 587 593 |
631
631
626
609
597
593
591
596
597
594
597
599
597
593
587
582
577 |

478
420
399
409
409
418
393
401
357
397
381
375
423
428
386
402 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 335 371 378 368 375 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
388 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 355 315 | 312
307
284
276
260
237
248
275
313
331
272
282
302
326
322
302
295
319
348
362
350
328 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
601
601
601
599
596
593
599
617
606
614
598 | MARCH621 612 618 597 589 588 581 587 585 585 585 583 587 593 585 581 577 570 563 560 587 564 571 |
631
631
626
609
597
593
591
596
597
597
599
597
593
593
582
577 |

478
420
399
409
409
418
393
401
357
397
381
375
423
428
386
402
401 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 335 371 378 368 375 377 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
388
376
388
376
388
376 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 335 315 315 303 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348
362
350
328
308
311 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
609
604
601
601
599
596
593 | MARCH 621 612 618 597 589 588 581 587 585 585 583 587 593 585 581 577 563 560 587 564 571 556 |
631
631
626
609
597
593
591
596
597
594
597
599
597
599
597
598
587
582
577 |

478
420
399
409
418
393
401
357
390
397
381
385
423
428
386
402
401
356 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 377 368 377 378 368 377 378 368 377 326 |

399
344
335
373
338
366
376
346
318
372
373
3347
393
398
376
388
359
341 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
359
368
361
344
325
321 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 355 315 287 303 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348
362
350
328
308
311 | | 1 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
601
601
599
596
593
599
617
606
614
598 | MARCH 621 612 618 597 589 588 581 587 585 583 587 593 585 587 570 563 560 587 564 571 556 |
631
631
626
609
597
593
591
596
597
594
597
599
597
593
587
582
577
578
598
585
591
579
576
568
573 |

478
420
399
409
409
418
393
401
357
390
397
381
375
423
428
386
402
401
356
353
337
321 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 375 371 378 368 375 337 326 315 298 270 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
388
359
341 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359
368
361
344
325
321 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 355 315 287 303 307 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
320
326
322
302
295
319
348
362
352
308
311 | | 1 2 3 4 4 5 6 7 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
601
601
601
599
596
593
599
617
606
614
598 | MARCH621 612 618 597 589 581 587 585 585 585 587 593 585 581 577 570 563 560 587 564 571 556 |
631
631
626
609
597
593
591
596
597
597
599
597
593
582
577
578
588
589
591
579 |

478
420
399
409
409
418
393
401
357
397
381
375
423
428
386
402
401
356 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 378 368 371 378 368 377 326 315 298 270 267 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
387
393
341
330
317
290
282 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359
368
361
344
325
321 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 315 287 303 307 338 359 382 | 3122
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348
362
350
328
308
311 | | 1 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
601
601
599
596
593
599
617
606
614
598 | MARCH 621
612 618 597 589 588 581 587 585 583 587 593 585 587 570 563 560 587 564 571 556 |
631
631
626
609
597
593
591
596
597
594
597
599
597
593
587
582
577
578
598
585
591
579
576
568
573 |

478
420
399
409
409
418
393
401
357
390
397
381
375
423
428
386
402
401
356
353
337
321 | APRIL 364 320 300 316 286 333 344 299 291 357 353 313 375 371 378 368 375 337 326 315 298 270 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
388
359
341 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359
368
361
344
325
321 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 355 315 287 303 307 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
320
326
322
302
295
319
348
362
352
308
311 | | 1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
601
601
601
599
596
593
599
617
606
614
598 | MARCH621 612 618 597 589 581 587 585 585 583 587 593 585 581 577 570 563 560 587 564 571 556 552 552 552 552 552 552 552 |
-631
631
631
626
609
597
593
591
596
597
599
597
593
593
582
577
578
598
585
591
579
576
568
573
 |

478
420
399
409
409
418
393
401
357
397
381
375
423
428
386
402
401
356
353
337
321
299
311 | APRIL 364 320 300 316 286 333 344 299 291 357 353 371 378 368 375 371 378 368 377 326 315 298 270 267 287 |

399
344
335
373
338
366
376
346
318
372
373
336
347
393
398
376
387
393
398
376
387
393 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
330
359
368
361
344
325
321 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 308 329 353 315 287 303 307 338 359 382 398 391 | 3122
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348
362
350
328
308
311
322
348
369
395
401
397 | | 1 2 3 4 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | | FEBRUARY | | 637
645
639
622
609
600
605
611
611
611
601
601
601
601
599
593
599
617
606
614
598 | MARCH 621 612 618 597 589 588 581 587 585 585 583 587 593 585 581 577 570 563 560 587 564 571 556 |
631
631
626
609
597
593
591
596
597
599
597
599
597
598
585
577
578
598
585
579
579 |

478
420
399
409
418
393
401
357
390
397
381
375
423
428
386
402
401
356 | APRIL 364 320 300 316 286 333 344 299 291 357 353 311 378 368 375 371 378 368 375 326 315 298 270 267 287 |

399
344
335
373
338
366
376
346
318
372
373
3347
393
398
376
389
341
330
317
290
282
295 | 322
325
304
292
282
269
283
300
326
339
324
290
314
326
331
329
318
308
359
361
344
325
321 | MAY 306 291 270 263 245 212 216 262 300 324 237 274 289 313 319 317 284 284 289 353 355 315 287 303 307 338 359 382 398 | 312
307
284
276
260
237
248
275
313
331
272
282
302
320
326
322
302
295
319
348
362
350
328
308
311
322
328
328
328
328
328
348
350
360
360
370
370
370
370
370
370
370
370
370
37 | 221 # 09105000 PLATEAU CREEK NEAR CAMEO, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | S | PECIFIC | CONDUCTA | NCE (MI | CROSIEMENS/CM | AT 25 | DEG. C), | WATER YEAR | R OCTOE | BER 1999 T | O SEPTEMBE | ER 2000 | | |---|--|---|---|---|--|---|---|---|--|--------------|-------------------------|------------| | DAY | MAX | MIN | MEAN | | | | JUNE | | J | ULY | | Al | UGUST | | S | SEPTEMBE | R | | 1 | 421 | 398 | 411 | 636 | 619 | 628 | 647 | 629 | 641 | 696 | | | | 2 | 453 | 418 | 433 | 641 | 619 | 632 | 650 | 633 | 639 | | | | | 3 | 476 | 447 | 463 | 645 | 628 | 636 | 661 | 636 | 650 | | | | | 4 | 493 | 465 | 477 | 644 | 618 | 634 | 675 | 645 | 655 | 677 | 663 | 668 | | 5 | 528 | 489 | 504 | 637 | 618 | 628 | 677 | 634 | 653 | 684 | 666 | 676 | | 6 | 552 | 504 | 525 | 641 | 618 | 631 | 657 | 639 | 650 | 698 | 682 | 692 | | 7 | 567 | 516 | 540 | 639 | 623 | 631 | 654 | 631 | 645 | | | | | 8 | 587 | 554 | 567 | 646 | 617 | 632 | 665 | 640 | 652 | | | | | 9
10 | 593
598 | 575
576 | 583
588 | 647
641 | 622
622 | 634
632 | 668
673 | 640
651 | 656
662 | | | | | 10 | 350 | 370 | 300 | 041 | 022 | 032 | 075 | 031 | 002 | | | | | 11 | 598 | 578 | 588 | 658 | 621 | 635 | 686 | 646 | 671 | | | | | 12 | 603 | 579 | 591 | 658 | 632 | 648 | 709 | 677 | 698 | | | | | 13
14 | 611
614 | 596
600 | 603
607 | 672
662 | 632
636 | 649
648 | 707
706 | 684
672 | 698
689 | | | | | 15 | 612 | 602 | 608 | 666 | 633 | 646 | 717 | 676 | 696 | | | | | | | | | | | | | | | | | | | 16 | 624 | 609 | 617 | 667 | 635 | 649 | 717 | 690 | 703 | 688 | 666 | 681 | | 17
18 | 626
629 | 619
620 | 623
625 | 676
672 | 637
630 | 659
655 | 712 | 692 | 705 | 670
703 | 651
630 | 664
662 | | 19 | 642 | 620 | 630 | 657 | 624 | 642 | | | | 703 | 668 | 682 | | 20 | 666 | 642 | 653 | 675 | 622 | 655 | 713 | 673 | 694 | 670 | 648 | 663 | | | | | | | | | | | | | | | | 21 | 665 | 645 | 653 | 678 | 662 | 670 | 805 | 664 | 704 | 648 | 629 | 641 | | 22
23 | 662
665 | 647
650 | 653
654 | 681
683 | 665
658 | 672
671 | 799
738 | 725
704 | 751
724 | 674
677 | 627
669 | 651
673 | | 24 | 658 | 642 | 651 | 687 | 663 | 676 | 743 | 701 | 721 | 680 | 662 | 672 | | 25 | 650 | 629 | 642 | 715 | 679 | 697 | 809 | 715 | 754 | 685 | 667 | 676 | | 0.5 | | 600 | 625 | 601 | | 670 | | 5.45 | 560 | 600 | 68.4 | | | 26 | 639 | 629 | 635 | 691 | 668
664 | 678 | 782 | 745
719 | 762 | 693
695 | 674
676 | 683 | | 27
28 | 652
639 | 633
621 | 643
630 | 686
680 | 658 | 677
666 | 748
721 | 702 | 741
712 | 697 | 679 | 686
688
 | 29 | 627 | 619 | 622 | 677 | 648 | 664 | 727 | 705 | 717 | 697 | 688 | 692 | | 30 | 634 | 618 | 626 | 677 | 655 | 666 | 761 | 710 | 729 | 702 | 687 | 694 | | 31 | | | | 663 | 642 | 655 | 774 | 695 | 741 | | | | | MONTH | 666 | 398 | 588 | 715 | 617 | 651 | 809 | 629 | 694 | 703 | 627 | 675 | | | | | | | | | | | | | | | | YEAR | 809 | 212 | 579 | | | | | | | | | | | YEAR | 809 | 212 | 579 | | | | | | | | | | | YEAR | 809 | | | WATER (DEG | C). W | ATER YEAR | OCTOBER 19 | 99 TO S | REPTEMBER | 2000 | | | | | | TEMPE | RATURE, | WATER (DEG. | | | | | | | | | | YEAR
DAY | 809
MAX | | | WATER (DEG. | C), WA | ATER YEAR
MEAN | OCTOBER 19
MAX | 99 TO S | SEPTEMBER
MEAN | 2000
MAX | MIN | MEAN | | | | TEMPE | RATURE,
MEAN | MAX | | | MAX | | | | MIN
JANUARY | | | | | TEMPE: | RATURE,
MEAN | MAX | MIN | | MAX | MIN | | | | | | DAY
1
2 | MAX | TEMPE:
MIN
OCTOBER | RATURE,
MEAN | MAX | MIN
EMBER | MEAN | MAX
DE | MIN
CEMBER | MEAN
3.4
3.9 | MAX | JANUARY | | | DAY 1 2 3 | MAX
13.3
13.3
13.6 | TEMPE
MIN
OCTOBER
7.2
7.9
8.5 | MEAN 10.6 11.0 11.4 | MAX
NOV
7.9
7.2
6.7 | MIN
EMBER
3.7
3.2
2.3 | MEAN 6.1 5.6 4.8 | MAX DE(5.1 5.0 4.2 | MIN
CEMBER
1.8
2.6
2.4 | MEAN 3.4 3.9 3.3 | .0
.2 | JANUARY
.0
.0 | .0 | | DAY 1 2 3 4 | MAX
13.3
13.6
13.0 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7 | MEAN 10.6 11.0 11.4 10.3 | MAX
NOV
7.9
7.2
6.7
7.0 | MIN
EMBER
3.7
3.2
2.3
2.5 | MEAN 6.1 5.6 4.8 5.0 | MAX DEC 5.1 5.0 4.2 2.4 | MIN
CEMBER
1.8
2.6
2.4 | MEAN 3.4 3.9 3.3 1.1 | .0
.2
 | JANUARY
.0
.0
 | .0 | | DAY 1 2 3 | MAX
13.3
13.3
13.6 | TEMPE
MIN
OCTOBER
7.2
7.9
8.5 | MEAN 10.6 11.0 11.4 | MAX
NOV
7.9
7.2
6.7 | MIN
EMBER
3.7
3.2
2.3 | MEAN 6.1 5.6 4.8 | MAX DE(5.1 5.0 4.2 | MIN
CEMBER
1.8
2.6
2.4 | MEAN 3.4 3.9 3.3 | .0
.2 | JANUARY
.0
.0 | .0 | | DAY 1 2 3 4 | MAX
13.3
13.6
13.0 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7 | MEAN 10.6 11.0 11.4 10.3 | MAX
NOV
7.9
7.2
6.7
7.0 | MIN
EMBER
3.7
3.2
2.3
2.5 | MEAN 6.1 5.6 4.8 5.0 | MAX DEC 5.1 5.0 4.2 2.4 | MIN
CEMBER
1.8
2.6
2.4 | MEAN 3.4 3.9 3.3 1.1 | .0
.2
 | JANUARY
.0
.0
 | .0 | | DAY 1 2 3 4 5 6 7 | MAX 13.3 13.3 13.6 13.0 13.3 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7
6.6 | MEAN 10.6 11.0 11.4 10.3 10.3 | MAX
NOV
7.9
7.2
6.7
7.0
7.1 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 0 | .0
.2
 | JANUARY
.0
.0
 | .0 .0 | | DAY 1 2 3 4 5 6 7 8 | MAX 13.3 13.3 13.6 13.0 13.3 13.8 12.8 13.3 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7
6.6
9.6
10.4
7.4 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5 | MAX
NOV
7.9
7.2
6.7
7.0
7.1
7.0
7.1 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 | 3.4
3.9
3.3
1.1
.0 | .0
.2
 | .0
.0
.0
 | .0 | | DAY 1 2 3 4 5 6 7 7 8 8 9 9 | MAX
13.3
13.6
13.0
13.3
13.8
12.8
13.3
13.7 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7
6.6
9.6
10.4
7.4
7.8 | MEAN 10.6 11.0 11.4 10.3 10.3 11.7 11.3 10.5 | MAX
NOV
7.9
7.2
6.7
7.0
7.1
7.0
7.1
8.3
8.0 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .0 .0 | 3.4
3.9
3.3
1.1
.0
.0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 | | DAY 1 2 3 4 5 6 7 8 | MAX 13.3 13.3 13.6 13.0 13.3 13.8 12.8 13.3 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7
6.6
9.6
10.4
7.4 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5 | MAX
NOV
7.9
7.2
6.7
7.0
7.1
7.0
7.1 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 | 3.4
3.9
3.3
1.1
.0 | .0
.2
 | .0
.0
.0
 | .0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 | MAX
13.3
13.6
13.0
13.3
13.8
12.8
13.3
13.7
13.7 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7
6.6
9.6
10.4
7.4
7.8
7.7 | MEAN 10.6 11.0 11.4 10.3 10.3 11.7 11.3 11.5 11.1 11.1 | MAX
NOV
7.9
7.2
6.7
7.0
7.1
7.0
7.1
8.3
8.0
6.8 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 | .0 .2 | JANUARY . 0 . 0 | .0 .0 | | DAY 1 2 3 4 5 6 7 8 8 9 10 11 12 | MAX
13.3
13.3
13.6
13.0
13.3
13.8
12.8
13.3
13.7
13.7 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1 | MAX
NOV
7.9
7.2
6.7
7.0
7.1
7.0
7.1
8.3
8.0
6.8
6.1
5.8 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 1.7 2.2 1.3 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .0 .3 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.7 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 | 10.6
11.0
11.4
10.3
10.3
11.7
11.3
10.5
11.1
11.1 | MAX
NOV
7.9
7.2
6.7
7.0
7.1
8.3
8.0
6.8
6.1
5.8 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 4.3 2.9 2.8 1.9 1.2 | MEAN 6.1 5.6 4.8 5.0 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 | MAX DE(5.1 5.0 4.2 2.4 .55 .2 1.1 2.1 .7 1.7 2.2 1.3 .2 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .0 .3 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.7 13.6 13.3 13.0 12.5 | TEMPE:
MIN
OCTOBER
7.2
7.9
8.5
6.7
6.6
9.6
10.4
7.4
7.8
7.7
7.7
7.7 | MEAN 10.6 11.0 11.4 10.3 10.3 11.7 11.3 10.5 11.1 11.1 11.0 10.9 10.9 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.1 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.1 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 1.7 2.2 1.3 .2 .0 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 0 0 .3 1.1 0 .5 1.2 .3 0 0 0 | .0 .2 | JANUARY .0 .0 | .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.7 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 | 10.6
11.0
11.4
10.3
10.3
11.7
11.3
10.5
11.1
11.1 | MAX
NOV
7.9
7.2
6.7
7.0
7.1
8.3
8.0
6.8
6.1
5.8 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 4.3 2.9 2.8 1.9 1.2 | MEAN 6.1 5.6 4.8 5.0 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 | MAX DE(5.1 5.0 4.2 2.4 .55 .2 1.1 2.1 .7 1.7 2.2 1.3 .2 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .0 .3 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.7 13.7 13.6 13.3 13.0 12.5 10.9 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 | RATURE, MEAN 10.6 11.0 11.4 10.3 10.3 11.7 11.3 10.5 11.1 11.1 11.0 10.9 10.5 10.1 9.2 7.6 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.1 5.0 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.2 1.1 1.0 1.3 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 1.7 2.2 1.3 .2 .0 .0 .0 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 0 0 .3 1.1 0 .5 1.2 .3 0 0 0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.7 13.6 13.3 13.7 13.6 13.9 10.9 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 | 10.6
11.0
11.4
10.3
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.0 5.2 6.7 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.9 4.9 1.2 1.1 1.0 1.3 2.1 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 2.7 1.7 2.2 1.3 .2 .0 .0 .0 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.6 13.3 13.7 13.6 13.9 9.7 8.4 8.9 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 3.3 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.1 5.1 5.0 5.2 6.7 6.3 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 1.1 1.0 1.3 2.1 3.9 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 1.7 2.2 1.3 .2 .0 .0 .0 .0 .1 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 | .0
.2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.7 13.6 13.3 13.7 13.6 13.9 10.9 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 | 10.6
11.0
11.4
10.3
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.0 5.2 6.7 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.9 4.9 1.2 1.1 1.0 1.3 2.1 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 2.7 1.7 2.2 1.3 .2 .0 .0 .0 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.6 13.3 13.7 13.6 18.9 9.7 8.4 8.9 8.9 8.9 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 3.3 4.4 3.5 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.0
6.5 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.1 5.0 5.2 6.7 6.3 3.9 2.4 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.1 1.0 1.3 2.1 3.9 1.4 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 | DEFINITION OF THE PROPERTY | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.7 13.6 13.3 13.9 9.7 8.4 8.9 8.9 9.4 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.8 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 3.3 4.4 3.5 | RATURE, MEAN 10.6 11.0 11.4 10.3 10.5 11.1 11.1 11.0 10.9 10.5 10.1 9.2 7.6 6.1 6.2 7.0 6.5 6.9 | MAX NOV 7.9 7.2 6.7 7.0 7.1 8.3 8.0 6.8 6.1 5.1 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.0 1.1 1.0 1.3 2.1 1.0 1.3 | MEAN 6.1 5.6 4.8 5.0 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 .7 1.7 2.2 1.3 .2 .0 .0 .0 .0 .0 .0 .0 .9 .4 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .1 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.6 13.3 13.0 12.5 10.9 9.7 8.4 8.9 8.9 9.4 9.5 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 3.6 9.6 6.6 5.3 3.3 3.3 4.4 3.5 3.8 4.1 | 10.6
11.0
11.4
10.3
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.6
6.1
6.2
7.6 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.2 1.1 1.0 1.3 2.1 3.9 1.4 31.6 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 2.7 1.7 2.2 .0 .0 .0 .0 .0 .0 .0 .0 . | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.6 13.3 13.0 12.5 10.9 9.7 8.4 8.9 8.9 8.9 8.9 9.4 9.5 9.1 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 4.4 3.5 3.8 4.1 3.8 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.0
6.5
6.9
7.2
6.8 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 1.6 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.2 1.1 1.0 1.3 2.1 3.9 1.4 .3 1.6 .0 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 5.5 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 1.7 2.2 1.3 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.6 13.3 13.0 12.5 10.9 9.7 8.4 8.9 8.9 9.4 9.5 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 3.6 9.6 6.6 5.3 3.3 3.3 4.4 3.5 3.8 4.1 | 10.6
11.0
11.4
10.3
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.6
6.1
6.2
7.6 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.2 1.1 1.0 1.3 2.1 3.9 1.4 31.6 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 2.7 1.7 2.2 .0 .0 .0 .0 .0 .0 .0 .0 . | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.6 13.3 13.0 12.5 10.9 9.7 8.4 8.9 8.9 8.9 9.4 9.5 9.1 8.9 8.8 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 4.4 3.5 3.8 4.1 3.8 3.8 3.6 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.0
6.5
6.9
7.2
6.8
6.7
6.5 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 1.6 .1 .6 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.2 1.1 1.0 1.3 2.1 3.9 1.4 .3 1.6 .0 .0 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 .0 .2 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.7 1.7 2.2 .0 .0 .0 .0 .0 .0 .0 .0 . | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.7 13.6 13.3 13.9 9.7 8.4 9.9 8.9 8.9 9.4 9.5 9.1 8.9 8.8 8.6 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 4.4 3.5 3.8 4.1 3.8 3.6 3.5 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.0
6.5
6.9
7.2
6.7
6.5 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 1.6 1.6 3.3 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 3.9 4.3 2.9 1.1 1.0 1.3 2.1 1.0 1.3 2.1 1.0 1.3 0.0 0.0 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 .0 .2 1.4 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 .7 1.7 2.2 1.3 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | 13.3
13.3
13.6
13.0
13.3
13.8
12.8
13.3
13.7
13.6
13.3
13.0
12.5
10.9
9.7
8.9
8.9
9.4
9.5
9.1
8.8
8.8
8.6
8.9 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 3.3 6.9 6.6 5.3 3.3 3.3 4.4 3.5 3.8 3.6 3.5 3.8 | 10.6
11.0
11.4
10.3
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.5
10.1
9.2
7.6
6.1
6.2
7.6
6.1
6.2
7.6
6.1
6.5
6.5 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 1.6 .1 .6 3.3 4.5 | MIN EMBER 3.7 3.2 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.1 1.0 1.3 2.1 3.9 1.4 .3 1.6 .0 .0 .0 1.7 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 .0 .2 1.4 3.1 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.1 .7 1.7 2.2 1.3 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN CEMBER 1.8 2.6 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.7 13.6 13.3 13.9 9.7 8.4 8.9 8.9 8.9 9.4 9.5 9.1 8.9 8.8 8.6 8.9 8.6 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.8 7.7 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 4.4 3.5 3.8 4.1 3.8 3.6 3.5 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.0
6.5
6.9
7.2
6.7
6.5 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 1.6 1.6 3.3 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 3.9 4.3 2.9 1.1 1.0 1.3 2.1 1.0 1.3 2.1 1.0 1.3 0.0 0.0 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 .0 .2 1.4 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 .7 1.7 2.2 1.3 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN
CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | MAX 13.3 13.6 13.0 13.3 13.8 12.8 13.3 13.7 13.6 13.3 13.0 12.5 10.9 9.7 8.4 8.9 8.9 9.4 9.5 9.1 8.9 8.8 8.6 8.9 8.8 | TEMPE: MIN OCTOBER 7.2 7.9 8.5 6.7 6.6 9.6 10.4 7.4 7.8 7.7 7.7 7.7 7.7 7.7 7.3 6.9 6.6 5.3 3.3 4.4 3.5 3.8 4.1 3.8 3.6 3.5 3.8 4.3 | 10.6
11.0
11.4
10.3
11.7
11.3
10.5
11.1
11.1
11.0
10.9
10.5
10.1
9.2
7.6
6.1
6.2
7.0
6.5
6.7
6.5
6.7
6.5 | MAX NOV 7.9 7.2 6.7 7.0 7.1 7.0 7.1 8.3 8.0 6.8 6.1 5.8 5.1 5.0 5.2 6.7 6.3 3.9 2.4 2.7 3.4 1.6 .1 .6 3.3 4.5 3.8 | MIN EMBER 3.7 3.2 2.3 2.5 2.6 2.7 2.8 3.9 4.3 2.9 2.8 1.9 1.2 1.1 1.0 1.3 2.1 3.9 1.4 .3 1.6 .0 .0 .0 1.7 .6 | MEAN 6.1 5.6 4.8 5.0 5.1 5.1 5.2 6.2 6.5 5.2 4.6 4.1 3.5 3.3 3.2 3.4 4.4 5.1 2.2 1.4 1.6 2.5 .0 .2 1.4 3.1 2.5 | MAX DE(5.1 5.0 4.2 2.4 .5 .2 1.1 2.7 1.7 2.2 .0 .0 .0 .0 .0 .0 .0 .0 . | MIN CEMBER 1.8 2.6 2.4 .0 .0 .0 .0 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 3.4 3.9 3.3 1.1 .0 .0 .3 1.1 .0 .5 1.2 .3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 .2 | JANUARY . 0 . 0 | .0 .0 .0 | MONTH 13.8 3.1 8.6 8.3 .0 3.6 5.1 .0 .5 .2 .0 .0 # 09105000 PLATEAU CREEK NEAR CAMEO, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | TEMPE | RATURE, | WATER (DE | G. C), W | ATER YEAR | COCTOBER | 1999 TO | SEPTEMBER | 2000 | | | |---|---|--|--|--|--|--|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | 11.2 | 4.1 | 7.5 | 13.2 | 6.7 | 10.2 | | 2 | | | | | | | 10.2 | 5.2 | 7.9 | 14.6 | 8.4 | 11.7 | | 3
4 | | | | 8.5
8.8 | 2.2 | 5.6
6.1 | 12.1
13.3 | 4.6
5.1 | 8.4
9.5 | 14.8
15.1 | 8.9
9.2 | 12.2
12.5 | | 5 | | | | 7.4 | 4.0 | 5.1 | 13.6 | 7.2 | 10.9 | 14.9 | 9.2 | 12.4 | | 6 | | | | 5.9 | 2.7 | 4.4 | 13.4 | 8.7 | 11.3 | 13.9 | 8.3 | 11.5 | | 7 | | | | 5.7 | 4.5 | 5.1 | 11.4 | 5.6 | 9.0 | 13.1 | 9.6 | 11.3 | | 8
9 | | | | 6.2
7.0 | 2.9
3.7 | 4.5
5.2 | 10.4
11.6 | 5.2
5.5 | 8.3
8.8 | 11.4
14.3 | 8.7
6.6 | 9.5
10.2 | | 10 | | | | 7.6 | 2.1 | 4.9 | 11.2 | 6.0 | 9.0 | 16.2 | 10.6 | 13.5 | | 11 | | | | 8.0 | 1.7 | 5.2 | 12.5 | 6.4 | 9.4 | 14.6 | 10.0 | 12.1 | | 12 | | | | 9.0 | 5.1 | 7.1 | 12.5 | 6.0 | 9.5 | 12.3 | 7.6 | 10.0 | | 13
14 | | | | 9.0
9.0 | 3.2
3.1 | 6.4
6.5 | 11.9
11.0 | 6.4
7.5 | 9.5
9.3 | 12.6
13.3 | 6.0
8.0 | 9.3
10.9 | | 15 | | | | 7.7 | 3.8 | 5.2 | 9.3 | 6.8 | 7.9 | 14.9 | 9.6 | 12.2 | | 16 | | | | 9.6 | 2.3 | 5.8 | 12.1 | 5.2 | 8.6 | 15.1 | 10.7 | 13.1 | | 17 | | | | 7.3 | 3.4 | 5.5 | 13.6 | 6.8 | 10.5 | 14.1 | 9.9 | 12.0 | | 18
19 | | | | 7.7
7.3 | 2.6
1.5 | 4.9
4.7 | 12.6
8.2 | 8.2
4.6 | 9.8
6.1 | 12.2
16.4 | 9.5
9.3 | 10.9
12.7 | | 20 | | | | 6.7 | 3.0 | 4.2 | 12.1 | 3.5 | 7.5 | 18.6 | 11.3 | 14.9 | | 21 | | | | 8.7 | 1.7 | 5.1 | 11.5 | 7.3 | 9.5 | 16.9 | 11.4 | 14.6 | | 22 | | | | 6.7 | 3.0 | 5.2 | 10.3 | 7.3 | 8.8 | 18.9 | 12.0 | 15.6 | | 23
24 | | | | 10.5
11.1 | 2.9
5.6 | 6.7
8.5 | 13.6
13.0 | 6.6
8.6 | 9.9
11.0 | 20.1
19.1 | 13.5
13.7 | 16.9
16.6 | | 25 | | | | 11.5 | 5.4 | 8.7 | 12.5 | 5.6 | 9.3 | 17.7 | 13.1 | 15.6 | | 26 | | | | 12.2 | 6.7 | 9.6 | 12.2 | 7.4 | 10.1 | 15.9 | 11.9 | 13.9 | | 27 | | | | 12.7 | 5.7 | 9.5 | 14.2 | 7.9 | 11.2 | 18.8 | 11.3 | 15.0 | | 28
29 | | | | 10.6
11.6 | 7.4
6.1 | 8.4
8.8 | 13.4
11.8 | 8.7
9.4 | 11.3
10.6 | 21.1
21.2 | 13.3
15.2 | 17.3
18.4 | | 30 | | | | 9.4 | 6.2 | 7.3 | 12.9 | 7.9 | 10.0 | 21.6 | 14.8 | 18.3 | | 31 | | | | 6.9 | 4.4 | 5.6 | | | | 21.6 | 15.1 | 18.4 | | MONTH | | | | 12.7 | 1.5 | 6.2 | 14.2 | 3.5 | 9.3 | 21.6 | 6.0 | 13.3 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | | AUGUST | | MAX | SEPTEMBE | | | 1
2 | 22.2
22.4 | JUNE
14.1
14.5 | 18.2
18.5 | 26.6
25.6 | JULY
18.8
18.4 | 22.4
22.0 | 26.4
27.0 | AUGUST
18.5
19.7 | 22.5
23.1 | | SEPTEMBE | IR
 | | 1
2
3 | 22.2
22.4
23.2 | JUNE
14.1
14.5
14.5 | 18.2
18.5
18.9 | 26.6
25.6
24.8 | JULY
18.8
18.4
17.9 | 22.4
22.0
21.3 | 26.4
27.0
25.3 | AUGUST
18.5
19.7
19.7 | 22.5
23.1
22.5 |
 | 15.9
 | ER

 | | 1
2 | 22.2
22.4 | JUNE
14.1
14.5 | 18.2
18.5 | 26.6
25.6 | JULY
18.8
18.4 | 22.4
22.0 | 26.4
27.0 | AUGUST
18.5
19.7 | 22.5
23.1 | | SEPTEMBE | IR
 | | 1
2
3
4 | 22.2
22.4
23.2
23.9 | JUNE 14.1 14.5 14.5 15.3 | 18.2
18.5
18.9
19.8 | 26.6
25.6
24.8
24.6 | JULY 18.8 18.4 17.9 17.3 | 22.4
22.0
21.3
20.9 | 26.4
27.0
25.3
27.4 | AUGUST
18.5
19.7
19.7
20.5 | 22.5
23.1
22.5
23.7 |

21.1 | 15.9

14.8 |

12.6 | | 1
2
3
4
5 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 | 18.2
18.5
18.9
19.8
19.9 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0 | 21.1
18.6 | 15.9

14.8
16.1
14.5 |

12.6
17.3 | | 1
2
3
4
5 | 22.2
22.4
23.2
23.9
23.7 | JUNE 14.1 14.5 14.5 15.3 15.9 | 18.2
18.5
18.9
19.8
19.9 | 26.6
25.6
24.8
24.6
24.4 | JULY 18.8 18.4 17.9 17.3 15.9 | 22.4
22.0
21.3
20.9
20.1 | 26.4
27.0
25.3
27.4
26.5 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 18.6 | 22.5
23.1
22.5
23.7
23.0 | 21.1
18.6 | 15.9

14.8
16.1
14.5 |

12.6
17.3 | | 1
2
3
4
5 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5
22.6 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 | 18.2
18.5
18.9
19.8
19.9 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7 | 21.1
18.6
19.2 | 15.9

14.8
16.1
14.5 | 12.6
17.3
16.7 | | 1
2
3
4
5
6
7
8
9 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5
22.6
20.6 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 | 18.2
18.5
18.9
19.8
19.9
19.8
20.2
20.2 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 18.6 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5 | 21.1
18.6
19.2 | 15.9

14.8
16.1
14.5
 | 12.6
17.3
16.7 | | 1
2
3
4
5
6
7
8
9
10 | 22.2
22.4
23.9
23.7
24.3
24.5
22.6
20.6
22.2
22.8
21.6 | JUNE 14.1 14.5 15.3 15.9 15.6 15.7 17.6
16.4 13.4 14.4 | 18.2
18.5
18.9
19.9
19.8
20.2
20.2
18.6
17.9 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.8 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1 | 21.1
18.6
19.2 | 15.9 14.8 16.1 14.5 |

12.6
17.3
16.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 22.2
22.4
23.9
23.7
24.3
24.5
22.6
22.2
22.8
21.6
23.5
23.7 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 | 18.2
18.5
18.9
19.8
20.2
20.2
18.6
17.9
18.7
18.5
19.5 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.8 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.8 18.5 19.3 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5 | 21.1
18.6
19.2
 | 15.9 14.8 16.1 14.5 | 12.6
17.3
16.7
 | | 1
2
3
4
5
6
7
8
9
10 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5
22.6
20.6
22.2
22.8
21.6
23.5 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 16.4 13.4 14.4 15.1 15.8 | 18.2
18.5
18.9
19.9
19.8
20.2
20.2
18.6
17.9
18.7
18.5 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 18.8 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.8 18.5 19.3 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3 | 21.1
18.6
19.2
 | 15.9 14.8 16.1 14.5 | 12.6
17.3
16.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5
20.6
22.2
22.8
21.6
23.5
23.7
24.0 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 16.3 15.9 | 18.2
18.5
18.9
19.8
19.9
19.8
20.2
20.2
18.6
17.9
18.7
18.5
19.3
19.5 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.4
27.5 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 18.8 18.6 19.9 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 18.6 20.3 19.3 19.8 18.5 19.3 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5 | 21.1
18.6
19.2

21.3 | 15.9 14.8 16.1 14.5 13.6 | 12.6
17.3
16.7
 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.2
22.4
23.9
23.7
24.3
24.5
22.6
20.6
22.2
22.8
21.6
23.7
24.0 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 16.3 15.9 | 18.2
18.5
18.9
19.8
19.9
19.8
20.2
20.2
18.6
17.9
18.7
18.5
19.3
19.5 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.4 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 18.8 18.6 19.9 20.7 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.8
23.5 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0
26.9 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 18.6 20.3 19.3 19.8 18.5 19.3 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5 | 21.1
18.6
19.2

21.3 | 15.9 14.8 16.1 14.5 13.6 14.0 | 12.6
17.3
16.7

17.4
16.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5
20.6
22.2
22.8
21.6
23.5
23.7
24.0 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 16.3 15.9 | 18.2
18.5
18.9
19.8
19.9
19.8
20.2
20.2
18.6
17.9
18.7
18.5
19.3
19.5 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.4 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 18.8 18.6 19.9 20.7 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0
26.9 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 18.6 20.3 19.3 19.8 18.5 19.3 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5 | 21.1
18.6
19.2

21.3 | 15.9 14.8 16.1 14.5 13.6 | 12.6
17.3
16.7

17.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5
22.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
23.6
23.6
23.6 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 16.3 15.9 | 18.2
18.5
18.9
19.9
19.8
20.2
20.2
18.6
17.9
18.7
18.5
19.3
19.5
20.1 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.4
27.5 | JULY 18.8 18.4 17.9 15.8 16.8 18.5 18.6 18.6 18.6 19.9 20.7 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.8
23.5
22.5
22.5 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0
26.9 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 18.6 20.3 19.3 19.8 18.5 19.3 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5 | 21.1
18.6
19.2

21.3 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 | 12.6
17.3
16.7

17.4
16.6
17.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 22.2
22.4
23.9
23.7
24.3
24.5
22.6
20.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
23.6
23.6
23.7
24.0 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 15.3 16.3 15.9 14.2 14.9 16.1 15.1 | 18.2
18.5
19.8
19.9
19.8
20.2
20.2
218.6
17.9
18.7
18.5
19.3
19.5
19.5
18.7
18.7
19.5 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.4
27.5
26.9
25.7
26.0
25.9 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 18.8 18.6 19.9 20.7 19.3 20.2 18.3 17.0 17.0 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
23.0
22.5
22.1
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7
 | AUGUST 18.5 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.8 18.5 19.3 19.1 19.0 18.6 18.7 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5
22.5
22.5 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 | 12.6
17.3
16.7

17.4
16.6
17.4
17.3
16.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 22.2
22.4
23.9
23.7
24.3
24.5
20.6
22.2
22.8
21.6
23.7
24.0
23.6
23.6
23.6
23.6
23.6
23.6
23.6
23.6 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 14.4 13.4 14.4 15.1 15.8 16.3 15.9 14.2 14.9 16.1 15.1 15.1 | 18.2
18.5
18.9
19.8
19.9
19.8
20.2
20.2
18.6
17.9
18.7
18.5
19.3
19.5
20.1 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.5
26.5
26.0
25.9 | JULY 18.8 18.4 17.9 15.8 16.8 18.5 18.4 18.6 18.8 18.6 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.0 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.8
23.5
22.5
22.1
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7

25.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.8 18.5 19.3 19.1 19.0 18.6 18.7 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
322.5
22.5
22.5
22.5 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 | 12.6
17.3
16.7

17.4
16.6
17.4
117.4
117.4
117.4
117.4
117.4
117.4
117.4
117.4
117.4
117.4 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 22.2
22.4
23.9
23.7
24.3
24.6
20.6
22.2
22.8
21.6
23.7
24.0
23.6
23.7
24.0
23.6
23.6
23.7
24.0 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.8 15.3 16.3 15.9 14.2 14.9 16.1 15.1 15.1 15.1 | 18.2
18.5
18.9
19.8
19.9
19.8
20.2
20.2
218.6
17.9
18.7
18.5
19.5
20.1
19.5
18.7
18.7
18.7
19.5
19.5
19.3
19.5
19.8 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.4
27.5
26.9
25.7
26.5
26.5
26.5
26.0
25.9 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 18.8 18.6 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.5 17.3 18.4 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
22.5
22.1
21.3
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7

25.2
21.7
21.9
24.6 | AUGUST 18.5 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.3 19.3 19.1 19.0 18.6 18.7 17.9 16.4 17.5 17.4 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5
22.5
21.5
21.6 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7
17.0
17.2
16.0
13.1 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 7.6 | 12.6
17.3
16.7

17.4
16.6
17.3
16.7
17.4
16.6
17.4
17.3
16.7
14.2
14.7
12.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 22.2
22.4
23.2
23.9
23.7
24.3
24.5
22.6
20.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
23.6
23.6
22.2
20.3
23.1
23.9
23.9 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 15.3 16.3 15.9 14.2 14.9 16.1 15.1 15.1 | 18.2
18.5
18.9
19.8
19.9
19.8
20.2
20.2
20.2
18.6
17.9
18.5
19.3
19.5
19.5
18.7
18.6
17.8
19.0 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.4
27.5
26.9
25.7
26.5
26.0
25.9 | JULY 18.8 18.4 17.9 15.8 16.8 18.5 18.4 18.6 18.5 19.0 17.0 17.0 17.0 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
23.0
22.5
22.1
21.3
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7
25.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 18.6 20.3 19.3 19.8 18.5 19.3 19.1 19.0 18.6 18.7 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5
22.5
21.5

21.6
19.8
19.2
20.6 | 21.1
18.6
19.2

21.3
21.2
21.3
21.2
18.7
20.5
19.9
19.7 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 | 12.6
17.3
16.7

17.4
16.6
17.4
17.3
16.7
17.3
16.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 22.2
22.4
23.9
23.7
24.3
24.6
20.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
23.6
23.6
23.6
23.6
23.6
23.6
23.6 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 15.3 16.3 15.9 14.2 14.9 16.1 15.1 15.1 15.9 16.2 18.5 | 18.2
18.5
19.8
19.9
19.8
20.2
20.2
218.6
17.9
18.7
18.5
19.5
20.1
19.5
18.7
18.7
19.5
19.3
19.0 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.5
26.5
26.5
26.5
26.0
25.9
26.3
27.8 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.5 18.4 18.6 18.8 18.6 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.5 17.3 18.4 18.4 20.0 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
22.5
22.1
21.3
21.3
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
27.2
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7
25.2
21.7
21.9
24.2 | AUGUST 18.5 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.3 19.3 19.1 19.0 18.6 18.7 17.9 16.4 17.5 17.4 18.0 18.4 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
22.5
22.5
22.5
21.5
21.6
19.8
19.2
20.6
21.0
21.1 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7
17.0
17.2
16.0
13.1
14.1 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 7.6 7.7 8.8 | 12.6
17.3
16.7

17.4
16.6
17.3
16.7
17.4
16.6
17.4
17.3
16.7
14.2
14.7
12.9
10.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 22.2
22.4
23.9
23.7
24.3
24.5
22.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
22.2
23.6
22.2
23.3
23.1
23.9
22.2
23.3
23.1 | JUNE 14.1 14.5 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.8 15.3 16.3 15.9 14.2 14.9 16.1 15.1 15.1 15.9 16.2 18.5 | 18.2
18.5
19.8
19.9
19.8
20.2
20.2
218.6
17.9
18.7
18.5
19.5
20.1
19.5
18.7
18.7
19.5
19.3
19.0 | 26.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.5
26.9
25.7
26.5
26.0
25.9
26.0
25.9 | JULY 18.8 18.4 17.9 15.8 16.8 18.5 18.4 18.6 18.6 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.0 17.5 17.3 | 22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
23.0
22.5
22.1
21.3
21.3
21.3
21.3
21.3
22.6 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7

25.2
21.7
21.9
24.6
24.9
24.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.2 18.6 20.3 19.3 19.8 18.5 19.3 19.1 19.0 18.6 18.7 17.9 16.4 17.5 17.4 18.0 18.4 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.7
22.5
23.1
22.8
22.6
22.3
322.5
22.5
22.5
21.5

21.6
19.8
19.2
20.6
21.1 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7
17.0
17.2
16.0
13.1
14.1 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 7.6 7.7 8.8 9.8 | 12.6
17.3
16.7

17.4
16.6
17.4
16.6
17.4
16.7
14.2
14.7
12.9
10.2
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 22.2
22.4
23.9
23.7
24.3
24.6
20.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
23.6
23.6
23.7
24.0
23.6
23.6
23.6
23.6
23.6
23.6
23.6
23.6 | JUNE 14.1 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.8 15.3 16.3 15.9 14.9 14.2 14.9 16.1 15.1 15.1 15.1 15.9 16.1 17.3 | 18.2
18.5
18.9
19.8
20.2
20.2
218.6
17.9
18.7
18.5
20.1
19.5
19.5
19.3
19.5
19.3
19.5
19.3
19.5 | 26.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.5
26.9
25.7
26.5
26.0
25.9
26.0
25.9
26.3 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.6 18.6 18.7 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.5 17.3 18.4 18.4 20.0 19.9 19.5 19.1 | 22.4
22.0
21.3
20.9
20.1
20.3
21.6
21.3
22.6
22.8
21.1
22.8
23.8
23.5
23.5
22.5
22.1
21.3
21.3
21.3
21.3
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7

25.2
21.7
21.9
24.9
24.9
24.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.8 18.5 19.3 19.1 19.0 18.6 18.7 17.9 16.4 17.5 17.4 18.0 18.4 18.5 18.5 | 22.5 23.1 22.5 23.7 23.0 22.4 22.0 22.7 22.5 23.1 22.8 22.6 22.3 22.5 22.5 21.5 21.6 19.8 19.2 20.6 21.1 20.3 21.1 20.3 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7
17.0
17.2
16.0
13.1
14.1
15.2
16.3
16.9
17.2 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 7.6 7.7 8.8 9.8 9.8 11.3 13.8 | 12.6
17.3
16.7

17.4
16.6
17.4
16.6
17.4
17.3
16.7
14.2
14.7
12.9
10.2
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.2
22.4
23.9
23.7
24.3
24.5
22.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
23.6
22.2
20.3
23.1
23.9
22.2
23.3
23.1 | JUNE 14.1 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.3 16.3 15.9 14.2 14.9 16.1 15.1 15.1 15.9 16.2 17.3 17.9 | 18.2
18.5
19.8
19.9
19.8
20.2
20.2
21.6
17.9
18.7
18.5
19.5
20.1
19.5
19.3
19.5
19.3
19.4
20.2
21.4
18.0
17.8
20.4
21.5 | 26.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.5
26.9
25.7
26.5
26.0
25.9
26.0
25.9
26.0
26.8
26.6
25.9
26.8 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.6 18.6 18.7 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.0 17.0 17.5 17.3 18.4 18.4 20.0 19.9 19.5 19.9 |
22.4
22.0
21.3
20.9
20.1
20.3
20.9
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
23.5
22.1
21.3
21.3
21.3
21.3
21.3
21.3
22.6
22.1
22.1
22.2
23.8
23.6
22.1
22.1
22.2
23.8
23.6
23.6
23.6
23.6
23.6
23.6
23.6
23.6 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7

25.2
21.7
21.9
24.6
24.9
24.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.8 18.5 19.3 19.1 19.0 18.6 18.7 17.9 16.4 17.5 17.4 18.0 18.4 18.5 18.5 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.5
23.1
22.8
22.6
22.3
22.5
22.5
22.5
21.5

21.6
19.8
19.2
20.6
21.1
20.3

21.1
20.3 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7
17.0
17.2
16.0
13.1
14.1
15.2
16.3
16.9
17.2
17.2 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 7.6 7.7 8.8 9.8 11.3 13.8 12.3 | 12.6
17.3
16.7

17.4
16.6
17.4
16.6
17.4
17.3
16.7
14.2
14.7
12.9
10.2
11.0
12.1
13.1
14.3
15.6
15.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 22.2
22.4
23.9
23.7
24.3
24.6
20.6
22.2
22.8
21.6
23.7
24.0
23.6
23.7
24.0
23.6
23.7
24.0
23.6
23.6
22.2
22.3
3.1
23.9
22.2
23.3
23.1 | JUNE 14.1 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.8 15.3 16.3 15.9 14.2 14.9 16.1 15.1 15.1 15.1 15.1 15.9 16.2 15.8 18.5 | 18.2
18.5
18.9
19.8
20.2
20.2
218.6
17.9
18.7
18.5
19.5
20.1
19.5
18.7
18.6
17.8
19.0
19.5
19.3
19.4
20.2
21.4 | 26.6
25.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.5
26.5
26.5
26.0
25.9
26.3
27.8
26.9
26.3 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.6 18.6 18.7 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.5 17.3 18.4 18.4 20.0 19.9 19.5 19.1 18.9 18.0 | 22.4
22.0
21.3
20.9
20.1
20.3
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
22.5
22.1
21.3
21.3
21.3
21.3
21.3
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
26.8
25.5
26.6
26.9
25.8
24.7
25.2
21.7
21.9
24.2
22.6
24.9
24.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.3 19.1 19.0 18.6 18.7 17.9 16.4 17.5 17.4 18.0 18.4 18.5 18.4 17.0 | 22.5 23.1 22.5 23.7 23.0 22.4 22.0 22.7 22.5 23.1 22.8 22.6 22.5 22.5 22.5 21.5 21.6 19.8 19.2 20.6 21.1 20.3 21.1 21.5 19.8 19.5 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7
17.0
17.2
16.0
13.1
14.1
15.2
16.3
16.9
17.2 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 7.6 7.7 8.8 9.8 11.3 13.8 12.3 | 12.6
17.3
16.7

17.4
16.6
17.3
16.7
17.4
16.6
17.4
17.3
16.7
14.2
14.7
12.9
11.0
12.1
13.1
14.3
15.6
15.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.2
22.4
23.9
23.7
24.3
24.5
22.6
22.2
22.8
21.6
23.5
23.7
24.0
23.6
23.6
22.2
20.3
23.1
23.9
22.2
23.3
23.1 | JUNE 14.1 14.5 15.3 15.9 15.6 15.7 17.6 16.4 13.4 14.4 15.1 15.3 16.3 15.9 14.2 14.9 16.1 15.1 15.1 15.9 16.2 17.3 17.9 | 18.2
18.5
19.8
19.9
19.8
20.2
20.2
21.6
17.9
18.7
18.5
19.5
20.1
19.5
19.3
19.5
19.3
19.4
20.2
21.4
18.0
17.8
20.4
21.5 | 26.6
24.8
24.6
24.4
24.7
25.0
25.9
24.4
27.1
26.9
23.7
27.4
27.5
26.9
25.7
26.5
26.0
25.9
26.0
25.9
26.0
26.8
26.6
25.9
26.8 | JULY 18.8 18.4 17.9 17.3 15.9 15.8 16.8 18.6 18.6 18.7 19.9 20.7 19.3 20.2 18.3 17.0 17.0 17.0 17.0 17.5 17.3 18.4 18.4 20.0 19.9 19.5 19.9 | 22.4
22.0
21.3
20.9
20.1
20.3
21.6
21.3
22.6
22.8
21.1
22.8
23.5
23.5
22.5
22.1
21.3
21.3
21.3
21.3
21.3
21.3
21.3 | 26.4
27.0
25.3
27.4
26.5
27.0
26.1
26.7
26.1
26.8
25.5
26.6
26.0
26.9
25.8
24.7

25.2
21.7
21.9
24.6
24.9
24.2 | AUGUST 18.5 19.7 19.7 20.5 19.5 18.5 18.6 20.3 19.3 19.3 19.1 19.0 18.6 18.7 17.9 16.4 17.5 17.4 18.0 18.4 18.5 18.4 17.0 | 22.5
23.1
22.5
23.7
23.0
22.4
22.0
22.5
23.1
22.8
22.6
22.3
22.5
22.5
22.5
21.5

21.6
19.8
19.2
20.6
21.1
20.3

21.1
20.3 | 21.1
18.6
19.2

21.3
21.2
18.7
20.5
19.9
19.7
17.0
17.2
16.0
13.1
14.1
15.2
16.3
16.9
17.2 | 15.9 14.8 16.1 14.5 13.6 14.0 14.7 14.5 13.7 12.4 12.5 10.7 7.6 7.7 8.8 9.8 11.3 13.8 12.3 | 12.6
17.3
16.7

17.4
16.6
17.4
16.6
17.4
17.3
16.7
14.2
14.7
12.9
10.2
11.0
12.1
13.1
14.3
15.6
15.2 | #### 09106150 COLORADO RIVER BELOW GRAND VALLEY DIVERSION NEAR PALISADE, CO LOCATION.--Lat $39^{\circ}05^{\circ}55^{\circ}$, long $108^{\circ}21^{\circ}16^{\circ}$, in $NW^{1}/_{4}SE^{1}/_{4}$ sec.18, T.1 S., R.2 E., Mesa County, Hydrologic Unit 14010005, on right bank 0.25 mi downstream of intake structure for Grand Valley Diversion Canal, and 0.25 mi south of Palisade. DRAINAGE AREA. -- 8,753 mi². PERIOD OF RECORD.--October 1990 to current year. Water-quality data available, October 1993 to September 1996. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 4,670 ft above sea level, from topographic map. REMARKS.-- No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversion for irrigation of about 230,000 acres. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | ARGE, CUB | IC FEET PER | | WATER Y
Y MEAN V | | ER 1999 TC |) SEPTEMB | ER 2000 | | | |--|---|---|--|---|---|--|---|---|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1940
1900
1830
1720
1690 | 2140
2190
2140
2050
2240 | 1740
1700
1720
1670
1600 | 1760
1890
1900
1680
1660 | 1740
1860
1870
1920
1940 | 1970
1990
2160
1980
1960 | 1750
1640
1370
1180
1110 | 3960
3870
4420
5430
6430 | 12800
12000
11200
10300
9130 | 2920
2590
2370
2110
2050 | 659
589
581
683
808 | 1330
1060
986
957
1100 | | 6
7
8
9
10 | 1470
1430
1760
1990
1970 | 2330
2350
2240
2230
2110 | 1480
1410
1520
1760
1850 | 1660
1650
1580
1770
1890 | 1930
1920
1910
1900
1970 | 1970
2010
1990
2010
1990 | 1240
1500
1640
1780
1820 | 7590
8180
8460
8160
6760 | 8190
7720
7440
7030
6890 | 1720
1500
1310
1240
1360 | 806
789
753
706
698 | 1080
1090
1090
1180
1100 | | 11
12
13
14
15 | 1930
1880
1850
1700
1650 | 2090
2060
2040
2060
2040 | 1820
1960
1870
1720
1620 | 2070
2070
2120
2030
1960 | 2240
2140
2130
2070
2050 | 1930
1900
1750
1890
1860 | 1830
1770
1630
1780
1950 | 6550
7310
7100
6090
5440 | 6070
5460
5070
4560
4100 | 1330
1160
1010
914
806 | 732
773
865
882
903 | 986
895
839
798
737 | | 16
17
18
19
20 | 1690
1720
1770
1790
1810 | 2040
2060
2070
2040
2030 | 1560
1970
2090
1910
2000 | 1950
2010
2080
2120
2150 | 2020
2120
2230
2090
2010 | 1960
1840
1850
1830
1850 | 1980
1760
1740
1870
1750 | 5060
5050
5250
4460
3980 | 4550
4480
4190
4040
4700 | 943
1270
1800
1610
1250 | 853
821
902
1130
1220 | 694
701
873
915
904 | | 21
22
23
24
25 | 1820
1870
1880
1880 | 1990
1870
2010
1960
1820 | 2030
1980
1940
1820
1820 | 2130
2160
2030
1930
1900 | 1970
2030
2050
2030
2030 | 1920
1880
1850
1870
1890 | 1610
1650
1770
2080
2230 | 3870
4150
5170
7890
10500 | 5420
5330
4360
4160
3650 | 924
792
706
665
749 | 1270
1110
1020
907
866 | 901
1030
1340
1470
1200 | | 26
27
28
29
30
31 | 1850
1910
2050
2060
2120
2140 |
1710
1930
2100
1910
1780 | 1810
1790
1760
1760
1770
1720 | 2210
2140
2010
1880
1770
1710 | | 1910
1960
2000
2020
2010
1840 | 2210
2320
2920
3830
4110 | 11100
10200
9200
10300
12800
13500 | 3450
3620
3770
3550
3270 | 746
730
787
721
691
648 | 826
1030
1180
1140
1290
1500 | 1140
1080
770
681
665 | | TOTAL
MEAN
MAX
MIN
AC-FT | 56940
1837
2140
1430
112900 | 61630
2054
2350
1710
122200 | 55170
1780
2090
1410
109400 | 59870
1931
2210
1580
118800 | 58070
2002
2240
1740
115200 | 59840
1930
2160
1750
118700 | 57820
1927
4110
1110
114700 | 218230
7040
13500
3870
432900 | 180500
6017
12800
3270
358000 | 39422
1272
2920
648
78190 | 28292
913
1500
581
56120 | 29592
986
1470
665
58700 | | STATIS | TICS OF I | MONTHLY MI | EAN DATA | FOR WATER Y | YEARS 1991 | 1 - 2000 | , BY WATER | R YEAR (WY | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1299
2560
1998
538
1991 | 1962
2484
1998
1220
1995 | 1792
2370
1998
1209
1991 | 1785
2375
1998
1280
1991 | 1837
2416
1996
1297
1991 | 2108
2913
1998
1302
1991 | 2275
4837
1996
962
1995 | 8104
14160
1993
4603
1992 | 11030
20860
1997
3164
1992 | 4615
16010
1995
745
1994 | 1726
3897
1995
557
1994 | 1264
2461
1997
650
1994 | | SUMMAR | Y STATIS | TICS | FOR | 1999 CALE | NDAR YEAR | | FOR 2000 V | WATER YEAR | 1 | WATER Y | EARS 1991 | - 2000 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER | T ANNUAL I
ANNUAL I
T DAILY M
DAILY M
SEVEN-DA
TANEOUS I | MEAN
MEAN
EAN
AY MINIMUN
PEAK FLOW
PEAK STAGH
(AC-FT)
EEDS | S | 1111848
3046
13000
435
555
2205000
8960
1960
1450 | Jun 10
Apr 14
Apr 14 | | 905376
2474
13500
581
653
14400
8.4
1796000
5100
1900
871 | May 31
Aug 3
Jul 29
May 30
44 May 30 | | 3318
5114
1764
29600
342
443
30600
12.4
2404000
7910
1940
840 | Aug
Aug
Jun | 1997
1992
17 1995
6 1994
2 1994
17 1995
17 1995 | #### 09107000 TAYLOR RIVER AT TAYLOR PARK, CO LOCATION.--Lat $38^{\circ}51'37"$, long $106^{\circ}33'58"$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.5, T.14 S., R.82 W., Gunnison County, Hydrologic Unit 14020001, on left bank 0.2 mi upstream from Taylor Park Reservoir waterline, 2.7 mi north of Taylor Park, and 21 mi northeast of Almont DRAINAGE AREA.--128 mi². PERIOD OF RECORD.--June 1929 to September 1934, October 1987 to current year. Records for 1929-1934 provided by Colorado Division of Water Resources, published in WSP 1313. Statistical summary computed for 1988 to current year. REVISED RECORDS.--WSP 1313: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,340 ft above sea level, from topographic map. June 1929 to Sept. 1934 water-stage recorder at different datum at site flooded by waters of Taylor Park Reservoir since 1937. REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBI | C LEET LEI | | MEAN VA | LUES | 1999 10 | SELIEMBE | R 2000 | | | |----------|------------------------|---------------------|------------|------------|------------|----------|------------|------------------|------------|------------|----------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 75 | 57 | e41 | e39 | e34 | 38 | 38 | 138 | 451 | 111 | 62 | 60 | | 2 | 73 | 52 | e43 | e38 | e34 | 37 | 39 | 189 | 410 | 107 | 65 | 57 | | 3 | 72 | 50 | e44 | e37 | e35 | 37 | 39 | 259 | 385 | 107 | 64 | 54 | | 4 | 70 | 50 | e44 | e37 | e37 | 43 | 43 | 306 | 363 | 98 | 62 | 52 | | 5 | 70 | 50 | e42 | e37 | e35 | 43 | 50 | 365 | 349 | 90 | 62 | 54 | | 6 | 74 | 48 | e44 | e38 | e34 | 40 | 57 | 398 | 325 | 86 | 60 | 63 | | 7 | 97
92 | 47
49 | e45 | e38 | e34 | 38 | 62
72 | 383
385 | 316
301 | 87 | 57
56 | 71 | | 8
9 | 92
90 | 49 | e42
e41 | e38
e39 | e34
e34 | 37
40 | 72
78 | 385
271 | 299 | 96
110 | 53 | 66
79 | | 10 | 83 | 45 | e41 | e38 | 35 | 39 | 86 | 258 | 263 | 94 | 54 | 60 | | 11 | 77 | 45 | e41 | 35 | 35 | 41 | 76 | 318 | 241 | 84 | 58 | 55 | | 12 | 73 | 44 | e41 | 34 | 36 | 39 | 83 | 277 | 223 | 84 | 67 | 53 | | 13 | 72 | 41 | e41 | e32 | 36 | 38 | 103 | 204 | 209 | 92 | 87 | 51 | | 14 | 69 | 41 | e40 | e34 | 36 | 39 | 103 | 204 | 197 | 91 | 64 | 50 | | 15 | 67 | 42 | e38 | e32 | 36 | 40 | 83 | 211 | 191 | 127 | 64 | 49 | | 16 | 66 | 41 | e38 | 32 | 36 | 42 | 96 | 240 | 181 | 169 | 79 | 48 | | 17 | 60 | e41 | e39 | 33 | 37 | 38 | 120 | 278 | 164 | 211 | 80 | 48 | | 18 | 65 | e41 | e40 | 34 | 36 | 38 | 125 | 212 | 154 | 121 | 70 | 51 | | 19 | 63 | 36 | e41 | 35 | 37 | 40 | 93 | 198 | 179 | 99 | 69 | 52 | | 20 | 61 | e38 | e41 | e35 | 40 | 40 | 92 | 191 | 199 | 87 | 68 | 49 | | 21 | 61 | e40 | e41 | e35 | 38 | 43 | 110 | 207 | 152 | 81 | 69 | 53 | | 22 | 60 | e40 | e41 | 35 | 38 | 40 | 100 | 272 | 134 | 77 | 73 | 83 | | 23 | 59 | 39 | e42 | e35 | 37 | 39 | 98 | 431 | 131 | 72 | 71 | 64 | | 24 | 57 | e39 | e42 | e35 | 36 | 39 | 114 | 582 | 127 | 72 | 65 | 65 | | 25 | 56 | e39 | e43 | 36 | 35 | 39 | 104 | 560 | 130 | 75 | 65 | 62 | | 26 | 56 | e40 | e42 | 36 | 38 | 41 | 125 | 430 | 145 | 73 | 70 | 58 | | 27 | 55 | e40 | e41 | 35 | 38 | 42 | 160 | 361 | 145 | 76 | 67 | 56 | | 28 | 54 | e40 | e41 | e34 | 37 | 44 | 191 | 425 | 137 | 73 | 61 | 55 | | 29
30 | 60
54 | e40
e40 | e42
e41 | e34
e33 | 36
 | 42
42 | 182
160 | 579
558 | 119
111 | 69
69 | 59
58 | 63
60 | | 31 | 56 | | e41 | e33 | | 39 | | 511 | | 69 | 60 | | | TOTAL | 2097 | 1304 | 1284 | 1096 | 1044 | 1237 | 2882 | 10201 | 6731 | 2957 | 2019 | 1741 | | MEAN | 67.6 | 43.5 | 41.4 | 35.4 | 36.0 | 39.9 | 96.1 | 329 | 224 | 95.4 | 65.1 | 58.0 | | MAX | 97 | 57 | 45 | 39 | 40 | 44 | 191 | 582 | 451 | 211 | 87 | 83 | | MIN | 54 | 36 | 38 | 32 | 34 | 37 | 38 | 138 | 111 | 69 | 53 | 48 | | AC-FT | 4160 | 2590 | 2550 | 2170 | 2070 | 2450 | 5720 | 20230 | 13350 | 5870 | 4000 | 3450 | | STATIST | ICS OF MO | NTHLY MEA | N DATA F | OR WATER | YEARS 1988 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 60.0 | 48.4 | 40.7 | 35.3 | 33.8 | 39.3 | 77.4 | 268 | 416 | 197 | 92.8 | 68.3 | | MAX | 91.3 | 71.6 | 53.8 | 41.9 | 38.2 | 50.5 | 119 | 447 | 767 | 719 | 236 | 122 | | (WY) | 1996 | 1996 | 1996 | 1997 | 1995 | 1997 | 1996 | 1996 | 1995 | 1995 | 1995 | 1995 | | MIN | 39.6 | 34.5 | 30.0 | 28.6 | 27.9 | 32.6 | 39.4 | 162 | 195 | 88.4 | 53.4 | 46.5 | | (WY) | 1989 | 1989 | 1989 | 1990 | 1994 | 1996 | 1995 | 1990 | 1992 | 1994 | 1994 | 1990 | | SUMMARY | STATISTI | CS | FOR : | 1999 CALEI | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1988 | - 2000 | | ANNUAL ' | TOTAL | | | 47073 | | | 34593 | | | | | | | ANNUAL I | MEAN | | | 129 | | | 94.5 | | | 115 | | | | HIGHEST | ANNUAL M | EAN | | | | | | | | 197 | | 1995 | | | ANNUAL ME | | | | | | | | | 79.4 | | 1992 | | | DAILY ME | | | 620 | Jun 15 | | 582 | May 24 | | 1120 | | 7 1995 | | | DAILY MEA | | | e30 | Jan 4 | | e32 | Jan 13 | | a24 | | 7 1989 | | | SEVEN-DAY
ANEOUS PE | MINIMUM | | 31 | Jan 4 | | 33
767 | Jan 12
May 29 | | 25
1400 | | 13 1996
.8 1995 | | | | AK FLOW
AK STAGE | | | | | | May 29
May 29 | | 4.08 | | .8 1995
.8 1995 | | | RUNOFF (A | | | 93370 | | | 68620 | ricay 29 | | 83280 | ouii 1 | 1999 | | | ENT EXCEE | | | 409 | | | 211 | | | 283 | | | | | ENT EXCEE | | | 72 | | | 57 | | | 55 | | | | 90 PERC | ENT EXCEE | DS | | 34 | | | 36 | | | 34 | | | | | | | | | | | | | | | | | e Estimated a Minimum daily discharge for period of record, 23 ft³/s, Jan 1-19, 1931. #### 09108500 TAYLOR PARK RESERVOIR AT TAYLOR PARK, CO $\label{location.--Lat 38^949^07", long 106^36^24", Gunnison County, Hydrologic Unit 14020001, at dam on Taylor River just downstream from Taylor Park, and 16 mi northeast of Almont.$ DRAINAGE AREA. -- 254 mi². PERIOD OF RECORD.--October 1937 to current year. Prior to October 1938, published in WSP 1313. REVISED RECORDS.--WSP 1089: 1940(M), 1942(M), 1945-46. WSP 1924: Drainage area. GAGE.--Water-stage recorder with satelite telemetry, and nonrecording gage (read once daily). Datum of gage is 9,187 ft above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by an earth and rockfill dam. Dam completed by U. S. Bureau of Reclamation in September 1937. Capacity of reservoir, 106,200 acre-ft between elevations 9,187 ft, bottom of outlet gates, and 9,330 ft, crest of spillway. No dead storage. Water used for irrigation in Uncompander Valley. Figures given are usable contents. COOPERATION.--Records provided by Uncompangre Valley Water Users Association. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 111,000 acre-ft, July 1, 1957, elevation, 9,332.35 ft; minimum after first filling, 8,780 acre-ft, Oct. 19-20, 1956, elevation, 9,240.70 ft. EXTREMES (at 1800) FOR CURRENT YEAR.--Maximum contents, 100,000 acre-ft, June 9, elevation, 9,326.87 ft; minimum contents, 66,200 acre-ft, Sept. 30, elevation, 9,307.66 ft. MONTHEND ELEVATION AND CONTENTS, AT 1800, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation
(feet) | Contents (acre-feet) | Change in contents (acre-feet) | |---
---|--|--| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 9319.13
9315.58
9314.94
9313.89 | 85,400
79,100
78,000
76,300 | -6,300
-1,100
-1,700 | | CAL YR 1999 | - | - | +12,500 | | Jan. 31. Feb. 29. Mar 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 9312.73
9311.63
9310.35
9311.93
9324.80
9324.29
9317.20
9311.58
9307.66 | 74,300
72,500
70,530
73,000
95,900
95,000
81,900
72,400
66,200 | -2,000
-1,800
-1,970
+2,470
+22,900
-900
-13,100
-9,500
-6,200 | | WATER YEAR 2000 | _ | _ | -19,200 | #### 09109000 TAYLOR RIVER BELOW TAYLOR PARK RESERVOIR, CO LOCATION.--Lat $38^{\circ}49^{\circ}06^{\circ}$, long $106^{\circ}36^{\circ}31^{\circ}$, Gunnison County, Hydrologic Unit 14020001, on bridge 1,000 ft downstream from Taylor Park Reservoir Dam, 3.4 mi upstream from Lottis Creek, and 17 mi northeast of Almont. DRAINAGE AREA. -- 254 mi². PERIOD OF RECORD.--June 1929 to September 1934 (monthly discharges only, published in WSP 1313), October 1938 to current year. Statistical summary computed for 1939 to current year. REVISED RECORDS. -- WSP 1924: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 9,169.67 ft above sea level, (levels by U.S. Bureau of Reclamation). Prior to Nov. 11, 1952, at site 1,600 ft downstream, at datum 1.00 ft lower. Oct. 15, 1946 to May 4, 1952, supplementary nonrecording gage just downstream from reservoir outlet at different sites and datums used during winter months. REMARKS.--No estimated daily discharges. Records good. Flow regulated by Taylor Park Reservoir (station 09108500) since 1937. One small diversion for irrigation from Willow Creek upstream from reservoir. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIDCHIN | JE, CODI | IC IDDI ID | DAILY | MEAN VA | ALUES | 1000 10 | DEL TENEL | 2000 | | | |----------|------------|-----------------------|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------------|-------------------------------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 244 | 98 | 103 | 103 | 102 | 103 | 103 | 99 | 323 | 421 | 357 | 241 | | 2 | 199 | 99 | 103 | 103 | 103 | 103 | 103 | 99 | 358 | 420 | 320 | 241 | | 3 | 159 | 101 | 103 | 103 | 103 | 103 | 103 | 99 | 376 | 421 | 319 | 241 | | 4 | 132 | 101 | 103 | 103 | 103 | 103 | 103 | 99 | 376 | 419 | 319 | 242 | | 5 | 195 | 98 | 103 | 103 | 103 | 104 | 103 | 100 | 409 | 418 | 318 | 242 | | 6 | 224 | 98 | 103
103
103
103 | 103 | 103 | 103
104
103
104 | 103
103
103
104
103 | 101 | 454 | 418 | 319 | 243 | | 7
8 | 289
304 | 98
99 | 103 | 103
103 | 103
103 | 104 | 103 | 103
103 | 474
475 | 390
368 | 319
316 | 242
243 | | 9 | 304 | 98 | 103 | 103 | 103 | 103 | 103 | 103
102 | 475 | 371 | 319 | 243 | | 10 | 304 | 96 | 103 | 103 | 103 | 103 | 103 | 102 | 475 | 372 | 319 | 243 | | | | | | | | | | | | | | | | 11
12 | 303
303 | 96
96 | 103
103 | 103
103 | 103
103 | 104
105 | 103
124 | 100
99 | 474
475 | 371
370 | 318
318 | 244
245 | | 13 | 303 | 96 | 103 | 103 | 103 | 103 | 193 | 100 | 444 | 370 | 318 | 213 | | 14 | 300 | 96 | 103 | 102 | 103 | 104 | 280 | 100 | 427 | 374 | 310 | 182 | | 15 | 299 | 96 | 103 | 103 | 103 | 104 | 286 | 132 | 400 | 374 | 275 | 185 | | 16 | 269 | 98 | 103 | 103 | 103 | 104 | 220 | 151 | 378 | 374 | 241 | 185 | | 17 | 222 | 103 | 103 | 103 | 103 | 104 | 230
175 | 149 | 376 | 376 | 241 | 186 | | 18 | 205 | 103 | 103 | 103 | 103 | 104 | 127 | 149 | 375 | 374 | 243 | 187 | | 19 | 207 | 103 | 102 | 103 | 103 | 105 | 99 | 148 | 399 | 373 | 243 | 187 | | 20 | 206 | 103 | 103
103
102
102
100 | 103 | 103
103
103
103
103 | 104
105
105 | 230
175
127
99
99 | 147 | 427 | 374 | 243 | 189 | | 21 | 206 | 103 | 99 | | | | | 148 | 425 | 374 | 243 | 189 | | 22 | 207 | | 101 | 103
103
103 | 103 | 103 | 99 | 148 | 424 | 372 | 242 | 189 | | 23 | 207 | 100 | 103 | 103 | 103 | 104 | 99 | 147 | 425 | 373 | 242 | 188 | | 24 | 207 | 99
99 | 103 | 103
103 | 103 | 104 | 99 | 147 | 424 | 373 | 243 | 182 | | 25 | 206 | 99 | 103
103
103 | 103 | 103
103
103
103
103 | 103
103
104
104
104 | 99
99
99
99
100 | 149 | 423 | 373 | 242 | 180 | | 26 | 206 | 99 | 103 | 103 | 103 | 103 | 100 | 186 | 423 | 373 | 242 | 179 | | 27 | 206 | 99 | 103 | 103 | 103
103
103
103 | 103
104
104
104 | 100 | 207 | 424 | 373 | 242 | 179 | | 28 | 174 | 99 | 103 | 103 | 103 | 104 | 101 | 208 | 421 | 372 | 241 | 179 | | 29 | 118 | 99 | 103 | 103 | 103 | 104 | 101 | 208 | 425 | 372 | 241 | 173 | | 30 | 99 | 100 | 103
103
103
103
103 | 103
103
103
103
102
102 | | 103 | 100
100
101
101
101 | 186
207
208
208
245 | 423 | 372 | 242 | 143 | | 31 | 100 | | 103 | 102 | | 103 | | 286 | | 371 | 241 | | | TOTAL | 6906 | 2975
99.2 | 3181
103
103 | 3190
103
103 | 2986 | 3214 | 3746 | 4359 | 12607 | 11846 | 8638 | 6205 | | MEAN | 223 | 99.2 | 103 | 103 | 103 | 104 | 125 | 141 | 420 | 382
421
368 | 279 | 207 | | MAX | 304 | 103 | 103 | 103 | 103 | 105 | 286 | 286
99 | 475
323 | 421 | 357
241 | 245 | | MIN | 99 | 96 | 99 | 102 | 102 | 103 | 99 | | | 368 | 241 | 143 | | AC-FT | 13700 | 5900 | 6310 | 6330 | 5920 | 6370 | 7430 | 8650 | 25010 | 23500 | 17130 | 12310 | | STATIST | CICS OF M | ONTHLY MEAN | N DATA F | FOR WATER | YEARS 1939 | - 2000, | BY WATER Y | EAR (WY) | | | | | | MEAN | 192 | 96.0 | 75.2 | 64.3 | 62.7 | 86.9 | 151 | 183 | 332 | 400 | 361 | 397 | | MAX | 586 | 438 | 353 | 195 | 196 | 320 | 655 | 550 | 931 | 1249 | 646 | 809 | | (WY) | 1969 | 1968 | 1966 | 1966 | 1971 | 1986 | 1970 | 1962 | 1948 | 1957 | 1950 | 1956 | | MIN | 11.4 | 10.0 | 6.00 | 4.02 | 4.00 | 4.19 | 9.44 | .000 | .000 | 147 | 183 | 99.5 | | (WY) | 1962 | 1941 | 1964 | 1964 | 1964 | 1964 | 1964 | 1940 | 1940 | 1964 | 1977 | 1961 | | SUMMARY | STATIST | ics | FOR | 1999 CALE | NDAR YEAR | F | FOR 2000 WAT | ER YEAR | | WATER YE | ARS 1939 | - 2000 | | ANNUAL | TOTAL | | | 73795 | | | 69853 | | | | | | | ANNUAL | MEAN | | | 202 | | | 191 | | | 201 | | | | | ANNUAL | | | | | | | | | 341 | | 1995 | | | ANNUAL M | | | | _ | | | | | 94.8 | | 1941 | | | DAILY M | | | 483 | Jul 3 | | 475 | Jun 8 | | 2180 | Jul | 1 1957 | | | DAILY ME | | | 75
76 | Mar 19 | | 96
96 | Nov 10 | | a.00 | May | 1 1940 | | | | Y MINIMUM
EAK FLOW | | /0 | Mar 14 | | 496 | JUOV 9 | | 2180
a.00
.00
2270
7.56 | тТ | 1 1057 | | | | EAK FLOW
EAK STAGE | | | | | | Jun 12 | | 2470
7 56 | Jul | 1 1957 | | | RUNOFF (| | | 146400 | | | 138600 | U 441 12 | | 145400 | Jui | | | | CENT EXCE | | | 353 | | | 374 | | | 480 | | | | | CENT EXCE | | | 160 | | | 104 | | | 107 | | | | 90 PERC | CENT EXCE | EDS | | 94 | | | 100 | | | 18 | | | a Also occurred May 2 to Jul 3, 1940, May 7-22, 1942, May 5-21, 1943. #### 09110000 TAYLOR RIVER AT ALMONT, CO LOCATION.--Lat 38°39'52", long 106°50'41", in $NW^1/_4SE^1/_4$ sec.22, T.51 N., R.1 E., Gunnison County, Hydrologic Unit 14020001, on left bank at Almont, 15 ft downstream from bridge on State Highway 306, and 800 ft upstream from confluence with East River. DRAINAGE AREA.--477 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1910 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 1213: 1911. WSP 1924: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,010.76 ft above sea level. Prior to Apr. 16, 1922, nonrecording gage at same site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Flow partly regulated since September 1937 by Taylor Park Reservoir (station 09108500), 24 mi upstream from station. Diversions for irrigation of about 360 acres upstream from station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBI | C REEL PER | | MEAN VA | AR OCTOBER
LUES | 1999 10 | SEPTEMBE | SR 2000 | | | |--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------------|--------------|--------------|--------------|--------------|----------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 327 | 169 | 155 | e167 | e150 | 146 | 160 | 264 | 651 | 546 | 450 | 284 | | 2 | 280 | 167 | 162 | e167 | e150 | 146 | 158 | 264 | 658 | 531 | 391 | 277 | | 3 | 250 | 163 | 157 | e160 | e160 | 146 | 160 | 285 | 672 | 528 | 390 | 278 | | 4
5 | 202
254 | e163
163 | 154
149 | e155
e160 | e165
e165 | 147
151 | e160
163 | 318
332 | 666
669 | 526
522 | 386
383 | 279
280 | | | | | | | | | | | | | | | | 6
7 | 277
356 | 163
162 | 153
163 | e155
e155 | e160
e165 | 151
152 | 173
180 | 364
374 | 702
718 | 517
499 | 380
375 | 282
285 | | 8 | 381 | e163 | 172 | e165 | e180 | 149 | 185 | 441 | 696 | 473 | 375 | 289 | | 9 | 372 | e160 | 156 | e170 | e180 | 148 | 193 | 401 | 669 | 485 | 375 | 300 | | 10 | 369 | 158 | 166 | e170 | e175 | 149 | 207 | 381 | 645 | 484 | 370 | 291 | | 11 | 371 | 158 | 168 | e170 | 174 | 156 | 212
 402 | 630 | 475 | 371 | 290 | | 12 | 369 | 156 | 161 | 166 | 175 | 153 | 214 | 402 | 624 | 469 | 374 | 287 | | 13 | 367 | 154 | 157 | 171 | 172 | 148 | 281 | 347 | 601 | 477 | 403 | 275 | | 14
15 | 368
365 | 155
155 | 168
151 | 183
e185 | 165
168 | 153
155 | 397
432 | 332
344 | 567
547 | 479
525 | 379
357 | 238
235 | | 13 | 303 | 155 | 131 | 6102 | 100 | 155 | 432 | 344 | 347 | 525 | 337 | | | 16
17 | 347
298 | 151
156 | 164
e180 | 176
e180 | 152
152 | 155
152 | 349
311 | 382
410 | 508
499 | 607
575 | 320
326 | 233
234 | | 18 | 276 | 158 | e165 | e170 | 148 | 152 | 288 | 388 | 497 | 525 | 319 | 242 | | 19 | 277 | 157 | e160 | 162 | 148 | 155 | 233 | 388 | 525 | 503 | 323 | 239 | | 20 | 276 | 155 | e158 | 156 | 150 | 154 | 210 | 367 | 580 | 491 | 320 | 232 | | 21 | 275 | 157 | e155 | 160 | e150 | 149 | 233 | 358 | 562 | 481 | 317 | 235 | | 22 | 276 | 159 | e150 | 157 | 145 | 153 | 226 | e420 | 562 | 476 | 321 | 243 | | 23 | 275 | 150 | e150 | 157 | 144 | 155 | 213 | e500 | 560 | 472 | 316 | 235 | | 24 | 273 | 162 | e157 | 161 | 146 | 156 | 228 | 544 | 562 | 470 | 313 | 234 | | 25 | 273 | 168 | e163 | 162 | 145 | 157 | 228 | 556 | 562 | 471 | 325 | 234 | | 26
27 | 273
270 | 174
157 | e170
e170 | 164
162 | 156
e150 | 159
160 | 252
285 | 529
518 | 578
570 | 467
466 | 330
317 | 233
230 | | 28 | 256 | 157 | e170
e160 | 185 | 145 | 163 | 298 | 527 | 565 | 464 | 317 | 230 | | 29 | 211 | 153 | e160 | 151 | 147 | 161 | 296 | 577 | 560 | 459 | 310 | 234 | | 30 | 168 | 153 | e155 | 157 | | e160 | 287 | 625 | 554 | 460 | 303 | 212 | | 31 | 170 | | e160 | e150 | | e164 | | 630 | | 458 | 293 | | | TOTAL | 9102 | 4774 | 4969 | 5109 | 4582 | 4755 | 7212 | 12970 | 17959 | 15381 | 10827 | 7668 | | MEAN | 294 | 159 | 160 | 165 | 158 | 153 | 240 | 418 | 599 | 496 | 349 | 256 | | MAX | 381 | 174 | 180 | 185 | 180 | 164 | 432 | 630 | 718 | 607 | 450 | 300 | | MIN
AC-FT | 168
18050 | 150
9470 | 149
9860 | 150
10130 | 144
9090 | 146
9430 | 158
14310 | 264
25730 | 497
35620 | 458
30510 | 293
21480 | 212
15210 | | | | | | | | | | | | 30310 | 21400 | 13210 | | STATIST | 'ICS OF MC | NTHLY MEA | N DATA F | OR WATER Y | YEARS 1910 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 247 | 156 | 122 | 111 | 110 | 134 | 249 | 604 | 925 | 575 | 416 | 394 | | MAX | 699 | 518 | 424 | 240 | 288 | 456 | 784 | 1485 | 2419 | 1975 | 707 | 855 | | (WY)
MIN | 1969
60.3 | 1968
53.3 | 1966
39.8 | 1966
40.8 | 1971
35.2 | 1985
34.6 | 1970
55.8 | 1936
129 | 1914
109 | 1957
168 | 1960
83.2 | 1956
91.6 | | (WY) | 1938 | 1938 | 1963 | 1941 | 1941 | 1938 | 1941 | 1940 | 1940 | 1931 | 1913 | 1937 | | SUMMARY | STATISTI | :CS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1910 | - 2000 | | ANNUAL | TOTAL | | | 119297 | | | 105308 | | | | | | | ANNUAL | MEAN | | | 327 | | | 288 | | | 338 | | | | | ' ANNUAL M | | | | | | | | | 550 | | 1995 | | | ANNUAL ME | | | 815 | Jun 4 | | 718 | Jun 7 | | 155
3600 | T. 170 | 1977
9 1920 | | | DAILY MEA | | | 119 | Mar 14 | | 144 | Feb 23 | | a24 | | 12 1938 | | | | MINIMUM | | 122 | Mar 13 | | 147 | Feb 27 | | 27 | | 19 1941 | | INSTANT | 'ANEOUS PE | AK FLOW | | | | | 744 | Jun 7 | | b3760 | | 9 1920 | | | | AK STAGE | | | | | 2.92 | Jun 7 | | c5.00 | Jun | 9 1920 | | | RUNOFF (A | | | 236600 | | | 208900 | | | 244800 | | | | | ENT EXCEE | | | 673
255 | | | 528
234 | | | 736
198 | | | | | ENT EXCEE | | | 147 | | | 152 | | | 84 | | | | | | - | | | | | | | | | | | e Estimated. e Estimated. a Minimum discharge observed for period of record, before storage began in Taylor Park Reservoir, 50 ft³/s for several days in Aug 1913, gage height, 1,2 ft. b From rating curve extended above 2300 ft³/s. c Maximum gage height, 5.32 ft, Jul 1, 1957. # 09110000 TAYLOR RIVER AT ALMONT, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD--October 1993 to September 2000 (discontinued). REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of materials verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | WATER
(DEG C) | DIS- | 100 ML) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | |-------------------------------|---|---|--|--|---|--|--|---| | OCT
19
JAN | 1550 | 275 | 122 | 7.7 | 6.9 | 9.4 | K1 | <.001 | | 11 | 1130 | 158 | 143 | 8.2 | .1 | 10.4 | <1 | <.001 | | APR
12 | 1510 | 218 | 138 | 8.4 | 8.6 | 8.6 | K1 | <.001 | | MAY
22 | 1720 | 373 | 139 | 8.4 | 12.9 | 7.8 | К5 | <.001 | | JUL
20 | 1130 | 495 | 124 | 8.2 | 10.5 | 8.5 | K1 | .001 | | AUG
29 | 1640 | 305 | 122 | 8.4 | 15.2 | 7.4 | K1 | .001 | | DATE | GEN
NO2+N
DIS
SOLV
(MG/
AS N | GEN OS AMMON OS DIS ED SOLV L (MG,) AS N | JIA MONI
S- ORGA
/ED TOT
/L (MG
J) AS | AM- GEN, A + MONI NIC ORGA AL DIS /L (MO N) AS | AM- IA + PH ANIC PHO G. TO G/L (M N) AS | OS- PHOR
RUS DI
TAL SOL
G/L (MG | S- DIS
VED SOLV
/L (MG/
P) AS F | US
HO,
E-
ED
L | | OCT
19
JAN
11
APR | .031 | | | | | 009 E.0 | | | | 12 | .032 | .00 |)2 .1 | 6 .1 | | 016 .0 | 09 .0 | 03 | | MAY
22 | .046 | .01 | LO .2 | 3 .1 | | 011 E.0 | 04 .0 | 04 | | JUL
20 | .035 | .01 | .1 | 3 E.1 | 10 . | 017 .0 | 09 .0 | 08 | | AUG
29 | .011 | .00 |)5 .1 | 2 .1 | | 009 E.0 | 03 .0 | 02 | MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---|-----------|------|---|--|---| | OCT
08 | 0940 | 397 | 122 | 7.2 | MAR
01 | 0830 | 142 | 145 | .5 | | NOV
16 | 1459 | 152 | 145 | 3.2 | JUN
28 | 1129 | 583 | 120 | 9.7 | # 385609106575800 EAST RIVER BELOW GOTHIC, CO # WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}56^{\circ}09$ ", long $106^{\circ}57^{\circ}58$ ", in $SE^{1}/_{4}SE^{1}/_{4}$ sec.11, T.13 S., R.86 W., Gunnison County, Hydrologic Unit 14020001, at county road bridge, 0.1 mi east of Gothic, and 2.0 mi west of Mt. Crested Butte. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD--April 1995 to August 2000 (discontinued). REMARKS.--No previous water-quality data prior to April 1995. 19... SEP 07... .052 .057 .004 .002 E.10 <.10 E.10 <.10 Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECONL
(00061) | CIF
CON
DUC
ANC
(US/ | - WA IC WF - F1 T- (S7 E A CM) UN | PH
ATER
HOLE
EELD
CAND-
ARD
HITS) | ATU
WAT
DEC | JRE
ΓER
♂ C) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | GEN, NITRITE DIS- SOLVED (MG/L AS N) | |------------------|--------------------------------|---|--|--|---|-------------------------------|---------------------------------------|--|---|--------------------------------------| | OCT
19 | 1330 | 22 | 26 | 6 8 | 3.2 | 3. | . 7 | 9.2 | к1 | <.001 | | JAN
21 | 0920 | 4.9 | 30 | 5 8 | 3.1 | | . 0 | 9.5 | K1 | <.001 | | APR
19 | 0930 | 47 | 26 | 8 8 | 3.1 | | . 4 | 10.4 | <1 | <.001 | | MAY
24 | 0930 | 330 | 15 | 1 8 | 3.0 | 3. | . 6 | 9.2 | К3 | <.001 | | JUL
19
SEP | 1120 | 52 | 21 | 5 8 | 3.2 | 10. | . 6 | 8.3 | К8 | <.001 | | 07 | 1030 | 21 | 26 | 0 8 | 3.4 | 9. | . 5 | 8.3 | 29 | <.001 | | DATE | GE
NO2+
DI
SOI
(MO | EN, G
-NO3 AMM
ES- D
LVED SC
E/L (M
N) AS | IONIA
DIS-
DLVED
IG/L
S N) | GEN,AM-
MONIA +
ORGANIC
TOTAL | GEN,
MONI
ORGA
DIS
(MG | AM-
A +
NIC
/L
N) | PHOS
PHORU
TOTA
(MG/
AS P | S DI
L SOL
L (MG
) AS | | RUS
FHO,
S-
VED
/L
P) | | OCT
19
JAN | . 07 | 75 <. | 002 | .15 | .1 | 4 | <.00 | 8 <.0 | 06 <.0 | 001 | | 21
APR | .11 | <. | 002 | <.10 | <.1 | 0 | <.00 | 8 <.0 | 06 <.0 | 001 | | 19
MAY | .13 | 30 . | 800 | .18 | E.1 | 0 | .01 | 5 <.0 | 06 .0 | 002 | | 24
JUL | .11 | .5 | 005 | .12 | .1 | 0 | .01 | 7 <.0 | 06 .0 | 004 | | 000 | | |
| | | _ | | | | | E.007 .008 <.006 <.006 .001 <.001 # 385408106543600 EAST RIVER ABOVE CRESTED BUTTE, CO. # WATER-QUALITY RECORDS LOCATION.--Lat 38°54'08", long 106°54'36", Gunnison County, Hydrologic Unit 14020001, 0.25 mi upstream from confluence with Brush Creek, and 4.2 mi northeast of Crested Butte. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD--August 1995 to current year. REMARKS.--No previous water-quality data prior to August 1995. 20... 24... APR 19... MAY JUL 19... SEP 07... .104 .108 .097 .029 .005 <.002 .011 .003 .023 .006 <.10 .17 .19 .10 <.10 <.10 .14 .11 E.10 E.10 <.008 .023 .032 E.006 E.004 <.006 E.003 <.006 <.006 <.006 <.001 .001 .003 .002 <.001 WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | | DIS-
SOLVED
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | |------------------|------------------|---|--|--|--------------------------------------|--------------------------|---|--| | OCT
19
JAN | 1600 | 31 | 295 | 8.2 | 6.8 | 8.8 | К1 | .001 | | 20
APR | 1400 | 11 | 320 | 8.2 | .6 | 9.4 | K1 | <.001 | | 19 | 1325 | 74 | 278 | 8.3 | 3.3 3.1 10.2 | | <1 | <.001 | | MAY
24
JUL | 1215 | 304 | 174 | 8.1 | 7.3 | 9.0 | К6 | <.001 | | 19
SEP | 1520 | 21 | 254 | 8.2 | 19.3 | 7.4 | 15 | .001 | | 07 | 1520 | 16 | 285 | 8.4 | 17.2 | 7.5 | K2 | .001 | | DATE | GE
NO2+
DI | N, GE NO3 AMMO S- DI VED SOL J/L (MG N) AS | N, GEN, NIA MONI S- ORGA VED TOT /L (MC N) AS | AM- GEN
A + MON
NIC ORG
AL DI
L/L (MO
N) AS | ANIC PHO
S. TO
G/L (M
N) AS | | RUS ORT
SS- DIS
EVED SOLV
S/L (MG/
P) AS E | EUS
THO,
S-
ZED
L | | OCT
19
JAN | .04 | .0 | 07 E.1 | 0 .: | 10 E. | 006 <.0 |)50 <.0 | 001 | # 384950106544200 EAST RIVER ABOVE SLATE RIVER, NEAR CRESTED BUTTE, CO # WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}49^{\circ}50^{\circ}$, long $106^{\circ}54^{\circ}42^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec.17, T.14 S., R.85 W., Gunnison County, Hydrologic Unit 14020001, 100 ft upstream from confluence with Slate River, and 4.7 mi southeast of Crested Butte. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- April 1995 to September 2000 (discontinued). REMARKS.--No previous water-quality data prior to April 1995. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |------------------|---|---|--|--|--|---|--|---|---|--| | OCT
21
JAN | 1045 | 58 | 317 | 8.2 | 2.5 | | 10.1 | .0 | К2 | | | 11
APR | 0820 | 18 | 343 | 8.3 | . 4 | | 10.2 | | <1 | | | 13
MAY | 1120 | 93 | 290 | 8.4 | 2.7 | | 10.0 | 2.6 | <1 | | | 24
JUL | 1400 | 568 | 170 | 8.2 | 10.6 | 19 | 8.3 | .6 | 28 | 84 | | 20
AUG | 1000 | 70 | 320 | 8.2 | 11.7 | | 7.5 | | 34 | | | 30 | 0820 | 40 | 337 | 8.3 | 10.9 | <.5 | 7.9 | .0 | 9 | 160 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
21
JAN | | | <.001 | .050 | <.002 | E.10 | E.10 | <.008 | E.003 | <.001 | | 11
APR | | | .002 | .105 | .011 | .17 | <.10 | <.008 | E.004 | <.001 | | 13
MAY | | | .001 | .097 | .017 | .21 | .11 | .031 | .007 | .004 | | 24 | 26.8 | 4.07 | <.001 | .092 | .012 | .20 | E.10 | .037 | <.006 | .003 | | 20
AUG | | | <.001 | .034 | .005 | .12 | E.10 | E.005 | <.006 | .003 | | 30 | 54.0 | 7.06 | .001 | .061 | .007 | E.10 | <.10 | E.004 | <.006 | .002 | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | | | MAY 24 | <15 | <.1 | <1 | 10 | <1 | 5 | <1 | <20 | | | | AUG
30 | <15 | <.1 | <1 | <10 | <1 | 3 | <1 | <20 | | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |--------|------|---|---|---|---| | MAY 24 | 1400 | 568 | 10.6 | 52 | 80 | | AUG | 1400 | 300 | 10.6 | 32 | 80 | | 30 | 0820 | 40 | 10.9 | 3 | .35 | # 385429107013000 SLATE RIVER ABOVE OH-BE-JOYFUL CREEK, NEAR CRESTED BUTTE, CO. # WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}54^{\circ}29^{\circ}$, long $107^{\circ}01^{\circ}30^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$ sec.20, T.13 S., R.86 W., Gunnison County, Hydrologic Unit 14020001, 0.2 mi upstream from confluence with Oh-Be-Joyful Creek, and 3.4 mi northwest of Crested Butte. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD--June 1995 to September 2000 (discontinued). REMARKS.--No previous water-quality data prior to June 1995. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | W | IATER-QUAL | TTY DATA, | WATER YE. | AR OCTOBE | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--|---
--|--|--|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | | OCT
20
JAN | 0915 | 6.3 | 137 | 7.8 | 2.3 | | 9.5 | К1 | | | | 20 | 0940 | 2.5 | 148 | 7.6 | .2 | | 9.9 | K1 | | | | APR 18 | 1425 | 52 | 129 | 7.6 | 3.7 | | 9.4 | <1 | | | | MAY
23 | 0830 | 212 | 81 | 7.6 | 3.5 | 3.0 | 9.7 | K1 | 36 | 12.5 | | JUL
19 | 0840 | 30 | 111 | 7.8 | 7.1 | | 8.5 | 45 | | | | SEP
06 | 1520 | 8.8 | 150 | 7.9 | 14.5 | <.5 | 7.1 | 21 | 66 | 22.9 | | OCT 20 JAN 20 APR 18 MAY 23 JUL 19 SEP 06 | SIDI
DI
SOI
(MG
AS
(009 | NE- GF UUM, NITE SS- DI UVED SOI (MC MC M | S- DI NVED SOL | N, GE: NO3 AMMO: S- DI. VED SOL' /L (MG: 331) (006 2 <.0 2 <.0 4 .0 4 .0 5 <.0 | N, GEN, MONIL MONIL ORGAN MONIL ORGAN MONIL (MG N) AS 1 (006) (006) (006) (006) (006) (007 | AM- GEN, A + MONI NIC ORGA AL DIS (/L (MG AS) (25) (006 0 <.1 0 <.1 0 E.1 6 E.1 | AM-
A + PHO
NIC PHOR
. TOT
./L (MG
N) AS
233) (006 | US DI SAL SOLL (MG P) AS (006 C) (006 C) (006 C) (007 | US ORT S - DIS | US HO, :-: | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS
CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | | | | <15 | <.1 | <1 | <10 | <1 | E2 | <1 | <20 | | | SEP
06 | | <15 | <.1 | <1 | E10 | <1 | E1 | <1 | <20 | | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | MAY
23 | 0830 | 212 | 3.5 | 26 | 15 | | SEP
06 | 1520 | 8.8 | 14.5 | М | .00 | # 385426107013400 OH-BE-JOYFUL CREEK ABOVE SLATE RIVER, NEAR CRESTED BUTTE, CO. # WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}54^{\circ}26^{\circ}$, long $107^{\circ}01^{\circ}34^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$ sec.20, T.13 S., R.86 W., Gunnison County, Hydrologic Unit 14020001, 0.1 mi upstream from mouth, and 3.4 mi northwest of Crested Butte. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD--August 1995 to September 2000 (discontinued). REMARKS.--No previous water-quality data prior to August 1995. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | WA
WH
FI
(ST
A
UN | TER
OLE
ELD
AND-
RD
(ITS)
400) | AT
WA | PER-
URE
TER
G C)
010) | SO
(M | GEN,
IS-
LVED
G/L)
300) | FO
FE
0.
UM
(CO
100 | LI-
RM,
CAL,
7
-MF
LS./
ML)
625) | | |------------------|-----------|---|--|----------------------------------|--|-------------------------------|------------------------------------|----------------------|-------------------------------------|------------------------------------|---|--------------------------------| | MAY
23
SEP | 1040 | 141 | 45 | 7 | . 2 | 3 | .8 | 9 | . 4 | < | 1 | <.001 | | 06 | 1350 | 3.2 | 84 | 7 | .6 | 12 | . 4 | 7 | .5 | K | 1 | .001 | | DATE | (MG
AS | N, GE NO3 AMMC S- DI VED SOL /L (MG N) AS | N, GEN
NIA MON
S- ORG
VED TO
I/L (M
N) AS | | NIT
GEN,
MONI
ORGA
DIS
(MG
AS | AM-
A +
NIC
/L
N) | PHOR
TOT
(MG
AS | US
AL
/L
P) | (MG
AS | US
S-
VED
/L
P) | PHOR ORT DIS SOLV (MG/AS P (006 | US
HO,
-
ED
L
) | | MAY
23
SEP | .03 | | | 15 | E.1 | | E.0 | | <.0 | | | 03 | | 06 | .01 | 4 .00 | 9 <. | 10 | <.1 | U | < . 0 | UB | <.0 | U6 | <.0 | UΤ | # 385240106583600 SLATE RIVER ABOVE COAL CREEK, NEAR CRESTED BUTTE, CO. # WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}52^{\circ}40^{\circ}$, long $106^{\circ}58^{\circ}36^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$ sec.35,T.13 S., R.86 W., Gunnison County, Hydrologic Unit 14020001, 0.5 mi upstream from confluence with Coal Creek, and 0.6 mi northwest of Crested Butte. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD--April 1995 to current year. REMARKS.--No previous water-quality data prior to April 1995. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | FEET DUCT- (STAND- ATURE BID- I
DATE TIME PER ANCE ARD WATER ITY SO | COLI- FORM, HARD- FECAL, NESS CALCIUM YGEN, 0.7 TOTTAL DIS- DIS- UM-MF (MG/L SOLVED OLVED (COLS./ AS (MG/L MG/L) 100 ML) CACO3) AS CA) 0300) (31625) (00900) (00915) | |--|--| | | 8.7 K1 | | | 8.9 K1 | | | 9.0 <1 | | | 8.2 K2 31 10.6 | | JUL 19 1000 49 106 7.7 10.4 7 | 7.8 к9 | | SEP 07 0830 19 135 7.6 10.2 <.5 7 | 7.3 K24 62 20.9 | | MAGNE- SIUM, NITRO- GEN, GEN, GEN, AM- MONIA + | PHOS- PHORUS PHORUS ORTHO, PHORUS DIS- DIS- TOTAL SOLVED SOLVED (MG/L (MG/L (MG/L AS P) AS P) AS P) (00665) (00666) (00671) | | INUM, CADMIUM COPPER, IRON, LEAD, NE DIS- DIS- DIS- DIS- I SOLVED SOLVED SOLVED SOLVED SOLVED SOL DATE (UG/L | ANGA- ESE, SILVER, ZINC, DIS- DIS- DIVED SOLVED SOLVED UG/L (UG/L (UG/L S MN) AS AG) AS ZN) 1056) (01075) (01090) | | | 7 <1 E17 | | SEP
07 <15 .2 <1 20 <1 1 | 12 <1 E14 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | MAY
23 | 1235 | 354 | 7.6 | 11 | 11 | | SEP
07 | 0830 | 19 | 10.2 | 1 | .06 | # 09111500 SLATE RIVER NEAR CRESTED BUTTE, CO LOCATION.--Lat $38^{\circ}52^{\circ}11^{\circ}$, long $106^{\circ}58^{\circ}08^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.2, T.14 S., R.86 W., Gunnison County, Hydrologic Unit 14020001, on right bank 400 ft downstream from Washington Gulch, 1 mi east of Crested Butte, and 6.3 mi upstream from mouth. DRAINAGE AREA.--68.9 mi². # WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1940 to September 1951, October 1993 to current year. Monthly discharges only for some periods, published in WSP 1313. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,820 ft above sea level, from topographic map. Prior to Oct. 1, 1993, gage at site 0.3 mi downstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,300 acres upstream and downstream from station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | | | | | | | |---|---|--|--|--|--------------------------------------|--|---|--|------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 42
40
38
36
35 | 21
19
19
19
19 | e15
e14
14
e15
e15 | e16
e15
e15
e15
e15 | e15
e15
e15
e16
e15 | e13
e13
e13
e13
e14 | e36
e35
e36
e40
e56 | 346
420
536
615
668 | 702
645
598
568
539 | 125
122
111
99
86 | e20
e19
e19
e17
e15 | 18
18
16
15
14 | | 6
7
8
9 | 35
45
50
50
46 |
18
18
19
18
17 | e16
e16
16
e16
16 | e15
e16
e17
e17
e17 | e15
e15
e15
e15
e15 | e14
e14
e14
e14 | 59
62
74
75
83 | 686
654
681
515
460 | 520
492
470
501
414 | 80
77
72
92
92 | e14
e14
e13
e15
e18 | 17
20
21
38
26 | | 11
12
13
14
15 | 43
39
36
37
38 | 17
16
15
15 | 15
e15
e15
e15
e15 | e16
e16
e16
e16
e16 | e15
e15
e14
e14
e14 | e13
e13
e14
e14
e15 | 95
116
149
167
151 | 543
516
384
329
316 | 376
348
314
272
278 | 75
66
59
60
88 | 19
21
30
19 | 21
18
17
16
15 | | 16
17
18
19
20 | 35
34
36
33
25 | 15
16
17
15
16 | e16
e16
e16
e16
e16 | e17
e18
e18
e18
e18 | e14
e14
e13
e13
e13 | e16
e17
e17
e17
e20 | 132
153
179
152
141 | 316
371
304
e270
e260 | 278
242
217
250
253 | 88
96
66
54
46 | 18
18
18
22
22 | 14
13
15
15
13 | | 21
22
23
24
25 | 22
22
22
21
21 | e16
17
e16
e15
e15 | e17
e16
e17
e17
e17 | e18
e18
e17
e17
e18 | e13
e13
e13
e13
e12 | e21
e21
e22
e23
e25 | 159
159
160
170
177 | e290
e340
621
807
850 | 222
200
185
173
174 | 41
36
33
30
30 | 24
25
22
20
17 | 14
21
17
18
19 | | 26
27
28
29
30
31 | 21
21
21
23
20
21 | 15
e15
e15
e15
e15 | e16
e16
e16
e16
e16
e16 | e18
e17
e16
e15
e15
e15 | e12
e12
e13
e13 | e28
e33
e35
e36
e37
e36 | 229
319
381
364
330 | 709
585
622
767
816
767 | 186
162
145
134
130 | 28
26
25
23
22
22 | 18
21
18
16
18 | 19
19
19
31
33 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1008
32.5
50
20
2000 | 499
16.6
21
15
990 | 488
15.7
17
14
968 | 511
16.5
18
15
1010 | 404
13.9
16
12
801 | 609
19.6
37
13
1210 | 4439
148
381
35
8800 | 16364
528
850
260
32460 | 9988
333
702
130
19810 | 1970
63.5
125
22
3910 | 587
18.9
30
13
1160 | 570
19.0
38
13
1130 | | STATIST | ICS OF MO | NTHLY MEA | N DATA F | OR WATER Y | EARS 1940 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 32.0
68.4
1998
10.2
1943 | 23.7
38.4
1998
8.63
1943 | 16.5
25.1
1994
8.03
1943 | 13.4
23.5
1996
8.35
1947 | 11.9
20.0
1996
6.20
1945 | 19.7
44.3
1999
8.52
1950 | 123
303
1943
36.4
1944 | 532
778
1941
281
1995 | 606
971
1995
280
1940 | 214
804
1995
50.7
1940 | 54.5
237
1995
15.2
1940 | 27.5
62.7
1995
13.8
1942 | | SUMMARY | STATISTI | CS | FOR : | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1940 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 45145.5
124
776
9.5
11
89550
497
43
15 | May 25
Feb 9
Mar 2 | | 37437
102
850
e12
13
958
5.28
74260
347
20 | May 25
Feb 25
Feb 21
May 25
May 25 | | 143
214
102
1390
3.9
5.8
1550
5.84
103300
524
27
11 | Nov 2
Nov 2
Jun 1 | 1995
2000
7 1995
66 1942
11 1942
7 1995
7 1995 | e Estimated. # 09111500 SLATE RIVER NEAR CRESTED BUTTE, CO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD--March 1995 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-deal colony count; M, presence of materials verified but not quantified. | | | WA | rer-qual: | ITY DATA, | WATER Y | EAR OCTO | OBER 1 | .999 TO | SEPTEM | 3ER 200 | 00 | | | | |-------------------|----------|---------------------------------------|---|--|---|---|---|--|---|--------------------------------------|---|---|--|---| | D | ATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | WATER
(DEG (| E
?
C) (| TUR-
BID-
ITY
NTU)
0076) | OXYGEN
DIS-
SOLVEI
(MG/L) | , 0.7
UM-
D (COI
) 100 | RM,
CAL,
7
-MF
LS./
ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3) | CALC
DIS
SOL
(MG
) AS | -
VED
-/L
CA) | | OCT 20. | | 1525 | 23 | 160 | 7.7 | 8.8 | | | 8.7 | 1 | 38 | | _ | _ | | JAN
10.
APR | | 1330 | 17 | 194 | 8.0 | .0 | | | 9.5 | I | ζ9 | | - | - | | 14.
MAY | | 1100 | 174 | 140 | 7.6 | 3.4 | | | 9.4 | I | C 6 | | - | - | | 23.
JUL | • • | 1410 | 544 | 78 | 7.5 | 10.2 | | 3.0 | 8.0 | - | 19 | 32 | 10. | 5 | | 19.
SEP | • • | 1240 | 56 | 123 | 7.7 | 15.8 | | | 7.1 | 12 | 20 | | - | - | | 07. | | 1230 | 20 | 168 | 8.0 | 16.6 | | <.5 | 7.0 | - | 12 | 70 | 23. | 2 | | | DATE | DIS-
SOLVI
(MG/I
AS MO | E- GEN
M, NITE:
- DIS
ED SOLV
L (MG,
G) AS N | N, GE ITE NO2+ S- DI /ED SOL /L (MG N) AS | NO3 AMMO
S- DI
VED SOI
J/L (MO | EN, GH ONIA MO IS- OH LVED T G/L H N) A | EN,AM-
ONIA +
RGANIC
FOTAL
(MG/L
AS N) | GEN,
MONIZ
ORGAL
DIS
(MG
AS 1 | AM-
A + PI
NIC PHO
. TO
/L (1
N) AS | HOS-
DRUS
DTAL
MG/L
S P) | DIS-
SOLVE
(MG/I
AS P) | PHOS OF DIED SOIL (MOS) | RTHO,
IS-
LVED
}/L
P) | | | 0 | CT | | | | | | | | | | | | | | | J | 20
AN | | .03 | 12 .16 | . 23 | 33 | .33 | .3 | б.(| 089 | .069 | .0 |)54 | | | | 10
PR | | .00 | .33 | .00 | 04 | .12 | <.1 | 0.0 | 076 | .071 | .0 | 060 | | | M | 14
AY | | .00 | .22 | .02 | 20 | .27 | .1 | 5 .0 | 040 | .010 | . (| 004 | | | J | 23
UL | 1.38 | 3 <.00 | 01 .00 | .00 | 05 | .22 | E.1 | 0.0 | 025 | .006 | .0 | 002 | | | | 19
EP | | .00 | 07 .24 | .02 | 23 | .11 | E.1 | 0.0 | 044 | .039 | .0 | 030 | | | | 07 | 2.83 | 3 .00 | .32 | .00 |)5 I | E.10 | E.1 | 0.0 | 080 | .075 | . (| 065 | | | | : | DATE | DIS-
SOLVED
(UG/L
AS AL) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | (UG/I
AS FI | ED S
L (
E) A | EAD,
DIS-
SOLVED
UG/L
S PB) | MANGA-
NESE,
DIS-
SOLVEI
(UG/L
AS MN
(01056 | SILV
D:
SOI
(UC
) AS | IS-
LVED
G/L
AG) | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN) |) | | | | MAY | | 24 | .3 | E1 | 40 | | E1 | 14 | <: | 1 | 40 | | | | | SEP | | E10 | . 2 | <1 | 30 | | <1 | 36 | <: | | E13 | | | | | 07 | ••• | DIO | . 2 | `- | 50 | | `- | 30 | `- | - | LIJ | | | | | М | ISCELLANI | EOUS FIEI | LD MEASUR | REMENTS, V | WATER Y | EAR OC | TOBER | 1999 ТО | SEPTE | MBER 20 | 000 | | | | DATE | TIME | DISCHARGIONST CUBIO FEET SECON (0006) | E, SPE- CIFI C CON- DUCT ANCH ND (US/O | IC
- TEMF
I- ATU
E WAI
CM) (DEG | RE
ER
; C) | | | DA' | ГE | TIME | DIS
CHARG
INST
CUBI
FEE
PEF
SECO
(0006 | SE, S
F. C
IC C
ET I
R I | SPE-
CIFIC
CON-
DUCT-
ANCE
JS/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | NOV
17 | 0845 | 13 | 2 | 200 | .9 | | F | EB
29 | | 1330 | 13 | | 214 | 3.9 | # 09111500 SLATE RIVER NEAR CRESTED BUTTE, CO--Continued # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | MAY 23 | 1410 | 544 | 10.2 | 13 | 19 | | SEP
07 | 1230 | 20 | 16.6 | 1 | .05 | # 384852106541500 SLATE RIVER ABOVE EAST RIVER, NEAR CRESTED BUTTE, CO. # WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}48^{\circ}52^{\circ}$, long $106^{\circ}54^{\circ}15^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.28, T.14 S., R.85 W., Gunnison County, Hydrologic Unit 14020001, 100 ft upstream from confluence with East River, and 4.7 mi southeast of Crested Butte. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD--April 1995 to September 2000 (discontinued). REMARKS.--No previous water-quality data prior to April 1995. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | WATER
(DEG C) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) |
COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | |-------------------------------------|--|--|--|--|---|--|---|---| | OCT
21
JAN | 0815 | 34 | 197 | 8.0 | 1.8 | 10.1 | .0 | K2 | | 11 | 0930 | 19 | 204 | 7.9 | .3 | 10.2 | | K2 | | APR
13 | 1320 | 181 | 147 | 8.0 | 5.0 | 9.4 | 2.3 | <1 | | MAY
25 | 0900 | 1510 | 67 | 7.6 | 5.2 | 9.2 | 1.2 | 10 | | JUL
20 | 0910 | 70 | 206 | 8.0 | 11.3 | 7.9 | | 67 | | AUG
30 | 1000 | 32 | 241 | 8.3 | 12.5 | 7.8 | .0 | 14 | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L | ORGANIC
DIS.
(MG/L | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT 21 | GEN, NITRITE DIS- SOLVED (MG/L AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT
21
JAN
11 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
21
JAN
11
APR
13 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT 21 JAN 11 APR 13 MAY 25 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN, AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT 21 JAN 11 APR 13 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .006 .002 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631)
.193
.371 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
.057
.004 | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .14 .11 | GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .18 <.10 | PHORUS
TOTAL
(MG/L
AS P)
(00665)
.028
.029 | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666)
.021
.024 | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
.009
.018 | #### 09112200 EAST RIVER BELOW CEMENT CREEK NEAR CRESTED BUTTE, CO LOCATION.--Lat $38^{\circ}47^{\circ}03^{\circ}$, long $106^{\circ}52^{\circ}13^{\circ}$, in $NE^{1}/_{4}NE^{1}/_{4}$ sec.3, T.15 S., R.85 W., Gunnison County, Hydrologic Unit 14020001, on left bank 11 ft downstream from bridge on State Highway 135, 1.6 mi downstream from Cement Creek, and 8.5 mi southeast of Crested Butte. DRAINAGE AREA. -- 238 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1963 to September 1972, October 1979 to September 1981, October 1993 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,440 ft above sea level, from topographic map. Prior to Oct. 1993, water-stage recorder 0.5 mi upstream, at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 4,500 acres upstream and downstream from station. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--|--|---------------------------------------|---|----------------------------------|----------------------------------|---|--|--------------------------------------|---|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 152
143
137
134
132 | 108
100
97
98
98 | 86
91
85
70
e70 | 59
60
e57
e56
e56 | e57
e56
e54
e53
e53 | 47
52
48
51
51 | 68
65
67
70
99 | 723
838
1040
1190
1310 | 1530
1420
1340
1290
1230 | 278
268
261
247
230 | 91
88
87
77
68 | 94
90
86
84
80 | | 6
7
8
9
10 | 134
163
164
169
158 | 95
95
97
97
90 | e70
72
72
e68
70 | e56
e57
e58
63
63 | e53
e53
e52
55
56 | 54
54
50
50
45 | 130
152
174
209
268 | 1360
1310
1370
1100
904 | 1150
1080
1050
1090
923 | 214
200
194
228
235 | 67
63
64
67
80 | 79
85
87
101
104 | | 11
12
13
14
15 | 152
146
142
137
136 | 90
86
82
84
86 | e67
e66
e67
e68
e68 | 64
65
62
e60
e60 | 56
55
54
55
56 | 50
53
48
48
52 | 282
303
346
373
342 | 1040
1020
787
701
664 | 833
780
705
613
612 | 208
194
174
158
202 | 90
97
120
102
96 | 100
97
94
91
88 | | 16
17
18
19
20 | 129
123
129
124
120 | 83
89
92
64
75 | e67
67
e66
67
68 | 63
66
66
64 | 54
56
56
55
e54 | 49
48
47
49
53 | 297
343
427
371
328 | 703
830
693
616
611 | 612
542
492
567
600 | 244
252
202
185
168 | 102
102
102
106
110 | 86
84
94
104
97 | | 21
22
23
24
25 | 116
113
114
112
111 | 82
90
69
93
104 | e65
e64
e63
e62
e60 | 65
65
61
60
64 | 54
54
54
54
52 | 49
47
50
53
52 | 391
390
398
431
419 | 725
878
1270
1660
1760 | 518
449
407
372
372 | 153
141
134
128
124 | 112
127
118
115
102 | 96
116
110
105
101 | | 26
27
28
29
30
31 | 110
110
106
111
101
108 | 93
90
84
83
85 | 61
e58
e57
e57
e57
e57 | 65
64
67
66
e62
e59 | 50
53
51
52
 | 60
63
77
76
79
74 | 509
655
775
760
713 | 1500
1210
1280
1620
1750
1670 | 410
381
348
317
296 | 116
109
107
101
96
94 | 101
103
98
95
94
94 | 96
97
99
106
108 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4036
130
169
101
8010 | 2679
89.3
108
64
5310 | 2086
67.3
91
57
4140 | 1916
61.8
67
56
3800 | 1567
54.0
57
50
3110 | 1679
54.2
79
45
3330 | 10155
338
775
65
20140 | 34133
1101
1760
611
67700 | 22329
744
1530
296
44290 | 5645
182
278
94
11200 | 2938
94.8
127
63
5830 | 2859
95.3
116
79
5670 | | STATIST
MEAN
MAX | TICS OF MC
118
188 | 90.3
125 | 70.6
96.2 | OR WATER Y
62.6
83.2 | YEARS 1964
58.7
76.0 | - 2000,
70.4
113 | 239
404 | YEAR (WY)
1029
1606 | 1354
2450 | 579
1796 | 214
609 | 140
271 | | (WY)
MIN
(WY) | 1966
58.5
1964 | 1998
62.4
1964 | 1966
51.7
1964 | 1971
43.8
1995 | 1971
42.7
1964 | 1999
43.5
1964 | 1971
77.0
1964 | 1996
406
1981 | 1995
633
1981 | 1995
181
1981 | 1995
91.7
1981 | 1965
64.3
1994 | | | STATISTI | CS | FOR 1 | | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1964 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN A | | 130639
358
1810
e54
58
259100
1330
157
61 | May 29
Jan 29
Dec 25 | | 92022
251
1760
45
49
1980
4.01
182500
764
97
54 | May 25
Mar 10
Mar 13
May 25
May 25 | | 336
531
162
3610
36
40
4350
a5.06
243500
1060
108
55 | Jan 2
Feb 2
Jun 1 | 1995
1981
7 1995
4 1995
1
1964
8 1995
8 1995 | e Estimated. a Maximum gage height for period of record, 8.30 ft, Jun 12, 1980, from floodmarks, site and datum then in use. #### 09112200 EAST RIVER BELOW CEMENT CREEK NEAR CRESTED BUTTE, CO--Continued (National Water-Quality Assessment Program station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1993 to current year. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: May 1995 to May 1997. WATER TEMPERATURE: May 1995 to September 1998. DISSOLVED OXYGEN: May 1995 to May 1997. INSTRUMENTATION.--Water-quality monitor with satellite telemetry May 1995 to May 1997. Water temperature sensor and logger May 1997 to September 1998. REMARKS.--Upper Colorado River Basin National Water Quality Assessment station (NAWQA). Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. Suspended sediment concentrations determined from a subsample split of a composite sample. EXTREMES FOR PERIOD OF DAILY RECORD .-- TREMES FOR PERIOD OF DAILY RECORD.- SPECIFIC CONDUCTANCE: Maximum, 366 microsiemens Dec. 15, 1995; minimum, 125 microsiemens June 22, 1995. WATER TEMPERATURE: Maximum, 18.5°C Aug. 7, 1998; minimum, 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum, 13.5 mg/L Feb. 17, 1997 (may have been higher during periods of missing record); minimum 6.7 mg/L July 24, 1996 (may have been lower during periods of missing record). | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |-----------|------|---|--|--|---|---|--|--|---|--| | OCT | | | | | | | | | | | | 20
NOV | 0830 | 119 | 281 | 8.0 | 1.0 | .7 | 10.1 | .2 | 8 | 140 | | 15 | 1220 | 61 | 315 | 8.5 | 5.0 | | 10.6 | | | 150 | | DEC
27 | 1200 | 69 | 316 | 8.4 | .9 | | 10.6 | | | 150 | | JAN | 1200 | | | | | | | | | | | 10
FEB | 1545 | 63 | 315 | 8.4 | 3.0 | | 9.4 | | <1 | 140 | | 29 | 1500 | 53 | 305 | 8.7 | 7.1 | | 9.3 | | | 140 | | MAR
20 | 1145 | 50 | 311 | 8.6 | 4.8 | | 9.5 | | | 140 | | APR | 1145 | 50 | 311 | 0.0 | 4.0 | | 9.5 | | | 140 | | 13 | 0815 | 296 | 218 | 8.1 | .7 | 4.9 | 10.2 | | 24 | 98 | | 26 | 1100 | 432 | 211 | 8.2 | 4.3 | | 9.8 | | | 97 | | MAY
10 | 1300 | 840 | 179 | 8.1 | 10.1 | 3.7 | 8.0 | .8 | К6 | 82 | | JUN | 1300 | 040 | 1/2 | 0.1 | 10.1 | 3.7 | 0.0 | .0 | 100 | 02 | | 01 | 1530 | 1440 | 144 | 8.2 | 11.0 | | 7.8 | | | 68 | | 08 | 1600 | 958 | 169 | 7.9 | 11.1 | | 8.1 | | 140 | 77 | | 22 | 1300 | 447 | 213 | 8.2 | 14.1 | 18 | 7.4 | | | 100 | | JUL | | | | | | | | | | | | 20 | 0800 | 170 | 287 | 8.3 | 9.2 | | 8.5 | | 54 | 140 | | AUG | | | | | | | | | | | | 30 | 1230 | 93 | 316 | 8.4 | 13.5 | <.5 | 7.8 | .0 | 10 | 150 | | SEP | 1220 | 0.4 | 215 | 0.4 | 10 5 | | 0 1 | | | 150 | | 26 | 1330 | 94 | 315 | 8.4 | 10.5 | | 8.1 | | | 150 | 09112200 EAST RIVER BELOW CEMENT CREEK NEAR CRESTED BUTTE, CO--Continued (National Water-Quality Assessment Program station) | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | |--|---|---|--|--|--|---|--|---|---| | OCT
20 | 43.5 | 7.56 | 3.4 | .1 | .9 | | 100 | 122 | | | NOV
15 | 47.4 | 8.12 | 4.9 | .2 | 1.0 | | 122 | 137 | 6 | | DEC 27 | 47.7 | 8.38 | 4.7 | .2 | 1.0 | 127 | | | | | JAN
10 | 44.1 | 8.07 | 5.0 | .2 | 1.1 | | 120 | 146 | | | FEB
29 | 44.2 | 8.07 | 5.6 | .2 | 1.0 | | 114 | 134 | 2 | | MAR
20 | 43.2 | 7.86 | 5.4 | .2 | 1.0 | | 115 | 126 | 7 | | APR
13
26 | 30.2
30.2 | 5.42
5.25 | 2.9 | .1 | 1.2 | | 79
81 | 96
99 | | | MAY
10 | 25.5 | 4.32 | 2.0 | .1 | .6 | | 67 | 82 | | | JUN
01
08
22 | 21.7
24.6
32.4 | 3.33
3.68
4.79 | 1.4
1.7
2.0 | .1
.1
.1 | .6
.6
.7 | 59

 |
65
83 |
79
101 |

 | | JUL
20 | 45.1 | 6.62 | 3.0 | .1 | .9 | | 122 | 149 | | | AUG
30 | 48.1 | 7.59 | 3.4 | .1 | 1.0 | | 123 | 145 | 2 | | SEP
26 | 48.9 | 7.71 | 3.4 | .1 | 1.0 | 129 | | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | | OCT
20
NOV | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT
20
NOV
15
DEC
27
JAN
10 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED (MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
56.5 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
33.7
32.9 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
1.3
1.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.6
7.8 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
157
178 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TOMS
PER
DAY)
(70302)
56.5
30.5 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
33.7
32.9
35.7
36.7 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
1.3
1.6
1.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.6
7.8
7.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185
189 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
157
178
184
177 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.24
.25
.26 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
56.5
30.5
31.9 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .001 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
33.7
32.9
35.7
36.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
1.3
1.6
1.7 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.2
.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.6
7.8
7.6
7.2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185
189
187 | SUM OF CONSTI-
TUENTS, DIS-
SOLVED (MG/L) (70301) 157 178 184 177 173 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.24
.25
.26
.25 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
56.5
30.5
35.1
31.9
25.9 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .001 .001 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
33.7
32.9
35.7
36.7
35.5
37.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
1.3
1.6
1.7
1.8
2.2
2.0
1.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.2
.2
.2
.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.6
7.8
7.6
7.2
7.1
6.7 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185
189
187
181
178 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)(70301) 157 178 184 177 173 174 120 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.24
.25
.26
.25
.25 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
56.5
30.5
35.1
31.9
25.9
23.8 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .001 .001 .002 <.010 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 JUN 01 08 22 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
33.7
32.9
35.7
36.7
35.5
37.5 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
1.3
1.6
1.7
1.8
2.2
2.0
1.9
1.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.2
.2
.2
.2 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
6.6
7.8
7.6
7.2
7.1
6.7
5.8
5.8 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185
189
187
181
178 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 157 178 184 177 173 174 120 115 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.24
.25
.26
.25
.25
.24 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
56.5
30.5
35.1
31.9
25.9
23.8
106
140 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .001 .001 .002 <.010 .002 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 JUN 01 08 22 JUL 20 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
33.7
32.9
35.7
36.7
35.5
37.5
23.9
19.1
14.5
11.3
15.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
1.3
1.6
1.7
1.8
2.2
2.0
1.9
1.2
.9 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.2
.2
.2
.2
.2
.1
.1
<.1 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
6.6
7.8
7.6
7.2
7.1
6.7
5.8
5.8
5.7 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185
189
187
181
178
133
120
99
80
100 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)(70301) 157 178 184 177 173 174 120 115 94 79 91 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
.24
.25
.26
.25
.25
.24
.18
.16
.13 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
56.5
30.5
35.1
31.9
25.9
23.8
106
140
225
310
259 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .001 .002 <.010 .002 <.010 .002 .001 <.001 .002 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 JUN 01 08 22 JUL | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
33.7
32.9
35.7
36.7
35.5
37.5
23.9
19.1
14.5
11.3
15.9
18.4 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
1.3
1.6
1.7
1.8
2.2
2.0
1.9
1.2
.9
.3
.5
.6 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.1
.2
.2
.2
.2
.2
.1
.1
<.1
<.1 | DIS-
SOLVED (MG/L
AS SIO2) (00955) 6.6 7.8 7.6 7.2 7.1 6.7 5.8 5.8 5.7 4.7 4.9 5.6 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
176
185
189
187
181
178
133
120
99
80
100
128 | SUM OF CONSTI-
TUENTS, DIS-
SOLVED (MG/L) (70301)
157
178
184
177
173
174
120
115
94
79
91 | DIS-
SOLVED (TONS PER AC-FT) (70303) .24 .25 .26 .25 .25 .24 .18 .16 .13 .11 .14 .17 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
56.5
30.5
35.1
31.9
25.9
23.8
106
140
225
310
259
154 | GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .001 .002 .001 .002 .001 .002 .001 .001 | 09112200 EAST RIVER BELOW CEMENT CREEK NEAR CRESTED BUTTE, CO--Continued (National Water-Quality Assessment Program station) | DATE | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | |--|---|--|---|---|--|--|--|---|--| | OCT
20 | .083 | <.002 | E.09 | E.08 | E.006 | E.004 | <.001 | .93 | .3 | | NOV
15 | .094 | <.002 | .13 | <.10 | E.006 | <.006 | <.001 | .63 | <.2 | | DEC | .141 | | | | <.050 | | | | | | 27
JAN | | <.002 | E.06 | <.10 | | .007 | <.001 | .75 | <.2 | | 10
FEB | .162 | <.002 | .13 | <.10 | .009 | .010 | .005 | .87 | .2 | | 29
MAR | .151 | <.002 | E.05 | E.06 | .010 | .011 | .013 | .93 | .2 | | 20
APR | .253 | .037 | .15 | E.08 | E.005 | .007 | <.010 | .87 | . 2 | | 13
26
MAY | .201
.161 | .019
.024 | .28
.28 | .14
.15 | .047
.031 | .010
E.005 | .006
.005 | 2.4 | .3
.6 | | 10
JUN | .088 | .007 | .24 | .12 | .023 | E.005 | <.001 | 2.6 | .3 | | 01
08
22
JUL | .067
.081
.029 | .007
.003
<.002 | .18
.14
.12 | <.10
E.09
.10 | .033
.017
.009 | E.005
<.006
<.006 | <.001
<.001
<.001 | 2.4
1.7
1.5 | .3
.4
.3 | | 20 | .072 | .005 | .11 | .11 | E.006 | <.006 | .001 | 1.1 | <.2 | | 30 | .055 | .007 | E.08 | E.07 | E.006 | E.004 | .001 | .93 | <.2 | | SEP
26 | .026 | <.002 | E.06 | <.10 | E.004 | E.003 | <.001 | .91 | <.2 | | | | | | | | | | | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | METHY-
LENE
BLUE
ACTIVE
SUB-
STANCE
(MG/L)
(38260) | | OCT | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | LENE
BLUE
ACTIVE
SUB-
STANCE
(MG/L)
(38260) | | OCT
20
NOV | INUM,
DIS-
SOLVED
(UG/L
AS AL) | DIS-
SOLVED
(UG/L
AS CD) | DIS-
SOLVED
(UG/L
AS CU) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) |
DIS-
SOLVED
(UG/L
AS AG) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | LENE
BLUE
ACTIVE
SUB-
STANCE
(MG/L) | | OCT
20
NOV
15
DEC | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | LENE
BLUE
ACTIVE
SUB-
STANCE
(MG/L)
(38260) | | OCT 20 NOV 15 DEC 27 JAN | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10 | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10 | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | LENE
BLUE
ACTIVE
SUB-
STANCE
(MG/L)
(38260) | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.1 | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10
E6
<10 | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3
3
2
E2 | DIS-
SOLVED
(UG/L
AS AG)
(01075) | DIS-
SOLVED
(UG/L
AS ZN)
(01090)
<20

 | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | | OCT
20
NOV
15
DEC
27
JAN
10
FEB
29 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10 | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3
3
2
E2
2 | DIS-
SOLVED
(UG/L
AS AG)
(01075) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.1 | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10
E6
<10 | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3
3
2
E2 | DIS-
SOLVED
(UG/L
AS AG)
(01075) | DIS-
SOLVED
(UG/L
AS ZN)
(01090)
<20

 | LENE
BLUE
ACTIVE
SUB-
STANCE
(MG/L)
(38260) | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
<15

E14 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.1

 | DIS-
SOLVED
(UG/L
AS CU)
(01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10
E6
<10
E7 | DIS-
SOLVED
(UG/L
AS PB)
(01049) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3
3
2
E2
2
3
43 | DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1

<1 | DIS-
SOLVED
(UG/L
AS ZN)
(01090)
<20

36 | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 JUNN 01 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <15 E14 E10 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.122 | DIS-
SOLVED
(UG/L
AS CU)
(01040)
<1

2

1 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10
E6
<10
E7
40
30
10
20 | DIS-
SOLVED
(UG/L
AS PB)
(01049)
<1

<1

<1
 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3
3
2
E2
2
3
43
47
10 | DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1

<1

<1
 | DIS-
SOLVED
(UG/L
AS ZN)
(01090)
<20

36

<20 | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 JUN 01 08 22 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <15 E14 E10 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.122 | DIS-
SOLVED
(UG/L
AS CU)
(01040)
<1

2

1 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10
E6
<10
E7
40
30 | DIS-
SOLVED
(UG/L
AS PB)
(01049)
<1

<1

<1 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3
3
2
E2
2
3
43
47 | DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1

<1

<1 | DIS-
SOLVED
(UG/L
AS ZN)
(01090)
<20

36

<20 | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 JUN 01 08 22 JUL 20 | INUM, DIS- SOLVED (UG/L AS AL) (01106) <15 E14 E10 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.1222 | DIS-
SOLVED
(UG/L
AS CU)
(01040)
<1

2

1 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
E6
<10
E7
40
30
10
20
10 | DIS-
SOLVED
(UG/L
AS PB)
(01049)
<1

<1

<1

<1 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3
3
2
E2
2
3
43
47
10
6
7 | DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1

<1

<1

<1 | DIS-
SOLVED
(UG/L
AS ZN)
(01090)
<20

36

<20 | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | | OCT 20 NOV 15 DEC 27 JAN 10 FEB 29 MAR 20 APR 13 26 MAY 10 JUN 01 08 22 JUL | INUM, DIS- SOLVED (UG/L AS AL) (01106) <15 E14 E10 <15 | DIS-
SOLVED
(UG/L
AS CD)
(01025)
<.122221 | DIS-
SOLVED (UG/L
AS CU) (01040) | DIS-
SOLVED
(UG/L
AS FE)
(01046)
E7
<10
<10
E6
<10
E7
40
30
10
20
10
20 | DIS-
SOLVED
(UG/L
AS PB)
(01049)
<1

<1

<1

<1

<1 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
3 2 E2 2 3 43 47 10 6 7 7 | DIS-
SOLVED
(UG/L
AS AG)
(01075)
<1

<1

<1

<1

<1 | DIS-
SOLVED
(UG/L
AS ZN)
(01090)
<20

36

<20

<20 | LENE BLUE ACTIVE SUB- STANCE (MG/L) (38260) .02 | # 09112200 EAST RIVER BELOW CEMENT CREEK NEAR CRESTED BUTTE, CO--Continued (National Water-Quality Assessment Program station) ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------|------|---|--|---|------|------|---|--|---| | OCT | | | | | JUN | | | | | | 20 | 0830 | 119 | 281 | 1.0 | 01 | 1530 | 1440 | 144 | 11.0 | | FEB | | | | | 08 | 1600 | 958 | 169 | 11.1 | | 29 | 1500 | 53 | 305 | 7.1 | 22 | 1300 | 447 | 213 | 14.1 | | MAR | | | | | JUL | | | | | | 20 | 1145 | 50 | 311 | 4.8 | 20 | 0800 | 170 | 287 | 9.2 | | APR | | | | | AUG | | | | | | 13 | 0815 | 296 | 218 | .7 | 30 | 1230 | 93 | 316 | 13.5 | | 26 | 1100 | 432 | 211 | 4.3 | SEP | | | | | | MAY | | | | | 26 | 1330 | 94 | 315 | 10.5 | | 10 | 1300 | 840 | 179 | 10.1 | | | | | | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |--|--|---|---|---| | OCT
07
20 | 1104
0830 | 160
119 |
<1 | | | NOV
15
17 | 1220
1025 | 61
54 | | | | DEC 27 | 1200 | 69 | | | | JAN
10 | 1545 | 63 | | | | FEB
29
MAR | 1500 | 53 | 1 | .19 | | 20
APR | 1145 | 50 | 2 | .27 | | 13
26 | 0815
1100 | 296
432 | 18
16 | 15
19 | | MAY
10 | 1300 | 840 | 19 | 43 | | JUN
01
08
22 | 1530
1600
1300 | 1440
958
447 | 22
11
2 | 87
28
2.4 | | JUL
20
AUG | 0800 | 170 | 2 | .83 | | 30
SEP | 1230 | 93 | 1 | .35 | | 26
26
26
26
26
26
26 | 1315
1316
1317
1318
1319
1320
1321
1322 |

 |

 |

 | | 26
26 | 1323
1330 |

94 | 1 | .15 | | | | | | | ### 09112500 EAST RIVER AT ALMONT, CO LOCATION.--Lat $38^{\circ}39^{\circ}52^{\circ}$, long. $106^{\circ}50^{\circ}51^{\circ}$, in $NW^{1}/_{4}SE^{1}/_{4}$ sec.22, T.51 N., R.1 E., Gunnison County, Hydrologic Unit 14020001, on left bank at Almont, 200 ft upstream from bridge on State Highway 135, and 400 ft upstream from confluence with Taylor River. DRAINAGE AREA. -- 289 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April to October 1905, July 1910 to September 1922, October 1934 to current year. Monthly discharges only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 1313: 1911. WSP 1733: 1952. WSP 1924: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,006.29 ft above sea level. Apr. 16 to Sept. 30, 1905, and July 27, 1910 to Apr. 30, 1922, nonrecording gages at bridge 200 ft downstream, at different datums. Oct. 1, 1934 to Sept. 22, 1954, water-stage recorder at present site at datum 2.00 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 7,400 acres upstream from station. | | | DISCHAR | GE, CUBIC | C FEET PER | | NATER Y | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|---|--|--|--------------------------------------|-------------------------------------|---|--|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 175
168
159
157
155 | 119
111
108
109
109 | 91
99
91
76
e75 | e64
e64
e62
e61
e60 | e56
e56
e55
e55
e55 | e52
58
56
58
60 | 81
78
80
81
104 | 753
861
1060
1240
1380 | 1350
1240
1180
1130
1090 | 298
292
298
281
261 | 141
137
132
143
138 | 131
127
123
118
113 | | 6
7
8
9
10 | 155
179
186
190
179 | 107
106
108
109
100 | e74
e74
e73
e72
e70 | e62
e64
e64
e64 | e56
e56
e55
e56
e60 | 62
67
62
60
57 | 133
155
175
201
259 | 1450
1400
1450
1150
915 | 1020
954
928
962
841 | 243
226
223
246
254 | 127
122
116
104
108 | 111
113
110
119
126 | | 11
12
13
14
15 | 174
171
165
161
158 | 101
98
97
96
96 | e69
e69
e72
e73
e73 | e64
e63
e63
e63 | e60
e60
e58
e58
e58 | 54
64
58
58
63 | 279
297
343
379
358 | 1030
1030
797
698
650 | 766
713
649
571
561 | 234
229
220
205
236 | 122
131
161
148
140 | 126
124
123
120
116 | | 16
17
18
19
20 | 152
141
150
145
139 | 93
97
103
80
83 | e73
e74
e74
e72
e70 | e62
e62
e63
e64
e64 | e58
e59
e58
e57
e57 | 61
57
59
56
64 | 301
337
426
387
329 | 693
859
719
626
596 | 559
509
469
526
577 | 280
287
242
219
207 | 146
150
143
143
150 | 114
112
115
130
114 | | 21
22
23
24
25 | 138
131
132
129
127 | 91
102
75
80
92 | e70
e70
e69
e68
e66 | e67
e67
e66
e64
e66 | e58
e59
e58
e56
e56 | 62
60
64
68
67 | 393
396
388
427
409 | 658
795
1110
1500
1610 | 509
447
411
390
396 | 189
174
160
158
159 | 151
165
160
155
141 | 92
107
110
109
108 | | 26
27
28
29
30
31 | 126
125
118
123
111
118 | 101
93
90
88
89 | e67
e66
e64
e63
e62
e62 | e67
e66
e66
e64
e64
e62 | e54
e54
e54
e52
 | 77
79
90
90
92
88 | 485
646
812
803
748 | 1340
1040
1050
1380
1540
1490 | 423
414
394
364
323 | 151
140
135
131
125
129 | 134
135
139
137
134
132 | 105
103
107
111
116 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4637
150
190
111
9200 | 2931
97.7
119
75
5810 | 2241
72.3
99
62
4450 | 1979
63.8
67
60
3930 | 1644
56.7
60
52
3260 | 2023
65.3
92
52
4010 | 10290
343
812
78
20410 | 32870
1060
1610
596
65200 | 20666
689
1350
323
40990 | 6632
214
298
125
13150 | 4285
138
165
104
8500 | 3453
115
131
92
6850 | | STATIST | ICS OF MC | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 118
279
1912
56.3
1978 | 95.7
172
1987
47.8
1978 | 73.3
128
1985
42.0
1977 | 62.3
102
1985
25.5
1940 | 59.5
90.4
1962
28.7
1940 | 68.3
137
1986
43.1
1976 | 249
670
1936
77.2
1964 | 1029
1978
1936
222
1977 | 1380
2670
1920
289
1977 | 568
2037
1957
93.5
1977 | 236
659
1995
25.0
1913 | 131
271
1965
52.4
1977 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | IDAR YEAR | 1 | FOR 2000 WA | TER YEAR | | WATER YEA | ARS 1911 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN
'ANNUAL M
ANNUAL ME
'DAILY ME
DAILY MEA | CAN CAN LIN C MINIMUM CAK FLOW CAK STAGE LC-FT) LDS CDS | | 119946
329
1580
49
53
237900
1180
169
58 | May 29
Mar 13
Mar 7 | | 93651
256
1610
e52
54
1800
5.74
185800
757
119
59 | May 25
Feb 29
Feb 24
May 25
May 25 | | 340
574
104
5000
19
21
a6500
b6.60
246200
1060
109
55 | Aug 1
Jan 1
Jun 1 | 1995
1977
12 1918
13 1913
15 1940
15 1921
15 1921 | e Estimated. a Site and datum then in use, from rating curve extended above 3000 ft³/s. b Maximum gage height 8.41 ft, Jun 18, 1995, present datum. ## 09112500 EAST RIVER AT ALMONT, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD--October 1990 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | ATURE
WATER
(DEG C) | TUR-
BID-
ITY
(NTU)
(00076) | DIS-
SOLVED
(MG/L) | ICAL,
5 DAY
(MG/L) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |------------------|-----------------------------------|---|----------------------------------|--|---|---|--|--|---|--| | OCT
20 | 1200 | 142 | 309 | 8.3 | 4.5 | .6 | 9.7 | .0 | K1 | 150 | | JAN
11 | 1350 | 77 | 314 | 8.7 | 1.8 | | 10.4 | | K1 | | | APR
12 | 1340 | 268 | 241 | 8.4 | 7.4 | 3.5 | 9.6 | 1.4 | K1 | 110 | | MAY
11 | 0810 | 1060 | 171 | 8.1 | 5.6 | 3.7 | 8.8 | .8 | кз | 79 | | JUL
20 | 1110 | 215 | 322 | 8.4 | 12.9 | | 8.2 | | 24 | | | AUG
30 | 1530 | 134 | 330 | 8.4 | 16.4 | <.5 | 7.5 | .2 | 9 | 160 | | DATE | DIS-
SOLVED
(MG/L
AS CA) | DIS-
SOLVED
(MG/L
AS MG) | SOLVED | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | | ORTHO,
DIS-
SOLVED
(MG/L
AS P) | | OCT 20 | 45.7 | 7.99 | .002 | .046 | <.002 | E.10 | E.10 | E.004 | .018 | <.001 | | JAN
11 | | | .001 | .070 | <.002 | .15 | <.10 | E.005 | E.005 | .001 | | APR
12
MAY | 33.7 | 6.01 | .003 | .180 | .018 | .21 | .15 | .030 | .009 | .002 | | 11 | 24.6 | 4.15 | .002 | .082 | .008 | .23 | E.10 | .028 | .009 | <.001 | | 20
AUG | | | .001 | .010 | .005 | E.10 | E.10 | E.005 | <.006 | .002 | | 30 | 49.8 | 8.22 | .001 | .025 | .009 | E.10 | E.10 | E.006 | E.003 | .001 | | | DATE | (UG/L
AS AL) | SOLVED | DIS-
SOLVED
(UG/L
AS CU) | (UG/L
AS FE) | SOLVED
(UG/L
AS PB) | (UG/L
AS MN) | AS AG) | SOLVED
(UG/L
AS ZN) | | | | OCT 20 | <15 | <.1 | <1 | E10 | <1 | E2 | <1 | <20 | | | | APR
12
MAY | E11 | E.1 | E1 | 30 | <1 | 16 | <1 | E18 | | | | 11
AUG | <15 | E.1 | 1 | 20 | <1 | 6 | <1 | <20 | | | | 30 | <15 | E.1 | <1 | <10 | <1 | 4 | <1 | <20 | | MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE |
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------------------------|--------------|---|--|---|------------------------|--------------|---|--|---| | OCT
07
NOV
16 | 1703
1626 | 199
67 | 288
326 | 7.7
4.8 | JUN
28
AUG
09 | 1400
1500 | 403
100 | 274
340 | 13.7
18.0 | | MAR
01 | 0846 | 45 | 323 | .6 | | | | | | ## 09112500 EAST RIVER AT ALMONT, CO--Continued # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |------------------|--------------|---|---|---|---| | OCT 20
APR 12 | 1200
1340 | 142
268 | 4.5 | <1
9 |
6.2 | | MAY
11
AUG | 0810 | 1060 | 5.6 | 28 | 81 | | 30 | 1530 | 134 | 16.4 | 2 | .76 | ## 09113980 OHIO CREEK ABOVE MOUTH, NEAR GUNNISON, CO LOCATION.--Lat $38^\circ35'16"$, long $106^\circ55'51"$, in $SW^1/_4SW^1/_4$ sec.13, T.50 N., R.1 W., Gunnison County, Hydrologic Unit 14020002, on left bank at County Road 48 bridge, 1.1 mi upstream from confluence with the Gunnison River, and 3.1 mi north of Gunnison. DRAINAGE AREA.--161 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- December 1998 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,770 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 10,000 acres upstream from station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES | | | | | | | | | | | | |---|--|--|--|--|--------------------------------------|--------------------------------------|---|---|------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 32
31
30
29
29 | 17
16
16
16
16 | 24
24
23
21
e22 | e20
e19
e18
e18
e19 | e17
e17
e17
e18
e18 | e20
20
e21
e22
e22 | 40
38
41
45
67 | 256
287
325
355
375 | 199
188
178
167
162 | 41
40
41
39
35 | 34
31
31
32
30 | 43
40
35
31
29 | | 6
7
8
9
10 | 26
37
43
45
37 | 16
16
16
16
12 | e23
e22
e22
e22
e22 | e19
e19
e20
e19
e19 | e19
e18
e18
e18
e19 | e21
20
19
19
18 | 99
121
127
135
147 | 357
331
407
350
295 | 143
131
124
132
119 | 34
37
44
64
84 | 27
25
23
22
19 | 30
36
36
45
34 | | 11
12
13
14
15 | 33
32
31
29
30 | 11
11
12
12
13 | 22
e22
e22
e21
e20 | e19
e18
e17
e17 | e20
e21
e20
19
e19 | e20
19
22
23
22 | 142
145
165
180
171 | 290
270
217
192
164 | 107
99
85
72
66 | 62
54
60
57
131 | 20
23
46
30
26 | 29
27
23
23
21 | | 16
17
18
19
20 | 30
27
29
26
19 | 14
13
15
13 | e21
e21
e21
e21
e21 | e17
18
17
18
e19 | e20
20
20
e19
e18 | 19
22
22
23
21 | 139
169
203
169
135 | 127
136
119
107
92 | 54
43
44
53
63 | 149
121
99
78
70 | 25
28
43
36
34 | 18
17
19
17
15 | | 21
22
23
24
25 | 17
17
17
16
16 | 15
19
21
21
e21 | e21
e20
e20
e20
e20 | e19
18
e18
e18
19 | e18
e19
e19
e18
e18 | 20
20
22
27
30 | 161
153
146
166
169 | 93
94
126
207
243 | 59
52
46
46
53 | 67
62
59
58
60 | 40
44
39
36
31 | 16
18
18
16
20 | | 26
27
28
29
30
31 | 15
16
16
17
15 | 17
21
23
23
25 | e20
e20
e20
e20
e20
e20 | 19
18
e18
e18
e18
e17 | e19
e19
e20
20 | 37
51
53
56
53
43 | 205
265
302
288
261 | 218
180
174
235
253
222 | 67
56
50
45
41 | 55
54
48
44
40
38 | 35
45
35
44
54 | 18
15
14
18
22 | | TOTAL
MEAN
MAX
MIN
AC-FT | 803
25.9
45
15
1590 | 490
16.3
25
11
972 | 658
21.2
24
20
1310 | 567
18.3
20
17
1120 | 545
18.8
21
17
1080 | 827
26.7
56
18
1640 | 4594
153
302
38
9110 | 7097
229
407
92
14080 | 2744
91.5
199
41
5440 | 1925
62.1
149
34
3820 | 1035
33.4
54
19
2050 | 743
24.8
45
14
1470 | | | | | | | TEARS 1999 | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 25.9
25.9
2000
25.9
2000 | 16.3
16.3
2000
16.3
2000 | 21.2
21.2
2000
21.2
2000 | 18.4
18.5
1999
18.3
2000 | 18.0
18.8
2000
17.2
1999 | 36.0
45.3
1999
26.7
2000 | 96.0
153
2000
38.8
1999 | 198
229
2000
167
1999 | 164
236
1999
91.5
2000 | 107
152
1999
62.1
2000 | 68.1
103
1999
33.4
2000 | 37.0
49.2
1999
24.8
2000 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 WA | ATER YEAR | | WATER YEA | NS 1999 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 27194
74.5
385
11
12
53940
202
37
16 | Jun 18
Nov 11
Nov 10 | | 22028
60.2
407
11
12
458
4.36
43690
168
26
17 | May 8
Nov 11
Nov 10
May 5
May 5 | | 60.2
60.2
407
a11
12
497
4.45
43600
192
35
17 | Nov 1
Nov 1
Jun 1 | 2000
2000
8 2000
1 1999
0 1999
8 1999
8 1999 | e Estimated. a Also occurred Nov 12, 1999. ## 09113980 OHIO CREEK ABOVE MOUTH, NEAR GUNNISON, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD--October 1996 to current year. ${\tt REMARKS--Prior}\ {\tt to}\ {\tt September}\ {\tt 1998},\ {\tt published}\ {\tt as}\ {\tt site}\ {\tt number}\ {\tt 383516106555000}.$ Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |------------------|---|---|--|--|--|---|---|---|---|--| | OCT
20 | 1340 | 19 | 233 | 8.1 | 8.3 | | 8.6 | .0 | K10 | | | JAN
11 | 1540 | 19 | 199 | 8.3 | 1.0 | | 10.1 | | 14 | | | APR 07 | 0930 | 95 | 234 | 8.0 | 1.2 | | 10.3 | 2.9 | 34 | | | MAY
10 | 1020 | 310 | 103 | 7.9 | 6.5 | 20 | 8.9 | 1.1 | K220 | 41 | | JUL
20 | 1210 | 70 | 309 | 8.2 | 16.0 | | 7.6 | | 120 | | | AUG
31 | 0715 | 48 | 223 | 8.2 | 11.9 | 17 | 7.4 | . 0 | K520 | 96 | | 31 | 0715 | 40 | 223 | 0.2 | 11.9 | 17 | 7.4 | .0 | K520 | 96 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS
N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | TOTAL
(MG/L
AS N) | | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
20
JAN | | | <.001 | .013 | <.002 | .14 | .11 | .035 | .025 | .014 | | 11
APR | | | <.001 | .015 | <.002 | .16 | .12 | .031 | .020 | .016 | | 07
MAY | | | <.001 | .113 | .004 | .54 | .34 | .128 | .055 | .046 | | 10 | 11.7 | 2.88 | <.001 | .045 | .011 | .42 | .21 | .119 | .026 | .018 | | 20
AUG | | | .001 | .010 | .003 | .29 | .22 | .068 | .029 | .021 | | 31 | 26.7 | 7.10 | .001 | .007 | .007 | .36 | .18 | .101 | .033 | .024 | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | | | MAY
10
AUG | <15 | <.1 | E1 | 50 | <1 | 13 | <1 | <20 | | | | 31 | <15 | <.1 | <1 | 30 | <1 | 34 | <1 | <20 | | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |-----------|------|---------|---------|---------|-----------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | OCT | | | | | FEB | | | | | | 06 | 1410 | 26 | 204 | 11.9 | 29 | 1212 | 19 | 179 | 2.7 | | | 1410 | ∠0 | 204 | 11.9 | | 1212 | 19 | 1/9 | 2.7 | | NOV
18 | 0932 | 16 | 293 | 2.9 | JUN
27 | 1620 | 55 | 363 | 17.0 | | 10 | 0932 | Τ0 | 293 | 2.9 | 27 | 1020 | 55 | 303 | 17.0 | ## 09113980 OHIO CREEK ABOVE MOUTH, NEAR GUNNISON, CO--Continued ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---| | OCT
20 | 1340 | 19 | 1 | .03 | | 10 | 1020 | 310 | 75 | 63 | | 31 | 0715 | 48 | 29 | 3.7 | ### 09114500 GUNNISON RIVER NEAR GUNNISON, CO LOCATION.--Lat 38°32'31", long 106°56'57", in $NW^1/_4NW^1/_4$ sec.2, T.49 N., R.1 W., Gunnison County, Hydrologic Unit 14020002, on right bank 0.7 mi downstream from Antelope Creek and 1.2 mi west of Gunnison. DRAINAGE AREA. -- 1,012 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1910 to December 1928, October 1944 to current year. Monthly discharges only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1313: 1911, 1916. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,655 ft above sea level, from topographic map. Nov. 25, 1910 to Dec. 31, 1928, nonrecording gages (supplementary water-stage recorder Apr. 28, 1916 to June 17, 1918) at bridge about 0.6 mi downstream at various datums. April 11, 1945 to July 28, 1970, water-stage recorder at sites 0.4 mi upstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by Taylor Park Reservoir (station 09108500), 37 mi upstream from station. Diversions for irrigation of about 22,000 acres upstream from station. | | | DISCHA | RGE, CUBI | C FEET PEI | | WATER YE | AR OCTOBER | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--|---------------------------------|--|--|------------------------------|--|--|--|---------------------------------|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 525 | 322 | 284 | e250 | e230 | 247 | 271 | 1170 | 2100 | 761 | 603 | 371 | | 2 | 467 | 316 | 303 | e250 | e235 | 253 | 265 | 1280 | 1970 | 740 | 552 | 356 | | 3 | 431 | 311 | 294 | e240 | e240 | 249 | 275 | 1500 | 1910 | 736 | 545 | 346 | | 4 | 397 | 306 | 275 | e235 | e250 | 250 | 273 | 1700 | 1850 | 716 | 547 | 342 | | 5 | 414 | 305 | 267 | e240 | e255 | 252 | 307 | 1930 | 1820 | 701 | 541 | 343 | | 6 | 436 | 301 | 273 | e240 | e250 | 252 | 356 | 2060 | 1780 | 683 | 524 | 345 | | 7 | 527 | 297 | e275 | e240 | e245 | 257 | 400 | 2040 | 1700 | 672 | 514 | 362 | | 8 | 581 | 293 | e270 | e250 | e245 | 255 | 424 | 2270 | 1660 | 675 | 505 | 359 | | 9 | 587 | 296 | e265 | e250 | e255 | 253 | 457 | 1920 | 1690 | 721 | 486 | 380 | | 10 | 564 | 288 | e265 | e250 | e270 | 251 | 526 | 1560 | 1580 | 737 | 481 | 366 | | 11 | 566 | 286 | e280 | e240 | e280 | 241 | 550 | 1650 | 1480 | 692 | 491 | 359 | | 12 | 561 | 276 | e270 | e235 | e270 | 260 | 569 | 1660 | 1400 | 664 | 502 | 355 | | 13 | 553 | 276 | e275 | e240 | e260 | 250 | 678 | 1370 | 1280 | 668 | 559 | 345 | | 14 | 544 | 276 | e280 | e235 | e250 | 250 | 810 | 1250 | 1160 | 662 | 484 | 311 | | 15 | 526 | 276 | e260 | e240 | e260 | 258 | 871 | 1150 | 1120 | 794 | 444 | 304 | | 16 | 512 | 270 | e260 | e250 | 278 | 252 | 719 | 1120 | 1060 | 933 | 416 | 298 | | 17 | 470 | 277 | e270 | e260 | 278 | 248 | 731 | 1270 | 995 | 904 | 422 | 295 | | 18 | 450 | 289 | e270 | e260 | 280 | 251 | 844 | 1130 | 948 | 816 | 417 | 303 | | 19 | 445 | 266 | e270 | e280 | 270 | 241 | 760 | 1040 | 1000 | 791 | 423 | 304 | | 20 | 439 | 272 | e275 | e280 | 266 | 256 | 635 | 967 | 1110 | 755 | 427 | 290 | | 21 | 442 | 277 | e280 | e275 | 276 | 250 | 729 | 986 | 1020 | 721 | 428 | 285 | | 22 | 437 | 291 | e285 | e270 | 270 | 248 | 702 | 1100 | 951 | 704 | 434 | 331 | | 23 | 429 | 270 | e260 | e265 | 266 | 255 | 664 | 1430 | 901 | 684 | 415 | 340 | | 24 | 424 | 270 | e265 | e250 | 265 | 261 | 735 | 2000 | 859 | 678 | 406 | 335 | | 25 | 419 | 297 | e270 | e250 | 260 | 262 | 714 | 2300 | 883 | 704 | 422 | 338 | | 26
27
28
29
30
31 | 416
410
395
372
321
320 | 383
292
281
277
280 | e255
e250
e255
e255
e250
e250 | e260
e280
e260
e236
e230
e230 | 256
257
256
252
 | 277
285
299
298
294
286 | 814
1040
1250
1270
1190 | 2020
1710
1660
2040
2290
2220 | 964
933
885
832
797 | 701
683
659
643
624
616 | 426
429
417
412
403
376 | 338
337
338
349
338 | | TOTAL | 14380 | 8717 | 8356 | 7771 | 7525 | 8041 | 19829 | 49793 | 38638 | 22238 | 14451 | 10063 | | MEAN | 464 | 291 | 270 | 251 | 259 | 259 | 661 | 1606 | 1288 | 717 | 466 | 335 | | MAX | 587 | 383 | 303 | 280 | 280 | 299 | 1270 | 2300 | 2100 | 933 | 603 | 380 | | MIN | 320 | 266 | 250 | 230 | 230 | 241 | 265 | 967 | 797 | 616 | 376 | 285 | | AC-FT | 28520 | 17290 | 16570 | 15410 | 14930 | 15950 | 39330 | 98760 | 76640 | 44110 | 28660 | 19960 | | STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER | YEARS 1911 | - 2000, | BY WATER | YEAR (WY) | ١ | | | | | MEAN | 406 | 301 | 238 | 212 | 205 | 252 | 613 | 1844 | 2511 | 1288 | 742 | 548 | | MAX | 805 | 614 | 616 | 395 | 365 | 582 | 1381 | 3605 | 6074 | 4621 | 1510 | 908 | | (WY) | 1969 | 1968 | 1966 | 1966 | 1971 | 1986 | 1962 | 1914 | 1918 | 1957 | 1957 | 1985 | | MIN | 186 | 162 | 128 | 119 | 111 | 117 | 214 | 283 | 425 | 288 | 317 | 221 | | (WY) | 1978 | 1964 | 1963 | 1945 | 1955 | 1964 | 1964 | 1977 | 1977 | 1977 | 1977 | 1924 | | SUMMARY | Y STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1911 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 255185
699
2580
e200
220
506200
1840
459
237 | Jun 18
Jan 29
Mar 9 | | 209802
573
2300
e230
236
2520
3.10
416100
1260
358
250 | May 25
Jan 30
Jan 29
May 30
May 30 | | 765
1278
256
11400
80
95
a11400
b6.74
554300
1910
395
180 | Jun 1
Dec 2
Dec 2
Jun 1
Jul | 1995
1977
11 1918
27 1962
25 1962
13 1918
1 1957 | e Estimated. a Site and datum then in use, from rating curve extended above 5000 $\mathrm{ft^3/s}$, gage height, 4.05 ft . b Site and datum then in use. ## 09114500 GUNNISON RIVER NEAR GUNNISON, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD--April 1995 to current year. REMARKS--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory
analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | DIS-
SOLVED
(MG/L) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |------------------|---|---|--|--|---|---|---|---|--|--| | OCT
21
JAN | 0920 | 446 | 200 | 8.0 | 3.4 | | 10.4 | .1 | К3 | | | 12 | 1040 | 258 | 202 | 8.3 | .0 | | 11.4 | | K2 | | | APR
06 | 1440 | 359 | 215 | 8.4 | 9.9 | | 8.7 | 1.0 | K1 | | | MAY
11 | 1140 | 1800 | 155 | 8.2 | 9.0 | 3.9 | 8.7 | 1.1 | 67 | 73 | | JUL
20 | 1340 | 780 | 224 | 8.4 | 14.9 | | 8.3 | | 19 | | | AUG
31 | 1100 | 387 | 214 | 8.3 | 13.4 | <.5 | 8.2 | .2 | 62 | 98 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N) | | MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT
21
JAN | | | <.001 | .020 | <.002 | .10 | E.10 | <.008 | E.003 | <.001 | | 12
APR | | | <.001 | .019 | <.002 | .11 | <.10 | <.008 | E.003 | <.001 | | 06
MAY | | | <.001 | .057 | <.002 | .28 | .12 | .039 | .014 | .015 | | 11 | 21.9 | 4.33 | <.001 | .057 | .005 | .25 | .12 | .025 | .009 | .002 | | 20
AUG | | | .001 | .006 | .003 | .15 | .10 | .019 | .006 | .006 | | 31 | 29.2 | 6.04 | .001 | .017 | .005 | .15 | .10 | .021 | .007 | .005 | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | | | MAY
11
AUG
31 | E10
<15 | <.1
<.1 | E1 <1 | 30
20 | <1
<1 | 8
10 | <1
<1 | E11 <20 | | | | J | -13 | *** | ~= | 20 | 7.1 | 10 | ~= | 120 | | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | OCT | | | | | FEB | | | | | | 06 | 1602 | 424 | 204 | 11.3 | 29 | 1435 | 262 | 206 | 5.2 | | NOV | | | | | JUN | | | | | | 17 | 1606 | 253 | 236 | 4.8 | 28 | 0855 | 935 | 246 | 9.7 | | NOV | | | | | JUN | | | | | ## 09114500 GUNNISON RIVER NEAR GUNNISON, CO--Continued # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | OCT 21 | 0920 | 446 | 3.4 | <1 | | | MAY
11 | 1140 | 1800 | 9.0 | 32 | 153 | ### 09115500 TOMICHI CREEK AT SARGENTS, CO LOCATION.--Lat $38^{\circ}24^{\circ}42^{\circ}$, long $106^{\circ}25^{\circ}20^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.21, T.48 N., R.5 E., Saguache County, Hydrologic Unit 14020003, on right bank 300 ft from U.S. Highway 50, 0.5 mi downstream from Marshall Creek, and 0.8 mi south of Sargents. DRAINAGE AREA. -- 149 mi². PERIOD OF RECORD.--October 1916 to September 1922, October 1937 to September 1972, October 1992 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 1313: 1922(M). WRD Colo. 1967: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 8,416 ft above sea level, from topographic map. May 12 to Oct. 5, 1917, nonrecording gage. Oct. 6, 1917 to Sept. 30, 1922, water-stage recorder, at railroad bridge 1,000 ft upstream at different datum. Apr. 18, 1938 to Sept. 9, 1953, water-stage recorder at present site at datum 1.0 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,900 acres upstream from station. Larkspur ditch diverts water upstream from station to Arkansas River basin. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBIC | C LEET LEL | | MEAN VA | | K 1999 10 | PERIFMEE | R 2000 | | | |---------------|------------------------|------------|------------|------------|------------|------------|------------|------------|----------|----------------|----------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 30 | 31 | e24 | e21 | e23 | e27 | e45 | 116 | 139 | 42 | 24 | 30 | | 2 | 29 | 30 | e25 | e21 | e24 | e27 | e46 | 120 | 127 | 38 | 25 | 26 | | 3 | 29 | 30 | e24 | e21 | e24 | e28 | e60 | 150 | 116 | 48 | 26 | 25 | | 4 | 28 | 34 | e23 | e21 | e24 | e28 | e72 | 178 | 108 | 44 | 26 | 26 | | 5 | 28 | 33 | e23 | e21 | e24 | e29 | e80 | 210 | 100 | 37 | 24 | 36 | | 6
7 | 29
30 | 33
34 | e22
e22 | e21
e21 | e24
e24 | e29
e28 | 82
84 | 232
236 | 93
87 | 35
34 | 22
22 | 35
36 | | 8 | 33 | 33 | e22 | e21 | e24
e25 | e28
e28 | 81 | 273 | 87
79 | 34 | 22 | 36 | | 9 | 31 | 26 | e23 | e21 | e25 | e29 | 85 | 239 | 79 | 41 | 20 | 37 | | 10 | 30 | 28 | e23 | e21 | e26 | e27 | 79 | 229 | 73 | 40 | 19 | 33 | | 11 | 29 | 31 | e23 | e21 | e25 | e27 | 69 | 242 | 67 | 34 | 19 | 30 | | 12 | 29 | 32 | e22 | e22 | e24 | e27 | 67 | 228 | 65 | 34 | 23 | 29 | | 13 | 28 | 29 | e22 | e23 | e24 | e26 | 73 | 196 | 58 | 36 | 36 | 28 | | 14 | 27 | 34 | e22 | e24 | e24 | e27 | 75 | 183 | 59 | 35 | 32 | 27 | | 15 | 27 | 37 | e21 | e25 | e24 | e27 | 70 | 167 | 56 | 51 | 24 | 26 | | 16 | 27 | 35 | e22 | e26 | e24 | e26 | 61 | 155 | 58 | 41 | 33 | 25 | | 17 | 28 | e34 | e22 | e27 | e23 | e26 | 71 | 164 | 54 | 40 | 29 | 24 | | 18 | 31 | e29 | e23 | e27 | e23 | e27 | 83 | 157 | 54 | 35 | 33 | 26 | | 19
20 | 30
29 | e25
e29 | e23
e23 | e27
e27 | e22
e23 | e29
e32 | 79
67 | 155
142 | 61
54 | 30
25 | 31
28 | 27
25 | | 21 | 29 | e33 | e22 | e26 | e23 | e36 | 76 | 132 | 46 | 23 | 35 | 26 | | 22 | 29 | e31 | e22 | e25 | e22 | e35 | 78 | 126 | 49 | 22 | 48 | 35 | | 23 | 29 | e23 | e22 | e25 | e23 | e42 | 73 | 148 | 51 | 21 | 37 | 31 | | 24 | 29 | e23 | e21 | e26 | e23 | e54 | 74 | 173 | 59 | 22 | 28 | 32 | | 25 | 29 | e23 | e21 | e27 | e24 | e68 | 75 | 177 | 53 | 24 | 29 | 31 | | 26 | 29 | e24 | e21 | e28 | e25 | e80 | 84 | 164 | 69 | 23 | 31 | 31 | | 27 | 30 | e24 | e21 | e25 | e26 | e90 | 106 | 153 | 77 | 25 | 31 | 29 | | 28 | 28 | e24 | e21 | e23 | e27 | e82 | 124 | 148 | 53 | 24 | 29 | 28 | | 29 | 28 | e24 | e21 | e22 | e27 | e74 | 126 | 156 | 43 | 27 | 28 | 29 | | 30
31 | 29
32 | e24 | e21
e21 | e22
e22 | | e66
e58 | 137 | 160
148 | 39
 | 27
25 | 30
33 | 29
 | | TOTAT | 903 | 880 | 688 | 730 | 699 | 1239 | 2382 | 5457 | 2126 | 1020 | 876 | 889 | | TOTAL
MEAN | 29.1 | 29.3 | 22.2 | 23.5 | 24.1 | 40.0 | 79.4 | 176 | 70.9 | 32.9 | 28.3 | 29.6 | | MAX | 33 | 37 | 25 | 23.3 | 27 | 90 | 137 | 273 | 139 | 51 | 48 | 37 | | MTN | 27 | 23 | 21 | 21 | 22 | 26 | 45 | 116 | 39 | 21 | 19 | 24 | | AC-FT | 1790 | 1750 | 1360 | 1450 | 1390 | 2460 | 4720 | 10820 | 4220 | 2020 | 1740 | 1760 | | STATIST | ICS OF MC | NTHLY MEA | N DATA FO | OR WATER Y | YEARS 1917 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 31.7 | 28.2 | 23.6 | 21.8 | 22.3 | 28.4 | 68.0 | 201 | 201 | 65.7 | 39.8 | 29.6 | | MAX | 48.9 | 38.1 | 39.0 | 43.2 | 49.6 | 50.3 | 139 | 382 | 588 | 255 | 128 | 59.5 | | (WY) | 1971 | 1997 | 1996 | 1996 | 1996 | 1972 | 1962 | 1958 | 1957 | 1957 | 1957 | 1957 | | MIN | 18.8 | 17.6 | 13.3 | 10.7 | 10.9 | 15.0 | 34.4 | 50.4 | 19.8 | 19.5 | 13.7 | 13.5 | | (WY) | 1956 | 1967 | 1967 | 1967 | 1967 | 1970 |
1967 | 1954 | 1954 | 1940 | 1950 | 1950 | | SUMMARY | STATISTI | CS | FOR 3 | 1999 CALEN | NDAR YEAR | F | OR 2000 W. | ATER YEAR | | WATER YE | ARS 1917 | - 2000 | | ANNUAL | ΤΟΤΔΙ. | | | 19269 | | | 17889 | | | | | | | ANNUAL | | | | 52.8 | | | 48.9 | | | 63.6 | | | | | 'ANNUAL M | ŒAN | | | | | | | | 122 | | 1921 | | | ANNUAL ME | | | | | | | | | 26.8 | | 1967 | | | DAILY ME | | | 248 | May 26 | | 273 | May 8 | | 838 | | 18 1995 | | | DAILY MEA | | | e17 | Jan 28 | | 19 | Aug 10 | | 6.0
8.5 | Nov | 16 1920 | | | | MINIMUM | | 20 | Jan 8 | | 21 | Aug 6 | | | | 5 1959 | | | ANEOUS PE | | | | | | 297 | May 8 | | 964 | | 18 1995 | | | ANEOUS PE
RUNOFF (A | | | 38220 | | | 35480 | 6 May 8 | | a4.03
46050 | Jun . | 18 1995 | | | ENT EXCEE | | | 125 | | | 116 | | | 156 | | | | | ENT EXCEE | | | 33 | | | 29 | | | 30 | | | | | ENT EXCEE | | | 21 | | | 22 | | | 18 | | | | | | | | | | | | | | | | | e Estimated. a Maximum gage height for period of record, 4.05 ft, Jun 16, 1917, and Jun 9, 1921, site and datum then in use. ### 09118450 COCHETOPA CREEK BELOW ROCK CREEK, NEAR PARLIN, CO LOCATION.--Lat $38^{\circ}20^{\circ}08^{\circ}$, long $106^{\circ}46^{\circ}18^{\circ}$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.17, T.47 N., R.2 E. Saguache County, Hydrologic Unit 14020003, on left bank 0.75 mi downstream from Rock Creek and 12 mi south of Parlin. DRAINAGE AREA.--334 mi². PERIOD OF RECORD. -- October 1981 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,470 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of hay meadows upstream from station. Transmountain diversion by Tarbell ditch exports water upstream from station to Saguache Creek, since 1913. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHARG | E, CUBIC | FEET PER | | NATER YE.
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--|---|----------------------------|----------------------------------|---|--|----------------------------|--|----------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 58 | 40 | e30 | e25 | 23 | 22 | 33 | 89 | 62 | 18 | 11 | 35 | | 2 | 58 | 37 | e30 | e25 | 20 | 26 | 32 | 84 | 59 | 17 | 11 | 32 | | 3 | 55 | 35 | e31 | e24 | 20 | 25 | 33 | 87 | 52 | 25 | 11 | 31 | | 4 | 54 | 36 | e32 | e24 | 21 | 26 | 47 | 96 | 32 | 19 | 14 | 31 | | 5 | 49 | 36 | e30 | e24 | 21 | 32 | 78 | 103 | 26 | 16 | 12 | 32 | | 6 | 49 | 36 | e26 | e24 | 20 | 28 | 91 | 106 | 13 | 17 | 17 | 32 | | 7 | 56 | 36 | e29 | e24 | 19 | 31 | 90 | 96 | 12 | 19 | 16 | 33 | | 8 | 55 | 36 | e30 | e23 | 19 | 24 | 72 | 119 | 12 | 21 | 13 | 35 | | 9 | 51 | 38 | e29 | e23 | 20 | 29 | 70 | 119 | 15 | 27 | 18 | 32 | | 10 | 48 | 34 | e29 | e24 | 21 | 25 | 72 | 110 | 17 | 34 | 15 | 29 | | 11 | 47 | 34 | e28 | e25 | 21 | 30 | 65 | 119 | 20 | 24 | 15 | 28 | | 12 | 46 | 34 | e29 | 25 | 20 | e30 | 59 | 110 | 21 | 29 | 19 | 27 | | 13 | 44 | 34 | e29 | 21 | 20 | 26 | 62 | 101 | 21 | 26 | 25 | 27 | | 14 | 44 | 37 | e28 | 19 | 22 | 30 | 64 | 96 | 18 | 18 | 29 | 26 | | 15 | 43 | 35 | e28 | 18 | 21 | 30 | 61 | 86 | 17 | 20 | 24 | 25 | | 16 | 42 | 35 | e27 | 19 | 20 | 29 | 47 | 84 | 15 | 20 | 23 | 24 | | 17 | 40 | 37 | e27 | 21 | 22 | 31 | 50 | 79 | 14 | 16 | 26 | 24 | | 18 | 41 | 36 | e28 | 22 | 23 | 31 | 62 | 72 | 17 | 14 | 35 | 24 | | 19 | 43 | 33 | e28 | 23 | 21 | 34 | 62 | 66 | 25 | 11 | 39 | 26 | | 20 | 40 | e32 | e27 | 24 | 19 | 25 | 51 | 62 | 22 | 12 | 34 | 24 | | 21 | 40 | e34 | e27 | 23 | 21 | 25 | 58 | 60 | 23 | 15 | 35 | 24 | | 22 | 40 | e32 | e25 | 23 | 23 | 24 | 60 | 57 | 28 | 14 | 40 | 24 | | 23 | 40 | e28 | e25 | 22 | 22 | 26 | 60 | 65 | 31 | 13 | 43 | 27 | | 24 | 39 | e27 | e25 | 20 | 23 | 30 | 60 | 85 | 32 | 14 | 47 | 29 | | 25 | 38 | e28 | e27 | 21 | 21 | 36 | 61 | 88 | 31 | 9.6 | 41 | 28 | | 26
27
28
29
30
31 | 38
42
43
46
42
42 | e30
e30
e30
e30
e30 | e27
e27
e26
e26
e26
e26 | 22
24
22
19
20
21 | 17
21
23
25
 | 48
58
55
54
52
37 | 67
84
103
122
109 | 72
57
47
57
70
71 | 33
37
30
25
18 | 7.9
15
14
11
12 | 42
43
41
39
39
37 | 25
25
24
26
28 | | TOTAL | 1413 | 1010 | 862 | 694 | 609 | 1009 | 1985 | 2613 | 778 | 541.5 | 854 | 837 | | MEAN | 45.6 | 33.7 | 27.8 | 22.4 | 21.0 | 32.5 | 66.2 | 84.3 | 25.9 | 17.5 | 27.5 | 27.9 | | MAX | 58 | 40 | 32 | 25 | 25 | 58 | 122 | 119 | 62 | 34 | 47 | 35 | | MIN | 38 | 27 | 25 | 18 | 17 | 22 | 32 | 47 | 12 | 7.9 | 11 | 24 | | AC-FT | 2800 | 2000 | 1710 | 1380 | 1210 | 2000 | 3940 | 5180 | 1540 | 1070 | 1690 | 1660 | | | | | | | | | BY WATER Y | | | | | | | MEAN | 37.7 | 31.4 | 23.6 | 20.4 | 20.9 | 32.4 | 54.5 | 86.7 | 90.3 | 54.3 | 66.2 | 48.0 | | MAX | 72.6 | 49.9 | 39.5 | 36.6 | 33.4 | 52.3 | 135 | 413 | 240 | 130 | 153 | 90.8 | | (WY) | 1983 | 1983 | 1985 | 1984 | 1986 | 1985 | 1987 | 1984 | 1984 | 1995 | 1999 | 1982 | | MIN | 17.7 | 15.0 | 10.3 | 11.1 | 10.5 | 12.5 | 27.9 | 18.4 | 21.5 | 17.5 | 16.0 | 14.7 | | (WY) | 1990 | 1993 | 1982 | 1982 | 1982 | 1982 | 1990 | 1989 | 1989 | 2000 | 1996 | 1996 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALENI | DAR YEAR | F | OR 2000 WAT | ER YEAR | | WATER YEA | ARS 1982 | - 2000 | | LOWEST ANIUAL SINSTANTANIUAL SINSTANTANIUAL SINSTANTANIUAL SINSTANTANIUAL SINSTANIUAL SINSTANIUA SINSTAN | MEAN
ANNUAL M
ANNUAL ME
DAILY ME
DAILY MEA | AN AN N MINIMUM AK FLOW AK STAGE (C-FT) DS | | 22086
60.5
204
e16
19
43810
132
43
21 | Aug 11
Jan 28
Jan 27 | | 13205.5
36.1
122
7.9
12
150
2.91
26190
65
29
17 | Apr 29
Jul 26
Jul 25
Apr 29
Apr 29 | | 47.3
106
24.8
954
7.9
8.9
1120
a4.49
34270
92
34
16 | Jul 2
Feb
May 2 | 1984
1994
3 1984
6 2000
7 1982
3 1984
3 1984 | e Estimated. a Maximum gage height, 5.64 ft, Mar 25, 1998, backwater from ice. ### 09119000 TOMICHI CREEK AT GUNNISON, CO LOCATION.--Lat $38^{\circ}31^{\circ}18^{\circ}$, long $106^{\circ}56^{\circ}25^{\circ}$, in $NE^{1}/_{4}SW^{1}/_{4}$ sec.11, T.49 N., R.1 W., Gunnison County, Hydrologic Unit 14020003, on right bank 300 ft downstream from highway bridge, 1.8 mi southwest of Post Office in Gunnison, and 2.0 mi upstream from mouth. DRAINAGE AREA.--1,061 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November and December 1910 (gage heights and discharge measurements only), October 1937 to current year. Monthly discharges only for some periods, published in WSP 1313. Published as "near Gunnison" 1910. REVISED RECORDS. -- WSP 2124: Drainage area. WDR CO-86-2: 1985. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,628.58 ft above sea level. Nov. 25 to Dec. 24, 1910, nonrecording gage 300 ft upstream at different datum. Apr. 20, 1938 to Oct. 2, 1940, water-stage recorder at present site at datum 1.00 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 24,000 acres upstream from station. Water diverted upstream from station by Larkspur ditch to Arkansas River basin since 1935 and by Tarbell ditch to Rio Grande basin
since 1914. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | | DAILY MEAN VALUES | | | | | | | | | | | | | | | | | | |---|--|-------------------|------|--------------|-----------|-----------|---------|------------|-------------|--------|-----------|------------|---------|----------|-----------|-----|-----|-----|------| | 2 1388 117 e90 e81 e83 e98 147 250 236 47 105 e140 3 136 109 e90 e80 e85 e97 1515 234 231 47 107 e131 4 134 103 e90 e79 e88 e98 150 272 215 44 113 e130 5 129 107 e88 e79 e89 e100 199 333 181 49 110 e120 6 119 106 e86 e80 e80 e89 e104 276 272 215 44 113 e130 7 121 104 e84 e80 e80 e87 e105 238 412 131 48 89 129 8 132 106 e82 e80 e87 e105 238 412 131 48 89 129 8 131 108 e83 e81 e88 e105 256 564 17 85 89 129 111 124 98 e85 e80 e86 e86 e105 256 564 17 85 89 129 112 120 e86 e84 e78 e86 e86 e88 244 41 67 68 62 88 132 112 120 98 6 e84 e78 e86 e88 244 41 67 71 61 80 123 113 108 94 e80 e88 e89 e89 240 416 86 57 67 121 114 115 94 e80 e88 e89 e89 240 416 86 57 67 121 115 107 e85 e80 e88 e89 e89 240 416 86 57 67 121 116 116 106 101 e80 e88 e89 e89 246 130 42 118 88 99 116 106 101 e80 e80 e88 e89 e99 237 300 e35 168 92 100 117 107 e85 e80 e88 e89 e99 237 300 e35 168 92 100 118 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e83 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | | | | | 2 1388 117 e90 e81 e83 e98 147 250 236 47 105 e140 3 136 109 e90 e80 e85 e97 1515 234 231 47 107 e131 4 134 103 e90 e79 e88 e98 150 272 215 44 113 e130 5 129 107 e88 e79 e89 e100 199 333 181 49 110 e120 6 119 106 e86 e80 e80 e89 e104 276 272 215 44 113 e130 7 121 104 e84 e80 e80 e87 e105 238 412 131 48 89 129 8 132 106 e82 e80 e87 e105 238 412 131 48 89 129 8 131 108 e83 e81 e88 e105 256 564 17 85 89 129 111 124 98 e85 e80 e86 e86 e105 256 564 17 85 89 129 112 120 e86 e84 e78 e86 e86 e88 244 41 67 68 62 88 132 112 120 98 6 e84 e78 e86 e88 244 41 67 71 61 80 123 113 108 94 e80 e88 e89 e89 240 416 86 57 67 121 114 115 94 e80 e88 e89 e89 240 416 86 57 67 121 115 107 e85 e80 e88 e89 e89 240 416 86 57 67 121 116 116 106 101 e80 e88 e89 e89 246 130 42 118 88 99 116 106 101 e80 e80 e88 e89 e99 237 300 e35 168 92 100 117 107 e85 e80 e88 e89 e99 237 300 e35 168 92 100 118 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e83 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 e80 e80 e89 e99 237 300 e35 168 92 100 119 101 105 e80 | 1 | 143 | 116 | e88 | e81 | e83 | e98 | 163 | 276 | 253 | 54 | 107 | e145 | | | | | | | | 1 | 6 119 107 e88 c79 e89 e100 199 323 181 49 110 e122 6 119 106 e86 e80 e80 e80 e104 256 377 163 51 94 e120 7 111 104 e84 e80 e80 e87 e104 256 377 163 51 94 e120 9 121 106 e83 e80 e80 e87 e104 256 571 163 51 94 e120 9 121 108 e83 e80 e81 e105 276 654 671 53 51 94 e120 10 127 107 e85 e80 e86 e103 269 491 68 62 84 135 11 124 98 e85 e80 e86 e96 e103 269 491 68 65 284 135 11 124 98 e85 e80 e86 e98 240 416 68 57 67 121 12 120 99 e89 e89 e99 240 416 68 57 67 121 12 120 120 99 4 e80 e88 e89 e99 240 416 68 57 67 121 13 13 14 18 91 e80 e84 e89 e99 240 416 68 57 67 121 14 15 107 94 e80 e88 e89 e99 237 300 e35 168 99 16 106 101 e80 e93 e89 e99 237 300 e35 168 92 100 17 104 105 e80 e93 e96 e88 e97 226 287 388 23 144 106 100 17 104 105 e80 e93 e89 e98 e98 214 286 29 183 99 92 18 103 107 e80 e86 e86 e88 e99 e98 234 388 64 23 114 106 100 107 100 e82 e101 e83 e86 232 305 305 23 144 106 100 20 107 74 e83 e101 e83 e86 232 305 305 23 144 106 100 21 107 104 e84 e100 e84 e100 216 272 40 82 123 77 22 105 120 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e80 e84 e91 e84 210 216 272 40 82 123 77 24 25 105 120 e85 e89 e86 120 226 216 48 68 139 97 25 100 e86 e80 e100 e88 232 305 35 70 140 87 98 27 108 e86 e80 e102 e92 259 121 252 61 86 18 61 144 87 28 115 e88 e80 e80 e80 e80 e84 e87 e89 279 286 e80 | 3 | 136 | 109 | e90 | e80 | e85 | e97 | 151 | 234 | 231 | 47 | 107 | e133 | | | | | | | | 6 119 106 e86 e80 e89 e104 256 377 163 51 94 e120 7 121 104 e84 e80 e87 e105 281 412 111 48 e89 123 9 131 104 e84 e80 e87 e105 281 412 181 48 89 123 10 127 107 e85 e80 e96 e103 256 442 81 168 62 84 135 10 127 107 e85 e80 e96 e103 269 491 68 62 84 135 11 124 98 e85 e80 e96 e103 269 491 68 57 67 121 11 124 98 e85 e80 e96 e98 244 421 71 61 80 123 11 120 956 e84 e84 e80 e96 e98 244 415 68 57 67 121 11 121 124 98 e86 e88 e89 e99 231 398 64 121 11 107 107 e85 e86 e80 e96 e98 240 416 68 57 67 121 11 11 124 98 e86 e88 e89 e99 231 398 64 121 188 88 99 16 108 101 108 91 e80 e88 e89 e99 231 398 64 121 188 88 99 16 108 101 94 e80 e88 e89 e99 237 300 e35 168 92 110 17 194 e80 e80 e93 e89 e99 237 300 e35 168 92 100 17 104 105 e80 e93 e89 e99 214 286 287 29 183 95 92 18 19 103 107 e80 e82 e83 e89 e98 214 286 29 131 389 64 188 99 18 108 107 e80 e93 e89 e99 237 300 e35 168 92 100 17 104 105 e80 e93 e89 e99 237 300 e35 168 92 100 18 108 107 e80 e82 e93 e89 e98 214 286 29 183 95 92 21 100 121 284 88 e80 e80 e93 e89 e99 237 300 e35 168 92 100 21 101 102 e80 e93 e89 e99 214 286 29 183 95 92 22 100 101 102 e80 e93 e89 e99 214 286 29 183 95 92 23 105 120 e82 e90 e83 e99 237 300 e35 168 92 103 68 103 103 107 174 e83 e101 e83 e98 232 305 36 81 130 73 21 104 104 e84 e82 e90 e85 e97 e98 214 286 29 183 95 92 22 105 120 e84 e82 e99 e86 124 286 29 183 95 92 23 105 120 e84 e82 e99 e86 124 226 251 42 86 14 14 26 66 27 28 14 14 14 14 14 14 14 14 14 14 14 14 14 | | | | e90 | | e88 | | | | | 44 | | e130 | | | | | | | | To 121 | 5 | 129 | 107 | e88 | e79 | e89 | e100 | 199 | 323 | 181 | 49 | 110 | e122 | | | | | | | | 8 132 106 e82 e80 e87 c104 271 482 87 45 89 129 9 131 108 e83 e81 e81 e88 c105 256 554 71 50 e85 145 10 127 107 e85 e80 e96 e103 269 491 68 62 84 135 111 124 98 e85 e80 e96 e103 269 491 68 62 84 135 112 124 98 e85 e80 e96 e298 264 421 71 61 80 123 113 115 94 e82 e83 e84 e99 284 264 421 71 61 80 123 113 115 94 e82 e83 e84 e99 281 231 833 60 52 75 111 134 115 94 e82 e83 e88 e89 e98 246 330 42 118 88 99 115 107 94 e80 e88 e89 e98 246 330 42 118 88 99 116 115 107 94 e80 e96 e93 e94 241 833 65 54 53 91 102 115 107 94 e80 e93 e89 e98 246 330 42 118 88 99 116 107 94 e80 e93 e89 e98 246 240 230 42 118 88 99 116 107 94 e80 e93 e93 e89 e98 214 286 29 183 95 92 183 95 92 183 100 177 104 105 e80 e93 e89 e98 214 286 29 183 95 92 183 105 107 107 e80 e910 e85 e80 e93 237 300 e35 168 92 100 19 100 107 e82 e100 e85 e93 e89 e98 214 286 297 183 95 92 114 100 100 19 100 e82 e100 e85 e83 e88 e89 e98 214 286 29 183 95 92 114 100 19 100 107 e82 e100 e85 e83 e88 238 305 36 e100 128 e83 e83 e83 238 305 36 e100 128 e83 e83 e83 238 305 36 e100 128 e83 e83 e83 238 305 36 e100 e84 e100 e85 e99 e86 124 229 251 42 e100 124 e86 e84 e91 e84 136 214 229 251 42 e100 148 e100 e85 e99 e86 124 229 251 42 e100 148 e100 e85 e99 e86 124 229 251 42 e100 148 e100
e85 e99 e86 124 229 251 42 e100 148 e100 e85 e99 e86 124 229 251 42 e100 148 e100 e85 e99 e86 124 229 251 42 e100 e85 e99 e86 124 e100 e85 e99 e86 124 e100 e85 e99 e86 124 e100 e85 e99 e86 e100 e85 e99 e86 e100 e85 e99 e86 e100 e85 e99 e86 | 9 131 108 e83 e81 e88 e105 256 564 71 50 85 145 110 127 107 e85 e80 e96 e103 269 491 68 62 884 135 111 124 98 e85 e80 e96 e96 e103 269 491 68 62 884 135 112 120 95 e84 e78 e96 e98 244 416 68 57 67 121 113 120 95 e84 e78 e96 e98 244 416 68 57 67 121 114 110 91 e80 e80 e84 e89 e98 231 333 44 153 91 102 115 107 94 e80 e84 e89 e98 236 333 42 118 88 99 116 106 101 e80 e90 e89 e99 237 300 e35 168 92 100 117 104 105 e80 e96 e93 e89 e99 214 286 29 183 95 92 18 103 127 e80 e96 e88 e89 e98 214 286 29 183 95 92 18 103 127 e80 e96 e88 e89 e98 234 233 338 64 168 92 100 19 108 100 e82 e100 e85 e96 e24 240 240 24 26 29 160 160 160 100 19 108 100 e82 e100 e85 e96 23 23 308 24 118 88 190 20 107 74 e83 e101 e83 e98 232 305 36 91 130 73 21 104 104 e84 e100 e84 e110 e98 23 23 305 36 91 130 73 21 104 104 e84 e100 e85 e101 e10 216 272 40 82 122 77 22 105 120 e85 e99 e86 124 229 251 42 81 142 66 23 104 88 e85 e96 e85 120 226 216 48 68 139 67 24 102 e86 e84 e91 e84 136 214 229 251 42 81 142 66 24 102 e86 e84 e91 e84 136 214 249 53 70 143 78 25 102 e84 e82 e92 e85 162 207 263 54 84 154 95 26 101 e86 e80 e102 e92 259 211 252 60 86 141 87 27 108 e86 e80 e102 e92 259 213 252 61 86 141 87 27 108 e86 e80 e102 e92 259 213 252 61 86 141 87 27 108 e86 e80 e102 e92 259 213 252 61 86 141 87 28 115 e88 e80 e86 e80 e102 e92 259 213 252 61 86 141 87 28 115 e88 e80 e86 e80 e83 e94 e94 255 244 251 62 90 148 98 311 114 eee e86 e80 e83 e94 e94 e82 e95 250 220 226 226 246 84 246 98 311 114 eee e86 e80 e83 e94 e94 e82 e95 e95 210 e86 144 87 311 114 eee e86 e80 e83 e94 e94 e84 e95 220 244 251 64 84 154 95 311 114 eee e86 e80 e80 e80 e90 e90 e90 e90 e90 e90 e90 e90 e90 e9 | 10 | 11 | 12 | 10 | 127 | 107 | e85 | e80 | e96 | e103 | 269 | 491 | 68 | 62 | 84 | 135 | | | | | | | | 115 | 14 | 16 | 16 | 17 | 15 | 107 | 94 | 600 | 600 | 603 | 630 | 240 | 330 | 42 | 110 | 00 | 99 | | | | | | | | 18 | 19 | 101 | 104 | 104 | 21 | 104 | 104 | ۵ <u>8</u> 4 | 100 | 684 | 110ء | 216 | 272 | 40 | 82 | 123 | 77 | | | | | | | | 104 | 102 | 25 | 27 | | | | | | | | | | 54 | 84 | 154 | | | | | | | | | 27 | 26 | 101 | e86 | e80 | e100 | e88 | 227 | 197 | 259 | 60 | 84 | 138 | 93 | | | | | | | | 118 | 30 | 28 | 115 | e88 | e80 | e92 | e96 | 315 | 245 | 239 | 57 | 90 | 140 | 87 | | | | | | | | 31 | 29 | 118 | e88 | e80 | e86 | e98 | 273 | 243 | 235 | 67 | 89 | 139 | | | | | | | | | TOTAL 3607 2981 2582 2717 2572 4193 6755 9848 2620 2446 3492 3181 MEAN 116 99.4 83.3 87.6 88.7 135 225 318 87.3 78.9 113 106 MAX 143 127 90 102 98 315 283 564 253 183 154 145 MIN 101 74 80 78 83 396 147 216 22 444 67 66 AC-FT 7150 5910 5120 5390 5100 8320 13400 19530 5200 4850 6930 6310 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 2000, BY WATER YEAR (WY) MEAN 95.5 102 77.4 67.5 70.1 113 242 402 476 196 162 94.4 MAX 209 158 117 116 98.0 279 564 2073 1481 859 440 318 (WY) 1970 1971 1987 1971 1986 1939 1942 1984 1984 1957 1957 1970 MIN 33.5 62.4 45.8 37.1 36.2 59.8 56.5 22.4 51.8 42.5 51.5 19.2 (WY) 1964 1951 1964 1979 1979 1981 1967 1977 1977 1955 1977 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEAR 1984 1000 ANNUAL MEAN 174 128 163452 46994 ANNUAL MEAN 174 175 1960 1971 1986 1939 1942 1984 1984 1984 1987 1977 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL TOTAL 63452 46994 ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 174 128 128 175 HIGHEST DAILLY MEAN 652 Jun 18 564 May 9 4040 May 26 1984 1000 1000 1000 1000 1000 1000 1000 10 | | | e88 | e80 | e84 | | | 244 | | 62 | | | 98 | | | | | | | | MEAN | 31 | 114 | | e80 | e83 | | 221 | | 266 | | 92 | e150 | | | | | | | | | MAX 143 127 90 102 98 315 283 564 253 183 154 145 MIN 101 74 80 78 83 96 147 216 22 44 67 66 AC-FT 7150 5910 5120 5390 5100 8320 13400 19530 5200 4850 6930 6310 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 2000, BY WATER YEAR (WY) MEAN 95.5 102 77.4 67.5 70.1 11 16 98.0 279 564 2073 1481 859 440 318 (WY) 1970 1971 1987 1971 1986 1939 1942 1984 1984 1957 1957 1970 MIN 33.5 62.4 45.8 37.1 36.2 59.8 56.5 22.4 51.8 42.5 51.5 19.2 (WY) | TOTAL | 3607 | 2981 | 2582 | 2717 | 2572 | 4193 | 6755 | 9848 | 2620 | 2446 | 3492 | 3181 | | | | | | | | MIN 101 74 80 78 83 96 147 216 22 44 67 66 AC-FT 7150 5910 5120 5390 5100 8320 13400 19530 5200 4850 6930 6310 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 2000, BY WATER YEAR (WY) MEAN 95.5 102 77.4 67.5 70.1 113 242 402 476 196 162 94.4 MAX 209 158 117 116 98.0 279 564 2073 1481 859 440 318 (WY) 1970 1971 1987 1971 1986 1939 1942 1984 1984 1957 1957 1970 1971 1987 1971 1986 1939 1942 1984 1984 1957 1957 1970 (WY) 1964 1951 1964 1979 1979 1981 1967 1977 1977 1975 1975 1976 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL TOTAL 63452 46994 ANNUAL MEAN 174 128 128 175 175 1970 1971 1971 1971 1971 1971 1971 1971 | MEAN | 116 | 99.4 | | 87.6 | | 135 | 225 | 318 | 87.3 | 78.9 | 113 | 106 | | | | | | | | AC-FT 7150 5910 5120 5390 5100 8320 13400 19530 5200 4850 6930 6310 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 2000, BY WATER YEAR (WY) MEAN 95.5 102 77.4 67.5 70.1 113 242 402 476 196 162 94.4 MAX 209 158 117 116 98.0 279 564 2073 1481 859 440 318 (WY) 1970 1971 1987 1971 1986 1939 1942 1984 1984 1957 1957 1970 MIN 33.5 62.4 45.8 37.1 36.2 59.8 56.5 22.4 51.8 42.5 51.5 19.2 (WY) 1964 1951 1964 1979 1979 1981 1967 1977 1977 1977 1955 1977 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL TOTAL 63452 46694 ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 60.4 1971 188 564 May 9 4040 May 26 1984 LOWEST ANNUAL MEAN 658 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANEOUS PEAK FLOW 582 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 363 250 388 50 PERCENT EXCEEDS 121 98 | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 2000, BY WATER YEAR (WY) MEAN 95.5 102 77.4 67.5 70.1 113 242 402 476 476 196 162 94.4 MAX 209 158 117 116 98.0 279 564 2073 1481 859 440 318 MIN 1970 1971 1987 1971 1986 1939 1942 1984 1984 1957 1957 1970 MIN 33.5 62.4 45.8 37.1 36.2 59.8 56.5 22.4 51.8 42.5 51.5 19.2 MY) 1964 1951 1964 1979 1979 1981 1967 1977 1977 1975 1975 1970 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL TOTAL 63452 46994 ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 174 128 175 HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 May 26 1984 LOWEST DAILY MEAN 658 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 23 1984 INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | MEAN 95.5 102 77.4 67.5 70.1 113 242 402 476 196 162 94.4 MAX 209 158 117 116 98.0 279 564 2073 1481 859 440 318 (WY) 1970 1971 1987 1971 1986 1939 1942 1984 1984 1957 1957 1970 MIN 33.5 62.4 45.8 37.1 36.2 59.8 56.5 22.4 51.8 42.5 51.5 19.2 (WY) 1964 1951 1964 1979 1979 1979 1981 1967 1977 1977 1955 1977 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL TOTAL 63452 46694 ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 60.4 1977 HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 May 26 1984 LOWEST ANNUAL MEAN 658 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANEOUS PEAK FLOW 582 May 9 4620 May 23 1984 INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | AC-FT | 7150 | 5910 | 5120 | 5390 | 5100 | 8320 | 13400 | 19530 | 5200 | 4850 | 6930 | 6310 | | | | | | | | MAX 209 158 117 116 98.0 279 564 2073 1481 859 440 318 (WY) 1970 1971 1987 1971 1986 1939 1942 1984 1984 1984 1957 1975 1970 MIN 33.5 62.4 45.8 37.1 36.2 59.8 56.5 22.4 51.8 42.5 51.5 19.7 (WY) 1964 1951 1964 1979 1979 1981 1967 1977 1977 1955 1977 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL MEAN 174 128 46994 ANNUAL MEAN 175 175 HIGHEST ANNUAL MEAN 198 198 198 1977 HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 MAY <th <="" colspan="6" td=""><td>STATIST</td><td>ICS OF MO</td><td>ONTHLY MEAN</td><td>DATA F</td><td>OR WATER</td><td>YEARS 1938</td><td>- 2000,</td><td>BY WATER</td><td>YEAR (WY)</td><td></td><td></td><td></td><td></td></th> | <td>STATIST</td> <td>ICS OF MO</td> <td>ONTHLY MEAN</td> <td>DATA F</td> <td>OR WATER</td> <td>YEARS 1938</td> <td>- 2000,</td> <td>BY WATER</td> <td>YEAR (WY)</td> <td></td> <td></td> <td></td> <td></td> | | | | | | STATIST | ICS OF MO | ONTHLY MEAN | DATA F | OR WATER | YEARS 1938 | - 2000, | BY WATER | YEAR (WY) | | | | | | MAX 209 158 117 116 98.0 279 564 2073 1481 859 440 318 (WY) 1970 1971
1987 1971 1986 1939 1942 1984 1984 1984 1957 1975 1970 MIN 33.5 62.4 45.8 37.1 36.2 59.8 56.5 22.4 51.8 42.5 51.5 19.7 (WY) 1964 1951 1964 1979 1979 1981 1967 1977 1977 1955 1977 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL MEAN 174 128 46994 ANNUAL MEAN 175 175 HIGHEST ANNUAL MEAN 198 198 198 1977 HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 MAY <th <="" colspan="6" td=""><td>MEAN</td><td>95.5</td><td>102</td><td>77.4</td><td>67.5</td><td>70.1</td><td>113</td><td>242</td><td>402</td><td>476</td><td>196</td><td>162</td><td>94.4</td></th> | <td>MEAN</td> <td>95.5</td> <td>102</td> <td>77.4</td> <td>67.5</td> <td>70.1</td> <td>113</td> <td>242</td> <td>402</td> <td>476</td> <td>196</td> <td>162</td> <td>94.4</td> | | | | | | MEAN | 95.5 | 102 | 77.4 | 67.5 | 70.1 | 113 | 242 | 402 | 476 | 196 | 162 | 94.4 | | MY | MY | (WY) | 1970 | | 1987 | 1971 | 1986 | 1939 | 1942 | 1984 | 1984 | 1957 | 1957 | 1970 | | | | | | | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1938 - 2000 ANNUAL TOTAL 63452 46694 ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 478 1984 LOWEST ANNUAL MEAN 60.4 1977 HIGHEST DAILLY MEAN 522 Jun 18 564 May 9 4040 May 26 1984 LOWEST DAILLY MEAN 658 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANTANEOUS PEAK FLOW 582 May 9 4620 May 23 1984 INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | MIN | 33.5 | 62.4 | 45.8 | 37.1 | 36.2 | 59.8 | 56.5 | 22.4 | 51.8 | 42.5 | 51.5 | 19.2 | | | | | | | | ANNUAL TOTAL 63452 46994 ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 174 128 478 1984 LOWEST ANNUAL MEAN 60.4 1997 HIGHEST DAILLY MEAN 522 Jun 18 564 May 9 4040 May 26 1984 LOWEST DAILLY MEAN e58 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | (WY) | 1964 | 1951 | 1964 | 1979 | 1979 | | 1967 | 1977 | 1977 | 1955 | 1977 | 1956 | | | | | | | | ANNUAL MEAN 174 128 175 HIGHEST ANNUAL MEAN 478 197 HUGHEST ANNUAL MEAN 60.4 1977 HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 May 26 1984 LOWEST DAILY MEAN 658 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTIANEOUS PEAK FLOW 582 May 9 4620 May 23 1984 INSTANTIANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | SUMMARY | STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1938 | - 2000 | | | | | | | | HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN 1977 HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 May 26 1987 LOWEST DAILY MEAN 658 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 ANNUAL SEVEN-DAY MEAN 1NSTANTANEOUS PEAK FLOW 1NSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | ANNUAL ' | TOTAL | | | 63452 | | | 46994 | | | | | | | | | | | | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 May 26 1984 LOWEST DAILY MEAN e58 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 125900 93210 126900 126900 10 PERCENT EXCEEDS 121 98 100 | ANNUAL I | MEAN | | | 174 | | | 128 | | | 175 | | | | | | | | | | HIGHEST DAILY MEAN 522 Jun 18 564 May 9 4040 May 26 1984 LOWEST DAILY MEAN e58 Jan 28 22 Jun 19 2.6 Sep 30 1977 ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANEOUS PEAK FLOW 582 May 9 4620 May 23 1984 INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | HIGHEST | ANNUAL N | ÆAN | | | | | | | | 478 | | 1984 | | | | | | | | ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANEOUS PEAK FLOW 582 May 9 4620 May 23 1984 INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | ANNUAL SEVEN-DAY MINIMUM 60 Jan 28 32 Jun 15 7.6 May 4 1967 INSTANTANEOUS PEAK FLOW 582 May 9 4620 May 23 1984 INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | | | | | | | | | May 9 | | 4040 | May 2 | 26 1984 | | | | | | | | ARNOLL SEVEN-DAT MINIMUM TO Sail 28 32 Unit 15 1.6 May 4 1907 INSTANTIANEOUS PEAK FLOW INSTANTIANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 ANNUAL RUNOFF (AC-FT) 125900 93210 126900 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | | | | | | | | | Jun 19 | | 2.6 | | | | | | | | | | INSTANTANEOUS PEAK STAGE 2.94 May 9 5.49 May 23 1984 | | | | | 60 | Jan 28 | | | | | 7.0 | | | | | | | | | | ANNUAL RUNOFF (AC-FT) 125900 93210 126900
10 PERCENT EXCEEDS 363 250 388
50 PERCENT EXCEEDS 121 98 100 | | | | | | | | | May 9 | | | | | | | | | | | | 10 PERCENT EXCEEDS 363 250 388 50 PERCENT EXCEEDS 121 98 100 | | | | | 125900 | | | | May 9 | | | riay 2 | 20 TOO# | | | | | | | | 50 PERCENT EXCEEDS 121 98 100 | 68 | | | | | | | | | | | | e Estimated. ## 09119000 TOMICHI CREEK AT GUNNISON, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD--October 1990 to September 1993, April 1995 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-deal colony count; M, presence of materials verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | DIS-
SOLVED
(MG/L) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |------------------|---|---|--|--|---|---|---|---|--|--| | OCT
21
JAN | 0820 | 102 | 250 | 8.0 | 2.1 | | 10.2 | .0 | 40 | | | 12 | 0845 | 78 | 258 | 7.9 | .0 | | 9.4 | | К4 | | | APR
07 | 1020 | 305 | 226 | 8.1 | 6.0 | | 9.0 | 2.7 | K11 | | | MAY
10 | 0815 | 511 | 246 | 8.1 | 9.8 | 8.1 | 7.6 | 1.6 | 220 | 97 | | JUL
20 | 1300 | 90 | 398 | 8.4 | 20.5 | | 8.9 | | 65 | | | AUG
31 | 0830 | 157 | 290 | 8.2 | 14.2 | <.5 | 7.3 | .0 | 190 | 130 | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | DIS-
SOLVED
(MG/L
AS MG) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N) | ORGANIC | MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | | OCT
21
JAN | | | <.001 | <.005 | <.002 | .17 | .13 | .040 | .023 | .012 | | 12
APR | | | .002 | .106 | .003 | .13 | E.10 | .035 | .021 | .014 | | 07
MAY | | | <.001 | .047 | .017 | 1.2 | .41 | .269 | .052 | .040 | | 10 | 25.7 | 7.91 | <.001 | .023 | .003 | .75 | .42 | .133 | .056 | .038 | | 20 | | | .001 | .013 | .008 | .44 | .36 | .065 | .042 | .030 | | AUG
31 | 35.5 | 9.09 | .001 | .011 | .009 | .33 | .22 | .067 | .041 | .029 | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS-
SOLVED
(UG/L
AS CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | (UG/L | | | | MAY
10
AUG | <15 | <.1 | 2 | 90 | <1 | 29 | <1 | <20 | | | | 31 | <15 | <.1 | <1 | 40 | <1 | 30 | <1 | <20 | | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | OCT | | | | | APR | | | | | | 06 | 1727 | 119 | 231 | 12.2 | 04 | 1620 | 149 | 291 | 10.1 | | NOV | | | | | JUN | | | | | | 18 | 1101 | 127 | 274 | 2.4 | 16 | 0950 | 35 | 375 | 13.9 | | FEB | | | | |
AUG | | | | | | 29 | 1500 | 98 | 249 | 2.1 | 30 | 0745 | 153 | 292 | 19.9 | ## 09119000 TOMICHI CREEK AT GUNNISON, CO--Continued # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | OCT 21 | 0820 | 102 | 2.1 | 3 | .88 | | MAY
10 | 0815 | 511 | 9.8 | 92 | 127 | ### 383103106594200 GUNNISON RIVER AT COUNTY ROAD 32 BELOW GUNNISON, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}31^{\circ}03^{\circ}$, long $106^{\circ}59^{\circ}42^{\circ}$, in $SW^{1}/_{4}SE^{1}/_{4}$ sec.8, T.49 N., R.1 W., Gunnison County, Hydrologic Unit 14020002, at County Road 32 bridge, 0.25 mi south of US HWY 50, and 3.3 mi west of Gunnison. DRAINAGE AREA.--2,128 mi². PERIOD OF RECORD. -- December 1994 to current year. PERIOD OF DAILY RECORD . -- WATER TEMPERATURE: October 1996 to September 1998. INSTRUMENTATION.--Water temperature sensor and logger October 1996 to September 1998. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 19.5° C, July 18, 1998; minimum, 0.0° C on many days during winters. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | W | ATER-QUAL | ITY DATA, | WATER YE | EAR OCTOBE | ER 1999 TO |) SEPTEMBE | ER 2000 | | | |----------|-----------|---|---|--|--|---|---|--|---|---|--| | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | | OCT | 1 | 1100 | 544 | 214 | 8.0 | 3.9 | .8 | 10.6 | .0 | К4 | 100 | | DEC | | 1500 | 328 | 241 | 8.5 | .0 | .0 | 11.3 | | | | | JAN | | 1245 | 344 | 224 | 8.4 | .1 | | 11.2 | | K2 | | | APR | | 1243 | 818 | 217 | 8.3 | 7.3 | 5.0 | 9.6 | 1.9 | 15 | 92 | | MAY | | | | | | | 23 | | | | 80 | | JUL | 5
0 | 1240
1440 | 2610
767 | 169
245 | 8.0
8.5 | 10.2
16.7 | 23 | 8.3 | 1.4 | 180
460 | 80 | | AUG | | | 558 | 238 | 8.5 | 16.7 | <.5 | 8.2 | .2 | 37 | 110 | | 3 | 1 | 1300 | 558 | 238 | 8.5 | 16.9 | <.5 | 8.2 | . 2 | 3 / | 110 | | | DATE | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | 1 | 30.1 | 6.75 | .002 | .014 | <.002 | .17 | .10 | .022 | .016 | .007 | | | 6 | | | .001 | .047 | <.002 | .10 | E.10 | .039 | .019 | .011 | | | 2 | | | .001 | .123 | <.002 | .14 | .12 | .033 | .025 | .019 | | | 2 | 26.3 | 6.33 | .002 | .095 | <.002 | .34 | .21 | .070 | .029 | .020 | | | 5 | 23.9 | 4.86 | <.001 | .059 | .004 | .38 | .20 | .104 | .016 | .015 | | | 0 | | | .001 | .017 | .017 | .21 | .15 | .032 | .012 | .009 | | AUG
3 | 1 | 30.9 | 6.86 | .002 | .040 | .009 | .16 | .11 | .036 | .022 | .016 | | | DAT | | M, CADM
S- DI
VED SOL
J/L (UG
AL) AS | CD) AS | - DI
VED SOI
/L (UC
CU) AS | IS- DI
LVED SOI
G/L (UC
FE) AS | AD, NES
IS- DI
LVED SOI
G/L (UC
PB) AS | IS- DI
LVED SOI
B/L (UG | IS- DI
LVED SOI
G/L (UC
AG) AS | IS- ACT
LVED SU
B/L STA
ZN) (MO | ENE
LUE
CIVE
JB-
ANCE
G/L) | | | OCT
21 | . <1 | .5 <. | 1 <1 | 20 |) <1 | L 12 | 2 <1 | L <2 | 20 <. | .02 | | | APR
12 | <1 | .5 <. | 1 E1 | 70 |) <1 | L 16 | 5 <1 | L <2 | 20 - | | | | MAY
25 | <1 | .5 <. | 1 <1 | 30 |) <1 | 1 15 | 5 <1 | L <2 | 20 - | | | | AUG
31 | <1 | .5 <. | 1 <1 | 20 |) <1 | L 14 | 1 <1 | L <2 | 20 - | | | | | | | | | | | | | | | # 383103106594200 GUNNISON RIVER AT COUNTY ROAD 32 BELOW GUNNISON, CO--Continued SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |------------------|------|---|---|---|---| | OCT 21 | 1100 | 544 | 3.9 | 1 | 1.3 | | DEC
06 | 1500 | 328 | .0 | 5 | 4.5 | | APR
12
MAY | 1240 | 818 | 7.3 | 19 | 43 | | 25
AUG | 1240 | 2610 | 10.2 | 92 | 649 | | 31 | 1300 | 558 | 16.9 | 6 | 8.9 | ### 09124500 LAKE FORK AT GATEVIEW, CO LOCATION.--Lat $38^{\circ}17^{\circ}56^{\circ}$, long $107^{\circ}13^{\circ}46^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$ sec.29, T.47 N., R.3 W., Gunnison County, Hydrologic Unit 14020002, on left bank at old village of Gateview, 25 ft downstream from private bridge, 0.2 mi upstream from Indian Creek, and 6.3 mi upstream from waterline of Blue Mesa Reservoir, at elevation 7,519 ft. DRAINAGE AREA. -- 334 mi². PERIOD OF RECORD.--October 1937 to current year. Monthly discharge only for some periods, published in WSP 1313. Water-quality data available October 1990 to September 1993. Sediment data available October 1998 to September 1999. REVISED RECORDS .-- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,827.66 ft above sea level. Prior to Oct. 1, 1938, at datum 2.00 ft higher, Oct. 1, 1938 to Sept. 30, 1945, at datum 1.00 ft higher, and Oct. 1, 1945 to Sept. 3, 1991, at datum 1.00 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,600 acres upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHARC | JE, CUBI | C LEEI PEI | | MEAN VA | LUES | 1999 10 | SEPIEMBI | SR 2000 | | | |----------|------------------------|---------------------|------------|------------|------------|------------|------------|------------------|------------|------------|------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 174 | 90 | e66 | e62 | e54 | e56 | e76 | 381 | 1240 | 316 | 110 | 187 | | 2 | 168 | 84 | e68 | e60 | e53 | e57 | e74 | 363 | 1120 | 302 | 104 | 176 | | 3 | 161 | 81 | e72 | e58 | e54 | e58 | e74 | 472 | 1040 | 299 | 108 | 167 | | 4 | 154 | 81 | e70 | e58 | e58 | e59 | e76 | 631 | 1030 | 274 | 114 | 155 | | 5 | 150 | 81 | e65 | e60 | e57 | e61 | 96 | 792 | 996 | 258 | 106 | 148 | | 6 | 147 | 79 | e68 | e60 | e56 | e58 | 118 | 861 | 859 | 245 | 101 | 148 | | 7 | 151 | 79 | e66 | e60 | e56 | e59 | 131 | 808 | 901 | 219 | 95 | 162 | | 8
9 | 152 | 80 | e66 | e61 | e56 | e58 | 139 | 883 | 874 | 198 | 87 | 163 | | 9
10 | 148
140 | 80
71 | e64
e66 | e62
e60 | e57
e60 | e60
e57 | 143
166 | 733
615 | 886
797 | 215
213 | 87
88 | 164
148 | | 10 | | | 600 | 600 | 600 | | | | | | | | | 11 | 135 | 73 | e66 | e58 | e63 | e54 | 173 | 647 | 697 | 207 | 89 | 144 | | 12 | 130 | 71 | e64 | e58 | e62 | e56 | 162 | 619 | 647 | 215 | 94 | 137 | | 13
14 | 125
121 | 67
65 | e64
e62 | e58
e58 | e58
e56 | e56
e56 | 168
188 | 538
479 | 607
546 | 218
229 | 126
118 | 129
119 | | 15 | 117 | 67 | e58 | e60 | e56 | e58 | 207 | 428 | 452 | 247 | 122 | 113 | | | | | | | | | | | | | | | | 16
17 | 115 | 64
67 | e60 | e63 | e58
e57 | e60 | 189 | 421 | 542 | 256 | 130 | 109
108 | | 18 | 107
107 | 67
71 | e62
e62 | e64
e66 | e57
e56 | e60
e58 | 186
225 | 468
431 | 514
470 | 247
235 | 127
145 | 108 | | 19 | 106 | 56 | e62 | e68 | e54 | e56 | 227 | 406 | 480 | 215 | 180 | 117 | | 20 | 96 | 57 | e62 | e67
| e54 | e58 | 202 | 390 | 454 | 197 | 183 | 106 | | 21 | 97 | 63 | e65 | e64 | e54 | e58 | 206 | 464 | 430 | 183 | 183 | 102 | | 22 | 92 | 63 | e64 | e66 | e56 | e61 | 224 | 654 | 400 | 172 | 203 | 102 | | 23 | 92 | 60 | e62 | e62 | e55 | e60 | 224 | 1030 | 377 | 160 | 195 | 94 | | 24 | 89 | e60 | e64 | e60 | e54 | e60 | 226 | 1400 | 379 | 154 | 196 | 99 | | 25 | 89 | e60 | e66 | e61 | e53 | e62 | 236 | 1410 | 398 | 147 | 220 | 99 | | 26 | 89 | e63 | e63 | e66 | e52 | e64 | 265 | 1020 | 376 | 146 | 212 | 99 | | 27 | 89 | e64 | e61 | e65 | e54 | e64 | 342 | 859 | 368 | 141 | 198 | 98 | | 28 | 87 | e64 | e63 | e62 | e57 | e75 | 462 | 1020 | 364 | 135 | 190 | 98 | | 29 | 92 | e65 | e64 | e58 | e56 | e76 | 511 | 1400 | 341 | 132 | 200 | 100 | | 30 | 81 | e66 | e63 | e54 | | e76 | 451 | 1470 | 329 | 124 | 205 | 104 | | 31 | 90 | | e62 | e54 | | e77 | | 1380 | | 120 | 199 | | | TOTAL | 3691 | 2092 | 1990 | 1893 | 1626 | 1888 | 6167 | 23473 | 18914 | 6419 | 4515 | 3819 | | MEAN | 119 | 69.7 | 64.2 | 61.1 | 56.1 | 60.9 | 206 | 757 | 630 | 207 | 146 | 127 | | MAX | 174 | 90 | 72 | 68 | 63 | 77 | 511 | 1470 | 1240 | 316 | 220 | 187 | | MIN | 81 | 56 | 58 | 54 | 52 | 54 | 74 | 363 | 329 | 120 | 87 | 94 | | AC-FT | 7320 | 4150 | 3950 | 3750 | 3230 | 3740 | 12230 | 46560 | 37520 | 12730 | 8960 | 7570 | | STATIST | ICS OF MC | NTHLY MEAN | N DATA F | OR WATER | YEARS 1938 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 96.0 | 68.9 | 52.6 | 46.7 | 44.2 | 56.4 | 132 | 538 | 987 | 487 | 209 | 132 | | MAX | 242 | 143 | 75.7 | 66.5 | 71.0 | 102 | 340 | 1153 | 1586 | 1266 | 480 | 430 | | (WY) | 1942 | 1942 | 1984 | 1984 | 1986 | 1939 | 1952 | 1984 | 1944 | 1957 | 1999 | 1970 | | MIN | 40.3 | 42.7 | 34.6 | 32.5 | 30.4 | 30.5 | 53.3 | 205 | 263 | 107 | 82.5 | 45.5 | | (WY) | 1957 | 1940 | 1940 | 1977 | 1990 | 1977 | 1990 | 1977 | 1977 | 1977 | 1956 | 1956 | | SUMMARY | STATISTI | CS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1938 | - 2000 | | ANNUAL T | TOTAL | | | 112378 | | | 76487 | | | | | | | ANNUAL I | MEAN | | | 308 | | | 209 | | | 238 | | | | HIGHEST | ANNUAL M | EAN | | | | | | | | 413 | | 1984 | | | ANNUAL ME | | | | | | | | | 88.7 | | 1977 | | | DAILY ME | | | 1550 | Jun 26 | | 1470 | May 30 | | 2410 | | 29 1957 | | | DAILY MEA | | | e50 | Jan 29 | | e52 | Feb 26 | | 22 | | 21 1976 | | | SEVEN-DAY
ANEOUS PE | MINIMUM | | 56 | Mar 8 | | 54
1730 | Feb 20
May 30 | | 23
2720 | | L9 1976
L0 1983 | | | | AK FLOW
AK STAGE | | | | | | May 30
May 30 | | a4.18 | | 10 1983 | | | RUNOFF (A | | | 222900 | | | 151700 | nay 30 | | 172400 | oul 1 | LU 1903 | | | ENT EXCEE | | | 918 | | | 512 | | | 690 | | | | | ENT EXCEE | | | 93 | | | 100 | | | 86 | | | | 90 PERCI | ENT EXCEE | DS | | 59 | | | 58 | | | 41 | | | | | | | | | | | | | | | | | e Estimated. a At datum then in use. Maximum gage height, 4.77 ft, Jun 16, 1995, at present datum. ### 09125800 SILVER JACK RESERVOIR NEAR CIMARRON, CO LOCATION.--Lat 38°13'58", long 107°32'28", in T.46 N., R. 6 W., Gunnison County, Hydrologic Unit 14020002, in gate house of Silver Jack Dam on Cimarron River, 14.5 mi south of Cimarron. DRAINAGE AREA.--59 mi². PERIOD OF RECORD.--October 1987 to current year. REVISED RECORDS. -- WDR CO-92-2: 1991 minimum contents. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8925.60 ft. above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by an earthfill dam. Storage began in December 1970; dam completed December 1971. Capacity, 13,520 acre-ft, 1971 survey, between elevation 8,800.0 ft, streambed at dam, and 8,925.6 ft, crest of spillway. Dead storage below elevation 8,836.0 ft, 520 acre-ft. Figures given are live contents. Missing data are due to equipment malfunction. COOPERATION. -- Capacity tables provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 13,550 acre-ft, June 15-16, 1995, elevation, 8,927.45 ft; minimum contents, 1,840 acre-ft, Sept. 30, 1994, elevation, 8,864.91 ft. EXTREMES FOR CURRENT YEAR.--Maximum daily mean contents, 13,280 acre-ft, May 30, mean elevation, 8,926.52 ft; minimum daily mean contents, 3,130 acre-ft, Sept. 11, 12, mean elevation, 8,876.74 ft. ### MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation (feet) | Contents (acre-feet) | Change in contents (acre-feet) | |---|--|--|---| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 8905.37
8899.61
8900.83 | 8,050
6,760
7,000
- | -1,290
+240
- | | CAL YR 1999 | - | - | - | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. | -
-
-
8926.20
8925.23
8908.21 | -
-
-
13,180
12,900
8,550 | -
-
-
-
-
-280
-4,350 | | Aug. 31 | 8884.06
8877.11 | 4,120
3,170 | -4,430
-950 | | WATER YEAR 2000 | - | - | - | ### 09126000 CIMARRON RIVER NEAR CIMARRON, CO LOCATION.--Lat $38^{\circ}15^{\circ}26^{\circ}$, long $107^{\circ}32^{\circ}46^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ Sec.8, T.46 N., R.6 W., Gunnison County, Hydrologic Unit 14020002, on right bank 0.2 mi upstream from Forest Service bridge, 0.8 mi upstream from headgate on Cimarron ditch, 1.9 mi downstream from Silver Jack Dam, and 13 mi south of Cimarron. DRAINAGE AREA. -- 66.6 mi². PERIOD OF RECORD.--October 1954 to current year. Prior to October 1965, published as Cimarron Creek near Cimarron. Statistical summary computed for 1971 to current year. REVISED RECORDS .-- WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,641.48 ft above sea level. Oct. 14, 1954 to Oct. 11, 1972 at site 0.4 mi downstream at different datum. Oct. 12, 1972 to Sept. 30, 1996 at site 0.2 mi downstream at datum 10.00 ft lower. REMARKS.--Records good except for the period Nov. 19 to Mar. 19, which is fair, and estimated daily discharges, which are poor. Diversion upstream from station through Owl Creek ditch into Uncompanding River basin. Flow regulated by Silver Jack Dam, 1.9 mi upstream since Dec. 23, 1970, total capacity, 13,520 acre-ft. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBI | C FEET PE | | NATER YI
MEAN V | EAR OCTOBER | 1999 то | SEPTEMBE | R 2000 | | | |--|---|-----------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|---|--|------------------------------------|---|--------------------------------------|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 89
88
88
88 | 30
30
30
25 | 13
13
13
13 | 11
11
e11
e12 | 13
e13
13
12 | e13
12
e13
e13 | 13
14
13
14 | 96
109
130
133 | 629
548
482
520 | 159
158
162
166 | 101
102
97
93 | 97
99
100
94 | | 5 | 54 | 13 | e14 | 10 | 14 | 13 | 15 | 154 | 470 | 167 | 92 | 84 | | 6
7
8
9
10 | 29
28
41
41
40 | 13
13
14
14
14 | e14
e14
11
e13
12 | e11
e11
e11
e11 | 13
e13
e12
12
12 | e13
13
13
13
13 | 16
17
18
20
21 | 351
347
381
315
295 | 366
410
390
375
334 | 166
161
144
145
126 | 90
96
102
105
103 | 84
84
85
91
89 | | 11
12
13
14
15 | 40
41
41
41
42 | 14
14
14
14
14 | 12
e12
e12
e12
e13 | 11
10
9.8
e11
10 | 12
12
12
12
12 | e13
13
e13
e13
13 | 21
22
24
25
23 | 336
246
175
235
208 | 291
250
233
245
239 | 98
97
97
94
96 | e104
e110
e120
e110
e108 | 57
26
26
26
27 | | 16
17
18
19
20 | 40
40
40
40
40 | 14
14
14
e13
14 | e13
12
e13
12
e13 | 10
10
12
12
11 | 13
12
12
e12
e13 | 13
e13
e13
e13 | 21
24
26
23
23 | 225
254
217
199
187 | 238
187
194
184
168 | 100
105
115
114
117 | e108
106
105
106
104 | 27
27
28
33
39 | | 21
22
23
24
25 | 40
40
40
40
40 | 15
14
e13
e14
e13 | e12
e12
e12
e12
e12 | 11
11
11
12
12 | 12
12
e13
12
e14 | 13
13
13
13
13 | 23
22
24
26
27 | 228
329
511
653
584 | 160
170
169
170
166 | 117
110
102
105
109 | 103
104
105
103
104 | 39
39
37
37
37 | | 26
27
28
29
30
31 | 36
30
31
30
29
30 | 13
12
12
12
12 | 11
e11
e11
11
e11
e11 | 12
11
12
e13
e13
e13 | e12
e12
13
13 | 14
14
14
14
14 | 30
64
99
97
96 | 438
363
492
641
712
674 | 157
157
156
158
160 | 108
107
103
103
101
102 | 104
103
102
98
97 | 37
37
36
38
37 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1377
44.4
89
28
2730 | 465
15.5
30
12
922 | 380
12.3
14
11
754 | 347.8
11.2
13
9.8
690 | 362
12.5
14
12
718 | 408
13.2
14
12
809 |
901
30.0
99
13
1790 | 10218
330
712
96
20270 | 8376
279
629
156
16610 | 3754
121
167
94
7450 | 3182
103
120
90
6310 | 1597
53.2
100
26
3170 | | STATIST
MEAN | ICS OF MO | ONTHLY MEA | | OR WATER 14.8 | | | , BY WATER 23.9 | YEAR (WY)
175 | 438 | 222 | 110 | 75.4 | | MEAN
MAX
(WY)
MIN
(WY) | 135
1983
20.2
1991 | 46.9
1986
8.18
1990 | 16.4
31.7
1974
6.79
1978 | 30.0
1974
2.36
1971 | 15.0
29.4
1986
3.03
1971 | 16.4
35.3
1986
4.45
1971 | 46.5
1987
8.46
1977 | 440
1996
46.5
1995 | 799
1984
114
1977 | 222
640
1995
89.0
1977 | 118
239
1983
73.9
1981 | 126
1995
32.2
1977 | | | Y STATIST | rics | FOR | | ENDAR YEAR | | FOR 2000 W | ATER YEAR | ! | WATER YE | ARS 197 | 1 - 2000 | | LOWEST
HIGHEST
LOWEST | MEAN
'ANNUAL M
ANNUAL MI
'DAILY ME
DAILY ME | EAN
EAN
AN | | 34172
93.6
616
11 | Jun 18
Dec 8 | | 31367.8
85.7
712
9.8 | May 30
Jan 13 | | a99.0
180
40.2
1330
b,c.00 | Dec | 1984
1977
16 1995
24 1970 | | INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | ANEOUS PI | EAK STAGE
AC-FT)
EDS
EDS | | 67780
208
30
13 | Dec 25 | | 10
863
3.20
62220
226
29
12 | Jan 11
May 30
May 30 | | .00
d1620
f3.91
71690
273
30
11 | Jun | 24 1970
5 1997
5 1997 | e Estimated a Average discharge for 16 years (water years 1955-70), 88.6 ft³/s; 64190 acre-ft/yr, prior to completion of b Also occurred Dec. 25-31, 1970, and Jan. 1-9, 1971. Result of storage in Silver Jack Dam. c Minimum daily discharge prior to construction of Silver Jack Dam, 8.0 ft³/s, Dec. 27-28, 1962, and Jan. 13, 1963. d Maximum discharge and stage for period of record, 1790 ft³/s, Jun. 28, 1957, gage height, 8.32 ft, site and datum then in use. f Maximum gage height for statistical period, 6.16 ft, Jun. 25, 1971. ### 09128000 GUNNISON RIVER BELOW GUNNISON TUNNEL, CO LOCATION.--Lat $38^{\circ}31^{\circ}45^{\circ}$, long. $107^{\circ}38^{\circ}54^{\circ}$, in $NE^{1}/_{4}NW^{1}/_{4}$ sec.10, T.49 N., R.7 W., Montrose County, Hydrologic Unit 14020002, on left bank 0.4 mi downstream from east portal of Gunnison tunnel, 4.7 mi downstream from Crystal Creek, and 12 mi northeast DRAINAGE AREA. -- 3,965 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1903 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at east portal of Gunnison tunnel" 1905-6 and as "at River portal" 1907-11. Statistical summary computed for 1911 to current year. REVISED RECORDS.--WSP 1313: 1906(M). WSP 1733: 1918-19, 1948. WSP 2124: Drainage area. WDR CO-77-2: 1926, 1941. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,526.06 ft above sea level. Apr. 9, 1905 to Aug. 20, 1915, nonrecording gage at site 300 ft upstream from diversion dam at east portal of Gunnison Tunnel, at different datum. Aug. 21, 1915 to Jan. 19, 1943, nonrecording gage at site 500 ft downstream from diversion dam at east portal of Gunnison Tunnel, at different datum. Jan. 20, 1943 to Sept. 30, 1956, water-stage recorder at present site at datum 1.0 ft, higher. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by transmountain diversions, transbasin diversion through Gunnison Tunnel for irrigation of about 75,000 acres in Uncompangre Valley (see table below for figures of diversion), Taylor Park Reservoir (station 09108500), Blue Mesa Reservoir (station 09124600), Morrow Point Reservoir (station 09125400), Crystal Reservoir (station 09127600), diversions for irrigation of about 63,000 acres, and return flow from irrigated areas. COOPERATION.--Diversions, in acre-feet, through Gunnison Tunnel; provided by Colorado Division of Water Resources. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | DAILY MEAN VALUES | | | | | | | | | | | | | |------------|------------------------------------|--------------|--------------|--------------|--------------|----------------|----------------------------|----------------|----------------|---|----------------|--------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 2750 | 1110 | 1330 | 1310 | 776 | 720 | 737 | 804 | 845 | 910 | 1090 | 1100 | | | 2 | 3620 | 1350 | 1320 | 1310 | 837 | 718 | 739 | 796 | 851 | 932 | 1030 | 971 | | | 3
4 | 4500
4760 | 1330
1310 | 1320
1320 | 1310
1310 | 841
840 | 716
714 | 745
745 | 797
801 | 846
848 | 930
980 | 1060
1090 | 972
971 | | | 5 | 4190 | 1300 | 1320 | 1280 | 837 | 711 | 737 | 799 | 906 | 1010 | 1130 | 971 | | | | | | | | | | | | | | | | | | 6 | 3690 | 1290 | 1260 | 1050 | 833 | 657 | 743 | 804 | 908 | 963 | 1140 | 975 | | | 7
8 | 3130
2530 | 1350
1340 | 1320
1320 | 1050
1040 | 831
816 | 653
717 | 729
745 | 798
826 | 924
908 | 896
944 | 1160
1210 | 928
840 | | | 9 | 1970 | 1150 | 1310 | 1060 | 709 | 715 | 872 | 974 | 900 | 968 | 1190 | 842 | | | 10 | 1520 | 826 | 1310 | 959 | 656 | 717 | 966 | 969 | 893 | 925 | 1190 | 848 | | | 11 | 1370 | 665 | 1310 | 742 | 677 | 717 | 957 | 965 | 895 | 942 | 1120 | 853 | | | 12 | 1390 | 718 | 1320 | 800 | 720 | 715 | 958 | 970 | 880 | 951 | 1190 | 844 | | | 13 | 1350 | 1330 | 1310 | 801 | 720 | 716 | 960 | 969 | 863 | 917 | 1180 | 844 | | | 14 | 1280 | 1320 | 1310 | 803
803 | 722
719 | 730
934 | 923
907 | 967
926 | 853
847 | 923
922 | 1160
1120 | 848
850 | | | 15 | 1240 | 1320 | 1310 | 803 | /19 | 934 | 907 | 926 | 84/ | 922 | 1120 | 850 | | | 16 | 1240 | 1320 | 1310 | 802 | 718 | 742 | 902 | 914 | 849 | 909 | 1110 | 851 | | | 17 | 1240 | 1260 | 1310 | 806 | 712 | 728 | 911 | 1190 | 852 | 914 | 1140 | 813 | | | 18
19 | 1240
1250 | 1260
1320 | 1310
1310 | 810
814 | 712
711 | 741
731 | 906
916 | 1770
2320 | 858
865 | 932
935 | 1110
1180 | 705
709 | | | 20 | 1250 | 1320 | 1280 | 814 | 708 | 729 | 882 | 2870 | 863 | 952 | 1200 | 696 | | | | | | | | | | | | | | | | | | 21
22 | 1230
1230 | 1320
1330 | 1230
1310 | 821
818 | 712
664 | 731
732 | 863
847 | 3150
2930 | 864
870 | 940
940 | 1210
1210 | 697
670 | | | 23 | 1250 | 1330 | 1310 | 820 | 661 | 717 | 844 | 2490 | 859 | 947 | 1170 | 554 | | | 24 | 1250 | 1330 | 1310 | 822 | 716 | 711 | 833 | 2050 | 856 | 942 | 1180 | 558 | | | 25 | 1250 | 1330 | 1300 | 817 | 716 | 713 | 811 | 1630 | 855 | 947 | 1170 | 546 | | | 26 | 1250 | 1330 | 1310 | 813 | 715 | 711 | 807 | 1160 | 863 | 949 | 1200 | 561 | | | 27 | 1270 | 1330 | 1320 | 809 | 713 | 744 | 802 | 941 | 862 | 1070 | 1160 | 556 | | | 28 | 1280 | 1320 | 1310 | 803 | 716 | 745 | 802 | 954 | 857 | 1130 | 1200 | 560 | | | 29
30 | 1290
1320 | 1320 | 1310 | 799
827 | 720
 | 740
737 | 803
805 | 929
888 | 852
849 | 1170 | 1200 | 564
548 | | | 31 | 1310 | 1320 | 1310
1310 | 787 | | 741 | 805 | 842 | | 1160
1110 | 1160
1140 | 548 | | | TOTAL | 59440 | 37449 | 40540 | 28610 | 21428 | 22543 | 25197 | 40193 | 26041 | 30060 | 35800 | 23245 | | | MEAN | 1917 | 1248 | 1308 | 923 | 739 | 727 | 840 | 1297 | 868 | 970 | 1155 | 775 | | | MAX | 4760 | 1350 | 1330 | 1310 | 841 | 934 | 966 | 3150 | 924 | 1170 | 1210 | 1100 | | | MIN | 1230 | 665 | 1230 | 742 | 656 | 653 | 729 | 796 | 845 | 896 | 1030 | 546 | | | AC-FT
a | 117900
27250 | 74280
922 | 80410
285 | 56750
255 | 42500
344 | 44710
11790 | 49980
47920 | 79720
55980 | 51650
58340 | 59620
62510 | 71010
61170 | 46110
51990 | | | | | | | | | | , BY WATER | | | 02310 | 01170 | 31330 | | | MEAN | 570 | 767 | 809 | 790 | 779 | 875 | 1299 | 3166 | 4007 | 1542 | 691 | 508 | | | MAX | 2114 | 1888 | 2165 | 2732 | 3153 | 3278 | 3282 | 8617 | 11670 | 8468 | 2237 | 2447 | | | (WY) | 1912 | 1971 | 1987 | 1974 | 1971 | 1971 | 1930 | 1928 | 1957 | 1957 | 1957 | 1929 | | | MIN | 17.0 | 116 | 141 | 143 | 155 | 248 | 177 | 216 | 123 | 61.1 | 34.4 | 8.37 | | | (WY) | 1935 | 1935 | 1966 | 1966 | 1966 | 1966 | 1954 | 1967 | 1954 | 1940 | 1924 | 1937 | | | SUMMAR | Y STATIST | ICS | FOR | 1999 CALE | ENDAR YEAR |] | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1911 | - 2000 | | | | TOTAL | | | 440942 | | | 390546 | | | 1015 | | | | | ANNUAL | MEAN
TANNUAL | MEAN | | 1208 | | | 1067 | | | 1317
2936 | | 1984 | | | TOWNS | א דגדדדדר אי | דא איבו | | | | | | | | 261 | | 1967 | | | HIGHES | T DAILY M | EAN | | 4760 | Oct 4 | | 4760 | Oct 4 | | 18600 | Jun | 15 1921 | | | LOWEST | T DAILY ME DAILY ME SEVEN-DA | AN | | 433 | Apr 17 | | 4760
546
556
4880 | Sep 25 | | b.00 | Sep | 11 1915 | | | ANNUAL | SEVEN-DA
TANEOUS P | Y MINIMUM | l | 483 | Apr 15 | | 556 | Sep 24 | | .30 | Oct | 26 1950
15 1921 | | | | | | | | | | 7.36 | Oct 4 | | 261
18600
b.00
.30
c19000
15.80
954400
3130
620 | Jun | 15 1921 | | | ANNUAL | TANEOUS P
RUNOFF (
CENT EXCE | AC-FT) | | 874600 | | | 774600 | | | 954400 | | | | | 10 PER | CENT EXCE | EDS | | 1920 | | | 1320 | | | 3130 | | | | | 50 PER | CENT EXCE | EDS | | 1160
622 | | | 928
716 | | | 620
192 | | | | | JU PER | CENT FYCE | | | | | | /16 | | | | | | | a Diversions, in acre-feet, through Gunnison tunnel, provided by Colorado Division of Water Resources. b Also occurred Sep 26, 1936, Oct 8, 1949, Sep 5-6, and 15-16, 1950. c Present datum, from rating curve extended above 14,000 ft³/s. ## 09128000 GUNNISON RIVER BELOW GUNNISON TUNNEL, CO--Continued ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- December 1994 to September 2000 (discontinued). PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1996 to September 1998. REMARKS.--The following remark codes may appear in the data tables
below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | | E, SF
C CI
T DU
AN | ON-
JCT- (
JCE | STA
AR
UNI | TER
OLE
OLD
OND-
OTS) | AT
WA | PER-
URE
TER
G C)
010) | D
SO
(M | IS-
LVED
G/L) | FO
FE
0.
UM
(CO
100 | LI-
RM,
CAL,
7
-MF
LS./
ML)
625) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | |------------------|--------------------------------------|---|--|----------------------|------------------|--|-------------------------------|------------------------------------|----------------------|------------------------|------------------------------------|---|--| | OCT | 0020 | 1270 | | 0.7 | 0 | 0 | 1.1 | 0 | 0 | _ | | | 0.01 | | 13
DEC | 0930 | 1370 | | | | 0 | | | | .5 | | | .001 | | 02
FEB | 1225 | 1340 | 1 | .86 | 8. | . 3 | 6 | .5 | 9 | .7 | | | <.001 | | 28
MAR | 1600 | 720 | 2 | 204 | 8. | 3 | 2 | . 0 | 11 | .0 | < | 1 | <.001 | | 21
APR | 1230 | 726 | 2 | 17 | 8. | 4 | 4 | .0 | 11 | .6 | < | 1 | <.001 | | 20 | 1330 | 860 | 2 | 205 | 8. | 3 | 5 | . 4 | 10 | .2 | < | 1 | <.001 | | MAY
22 | 1420 | 2940 | 1 | .73 | 8. | 0 | 8 | .3 | 9 | .7 | K | 1 | <.001 | | JUN
09 | 1130 | 900 | 1 | .73 | 8. | 1 | 10 | . 3 | 9 | .7 | K | 3 | .001 | | JUL
19 | 1045 | 958 | 1 | .91 | 8. | 2 | 10 | .5 | 8 | .8 | K | 6 | .001 | | AUG
29 | 1200 | 1220 | 1 | .92 | 7. | 9 | 11 | .5 | 9 | .0 | K | 1 | .001 | | SEP 27 | 1200 | 553 | 1 | .92 | 8. | 2 | 12 | .5 | 8 | .8 | K | 1 | .001 | | DATE | GE
NO2+
DI
SOI
(MG
AS | EN,
-NO3 A
ES-
LVED
E/L
N) | MMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN, AN
MONIA | 1-
+
IC | GEN,
MONI
ORGA
DIS
(MG
AS | AM-
A +
NIC
/L
N) | PHOR
PHOR
TOT
(MG
AS | US
AL
/L
P) | DI
SOL
(MG
AS | US
S-
VED
/L
P) | PHO
PHOR
ORT
DIS
SOLV
(MG/
AS P | US
HO,
-
ED
L | | OCT
13
DEC | .0 | 34 | <.002 | .15 | | .1 | 2 | .02 | 2 | .01 | 5 | .01 | 0 | | 02
FEB | .0 | 183 | <.002 | .14 | | <.1 | 0 | .02 | 7 | .02 | 1 | .01 | 5 | | 28 | .0 | 144 | <.002 | E.10 | | .1 | 2 | .01 | 4 | .01 | 1 | .01 | 1 | | MAR
21 | .0 | 35 | <.002 | .17 | | E.1 | 0 | .01 | 3 | .01 | 0 | .01 | 0 | | APR
20 | .0 | 126 | .010 | .34 | | .1 | 2 | .02 | 0 | .01 | 3 | .00 | 9 | | MAY
22 | <.0 | 05 | .004 | .33 | | .1 | 2 | .03 | 6 | .01 | 5 | .00 | 1 | | JUN
09 | .0 | 21 | <.002 | .18 | | .1 | 4 | .02 | 7 | .01 | 3 | .00 | 8 | | JUL
19 | .0 | 14 | <.002 | .18 | | .1 | 3 | .02 | 2 | .01 | 2 | .00 | 8 | | AUG
29 | .0 | 136 | .005 | .17 | | .1 | 1 | .02 | 4 | .01 | 6 | .01 | 3 | | SEP
27 | .0 | 18 | .003 | .13 | | .1 | 0 | .02 | 3 | .01 | 3 | .00 | 9 | | MICCELLAND | OUC ETE | ידי אודי | CITDEMEN | ייים אוזים | מיזי | מתידות | OOT | ODED | 1000 | TO C | שתיים | MDED | 2000 | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | OCT | | | | | JAN | | | | | | 04 | 1520 | 4790 | 182 | 11.2 | 13 | 1100 | 801 | 198 | 3.0 | | NOV | | | | | | | | | | | 02 | 1230 | 1340 | 193 | 9.8 | | | | | | ### 09131495 PAONIA RESERVOIR NEAR BARDINE, CO LOCATION.--Lat $38^{\circ}56'39"$, long $107^{\circ}21'06"$, in $NE^{1}/_{4}$ sec.8, T.13 S., R.89 W., Gunnison County, Hydrologic Unit 14020004, in gate house of Paonia Dam on Muddy Creek, 16 mi east of Paonia. DRAINAGE AREA. -- 246 mi². PERIOD OF RECORD.--December 1961 to current year. Monthend active contents provided by U.S. Bureau of Reclamation from December 1961 to September 1987. Extremes for period of record are subsequent to 1987. REVISED RECORD. -- WDR CO-92-2; 1988-91. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,447.50 ft above sea level (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by an earthfill dam. Storage began in December 1961; dam completed January 1962. Capacity, 20,950 acre-ft 1966 survey, between elevation 6,290.0 ft streambed at dam, and 6,447.5 ft, crest of spillway. Dead storage below elevation 6,358.0 ft, 2,440 acre-ft. Inactive storage below elevation 6360.0 ft, 2,620 acre-ft. Figures published prior to 1988 water year are active contents; figures given beginning 1988 water year are live contents. COOPERATION .-- Capacity tables provided by U.S. Bureau of Reclamation. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 17,460 acre-ft, June 6, 1995, elevation 6,449.76 ft; minimum contents, 117 acre-ft, Apr. 14, 1996, elevation 6,360.72 ft. EXTREMES FOR CURRENT YEAR.--Maximum daily mean contents, 17,100 acre-ft, June 1, elevation, 6,448.64 ft; minimum daily mean contents, 773 acre-ft, Sept. 21, mean elevation, 6,373.01 ft. ### MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation (feet) | Contents (acre-feet) | Change in contents (acre-feet) | |--|---|--|---| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 6416.57
6393.55
6397.34
6403.26 | 7,700
3,040
3,660
4,720 | -4,660
+620
+1,060 | | CAL YR 1999 | - | - | +2,360 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 6409.12
6414.78
6400.91
6411.85
6448.63
6447.40
6426.66
6375.39
6373.34 | 5,940
7,260
4,280
6,560
17,080
16,670
10,350
939
795 | +1,220
+1,320
-2,980
+2,280
+10,520
-410
-6,320
-9,411
-144 | | WATER YEAR 2000 | - | - | -6,905 | ### 09132500 NORTH FORK GUNNISON RIVER NEAR SOMERSET, CO LOCATION.--Lat $38^{\circ}55^{\circ}33^{\circ}$, long. $107^{\circ}26^{\circ}01^{\circ}$, in $\mathrm{SE}^{1}/_{4}\mathrm{SW}^{1}/_{4}$ sec.10, T.13 S., R.90 W., Gunnison County, Hydrologic Unit 14020004, on left bank 2.3 mi east of Somerset and 4.8 mi upstream from Hubbard Creek. DRAINAGE AREA. -- 526 mi². PERIOD OF RECORD.--October 1933 to current year. Monthly discharge only for some periods, published in WSP 1313. Water quality data available, October 1977 to September 1982. Sediment data available, November 1978 to September 1982. REVISED RECORDS.--WSP 2124: Drainage area. WDR CO-77-2: 1976. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 6,280 ft above sea level, from topographic map. Prior to Oct. 1, 1982, at various sites 0.8 mi downstream, at different datums. See WDR CO-81-2, for history of changes. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by small diversions for irrigation in nearby drainage areas, irrigation of about 3,000 acres upstream from station, storage in Overland Reservoir (capacity, 6,280 acre-ft) and storage in Paonia Reservoir (capacity, 18,300 acre-ft) since February 1962. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--|--|--|-------------------------------------|---|---|--|--------------------------------------|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 223
220
140
101
95 | 101
98
97
96
96 | e68
57
56
51
e54 | e51
e55
e51
e49
e53 | e49
e46
e50
e48
e48 | e65
e64
e68
74
88 | 235
244
249
269
351 | 1200
1290
1440
1670
1890 | 1410
1260
1120
1010
958 | 221
228
232
221
216 | e181
e152
e181
e210
e220 | 125
123
121
118
115 | | | 6
7
8
9
10 | 91
101
111
105
100 | 96
96
94
80
67 | e51
e61
e65
e56
e64 | e53
e47
e51
e52
e51 | e49
e48
e49
e49 | 86
86
80
76
74 | 451
562
643
688
836 | 2040
1930
2130
1750
1500 |
901
836
764
746
622 | 220
226
231
265
261 | e206
e196
e182
e164
e160 | 115
115
114
126
113 | | | 11
12
13
14
15 | 98
143
207
234
296 | 68
68
64
61
63 | e66
e56
e52
e58
e48 | e51
e50
e47
e47
e49 | e51
e50
e49
e51
e52 | 70
76
72
76
123 | 909
1040
1200
1230
1110 | 1610
1490
1170
1030
877 | 552
507
450
406
386 | 242
233
225
222
289 | e172
e184
e208
e294
233 | 110
107
105
102
99 | | | 16
17
18
19
20 | 292
289
289
285
216 | 61
66
61
48
e66 | e64
e66
e59
e60
e58 | e49
e51
e58
e57
e54 | e52
e57
e51
e49
e52 | 163
217
280
274
280 | 899
932
1050
940
856 | 847
961
751
638
585 | 376
327
294
332
340 | e300
277
224
227
254 | 231
225
224
221
216 | 99
95
100
98
93 | | | 21
22
23
24
25 | 169
253
253
247
245 | e68
e70
e56
e52
e60 | e56
e57
e58
e52
e53 | e54
e51
e47
e49
e52 | 61 | 276
274
283
297 | 864
841
838
912
945 | 606
798
1390
1920
1940 | 296
263
249
233
231 | 237
228
233
e220
e240 | 218
214
211
212
215 | 95
96
94
101
97 | | | 26
27
28
29
30
31 | 244
206
102
108
101
103 | e74
73
78
e69
e69 | e53
e52
e51
e52
e51
e48 | e52
e53
e47
e40
e36
e44 | 66
60
65
66
 | 319
332
326
272
264
249 | 1080
1300
1400
1340
1230 | 1540
1240
1360
1670
1790
1610 | 243
238
216
196
229 | e224
e198
e168
e150
e140
e162 | 210
207
207
207
167
128 | 96
91
92
101
101 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 5667
183
296
91
11240 | 2216
73.9
101
48
4400 | 48
3480 | 1551
50.0
58
36
3080 | 66
46
3060 | 5561
179
332
64
11030 | 25444
848
1400
235
50470 | 42663
1376
2130
585
84620 | 15991
533
1410
196
31720 | 7014
226
300
140
13910 | 6256
202
294
128
12410 | 3157
105
126
91
6260 | | | MEAN
MAX
(WY)
MIN
(WY) | 122
466
1987
47.9
1957 | 94.3
318
1987
35.2
1990 | 77.0
271
1966
33.1
1978 | 65.4
166
1966
29.6
1990 | 70.8
180
1986
30.4
1978 | - 2000,
155
721
1986
40.2
1964 | 728
1736
1986
166
1977 | YEAR (WY)
1936
3993
1984
314
1977 | 1489
4095
1957
179
1934 | 455
1834
1995
64.6
1934 | 200
438
1957
48.1
1977 | 153
319
1986
47.6
1934 | | | SUMMARY | STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1934 | - 2000 | | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN TANNUAL ANNUAL M TDAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 132577
363
2420
48
51
263000
1210
203
60 | May 24
Nov 19
Dec 25 | | 118818
325
2130
e36
45
2280
4.30
235700
1020
151
51 | May 8
Jan 30
Jan 28
May 5
May 5 | | 463
829
114
7080
17
25
9220
a8.20
335700
1510
137
53 | Feb 1
May 2 | 1984
1977
4 1984
0 1950
7 1978
4 1984
4 1984 | | e Estimated. a From outside high-water mark. ### 09134000 MINNESOTA CREEK NEAR PAONIA, CO LOCATION.--Lat $38^{\circ}52^{\circ}12^{\circ}$, long. $107^{\circ}30^{\circ}13^{\circ}$, in $\mathrm{SE}^{1}/_{4}\mathrm{NE}^{1}/_{4}$ of sec.1, T.14 S., R.91 W., Delta County, Hydrologic Unit 14020004, on right bank 0.25 mi downstream from South Fork, 6 mi upstream from mouth, and 4.5 mi east of Paonia. DRAINAGE AREA. -- 41.3 mi². PERIOD OF RECORD.--April 1936 to September 1947, October 1985 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,200 ft above sea level, from topographic map. Apr. 1936 to Oct. 1941, staff gages at different datums. Oct. 1941 to Sept. 1947, water-stage recorder at different datum. Dec. 1985 to present, water-stage recorder, at datum 2.0 ft lower. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by two small storage reservoirs, one of which obtains water from the East Muddy Creek Basin. Small trans-basin diversions from Coal Creek into Minnestota Creek. Diversions upstream from station for irrigation of about 100 acres. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBIC | C FEET PER | | MEAN VA | AR OCTOBER
LUES | 1999 10 | SEPTEMBE | R 2000 | | | |---|--|--|--------------------------------------|--|--------------------------------------|---|--------------------------------------|-------------------------------------|-------------------------------------|---|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.4
3.5
3.5
3.3
2.8 | 1.6
1.7
1.8
1.8 | 2.3
e2.0
e1.8
1.5
e1.5 | e1.7
e1.6
e1.5
e1.5
e1.6 | e1.7
e1.8
e1.7
e1.7 | 1.9
1.9
1.9
2.3
2.9 | 3.1
3.0
3.0
3.9
6.3 | 20
20
22
25
26 | 43
42
39
36
34 | 19
19
19
18
18 | 13
13
13
13 | 10
9.8
9.8
9.5
9.5 | | 6
7
8
9
10 | 2 1 | | e1.6
e1.8
e1.7
e1.7 | e1.7
e1.7
e1.7
e1.7
e1.8 | e1.7
e1.7
e1.6
1.6
2.0 | 2.5
2.7
2.1
2.2
1.9 | 8.0
9.3
9.2
10 | 26
26
38
35
33 | 31
29
30
35
32 | 19
17
17
17
17 | 13
13
13
13 | 8.4
5.6
6.6
6.6
5.6 | | 11
12
13
14
15 | 2.8
2.7
2.7
2.7
2.7 | 1.9
1.8
1.9
2.0 | e1.6
e1.7
e1.7
e1.6
e1.7 | e1.8
e1.8
e1.8
e1.8 | 2.0
1.7
1.6
1.7 | 1.8
2.1
1.9
2.1
2.2 | 12
12
14
14
16 | 36
37
32
31
33 | 30
30
29
26
25 | 16
16
16
15
16 | 13
13
13
13 | 4.9
4.6
4.3
4.0
4.0 | | 16
17
18
19
20 | 2.6
2.5
2.6
2.6
2.5 | 1.9
2.1
2.5
1.8
e1.8 | e1.7
e1.8
e1.9
e1.7
e1.6 | e1.9
e1.8
e1.7
e1.8
e1.8 | 1.6
1.9
1.7
2.0
2.6 | 2.2
2.0
1.9
1.8
2.0 | 13
13
14
12
11 | 30
32
31
28
27 | 23
21
19
19 | 16
19
17
16
16 | 12
12
12
13
12 | 3.9
3.9
4.9
4.3
4.1 | | 22
23 | 2.5 | e1.8
e1.6
e1.5
1.4
e1.5 | e1.6
e1.6
e1.7
e1.9
e1.8 | e1.9
e1.8
e1.7
e1.8
e1.7 | 2.0
2.4
2.0
2.0 | 1.9
2.0
2.0
2.4
2.8 | 12
12
12
14
14 | 26
33
42
48
46 | 18
17
18
20
19 | 16
15
15
15
15 | 9.9
6.5
6.1
5.8
5.8 | | | 26
27
28
29
30
31 | 1.9
1.9
1.6
1.7
1.5 | e1.8
e2.0
e1.9
e2.0
2.2 | e1.8
e1.9
e1.9
e1.8
e1.9 | e1.7
e1.6
e1.5
e1.5
e1.4
e1.5 | 2.4
2.4
2.1
2.0 | 3.5
4.3
5.0
5.2
4.3
3.9 | 16
19
22
22
20 | 40
36
36
40
39
39 | 20
22
21
21
21
 | 15
15
15
14
14
14 | 5.8
5.5
6.3
10
10 | 4.4
4.3
4.1
5.9
4.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 81.9
2.64
3.7
1.5
162 | 55.2
1.84
2.5
1.4
109 | 54.2
1.75
2.3
1.5
108 | 52.6
1.70
1.9
1.4
104 | 54.7
1.89
2.6
1.6
108 | 79.6
2.57
5.2
1.8
158 | 718 | 2010 | | 506
16.3
19
14
1000 | 337.7
10.9
13
5.5
670 | 169.7
5.66
10
3.9
337 | | MEAN
MAX
(WY)
MIN
(WY) | 6.00
16.6
1942
2.64
2000 | 5.27
12.9
1987
1.84
2000 | 4.33
9.08
1987
1.75
2000 | 3.55
5.80
1942
1.70
2000 | 3.97
8.62
1986
1.89
2000 | - 2000,
7.42
19.2
1986
2.57
2000 | 28.1
89.6
1942
7.18
1990 | 94.0
199
1993
23.6
1990 | 73.9
194
1993
25.2
1990 | 28.7
88.2
1995
11.6
1939 | 15.6
29.7
1993
4.49
1990 | 8.25
19.8
1993
3.57
1946 | | SUMMARY | STATISTI | CS | FOR I | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | EARS 1937 | - 2000 | | LOWEST A HIGHEST LOWEST I ANNUAL S INSTANTA INSTANTA ANNUAL I 10 PERCE 50 PERCE | MEAN ANNUAL MANNUAL ME DAILY ME DAILY ME SEVEN-DAY ANEOUS PE | MEAN CAN CAN CAN CAN CAN CAN CAN CAN CAN C | | 4501.6
12.3
83
1.2
1.4 | | | 3555.4
9.71 | | | 23.3
46.9
7.97
340
1.0
a1.4
359
b3.24
16910
68
7.1
2.9 | May:
Nov:
Feb:
May: | 1993
1990
28 1993
14 1936
17 1999
28 1993
28 1993 | e Estimated. a Also occurred Jan 16, 1990. b Maximum gage height, 3.70 ft, May 22, 1942, site and datum then in use. ### 09134100 NORTH FORK GUNNISON RIVER BELOW PAONIA, CO LOCATION.--Lat $38^{\circ}51^{\circ}27^{\circ}$, long $107^{\circ}37^{\circ}19^{\circ}$, in
$SW^{1}/_{4}SE^{1}/_{4}$ of sec.1, T.14 S., R.92 W., Delta County, Hydrologic Unit 14020004, on left bank 1,250 ft downstream from Roatcap Creek, and 1.5 mi southwest of Paonia. DRAINAGE AREA.--741 mi². PERIOD OF RECORD. -- March to September 2000. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,560 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversion to Fire Mountain Canal for irrigation of about 5,000 acres above and below station and many other smaller diversions for irrigation above station, storage in Overland Reservoir (capacity, 6,280 acre-ft), and storage in Paonia Reservoir (capacity, 18,300 acre-ft), since February 1962. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period March to September, 2,980 ft³/s, at 0100 May 6, gage height 4.10 ft; minimum daily, 4.5 ft³/s, Sept. 15. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIDCHIN | .GE, CODIC | . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | Y MEAN VA | | 1555 1 | O DEL TEMBE | mt 2000 | | | |-------|-----|---------|------------|---|-----|-----------|-------|--------|-------------|---------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | 249 | 1290 | 1250 | 8.0 | 8.9 | 11 | | 2 | | | | | | | 257 | 1390 | 1060 | 9.4 | 5.6 | 14 | | 3 | | | | | | | 254 | 1630 | 912 | 12 | 9.4 | 12 | | 4 | | | | | | | 275 | 1940 | 766 | 9.6 | 11 | 9.4 | | 5 | | | | | | | 371 | 2320 | 705 | 7.4 | 12 | 7.3 | | 3 | | | | | | | 371 | 2320 | 703 | 7 . 1 | 12 | 7.5 | | 6 | | | | | | | 507 | 2560 | 649 | 6.3 | 9.0 | 7.0 | | 7 | | | | | | 99 | 678 | 2370 | 594 | 7.5 | 7.9 | 8.2 | | 8 | | | | | | 95 | 808 | 2700 | 519 | 9.2 | 7.5 | 7.3 | | 9 | | | | | | 90 | 909 | 2120 | 509 | 44 | 6.7 | 23 | | 10 | | | | | | 86 | 1150 | 1580 | 416 | 50 | 6.9 | 15 | | | | | | | | 00 | 1150 | 1500 | 110 | 50 | 0.5 | 10 | | 11 | | | | | | 69 | 1230 | 1750 | 365 | 36 | 9.3 | 13 | | 12 | | | | | | 88 | 1380 | 1590 | 320 | 19 | 9.6 | 9.5 | | 13 | | | | | | 79 | 1680 | 1130 | 279 | 10 | 23 | 5.7 | | 14 | | | | | | e80 | 1750 | 900 | 230 | 7.9 | 15 | 4.8 | | 15 | | | | | | e110 | 1620 | 710 | 202 | 62 | 12 | 4.5 | | | | | | | | | | | | | | | | 16 | | | | | | e150 | 1200 | 605 | 198 | 152 | 11 | 5.6 | | 17 | | | | | | e200 | 1280 | 782 | 157 | 144 | 12 | 4.8 | | 18 | | | | | | e270 | 1450 | 570 | 182 | 32 | 12 | 7.7 | | 19 | | | | | | e260 | 1130 | 459 | 301 | 11 | 14 | 8.7 | | 20 | | | | | | e270 | 901 | 393 | 309 | 15 | 11 | 6.7 | | | | | | | | | | | | | | | | 21 | | | | | | e270 | 971 | 394 | 137 | 10 | 14 | 8.0 | | 22 | | | | | | 275 | 924 | 520 | 93 | 6.9 | 17 | 11 | | 23 | | | | | | 270 | 852 | 1080 | 57 | 6.3 | 11 | 9.8 | | 24 | | | | | | 275 | 987 | 1920 | 49 | 6.9 | 11 | 20 | | 25 | | | | | | 285 | 1030 | 2030 | 44 | 14 | 14 | 27 | | | | | | | | | | | | | | | | 26 | | | | | | 312 | 1210 | 1470 | 42 | 8.1 | 12 | 25 | | 27 | | | | | | 325 | 1550 | 1050 | 37 | 7.2 | 11 | 17 | | 28 | | | | | | 344 | 1720 | 1130 | 24 | 5.9 | 9.4 | 15 | | 29 | | | | | | 288 | 1600 | 1550 | 9.0 | 5.5 | 8.5 | 28 | | 30 | | | | | | 284 | 1350 | 1720 | 8.6 | 6.2 | 11 | 53 | | 31 | | | | | | 270 | | 1510 | | 6.7 | 13 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | 31273 | 43163 | 10423.6 | 736.0 | 345.7 | 399.0 | | MEAN | | | | | | | 1042 | 1392 | 347 | 23.7 | 11.2 | 13.3 | | MAX | | | | | | | 1750 | 2700 | 1250 | 152 | 23 | 53 | | MIN | | | | | | | 249 | 393 | 8.6 | 5.5 | 5.6 | 4.5 | | AC-FT | | | | | | | 62030 | 85610 | 20680 | 1460 | 686 | 791 | e Estimated. ### 09135950 NORTH FORK GUNNISON RIVER BELOW LEROUX CREEK, NEAR HOTCHKISS, CO LOCATION.--Lat $38^{\circ}47^{\circ}18^{\circ}$, long $107^{\circ}44^{\circ}21^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.36, T.14 S., R.93 W., Delta County, Hydrologic Unit 14020004, on left bank 0.7 mi downstream from Leroux Creek, and 1 mi southwest of Hotchkiss. DRAINAGE AREA. -- 922 mi2. AC-FT ___ ___ ___ PERIOD OF RECORD. -- July 1997 to current year (seasonal records only). GAGE. -- Water-stage recorder with satellite telemetry. Elevation of gage is 5,240 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by irrigation of about 44,000 acres upstream from station, storage in Overland Reservoir, capacity, 6,280 acre-ft, and storage in Paonia Reservoir (capacity, 18,300 acre-ft). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES FOR PERIOD OF RECORD (seasonal only).--Maximum discharge, 3,220 $\rm ft^3/s$, May 24, 1999, gage height, 11.34, minimum daily, 36 $\rm ft^3/s$, July 6, 7, Aug. 8, 2000. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge 3,230 ft³/s (discharge measurment), June 11, 1997, gage height, 11.82 ft. EXTREMES FOR CURRENT YEAR (seasonal only).--Maximum discharge, 2,600 ft³/s at 0200, May 6, gage height, 11.08 ft; minimum daily, 36 ft³/s, July 6, 7, Aug. 8. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY DEC SEP OCT NOV JAN FEB MAR APR MAY JUN AUG ------------7 170 ---117 2320 ---___ ------------___ ___ ___ ___ 300 ___ ---___ ___ 1830 1300 310 55 70 ___ ---------___ ___ ___ ___ 267 172 71 ___ ___ ___ ___ ___ ___ ___ ___ 372 74 ___ ___ ___ ___ ------___ ___ ___ ___ ------------___ ___ ___ ___ ------------------------___ ___ TOTAL MEAN ------------60.7 81.2 58.8 ------------MAY MIN ### 09143000 SURFACE CREEK NEAR CEDAREDGE, CO LOCATION.--Lat $38^{\circ}59^{\circ}05^{\circ}$, long $107^{\circ}51^{\circ}13^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.25, T.12 S., R.94 W., Delta County, Hydrologic Unit 14020005, on left bank 5 ft downstream from private bridge, 1.4 mi downstream from Caesar Creek, and 7.0 mi northeast of Cedaredge. DRAINAGE AREA. -- 27.4 mi². PERIOD OF RECORD.--July 1939 to September 1999. October 1999 to September 2000 (seasonal records only). Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WDR CO-83-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 8,261 ft above sea level, from topographic map. REMARKS.-- Records good except for estimated daily discharges, which are poor. Flow regulated by many small reservoirs. Some water imported from Leon Lake in Plateau Creek drainage. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 892 ft³/s, June 15, 1995, gage height, 3.79 ft; maximum gage height, 5.10 ft, Apr. 13, 1958 (ice jam); minimum daily, 0.80 ft³/s, Jan. 15, 1977. EXTREMES FOR CURRENT YEAR (seasonal only).--Maximum discharge, 198 ${\rm ft}^3/{\rm s}$, at 1845 Apr. 27, gage height, 2.43 ${\rm ft}$; minimum daily, 6.9 ${\rm ft}^3/{\rm s}$, Apr. 1. | | | DISCHARO | GE, CUBIC | FEET PER | | WATER Y | EAR OCTOBER
ALUES | R 1999 TO | SEPTEMBE | R 2000 | | | |-------|------|----------|-----------|----------|-----|---------|----------------------|-----------|----------|--------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 32 | | | | | | 6.9 | 114 | 86 | 38 | 56 | 25 | | 2 | 32 | | | | | | 7.1 | 122 | 81 | 38 | 43 | 25 | | 3 | 31 | | | | | | 7.2 | 128 | 76 | 40 | 42 | 24 | | 4 | 24 | | | | | | 9.1 | 129 | 73 | 39 | 45 | 26 | | 5 | 25 | | | | | | 14 | 126 | 77 | 37 | 45 | 28 | | 6 | 36 | | | | | | 19 | 123 | 73 | 39 | 43 | 34 | | 7 | 37 | | | | | | 24 | 116 | 81 | 68 | 39 | 36 | | 8 | 39 | | | | | | 28 | 117 | 80 | 67 | 39 | 40 | | 9 | 39 | | | | | | 33 | 100 | 84 | 70 | 39 | 37 | | 10 | 38 | | | | | | 40 | 100 | 80 | 61 | 39 | 34 | | 11 | 23 | | | | | | 38 | 106 | 75 | 59 | 44 | 35 | | 12 | 23 | | | | | | 44 | 93 | 70 | 59 | 44 | 34 | | 13 | 25 | | | | | | 58 | 80 | 69 | 57 | 43 | 17 | | 14 | 26 | | | | | | 54 | 75 | 80 | 50 | 35 | 15 | | 15 | 26 | | | | | | 39 | 73 | 82 | 49 | 36 | 18 | | 16 | 26 | | | | | | 33 | 75 | 92 | 54 | 39 | 18 | | 17 | 25 | | | | | | 51 | 77 | 90 | 59 | 44 | 18 | | 18 | 22 | | | | | | 54 | 84 | 87 | 56 | 38 | 22 | | 19 | 22 | | | | | | 37 | 78 | e72 | 49 | 36 | 19 | | 20 | 22 | | | | | | 42 | 76
76 | e61 | 48 | 33 | 19 | | 20 | 22 | | | | | | 42 | 70 | 601 | 40 | 33 | 19 | | 21 | 23 | | | | | | 52 | 80 | 49 | 44 | 29 | 22 | | 22 | 30 | | | | | | 48 | 91 | 48 | 43 | 30 | 27 | | 23 | 30 | | | | | | 53 | 102 | 49 | 42 | e33 | 24 | | 24 | 29 | | | | | | 73 | 125 | 48 | 36 | e36 | 23 | | 25 | 26 | | | | | | 92 | 125 | 50 | 35 | e35 | 22 | | 26 | 26 | | | | | | 111 | 123 | 50 | 46 | e36 | 21 | | 27 | 26 | | | | | | 130 | 116 | 49 | 48 | e37 | 19 | | 28 | 27 | | | | | | 132 | 112 | 49 | 54 | 39 | 18 | | 29 | e29 | | | | | | 114 | 106 | 45 | 52 | 38 | 14 | | 30 | e27 | | | | | | 109 | 101 | 39 | 52 | 41 | 14 | | 31 | e27 | | | | | | | 91 | | 57 | 37 | | | TOTAL | 873 | | | | | | 1552.3 | 3164 | 2045 | 1546 | 1213 | 728 | | MEAN | 28.2 | | | | | | 51.7 | 102 | 68.2 | 49.9 | 39.1 | 24.3 | | MAX | 39 | | | | | | 132 | 129 | 92 | 70 | 56 | 40 | | MIN | 22 | | | | | | 6.9 | 73 | 39 | 35 | 29 | 14 | | AC-FT | 1730 | | | | | | 3080 | 6280 | 4060 | 3070 | 2410 | 1440 | | AC-FI | 1/30 | | | | | | 3080 | 0280 | 4000 | 3070 | 2410 | 1440 | e Estimated. ### 09143500 SURFACE CREEK AT CEDAREDGE, CO LOCATION.--Lat $38^{\circ}54^{\circ}06^{\circ}$, long $107^{\circ}55^{\circ}14^{\circ}$, in $SW^{1}/_{4}SE^{1}/_{4}$ sec.20, T.13 S., R.94 W., Delta County, Hydrologic Unit 14020005, on left bank at
Cedaredge, 700 ft east of State Highway 65, and 8.5 mi upstream from mouth. DRAINAGE AREA. -- 39.0 mi². PERIOD OF RECORD.--October 1916 to September 1999. October 1999 to September 2000 (seasonal records only). Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WRD CO-83-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Elevation of gage is 6,220 ft above sea level, from topographic map. Prior to June 8, 1917, nonrecording gage at present site at datum 0.50 ft, higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions to and from nearby streams, many small storage reservoirs, diversions for irrigation, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,190 ft^3/s , May 13, 1941, gage height, 2.50 ft from rating curve extended above 640 ft^3/s ; maximum gage height, 3.10 ft, May 21, 1993; minimum daily, no flow at times some years. EXTREMES FOR CURRENT YEAR (seasonal only).--Maximum discharge, 198 ft³/s at 2030 Apr. 27, gage height, 2.09 ft; minimum daily, 6.8 ft³/s, Sept. 27. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CODIC | . PEBI FEN | | MEAN VA | LUES | K 1999 10 | DEF TEMBE | 10 2000 | | | |-------|------|---------|-----------|------------|-----|---------|--------|-----------|-----------|---------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 16 | | | | | | e9.0 | 87 | 56 | 18 | 22 | 14 | | 2 | 18 | | | | | | e9.3 | 99 | 52 | 17 | 15 | 13 | | 3 | 19 | | | | | | e9.5 | 92 | 50 | 20 | 13 | 13 | | 4 | 14 | | | | | | e12 | 83 | 48 | 19 | 23 | 12 | | 5 | 15 | | | | | | 15 | 81 | 49 | 17 | 25 | 11 | | 6 | 22 | | | | | | 26 | 77 | 46 | 17 | 24 | 13 | | 7 | 23 | | | | | | 36 | 71 | 48 | 24 | 20 | 13 | | 8 | 25 | | | | | | 39 | 77 | 46 | 21 | 19 | 15 | | 9 | 24 | | | | | | 47 | 63 | 53 | 25 | 17 | 14 | | 10 | 24 | | | | | | 58 | 59 | 48 | 21 | 16 | 9.2 | | 11 | 16 | | | | | | 51 | 71 | 44 | 20 | 19 | 11 | | 12 | 15 | | | | | | 43 | 65 | 41 | 22 | 19 | 10 | | 13 | 17 | | | | | | 59 | 57 | 40 | 21 | 19 | 10 | | 14 | 17 | | | | | | 62 | 52 | 37 | 25 | 13 | 11 | | 15 | 18 | | | | | | 47 | 50 | 36 | 25 | 14 | 11 | | 16 | 18 | | | | | | 39 | 51 | 38 | 27 | 15 | 11 | | 17 | 18 | | | | | | 54 | 55 | 34 | 35 | 18 | 10 | | 18 | 16 | | | | | | 72 | 60 | 35 | 33 | 20 | 9.4 | | 19 | 16 | | | | | | 51 | 59 | 39 | 24 | 17 | 8.1 | | 20 | 15 | | | | | | 36 | 58 | 40 | 22 | 15 | 8.1 | | 21 | 16 | | | | | | 61 | 61 | 36 | 21 | 14 | 8.9 | | 22 | 16 | | | | | | 56 | 65 | 34 | 21 | 16 | 14 | | 23 | e14 | | | | | | 47 | 69 | 32 | 20 | 19 | 10 | | 24 | e12 | | | | | | 68 | 78 | 31 | 12 | 18 | 9.4 | | 25 | 10 | | | | | | 83 | 77 | 32 | 9.8 | 19 | 8.0 | | 26 | 11 | | | | | | 92 | 75 | 32 | 20 | 19 | 7.5 | | 27 | 12 | | | | | | 108 | 67 | 32 | 21 | 19 | 6.8 | | 28 | 11 | | | | | | 106 | 62 | 30 | 21 | 21 | 7.6 | | 29 | 14 | | | | | | 82 | 64 | 28 | 18 | 20 | 7.9 | | 30 | 13 | | | | | | 71 | 63 | 20 | 17 | 24 | 9.3 | | 31 | 13 | | | | | | | 60 | | 21 | 22 | | | TOTAL | 508 | | | | | | 1548.8 | 2108 | 1187 | 654.8 | 574 | 316.2 | | MEAN | 16.4 | | | | | | 51.6 | 68.0 | 39.6 | 21.1 | 18.5 | 10.5 | | MAX | 25 | | | | | | 108 | 99 | 56 | 35 | 25 | 15 | | MIN | 10 | | | | | | 9.0 | 50 | 20 | 9.8 | 13 | 6.8 | | AC-FT | 1010 | | | | | | 3070 | 4180 | 2350 | 1300 | 1140 | 627 | e Estimated. ### 09144250 GUNNISON RIVER AT DELTA, CO LOCATION.--Lat $38^{\circ}45^{\circ}11^{\circ}$, long. $108^{\circ}04^{\circ}40^{\circ}$, in $NW^{1/}_{4}NW^{1/}_{4}$ sec.13, T.15 S., R.96 W., Delta County, Hydrologic Unit 14020005, in Confluence Park on left bank, 0.7 mi downstream from U.S. Highway 50 bridge at north edge of Delta. DRAINAGE AREA. -- 5,628 mi² PERIOD OF RECORD.--May 1976 to current year. Gage-height records collected at this site 1912-77 (flood seasons only) are in reports of the National Weather Service. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 4,910 ft above sea level, from topographic map. Prior to May 1976 nonrecording gage at site 0.7 mi upstream at datum 4.52 ft higher. June 1, 1976 to Mar. 19, 1998 water-stage recorder at site 0.7 mi upstream at datum 4.52 ft higher. REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain and transbasin diversions, storage reservoirs, power developments, and many diversions for irrigation. Auxillary gage established 200 ft downstream from present site to collect streamflow data during bridge construction at principal site then in use, June 27, 1991 to September 30, 1992. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum gage height observed, 13.5 ft, June 6, 1957, from National Weather Service wire-weight gage at site 0.7 mi upstream, at datum 4.52 ft higher (discharge not determined). | | | DISCHAR | RGE, CUBI | C FEET PE | | WATER Y.
MEAN V. | | ER 1999 TO | SEPTEME | ER 2000 | | | |-------------|-----------|---------------|----------------|-----------|------------|---------------------|-------------|-------------------|---------|---|----------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 2870 | 1480 | 1460 | e1400 | 1030 | e980 | 1330 | 2250 | 2150 | 974 | 1130 | 1270 | | 2 | 3650 | 1440 | 1470 | e1400 | 1060 | 977 | 1320 | 2270 | 1970 | 1010 | 1060 | 1140 | | 3 | 4490 | 1470 | 1490 | e1400 | 1070 | 969 | 1310 | 2470 | 1900 | 988 | 1010 | 1110 | | 4 | 5040 | 1450 | 1450 | e1400 | 1080 | 965 | 1300 | 2650 | 1790 | 979 | 1080 | 1110 | | 5 | 4650 | 1450 | 1430 | e1400 | 1080 | 983 | 1370 | 2940 | 1740 | 1010 | 1050 | 1110 | | | 1000 | 1130 | 1100 | 01100 | 1000 | ,00 | 2370 | 2310 | 2,10 | 1010 | 1000 | 1110 | | 6 | 3980 | 1430 | 1410 | 1280 | 1080 | 999 | 1580 | 3100 | 1740 | 985 | 1180 | 1130 | | 7 | 3560 | 1450 | 1410 | 1240 | 1070 | 971 | 1770 | 3030 | 1680 | 914 | 1130 | 1150 | | 8 | 2960 | 1460 | 1450 | 1230 | 1070 | 1030 | 1910 | 3220 | 1640 | 926 | 1160 | 1060 | | 9 | 2450 | 1430 | 1430 | 1240 | 1030 | 1010 | 1920 | 3240 | 1610 | 1080 | 1170 | 1090 | | 10 | 1910 | 1260 | 1440 | 1250 | 949 | 999 | 2340 | 2660 | 1550 | 1140 | 1130 | 1080 | | 11 | 1600 | 1110 | 1460 | 1110 | 950 | 984 | 2420 | 2690 | 1470 | 1080 | 1120 | 1050 | | 12 | 1530 | 1020 | 1450 | 1090 | 954 | 983 | 2320 | 2670 | 1410 | 1050 | 1160 | 1010 | | 13 | 1620 | 1260 | 1440 | 1100 | 971 | 979 | 2700 | 2400 | 1330 | 1000 | 1190 | 992 | | 14 | 1590 | 1420 | 1440 | 1100 | 986 | 972 | 2820 | 2080 | 1230 | 989 | 1220 | 974 | | 15 | 1600 | 1430 | 1410 | 1100 | 992 | 1070 | 2670 | 1950 | 1190 | 983 | 1170 | 985 | | | | | | | | | | | | | | | | 16 | 1660 | 1440 | 1440 | 1100 | 994 | 1160 | 2230 | 1720 | 1150 | 1090 | 1140 | 969 | | 17 | 1710 | 1430 | 1460 | 1110 | 1010 | 1090 | 2190 | 1890 | 1120 | 1210 | 1170 | 953 | | 18 | 1720 | 1380 | 1450 | 1140 | 1020 | 1170 | 2460 | 2340 | 1110 | 1110 | 1200 | 931 | | 19 | 1730 | 1430 | 1450 | 1140 | 1010 | 1210 | 2270 | 2820 | 1290 | 1020 | 1230 | 940 | | 20 | 1720 | 1420 | 1440 | 1130 | 990 | 1220 | 1940 | 3250 | 1390 | 944 | 1310 | 918 | | 21 | 1580 | 1440 | 1390 | 1120 | 992 | 1240 | 1960 | 3640 | 1220 | 959 | 1360 | 895 | | 22 | 1630 | 1460 | 1410 | 1140 | 998 | 1240 | 1910 | 3660 | 1090 | 932 | 1420 | 943 | | 23 | 1660 | 1450 | 1420 | 1120 | 926 | 1240 | 1780 | 3610 | 1040 | 946 | 1310 | 873 | | 24 | 1680 | 1420 | 1420 | 1110 | 980 | 1220 | 1860 | 3840 | 1010 | 921 | 1260 | 863 | | 25 | 1670 | 1410 | 1420 | 1130 | e980 | 1240 | 1910 | 3670 | 1020 | 952 | 1250 | 906 | | | | | | | | | | | | | | | | 26 | 1690 | 1450 | 1420 | 1180 | e980 | 1280 | 2020 | 2970 | 1030 | 978 | 1260 | 912 | | 27 | 1690 | 1480 | 1410 | 1160 | e980 | 1290 | 2300 | 2230 | 1040 | 1010 | 1300 | 898 | | 28 | 1630 | 1480 | 1410 | 1110 | e980 | 1360 | 2580 | 2110 | 1040 | 1140 | 1260 | 864 | | 29 | 1590 | 1450 | 1410 | 1080 | e980 | 1350 | 2490 | 2370 | 989 | 1140 | 1230 | 910 | | 30 | 1590 | 1440 | 1410 | 1050 | | 1330 | 2260 | 2530 | 957 | 1260 | 1270 | 924 | | 31 | 1580 | | e1400 | 1050 | | 1360 | | 2350 | | 1150 | 1240 | | | TOTAL | 70030 | 42140 | 44400 | 36610 | 29192 | 34871 | 61240 | 84620 | 40896 | 31870 | 37170 | 29960 | | MEAN | 2259 | 1405 | 1432 | 1181 | 1007 | 1125 | 2041 | 2730 | 1363 | 1028 | 1199 | 999 | | MAX | 5040 | 1480 | 1490 | 1400 | 1080 | 1360 | 2820 | 3840 | 2150 | 1260 | 1420 | 1270 | | MIN | 1530 | 1020 | 1390 | 1050 | 926 | 965 | 1300 | 1720 | 957 | 914 | 1010 | 863 | | AC-FT | 138900 | 83580 | 88070 | 72620 | 57900 | 69170 | 121500 | 167800 | 81120 | 63210 | 73730 | 59430 | | CITA ITT CI | TTOC OF M | ONTERT V. MER | א מייי גרו זא. | OD WATED | VENDO 1076 | 2000 | יים איז אים | R YEAR (WY) | | | | | | SIAIIS | IICS OF M | ONITE! MEA | M DAIA I | OR WAIER | ILAKS 1970 | - 2000 | , DI WAILI | R ILAR (WI) | | | | | | MEAN | 1421 | 1545 | 1620 | 1612 | 1645 | 1922 | 2511 | 4691 | 4167 | 2214 | 1213 | 1238 | | MAX | 2833 | 3156 | 3103 | 3349 | 3381 | 3744 | 6641 | 11090 | 13520 | 10110 | 2752 | 2496 | | (WY) | 1987 | 1987 | 1987 | 1985 | 1985 | 1997 | 1985 | 1984 | 1984 | 1995 | 1984 | 1986 | | MIN | 398 | 467 | 440 | 480 | 491 | 506 | 366 | 411 | 331 | 275 | 269 | 335 | | (WY) | 1978 | 1978 | 1978 | 1990 | 1990 | 1990 | 1977 | 1977 | 1977 | 1977 | 1977 | 1977 | | SUMMAR | Y STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | : | FOR
2000 I | WATER YEAR | | WATER YE | ARS 1976 | - 2000 | | ANNUAL | TOTAL | | | 622511 | | | 542999 | | | | | | | ANNUAL | | | | 1706 | | | 1484 | | | 2172 | | | | | T ANNUAL | MEAN | | | | | | | | 4670 | | 1984 | | | ANNUAL M | | | | | | | | | CO1 | | 1990 | | HIGHES' | T DAILY M | EAN | | 5270 | May 25 | | 5040 | Oct 4 | | 20300 | Jun | 7 1984 | | LOWEST | DAILY ME | AN | | 474 | Apr 18 | | 863 | Sep 24 | | 208 | Aug | 11 1977 | | ANNUAL | SEVEN-DA | MINIMUM Y | | 557 | Apr 12 | | 889 | Sep 23 | | 20300
208
215
a25500
a13.15 | | 10 1977 | | | | EAK FLOW | | | | | 5350 | Oct 4 | | a25500 | | 7 1984 | | | | EAK STAGE | | | | | 5.4 | Oct 4
46 Oct 4 | | | Jun | 7 1984 | | | RUNOFF (| AC-FT) | | 1235000 | | | 1077000 | | | 1574000 | | | | | CENT EXCE | EDS | | 2780 | | | 2380 | | | 4240 | | | | | CENT EXCE | EDS | | 1450 | | | 1260 | | | 1550 | | | | 90 PER | CENT EXCE | EDS | | 840 | | | 978 | | | 542 | | | e Estimated. a At site 0.7 mi upstream, at datum 4.52 ft higher. ### 09146200 UNCOMPAHGRE RIVER NEAR RIDGWAY, CO LOCATION.--Lat $38^{\circ}11'02"$, long $107^{\circ}44'43"$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.4, T.45 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 15 ft downstream from bridge, 0.2 mi downstream from Dry Creek, 0.5 mi upstream from Dallas Creek, and 2.3 mi north of Ridgway. DRAINAGE AREA. -- 149 mi² PERIOD OF RECORD.--October 1958 to current year. Water-quality data available 1996-98. REVISED RECORDS.--WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,877.58 ft above sea level, (levels by U.S. Bureau of Reclamation). REMARKS.--Records good. Diversions for irrigation upstream from station Water is imported upstream from station in some years by Red Mountain ditch from Mineral Creek in San Juan River basin. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | ER 2000 | | | |---|-------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--|--|--|---------------------------------------|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 103
99
97
94
92 | 63
61
60
59
59 | 52
55
56
54
50 | 49
48
46
46
48 | 44
43
45
48
46 | 45
47
45
48
50 | 66
63
65
69
88 | 198
261
360
423
456 | 540
476
461
456
444 | 207
201
192
181
175 | 90
90
90
88
87 | 106
109
109
106
101 | | 6
7
8
9
10 | 90
92
96
92
87 | 59
59
58
57
57 | 55
51
52
50
51 | 48
49
50
50
49 | 46
45
46
47
52 | 47
49
47
49
48 | 103
108
119
122
145 | 445
417
538
388
324 | 392
426
418
437
361 | 165
162
166
177
177 | 89
86
82
80
77 | 103
106
106
115
104 | | 11
12
13
14
15 | 84
82
81
79
77 | 56
56
54
54
52 | 52
50
51
48
47 | 46
47
47
47
49 | 51
48
47
47
48 | 45
48
46
47
48 | 125
114
139
152
142 | 336
297
246
223
205 | 324
307
302
300
287 | 162
159
150
142
144 | 81
83
93
83
87 | 101
97
92
88
83 | | 16
17
18
19
20 | 74
70
71
71
69 | 51
52
51
48
50 | e48
49
50
50
50 | 51
51
55
56
53 | 47
48
46
44
45 | 49
51
48
46
49 | 120
134
161
135
125 | 216
237
203
190
196 | 288
262
249
259
253 | 169
164
164
148
140 | 92
91
106
165
129 | 80
77
96
85
82 | | 21
22
23
24
25 | 68
68
68
67 | 51
53
50
48
49 | 52
49
51
52
53 | 53
54
48
48
50 | 45
47
45
45
43 | 50
52
51
50
53 | 150
153
144
148
166 | 271
368
533
656
570 | 240
223
218
217
221 | 139
132
125
120
121 | 119
120
111
107
108 | 80
84
80
97
94 | | 26
27
28
29
30
31 | 66
65
64
64
62
64 | 50
52
51
51
52 | 50
49
50
51
50
49 | 55
52
49
44
44
43 | 42
43
45
45
 | 54
53
64
64
65 | 210
288
336
304
234 | 416
377
506
669
696
625 | 229
237
234
222
215 | 114
112
109
105
102
97 | 108
110
131
114
115
109 | 84
77
75
93
92 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2424
78.2
103
62
4810 | 1623
54.1
63
48
3220 | 1577
50.9
56
47
3130 | 1525
49.2
56
43
3020 | 1333
46.0
52
42
2640 | 1573
50.7
65
45
3120 | 4428
148
336
63
8780 | 11846
382
696
190
23500 | 9498
317
540
215
18840 | 4621
149
207
97
9170 | 3121
101
165
77
6190 | 2802
93.4
115
75
5560 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 88.9
153
1985
57.6
1979 | 67.8
94.4
1971
48.8
1990 | 52.1
67.3
1971
35.8
1977 | 44.8
61.5
1997
33.1
1977 | 45.6
61.5
1995
32.0
1990 | 59.8
102
1997
40.5
1964 | 112
188
1985
67.5
1973 | 326
765
1984
122
1977 | 594
914
1984
168
1977 | 339
848
1983
88.5
1977 | 161
313
1995
73.3
1977 | 109
250
1970
52.9
1959 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1959 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 65375
179
1120
e44
49
129700
430
81
50 | Jun 17
Feb 11
Feb 5 | | 46371
127
696
42
44
900
4.40
91980
291
81
47 | May 30
Feb 26
Feb 23
May 29
May 29 | | 167
270
72.6
1740
26
30
a2100
5.73
120900
432
80
43 | Jan 1
Feb 1
Jun 2 | 1984
1977
4 1983
3 1963
3 1990
4 1983 | | e Estimated. a From rating curve extended above 1800 ft³/s. ### 09147000 DALLAS CREEK NEAR RIDGWAY, CO LOCATION.--Lat 38°10'40", long 107°45'28", on line between sec.4 and 5, T.45 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 20 ft downstream from county road bridge, 1.5 mi upstream from mouth, and 1.5 mi northwest of DRAINAGE AREA.--97.2 mi². PERIOD OF RECORD.--March 1922 to October 1927, October 1955 to September 1971, October 1979 to current year. REVISED RECORDS.--WSP 1924: 1960. WDR CO-88-2: Drainage area. GAGE.--Water stage recorder with satellite telemetry. Elevation of gage is 6,980 ft above sea level, from topographic map. Mar. 1, 1922 to Oct. 31, 1927, nonrecording gage at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 4,500 acres upstream from and 700 acres downstream from station. One small ditch imports water from Leopard Creek (Dolores River basin) to drainage upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBIO | C FEET PER | | VATER YE.
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--------------------------------------|--|---------------------------------------|--------------------------------------|---|--|------------------------------------|---|--|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 40
39
37
36
35 | 22
25
27
24
23 | e24
e24
e25
e25
e23 | e21
e20
e20
e20
e20 | e18
e18
e18
e18 | 17
18
17
19 | 33
31
33
32
46 | 44
36
35
27
20 | 49
48
46
46
38 | 23
20
16
13
9.5 |
1.5
.25
.35
2.3
2.9 | 31
32
31
31
30 | | 6
7
8
9
10 | 35
36
34
33
32 | 21
22
23
25
26 | e24
e23
e23
e23
e22 | e20
e20
e20
e21
21 | 18
18
19
18
19 | 17
19
18
18 | 62
61
48
90
139 | 13
14
53
49
29 | 33
35
32
40
39 | 7.8
6.3
8.2
17 | 3.3
2.6
2.3
3.2
2.7 | 30
34
36
40
37 | | 11
12
13
14
15 | 31
30
29
28
28 | 25
26
26
27
26 | e22
e22
e23
e23
e23 | 20
19
e19
e19
e18 | 16
17
18 | 17
19
18
17
18 | 117
120
143
121
103 | 29
23
23
21
15 | 33
29
24
23
22 | 16
14
12
13
17 | 9.8
13
12
14
18 | 37
36
34
35
36 | | 16
17
18
19
20 | 27
26
25
25
25 | 26
e26
e25
e24
e25 | e23
e24
e24
e24
e24 | e19
e20
e21
e20
19 | 17
17
15
15
17 | 19
19
18
17
20 | 94
74 | 8.5
7.2
6.3
5.7
4.6 | 26
19
20
26
22 | 19
31
25
20
18 | 21
19
25
33
36 | 35
34
40
35
32 | | 21
22
23
24
25 | 25
25
25
22
21 | e26
e26
e25
e25
e25 | e25
e24
e24
e24
e23 | 20
19
19
18
e19 | 17
18
16
17
16 | 20
23
28
26
26 | 63
70
66
66
65
55 | 3.4
4.2
e4.0
e3.1 | 18
14
10
9.2
15 | 18
20
20
19
14 | 37
40
33
31
30 | 31
31
31
33
29 | | 26
27
28
29
30
31 | 19
20
21
21
20
21 | e24
e24
e25
e24 | e22
e21
e21
e22
e22
e21 | e20
e19
17
e17
e17
e17 | 18
18
17
17
 | 28
30
35
36
34
32 | 65
55
50
55
53
54
52
 | 14
16
25
52
59
56 | 14
26
40
34
29 | 10
10
9.5
10
8.8
7.0 | 31
32
29
29
32
31 | 29
30
27
30
29 | | TOTAL
MEAN
MAX
MIN
AC-FT | 40
19
1730 | 742
24.7
27
21
1470 | 717
23.1
25
21
1420 | 17
1190 | 15
1000 | 21.9
36
17
1350 | 73.0
143
31
4340 | 22.9
59
3.1
1410 | 9.2
1700 | 471.1
15.2
31
6.3
934 | 577.20
18.6
40
.25
1140 | 986
32.9
40
27
1960 | | | | | | OR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 25.6
65.1
1985
2.07
1957 | 24.6
39.1
1926
14.4
1957 | 20.3
33.9
1924
13.4
1994 | 18.0
32.0
1924
9.61
1980 | 18.9
32.0
1924
11.9
1994 | 25.8
59.4
1985
14.8
1980 | 59.4
183
1985
4.13
1990 | 51.9
249
1984
.67
1981 | 62.4
171
1984
2.45
1989 | 76.2
230
1983
15.2
2000 | 59.8
141
1983
6.25
1956 | 39.7
117
1927
2.58
1956 | | SUMMARY | STATISTI | CS | FOR 3 | 1999 CALEN | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER Y | YEARS 1922 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 18177.9
49.8
600
2.3
4.6
36060
124
25
17 | Jul 31
Jun 8
Jun 4 | | 9906.50
27.1
143
.25
1.9
261
b4.55
19650
41
23 | | | 40.1
86.4
13.8
740
.2
.3
a3960
c8.4
29030
92
25
12 | l
3
May
21 Jun 1
38 May 1
Jul 1
12 Jul 1 | 1984
1990
3 1924
19 1981
11 1981
31 1999
31 1999 | | e Estimated. a On basis of slope-area measurement of peak flow. Maximum gage height, 7.20 ft, Jan 8, backwater from ice. c From high water mark. ### 09147022 RIDGWAY RESERVOIR NEAR RIDGWAY, CO LOCATION.--Lat $38^{\circ}14^{\circ}14^{\circ}$, long $107^{\circ}45^{\circ}27^{\circ}$, $NW^{1}/_{4}SW^{1}/_{4}$ sec.16, T.46 N., R.8 W., Ouray County, Hydrologic Unit 14020006, in concrete gate house at base of Ridgway Reservoir on Uncompanded River, 0.5 mi upstream from Fisher Creek, and 5.3 mi north of Ridgway. DRAINAGE AREA. -- 265 mi². PERIOD OF RECORD. -- October 1988 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,871.3 ft. above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by an earthfill dam. Dam completed Mar. 22, 1988. Capacity 84,590 acre-ft, between 6,680.0 ft, streambed at dam axis and 6,871.3 ft, crest of spillway. Dead storage below elevation 6,720.0 ft, 1,430 acre-ft. Figures given are live contents. ${\tt COOPERATION.--Capacity\ tables\ provided\ by\ U.S.\ Bureau\ of\ Reclamation.}$ EXTREMES FOR PERIOD OF RECORD.--Maximum contents 84,900 acre-ft, June 11, 1990, elevation 6,872.93 ft; minimum contents, 49,810 acre-ft, June 2, 1995, elevation, 6,834.93 ft. EXTREMES FOR CURRENT YEAR.--Maximum daily mean contents, 84,440 acre-ft, May 8, mean elevation, 6,872.49 ft; minimum daily mean contents, 63,110 acre-ft, Oct. 25; mean elevation, 6,850.80 ft. ### MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation (feet) | Contents
(acre-feet) | Change in contents (acre-feet) | |---|---|--|---| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 6855.35
6851.16
6853.40
6855.19 | 67,290
63.430
65,480
67,140 | -3,860
+2,050
+1,660 | | CAL YR 1999 | - | - | +1,710 | | Jan. 31. Feb. 29. Mar 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 6856.83
6858.09
6860.07
6870.85
6871.15
6869.25
6860.15
6852.35
6854.01 | 68,680
69,880
71,780
82,680
83,000
80,990
71,860
64,520
66,040 | +1,540
+1,200
+1,900
+10,900
+320
-2,010
-9,130
-7,340
+1,520 | | WATER YEAR 2000 | - | _ | -1,250 | ### 09147025 UNCOMPAHGRE RIVER BELOW RIDGWAY RESERVOIR, CO LOCATION.--Lat $38^{\circ}14^{\circ}17^{\circ}$, long $107^{\circ}45^{\circ}31^{\circ}$, in $NE^{1}/_{4}SE^{1}/_{4}$ sec.17, T.46 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 1,600 ft upstream from Fisher Creek, 800 ft downstream from Ridgway Reservoir gate house, and 5.4 mi north of Ridgway. DRAINAGE AREA. -- 265 mi². PERIOD OF RECORD. -- October 1988 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,650 ft above sea level, from topographic map. REMARKS.-- No estimated daily discharges. Records good. Diversions for irrigation by means of numerous canals downstream from station. Flow regulated by Ridgway Reservoir (capacity 84,591 acre-ft). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | IR 2000 | | | |---|------------------------------------|-------------------------------------|---|--------------------------------------|--------------------------------------|---|---|--|---|---|---|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 453
453
453
317
199 | 52
44
44
44
44 | 50
50
51
52
52 | 50
50
50
50 | 49
49
49
49 | 47
47
47
47
47 | 47
47
47
47
47 | 106
120
214
302
415 | 821
819
813
812
701 | 280
280
278
274
274 | 320
320
320
320
320 | 100
98
98
100
98 | | 6
7
8
9
10 | 199
199
199
195
195 | 45
46
47
48
49 | 52
52
52
52
52 | 50
50
50
50 | 49
49
49
48
47 | 47
48
47
47
47 | 47
47
47
47
47 | 484
482
658
740
675 | 538
503
503
503
503 | 274
288
298
298
298 | 323
306
258
249
249 | 98
99
100
98
98 | | 11
12
13
14
15 | 180
170
161
149
145 | 49
49
49
49 | 52
52
52
52
52 | 50
49
49
49 | 47
47
47
47
47 | 47
47
47
47
47 | 47
47
47
47
47 | 657
631
625
622
558 | 503
469
416
393
385 | 297
296
296
295
291 | 249
251
254
254
256 | 100
100
100
98
98 | | 16
17
18
19
20 | 143
142
144
145
143 | 49
49
49
49 | 52
51
50
50
50 | 49
49
49
49 | 47
49
49
49
49 | 47
47
47
47
47 | 47
47
47
47
47 | 440
391
392
391
390 | 362
351
351
351
351 | 292
291
291
291
305 | 255
254
254
254
257 | 98
98
97
95
97 | | 21
22
23
24
25 | 143
143
141
139
96 |
49
50
50
50
50 | 50 | 49 | 49
49
49
47
47 | 47
47
47
47
47 | 47
47
47
85
109 | 389
388
389
390
389 | 335
308
296
296
296 | 314
313
308
319
326 | 236
192
171
145
128 | 98
95
95
95
95 | | 26
27
28
29
30
31 | 66
66
65
64
62 | 50
50
50
50
50 | 50
50
50
50
50
50 | 49
49
49
49
49 | 47
47
47
47
 | 47
47
47
47
47 | 107
106
106
106
106 | 386
386
386
386
586
789 | 296
273
264
264
273 | 326
326
326
325
320
320 | 128
128
128
109
98
98 | 94
93
93
93
93 | | TOTAL
MEAN
MAX
MIN
AC-FT | 5435
175
453
62
10780 | 1452
48.4
52
44
2880 | 1578
50.9
52
50
3130 | 1530
49.4
50
49
3030 | 1394
48.1
49
47
2760 | 1458
47.0
48
47
2890 | 1806
60.2
109
47
3580 | 14157
457
789
106
28080 | 13349
445
821
264
26480 | 9310
300
326
274
18470 | 7084
229
323
98
14050 | 2912
97.1
100
93
5780 | | STATIST | rics of mo | NTHLY MEA | N DATA FO | R WATER Y | EARS 1989 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 127
307
1998
55.4
1991 | 88.2
165
1999
43.1
1990 | 75.5
105
1993
41.9
1990 | 60.8
76.5
1997
41.3
1992 | 62.1
93.9
1997
39.9
1998 | 92.2
179
1995
39.3
1990 | 249
560
1997
36.8
1990 | 343
510
1997
159
1989 | 424
652
1999
199
1989 | 427
846
1995
186
1989 | 346
535
1992
188
1989 | 203
456
1999
68.1
1993 | | SUMMARY | Y STATISTI | CS | FOR 1 | 999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1989 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 92553
254
1110
44
45
183600
516
79
50 | Jun 25
Nov 2
Nov 2 | | 821
44
45
830
3.25
121900
389
93
47 | Jun 1
Nov 2
Nov 2
May 31
May 31 | | 209 311 117 1110 34 34 1160 a3.56 151400 475 115 47 | Jun 2
Apr 2
Apr 2
Jun 1
Jun 1 | 1995
1989
25 1999
21 1990
21 1990
3 1990
3 1990 | | a Maximum gage height, 3.63 ft, July 10, 1995. ### 09147500 UNCOMPAHGRE RIVER AT COLONA, CO LOCATION.--Lat. $38^{\circ}19^{\circ}53^{\circ}$, long. $107^{\circ}46^{\circ}44^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.17, T.47 N., R.8 W., Ouray County, Hydrologic Unit 14020006, on right bank 75 ft downstream from county highway crossing, 0.2 mi north of Colona, and 1.0 mi upstream from Beaton Creek. DRAINAGE AREA. -- 448 mi². PERIOD OF RECORD.--April 1903 to November 1905, April to June 1906 (gage heights and discharge measurements only), October 1912 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Colona" 1904-06, 1922-34. Statistical summary computed for 1986 to current year. Water-quality data available 1990-93. REVISED RECORDS.--WSP 1313: 1904. WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,318.80 ft above sea level. See WSP 1713 or 1733 for history of changes prior to Sept. 30, 1949 REMARKS.--Records good. Flow regulated by Ridgway Reservoir, 7.7 mi upstream, since 1986, total capacity 84,590 acre-ft. Diversions upstream from station for irrigation of about 2,600 acres downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER Y
MEAN V | YEAR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |---|------------------------------------|--|-------------------------------------|---|-------------------------------------|------------------------------------|---|---|--------------------------------------|---|-----------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 480
477
471
334
214 | 83
65
62
62
62 | 51
52
52
49
46 | 53
52
52
53
52 | 57
55
57
59
57 | 63
64
61
64
69 | 70
66
68
73
97 | 180
218
383
512
633 | 1040
979
971
959
818 | 229
226
225
221
221 | 287
288
288
287
289 | 67
64
65
64
64 | | 6
7
8
9
10 | 216
224
226
232
227 | 61
60
58
58
57 | 47
52
56
52
53 | 54
55
59
51
50 | 57
57
58
60
61 | 64
67
65
63 | 113
110
126
129
158 | 724
685
935
955
810 | 613
607
575
560
532 | 219
235
255
255
255 | 287
272
226
212
212 | 66
66
69
66 | | 11
12
13
14
15 | 212
189
181
168
162 | 58
57
57
56
55 | 53
51
50
51
49 | 50
50
49
50
51 | 60
58
57
56
56 | 59
60
57
59
63 | 140
126
155
172
177 | 788
727
660
637
565 | 511
480
433
419
395 | 252
252
247
243
257 | 214
214
214
213
214 | 66
67
68
66
64 | | 16
17
18
19
20 | 162
161
164
162
159 | 54
56
55
51
53 | 51
54
51
50
49 | 52
53
55
56
54 | 57
58
57
55
58 | 62
61
60
58
61 | 127
144
183
147
110 | 459
420
382
371
361 | 361
332
317
327
320 | 301
275
266
252
262 | 217
213
220
221
218 | 62
61
71
63
60 | | 21
22
23
24
25 | 160
161
165
166
133 | 55
56
55
50
50 | 51
51
54
52
53 | 54
55
49
51
55 | 60
61
59
60
58 | 61
60
59
59
62 | 127
116
103
139
168 | 395
478
598
732
676 | 298
276
261
253
257 | 275
273
275
281
287 | 197
150
127
110
87 | 60
61
62
69
78 | | 26
27
28
29
30
31 | 89
88
87
90
86
93 | 56
56
55
53
52 | 52
52
53
52
54
54 | 56
57
55
51
51
53 | 57
60
63
62
 | 65
65
78
74
76
73 | 201
261
300
280
217 | 570
544
631
717
931
1070 | 257
241
231
223
223 | e288
e288
e288
e288
e288
e288 | 88
88
92
74
67
70 | 85
78
77
83
85 | | TOTAL
MEAN
MAX
MIN
AC-FT | 6139
198
480
86
12180 | 1718
57.3
83
50
3410 | 1597
51.5
56
46
3170 | 1638
52.8
59
49
3250 | 1690
58.3
63
55
3350 | 1975
63.7
78
57
3920 | 4403
147
300
66
8730 | 18747
605
1070
180
37180 | 14069
469
1040
223
27910 | 8066
260
301
219
16000 | 5956
192
289
67
11810 | 2043
68.1
85
60
4050 | | | | | | | | |), BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 154
353
1998
51.6
1990 | 110
214
1999
50.2
1990 | 91.2
132
1993
51.5
2000 | 79.8
105
1986
51.4
1990 | 80.9
121
1997
51.0
1990 | 119
213
1997
58.2
1990 | 304
683
1997
62.6
1990 | 531
926
1987
160
1988 | 647
1066
1995
229
1989 | 457
1226
1995
207
1988 | 305
598
1999
135
1988 | 200
495
1999
52.3
1989 | | SUMMARY | Y STATISTI | CS | FOR 1 | 999 CALEN | DAR YEAR | | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1986 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERO 50 PERO | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 110317
302
1530
43
45
218800
597
125
53 | Jun 25
Apr 23
Apr 17 | | 68041
186
1070
46
50
1220
3.53
135000
473
78
52 | May 31
Dec 5
Nov 30
May 31
May 31 | | a257 396 129 1900 b25 29 c2230 4.76 186400 603 129 60 | Apr 2
Sep 2
Jul 1 | 1997
1989
1 1995
1 1990
4 1989
2 1995
2 1995 | Estimated. Average discharge for 76 years (water years 1904-1905, 1913-1986), 271 ft³/s, 196,300 acre-ft/yr, prior to completion of Ridgway Reservoir. Minimum daily discharge for period of record, 12 ft³/s, Sep 19, 1956, and May 7, 1967. Maximum discharge for period of record, 4080 ft³/s, June 13-14, 1921, gage height unknown. ### 09149500 UNCOMPAHGRE RIVER AT DELTA, CO LOCATION.--Lat $38^{\circ}44'31"$, long $108^{\circ}04'49"$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.13, T.15 S., R.96 W., Delta County, Hydrologic Unit 14020006, on right bank 525 ft downstream from 5th Street Bridge at west edge of Delta and 1.1 mi upstream from mouth. DRAINAGE AREA. -- 1,115 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1903 to October 1931 (no winter records in most years), September 1938 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "near Delta" 1907-24. Statistical summary computed for 1939 to current year. REVISED RECORDS.--WSP 1243: 1904. WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 4,926.49
ft above sea level. Feb. 18, 1960 to Mar. 26, 1963, water-stage recorder at site 750 ft upstream at datum 3.43 ft higher. Mar. 27, 1963 to May 12, 1965, water-stage recorder at site 1,050 ft upstream at datum 6.08 ft higher. See WSP 1733 or 1924 for history of changes prior to Feb. 18, 1960. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by water diverted from Gunnison River (see record of diversion through Gunnison tunnel published with station 09128000) and other adjacent basins. Flow regulated by Ridgway Reservoir since 1986, total capacity 84,590 acre-ft. Diversions for irrigation of about 90,000 acres upstream from station and return flow from irrigated areas. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | DAILY | MEAN V | ALUES | | | | | | |---|--|---|--|--|--|--|--|---|---|--|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e810
e810
e810
e430
e250 | 731
571
385
343
330 | 252
250
258
247
233 | 207
202
195
178
208 | 171
160
162
167
167 | 149
147
144
142
146 | 405
362
342
312
305 | 142
119
128
190
228 | 525
484
456
498
453 | 134
138
137
132
137 | 142
141
138
143
143 | 302
313
305
292
287 | | 6
7
8
9
10 | e255
e260
267
264
255 | 319
312
308
304
298 | 237
240
246
236
239 | 186
177
193
199
197 | 164
160
159
162
167 | 146
158
158
150
152 | 286
250
294
318
396 | 350
368
560
1020
665 | 306
239
250
238
212 | 126
112
118
157
165 | 148
134
118
108
113 | 312
344
344
414
395 | | 11
12
13
14
15 | 253
243
234
238
235 | 290
283
283
280
278 | 241
227
223
225
207 | 185
186
180
177
180 | 173
168
163
158
157 | 150
146
144
119
124 | 341
275
226
220
275 | 541
517
454
384
335 | 214
199
166
151
142 | 153
137
142
137
151 | 122
129
132
130
129 | 383
337
335
338
329 | | 16
17
18
19
20 | 241
252
255
256
277 | 275
278
273
265
264 | 225
231
226
221
218 | 182
183
192
194
189 | 158
166
168
159
155 | 131
319
354
392
357 | 235
189
169
214
158 | 241
185
177
173
172 | 125
116
123
141
138 | 157
169
155
150
150 | 169
176
182
184
217 | 322
320
357
335
323 | | 21
22
23
24
25 | 289
294
294
292
297 | 266
271
268
257
252 | 215
214
205
209
207 | 186
190
181
173
179 | 156
157
157
154
153 | 405
432
470
253
149 | 133
115
111
111
141 | 171
167
197
325
375 | 143
137
131
131
130 | 149
150
158
155
149 | 239
252
255
243
222 | 327
344
343
356
370 | | 26
27
28
29
30
31 | 306
297
291
300
328
382 | 259
263
260
255
251 | 207
205
203
205
201
200 | 188
196
182
167
158
164 | 147
150
149
151
 | 138
136
231
204
223
355 | 141
145
175
181
167 | 332
274
295
364
435
538 | 129
148
149
143
136 | 148
142
145
148
153
143 | 213
225
228
234
271
308 | 389
392
400
460
477 | | TOTAL
MEAN
MAX
MIN
AC-FT | 10265
331
810
234
20360 | 9272
309
731
251
18390 | 6953
224
258
200
13790 | 5754
186
208
158
11410 | 4638
160
173
147
9200 | 6724
217
470
119
13340 | 6992
233
405
111
13870 | 10422
336
1020
119
20670 | 6553
218
525
116
13000 | 4497
145
169
112
8920 | 5588
180
308
108
11080 | 10545
352
477
287
20920 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | FICS OF M
407
844
1998
131
1978 | ONTHLY ME:
255
442
1999
125
1950 | AN DATA F
168
294
1999
111
1943 | OR WATER 139 223 1999 70.9 1943 | YEARS 1939
134
222
1997
66.5
1943 | - 2000
166
367
1997
80.7
1951 | , BY WATE
312
1107
1985
78.6
1967 | R YEAR (WY)
510
2542
1984
125
1954 | 565
1763
1984
136
1954 | 323
1170
1983
112
1955 | 295
959
1999
93.7
1956 | 392
944
1961
123
1956 | | | Y STATIST | | | 1943
1999 CALE | | | | WATER YEAR | 1934 | | YEARS 1939 | | | ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | | 1010 | 162520
445 | | • | 88203
241 | | | 306
688
155 | | 1984
1951 | | | HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS | | | 1580
56
94
322400
877 | Aug 1
Apr 14
Apr 17 | | 1020
108
122
1230
5.1
175000
377 | May 9
Aug 9
Aug 8
May 9
65 May 9 | | 4520
a20
42
b5800
8.
221600
609 | Dec
Mar
May | 15 1984
26 1962
14 1959
15 1984
15 1984 | | | 50 PERG
90 PERG | CENT EXCE | EDS | | 294
201 | | | 210
137 | | | 207
108 | | | e Estimated Estimated: a Minimum daily discharge for period of record, no flow at times in 1908. Minimum daily determined since beginning of diversion through Gunnison Tunnel, 7.0 ft³/s, Jul 10-15, 17, 21, 24-28, 1910. b From rating curve extended above 3400 ft³/s. ## 09149500 UNCOMPAHGRE RIVER AT DELTA, CO--Continued PERIOD OF RECORD.--October 1958 to September 1980, October 1987 to September 1988 (revised), October 1990 to September 1993, October 1994 (revised) to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | |---|--|--|---|--|--|---|---|--|---|---| | OCT
07 | 0822 | 264 | 1470 | 8.3 | 11.3 | 650 | 178 | 49.8 | 90.6 | 2 | | NOV
16
JAN | 1120 | 274 | 1710 | 8.2 | 5.4 | 740 | 193 | 61.9 | 110 | 2 | | 07
21
FEB | 1035
1130 | 142
188 | 1830
1810 | 8.3
8.3 | .0
4.7 | 770
720 | 198
176 | 67.7
67.0 | 130
133 | 2
2 | | 03
MAR | 0915 | 170 | 1700 | 8.4 | 1.0 | 690 | 176 | 61.2 | 121 | 2 | | 20
APR | 1030 | 426 | 802 | 8.0 | 4.5 | 310 | 78.9 | 26.7 | 50.2 | 1 | | 12
MAY | 0945 | 308 | 832 | 8.1 | 9.0 | 300 | 79.3 | 25.6 | 53.0 | 1 | | 10
JUN | 1426 | 663 | 853 | 8.2 | 15.0 | 340 | 94.5 | 24.4 | 44.4 | 1 | | 06
26 | 1340
1030 | 331
129 | 1120
1580 | 8.2
8.0 | 19.6
16.8 | 470
710 | 134
203 | 33.7
49.4 | 64.4
91.4 | 1
1 | | JUL
19 | 0845 | 162 | 1580 | 8.2 | 16.0 | 690 | 197 | 49.1 | 93.0 | 2 | | AUG
29 | 1100 | 246 | 1540 | 8.2 | 18.4 | 660 | 186 | 47.1 | 87.0 | 1 | | SEP
12 | 1425 | 339 | 1320 | 8.2 | 20.5 | 570 | 159 | 42.7 | 74.5 | 1 | | | | | | | | | | | | | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS
SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | OCT
07 | SIUM,
DIS-
SOLVED
(MG/L
AS K) | LINITY WAT.DIS FET LAB CACO3 (MG/L) | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVED
(TONS
PER
DAY) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | | OCT | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | OCT
07
NOV
16
JAN
07 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | OCT
07
NOV
16
JAN
07
21
FEB
03 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.8
3.6
4.3 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
220
209
256 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
581
701
817 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
9.3
12.1 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
15.8
16.8 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1060
1220
1410 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
1.44
1.66 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
773
793 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
12.5
18.8
22.9 | | OCT
07
NOV
16
JAN
07
21
FEB | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.8
3.6
4.3
4.7 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
220
209
256
237 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
581
701
817
774 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
9.3
12.1
15.8
15.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
15.8
16.8
19.0
16.3 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1060
1220
1410
1330 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
1.44
1.66
1.91 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
773
793
570
675 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
12.5
18.8
22.9
19.4 | | OCT
07
NOV
16
JAN
07
21
FEB
03
MAR
20 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.8
3.6
4.3
4.7 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
220
209
256
237
235 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
581
701
817
774
703 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
9.3
12.1
15.8
15.4 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.7
.7
.6
.6 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
15.8
16.8
19.0
16.3 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
1060
1220
1410
1330 | DIS-
SOLVED
(TOMS
PER
AC-FT)
(70303)
1.44
1.66
1.91
1.81 | DIS-
SOLVED
(TONS
PER
DAY)
(70302)
773
793
570
675
579 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
12.5
18.8
22.9
19.4 | | OCT
07
NOV
16
JAN
07
21
FEB
03
MAR
20
APR
12
MAY
10
JUN | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.8
3.6
4.3
4.7
3.9
2.3
3.4 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
220
209
256
237
235
135
136 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
581
701
817
774
703
288
290 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
9.3
12.1
15.8
15.4
15.2
6.3
6.0
5.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.7
.7
.6
.6
.6
.3
.4 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
15.8
16.8
19.0
16.3
16.5
13.4
12.5 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1060 1220 1410 1330 1240 547 551 562 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
1.44
1.66
1.91
1.81
1.68
.74
.75 | DIS-
SOLVED (TONS PER DAY) (70302) 773 793 570 675 579 630 470 1010 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
12.5
18.8
22.9
19.4
19.3
8.7
9.4
7.0 | | OCT
07
NOV
16
JAN
07
21
FEB
03
MAR
20
APR
12
MAY
10
JUN
06 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.8
3.6
4.3
4.7
3.9
2.3 | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
220
209
256
237
235
135 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
581
701
817
774
703
288
290 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
9.3
12.1
15.8
15.4
15.2
6.3 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.7
.7
.6
.6
.6 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
15.8
16.8
19.0
16.3
16.5
13.4 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1060 1220 1410 1330 1240 547 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
1.44
1.66
1.91
1.81
1.68
.74 | DIS-
SOLVED (TONS PER DAY) (70302) 773 793 570 675 579 630 470 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
12.5
18.8
22.9
19.4
19.3
8.7 | | OCT
07
NOV
16
JAN
07
21
FEB
03
MAR
20
APR
12
MAY
10
JUN
06
26
JUL
19 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.8
3.6
4.3
4.7
3.9
2.3
3.4
2.9 | LINITY WAT. DIS FET LAB CACO3 (MG/L) (29801) 220 209 256 237 235 135 136 135 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
581
701
817
774
703
288
290
295
430 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
9.3
12.1
15.8
15.4
15.2
6.3
6.0
5.8
6.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
.7
.7
.6
.6
.6
.3
.4 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
15.8
16.8
19.0
16.3
16.5
13.4
12.5 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1060 1220 1410 1330 1240 547 551 562 794 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
1.44
1.66
1.91
1.81
1.68
.74
.75 | DIS-
SOLVED (TONS PER DAY) (70302) 773 793 570 675 579 630 470 1010 710 | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145)
12.5
18.8
22.9
19.4
19.3
8.7
9.4
7.0 | | OCT 07 NOV 16 JAN 07 21 FEB 03 MAR 20 APR 12 MAY 10 JUN 06 JUN 06 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
3.8
3.6
4.3
4.7
3.9
2.3
3.4
2.9
3.7
3.3 | LINITY
WAT. DIS
FET
LAB
CACO3
(MG/L)
(29801)
220
209
256
237
235
135
136
135 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
581
701
817
774
703
288
290
295
430
663 | RIDE,
DIS-
SOLVED (MG/L
AS CL) (00940)
9.3
12.1
15.8
15.4
15.2
6.3
6.0
5.8
6.8
10.8 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
.7
.7
.6
.6
.6
.3
.4
.4 | DIS-
SOLVED (MG/L
AS
SIO2) (00955)
15.8
16.8
19.0
16.3
16.5
13.4
12.5
13.6 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 1060 1220 1410 1330 1240 547 551 562 794 1170 | DIS-
SOLVED
(TONS
PER
AC-FT)
(70303)
1.44
1.66
1.91
1.81
1.68
.74
.75
.76 | DIS-
SOLVED (TONS PER DAY) (70302) 773 793 570 675 579 630 470 1010 710 408 | NIUM,
DIS-
SOLVED (UG/L
AS SE) (01145)
12.5
18.8
22.9
19.4
19.3
8.7
9.4
7.0
9.8
13.0 | # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---|----------------|---
--|---| | NOV | | | | | JUN | | | | | 29
MAR | 1540 | 255 | 1710 | 7.4 | 13 1230 | 172 | 1490 | 17.9 | | MAR
01 | 1530 | 149 | 1720 | 8.1 | JUL
20 0935 | 158 | 1580 | 15.4 | | MAY | | | | | | | | | | 09 | 1100 | 1140 | 836 | 10.4 | | | | | #### 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO LOCATION.--Lat $38^\circ59^\circ00^\circ$, long $108^\circ27^\circ00^\circ$, in $NE^1/_4SW^1/_4$ of sec.14, T.2 S., R.1 E., Ute Meridian, Mesa County, Hydrologic Unit 14020005, on right bank 180 ft upstream from bridge on State Highway 141, 0.4 mi downstream from Whitewater Creek, 0.5 mi south of Whitewater, and 8 mi southeast of Grand Junction. DRAINAGE AREA. -- 7,928 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1894 to December 1895 (gage heights only), October 1896 to September 1899, October 1901 to October 1906, October 1916 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Whitewater" 1901-06. REVISED RECORDS .-- WSP 509: Drainage area at former site. WSP 2124: Drainage area. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Datum of gage is 4,628.12 ft above sea level. See WSP 1733 or 1924 for history of changes prior to October 1959. REMARKS.--Records good except for the period Nov. 17 to Mar. 9 and estimated daily discharges, which are fair. Records show flow that enters Colorado River from Gunnison River basin except for about 60 ft³/s diverted downstream from gage during irrigation season. Natural flow of river affected by diversions for irrigation of about 233,000 acres upstream from station, storage reservoirs, and return flow from irrigated lands. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | | | DISCHA | ARGE, CUB | IC FEEL PE | ER SECOND,
DAILY | MEAN V | | 3ER 1999 T | O SEPTEME | ER 2000 | | | |--|----------|-----------|-----------------|-----------|--------------|---------------------|--------|--------------|------------|-----------|---------|------------|----------| | The color of | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | The color of | 1 | 3300 | 2630 | 1980 | 1820 | 1230 | 1270 | 1930 | 3210 | 3070 | 1420 | 1620 | 2030 | | The color of | | | 2260 | 1990 | 1830 | 1260 | 1260 | | | | | | | | The color of | 3 | 4790 | 2230 | 1970 | 1690 | 1320 | 1240 | 1850 | 3370 | 2730 | 1480 | 1500 | 1860 | | The color of | | | 2110 | 1910 | 1580 | 1310 | 1250 | | | | | | | | 11 | 5 | 5370 | 2070 | 1820 | 1740 | 1320 | 1170 | 1830 | 4050 | 2570 | 1450 | 1580 | 1810 | | 11 | | | | 1820 | 1530 | 1350 | | | | | | | | | 11 | | | 2010 | 1830 | 1410 | 1330 | | | | | | | | | 11 | | | 2050 | 1910 | 1490 | 1320 | | | | | | | | | 11 | | | 2040 | 1830 | 1540 | 1300 | | | | | | | | | 16 | 10 | 2730 | | | | | | | 4340 | 2150 | 1720 | 1610 | 1950 | | 16 | | | 1590 | 1880 | 1540 | 1290 | e1150 | 3200 | | | | | | | 16 | | | 1420 | 1840 | 1340 | 1290 | e1200 | 3060 | | | | | | | 16 | | | 1300 | 1840 | 1370 | 1260 | e1200 | 3280 | | | | | | | 16 | | | 1/50 | 1/50 | 1350 | 1290 | 01100 | 3500 | | | | | | | 21 | 15 | | | | | | | | | | 1500 | 1/20 | | | 21 | | | 1840 | 1770 | 1370 | 1270 | e1400 | 3250 | 2430 | | | | | | 21 | | | 1950 | 1860 | 1400 | 1300 | e1350 | 2920 | 2300 | | | | | | 21 | | | 1870 | 1870 | 1430 | 1290 | e1500 | 3100 | 2650 | | | | | | 21 | | | 1870 | 1830 | 1430 | 1270 | | 3120 | 3130 | | | | | | 26 | 20 | 2460 | | | 1400 | 1240 | e1650 | 2750 | 3490 | 1930 | 1450 | 1980 | 1670 | | 26 | | | 1880 | 1800 | 1360 | 1280 | | | | | | | | | 26 | | 2330 | 1890 | 1690 | 1360 | 1300 | | | | | | | | | 26 | | 2410 | 1870 | 1700 | 1270 | 1260 | | | | | | | | | 26 | | 2420 | 1810 | 1710 | 1280 | 1310 | | | | | | | | | TOTAL 91060 57620 56150 44610 37350 43890 82450 111190 58230 47130 55590 53970 MEAN 2937 1921 1811 1439 1288 1416 2748 3587 1941 1520 1793 1799 MAX 5600 2630 1990 1830 1350 1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1937 1987 1987 1997 1994 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 21611 HIGHEST ANNUAL MEAN 2435 2020 3838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW TOTAL 4 835700 May 23 1920 | 25 | | | | | | | | | | | 1940 | 1730 | | TOTAL 91060 57620 56150 44610 37350 43890 82450 111190 58230 47130 55590 53970 MEAN 2937 1921 1811 1439 1288 1416 2748 3587 1941 1520 1793 1799 MAX 5600 2630 1990 1830 1350 1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1937 1987 1987 1997 1994 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 21611 HIGHEST ANNUAL MEAN 2435 2020 3838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW TOTAL 4 835700 May 23 1920 | | 2450 | 1900 | 1720 | 1380 | 1210 | 1550 | 2780 | 3990 | 1490 | 1470 | | | | TOTAL 91060 57620 56150 44610 37350 43890 82450 111190 58230 47130 55590 53970 MEAN 2937 1921 1811 1439 1288 1416 2748 3587 1941 1520 1793 1799 MAX 5600 2630 1990 1830 1350 1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1937 1987 1987 1997 1994 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 21611 HIGHEST ANNUAL MEAN 2435 2020 3838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW TOTAL 4 835700 May 23 1920 | | 2410 | 2010 | 1740 | 1360 | 1290 | 1580 | 3110 | 3150 | 1530 | 1460 | | | | TOTAL 91060 57620 56150 44610 37350 43890 82450 111190 58230 47130 55590 53970 MEAN 2937 1921 1811 1439 1288 1416 2748 3587 1941 1520 1793 1799 MAX 5600 2630 1990 1830 1350
1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1937 1987 1987 1997 1994 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 21611 HIGHEST ANNUAL MEAN 2435 2020 3838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW TOTAL 4 835700 May 23 1920 | | 2400 | 1990 | 1740 | 1290 | 1350 | 1690 | 3570 | 2750 | 1560 | 1580 | | | | TOTAL 91060 57620 56150 44610 37350 43890 82450 111190 58230 47130 55590 53970 MEAN 2937 1921 1811 1439 1288 1416 2748 3587 1941 1520 1793 1799 MAX 5600 2630 1990 1830 1350 1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1937 1987 1987 1997 1994 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 21611 HIGHEST ANNUAL MEAN 2435 2020 3838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW TOTAL 4 835700 May 23 1920 | | 2300 | 1970 | 1740 | 1250 | 1310 | 1790 | 3670 | 2980 | 1490 | 1630 | | | | TOTAL 91060 57620 56150 44610 37350 43890 82450 111190 58230 47130 55590 53970 MEAN 2937 1921 1811 1439 1288 1416 2748 3587 1941 1520 1793 1799 MAX 5600 2630 1990 1830 1350 1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1937 1987 1987 1997 1994 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 21611 HIGHEST ANNUAL MEAN 2435 2020 3838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW TOTAL 4 835700 May 23 1920 | | 2070 | 1950 | 1740 | 1260 | | 1750 | 3340 | 3190 | 1450 | 16/0 | | | | MEAN | 31 | 2370 | | 1/40 | 1240 | | 1880 | | 3290 | | 1690 | 2040 | | | MAX 5600 2630 1990 1830 1350 1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 (WY) 1987 1987 1987 1974 1974 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 3455 2020 2611 HIGHEST ANNUAL MEAN 3455 2020 3261 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW | TOTAL | | 57620 | 56150 | 44610 | 37350 | 43890 | 82450 | | | | 55590 | | | MAX 5600 2630 1990 1830 1350 1880 3670 5180 3070 1720 2140 2030 MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 (WY) 1987 1987 1987 1974 1974 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 3455 2020 2611 HIGHEST ANNUAL MEAN 3455 2020 3261 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW | | | 1921 | 1811 | 1439 | 1288 | 1416 | 2748 | | | | | | | MIN 2070 1300 1670 1240 1210 1090 1810 2300 1450 1320 1500 1650 AC-FT 180600 114300 111400 88480 74080 87060 163500 220500 115500 93480 110300 107000 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 (WY) 1987 1987 1987 1974 1974 1974 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 1945 1945 1957 1984 1934 1934 1934 1934 1934 1934 1934 193 | | | 2630 | 1990 | 1830 | 1350 | 1880 | 3670 | | | | | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1897 - 2000, BY WATER YEAR (WY) MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 (WY) 1987 1987 1987 1974 1974 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 7870 APR 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 7870 APR 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 7870 APR 14 1140 Mar 5 116 Jul 14 1934 INSTANTANTENDENTE PEAK FLOW 7870 APR 14 1140 Mar 5 116 Jul 14 1934 INSTANTANTENDENTE PEAK FLOW 7870 APR 18 106 May 23 1920 | | | | | | | | 1810 | | | | | | | MEAN 1476 1458 1356 1271 1272 1462 3112 7480 7067 2559 1400 1383 MAX 3479 3303 3225 3515 3844 4114 9184 18870 19630 11950 3639 4959 (WY) 1987 1987 1987 1987 1974 1974 1997 1942 1920 1957 1995 1957 1929 MIN 268 497 500 500 500 500 580 698 577 165 153 267 (WY) 1935 1899 1899 1899 1899 1903 1977 1977 1934 1934 1934 1934 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5435 2020 2611 HIGHEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 7870 1820 1820 1820 1820 1820 1820 1820 182 | AC-FT | 180600 | 114300 | 111400 | 88480 | 74080 | 87060 | 163500 | 220500 | 115500 | 93480 | 110300 | 107000 | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | STATIS | TICS OF N | MONTHLY MI | EAN DATA | FOR WATER | YEARS 1897 | - 2000 | , BY WATE | ER YEAR (W | Y) | | | | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | MEAN | 1476 | 1458 | 1356 | 1271 | 1272 | 1462 | 3112 | 7480
 7067 | 2559 | 1400 | 1383 | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | | 3479 | 3303 | 3225 | 3515 | 3844 | 4114 | 9184 | 18870 | | | | | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | | 1987 | 1987 | 1987 | 1974 | 1974 | 1997 | 1942 | 1920 | | 1995 | | | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | MIN | 268 | 497 | 500 | 500 | 500 | 500 | 580 | 698 | 577 | 165 | 153 | 267 | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1897 - 2000 ANNUAL TOTAL 888708 739240 ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 1934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | (WY) | 1935 | 1899 | 1899 | 1899 | 1899 | 1903 | 1977 | 1977 | 1934 | 1934 | 1934 | 1934 | | ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 21934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANTENEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | SUMMAR | | | | | | | | | R | WATER | YEARS 1897 | 7 - 2000 | | ANNUAL MEAN 2435 2020 2611 HIGHEST ANNUAL MEAN 5187 1984 LOWEST ANNUAL MEAN 838 21934 HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANTENEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | ANNITAT. | TOTAL | | | 888708 | | | 739240 | | | | | | | HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 25 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | | | | | | | | | | | 2611 | | | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTIANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | | | MEAN | | | | | | | | E107 | | 1984 | | HIGHEST DAILY MEAN 6100 May 25 5600 Oct 4 35200 May 23 1920 LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTIANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 INSTANTIANEOUS PEAK STAGE 6.25 Oct 4 14.95 May 23 1920 ANNUAL RUNOFF (AC-FT) 1763000 1466000 1892000 6150 1892000 10 PERCENT EXCEEDS 3920 3200 6150 50 PERCENT EXCEEDS 2120 1780 703 1390 90 PERCENT EXCEEDS 1230 1290 703 | | | | | | | | | | | 838 | | 1934 | | LOWEST DAILY MEAN 895 Apr 19 1090 Mar 8 106 Jul 20 1934 ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 1763000 1466000 149000 6150 10 PERCENT EXCEEDS 3920 3200 6150 50 PERCENT EXCEEDS 1210 1780 703 | HIGHES' | T DAILY N | MEAN | | 6100 | May 25 | | 5600 | Oct | 4 | 35200 | May | 23 1920 | | ANNUAL SEVEN-DAY MINIMUM 967 Apr 14 1140 Mar 5 116 Jul 14 1934 1NSTANTANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 INSTANTANEOUS PEAK STAGE 6.25 Oct 4 14.95 May 23 1920 ANNUAL RUNOFF (AC-FT) 1763000 1466000 1892000 6150 19ERCENT EXCEEDS 3920 3200 6150 50 PERCENT EXCEEDS 2120 1780 1390 90 PERCENT EXCEEDS 1230 1290 703 | | | EAN | | 895 | Apr 19 | | 1090 | Mar | 8 | 106 | Jul | 20 1934 | | INSTANTIANEOUS PEAK FLOW 5770 Oct 4 a35700 May 23 1920 | | | Y MINIMUM | M | 967 | Apr 14 | | 1140 | Mar | 5 | 116 | Jul | 14 1934 | | INSTANTIANEOUS PEAK STAGE 6.25 Oct 4 14.95 May 23 1920 ANNUAL RUNOFF (AC-FT) 1763000 1466000 1892000 10 PERCENT EXCEEDS 3920 3200 6150 50 PERCENT EXCEEDS 2120 1780 1390 90 PERCENT EXCEEDS 1230 1290 703 | | | | | | | | 5770 | Oct | 4 | a35700 | May | 23 1920 | | ANNUAL KUNUFF (AC-FT) 1/63000 1466000 1892000
10 PERCENT EXCEEDS 3920 3200 6150
50 PERCENT EXCEEDS 2120 1780 1390
90 PERCENT EXCEEDS 1230 1290 703 | INSTAN | TANEOUS I | PEAK STAGI | 4; | 1762000 | | | 1466000 | .25 Oct | 4 | 14. | .95 May | 23 1920 | | 10 10 10 10 10 10 10 10 | ANNUAL | KUNUFF (| (AC-FT) | | T/03000 | | | 1466000 | | | T897000 | | | | 90 PERCENT EXCEEDS 1230 1290 703 | TO PER | CENI EXCI | בעבוב
פחיניי | | 374U
2120 | | | 3200
1790 | | | 1300 | | | | | 90 PER | CENT EXC | EEDS | | 1230 | | | | | | | | | e Estimated. a Site and datum then in use, from rating curve extended above 22000 ft³/s. #### 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1931 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: November 1935 to September 1974, September 1975 to current year. WATER TEMPERATURE: April 1949 to September 1974, September 1975 to current year. INSTRUMENTATION.--Water-quality monitor since September 1975, November 1991 water-quality monitor with satellite telemetry. REMARKS.--Daily specific-conductance data are good except for Oct. 1-6, Nov. 17 to Dec. 4, which are fair, and Dec. 5 to Jan. 19, which are poor. Daily maximum and minimum specific-conductance data previous to water year 1995 are available in the district office. Daily water temperature data are good. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 3,000 microsiemens several days during July and Sept. 1974; minimum, 194 microsiemens June 6, 1979. WATER TEMPERATURE: Maximum, 30.0°C Aug. 13, 1958; minimum, 0.0°C on many days during winter months most years. SPECIFIC CONDUCTANCE: Maximum, 1,050 microsiemens/cm, Nov. 14; minimum, 331 microsiemens/cm, May 6. WATER TEMPERATURE: Maximum, 23.9°C, July 11; minimum, 0.0°C, on several days. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECONI
(00061) | CIF:
CON-
DUC'
ANCI | IC WHO
- FIE
I- (STA
E AR
CM) UNI | ER
LE
LD TEMP
ND- ATU
D WAT
TS) (DEG | ER SO
C) (M | GEN, TO
IS- (N
LVED A
G/L) CA | OTAL DI
MG/L SC
AS (M
ACO3) AS | CIUM SI
S- DI
DLVED SOI
IG/L (MO | GNE-
IUM, SODIU
IS- DIS-
LVED SOLVE
E/L (MG/
MG) AS N
925) (0093 | SORP-
ED TION
(L RATIO
(A) | |-----------------|--------------------------|---|------------------------------|--|--|---|--|---|---|--|--| | OCT
06 | 1300 | 4790 | 48 | 4 8. | 2 13. | 3 8 | .9 1 | L90 52 | .6 15. | .0 20.7 | .6 | | NOV
17 | 1500 | 1880 | 833 | 1 8. | 7 8. | 1 11 | .0 3 | 330 82 | .8 29 | .4 45.7 | 1 | | JAN
19 | 0930 | 1520 | 888 | 8 8. | 1 4. | 8 10 | .4 3 | 340 81 | .8 33. | .3 58.5 | 1 | | MAR
09
22 | 1230
0915 | 1170
1700 | 904
706 | | | | | | .7 36.
1.8 23. | | | | APR
13 | 1030 | 3430 | 439 | 9 8. | 1 11. | 4 8 | .3 1 | L70 44 | .5 14. | .3 21.1 | 7 | | MAY
10 | 1000 | 4280 | 47 | 7 8. | 1 12. | 9 8 | .0 1 | 190 52 | .2 15. | .1 24.2 | . 8 | | JUN
06 | 1050 | 2390 | 62' | | | | | | .6 19. | | | | JUL
24 | 1035 | 1410 | 87: | | | | | | .0 27. | | | | AUG
29 | 1345 | 1890 | 860 | | | | | | .8 27. | | | | DATE | S
I
SC
(M
AS | OTAS- LI
SIUM, WA
DIS-
DLVED
MG/L (
S K) (N | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVEI
(MG/L
AS
SIO2) | DIS-
SOLVED | SOLIDS, DIS- SOLVED (TONS PER AC-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | 06
NOV | 2 | 2.0 | 103 | 132 | 2.7 | .3 | 12.9 | 300 | .41 | 3880 | E2.0 | | 17
JAN | 2 | 2.9 | 141 | 279 | 6.8 | . 4 | 13.7 | 545 | .74 | 2760 | 5.8 | | 19
MAR | 3 | 3.5 | 152 | 312 | 7.8 | .3 | 14.4 | 602 | .82 | 2470 | 6.6 | | 09 | | 3.3 | 161 | 332 | 9.6 | . 4 | 11.9 | 641 | .87 | 2020 | 6.8 | | 22
APR | | 2.5 | 132 | 218 | 6.7 | .3 | 12.8 | 444 | .60 | 2040 | 4.7 | | 13
MAY | |
2.3 | 105 | 113 | 3.1 | .2 | 12.0 | 273 | .37 | 2530 | 2.5 | | JUN | | 2.3 | 94 | 145 | 4.1 | . 2 | 12.1 | 311 | .42 | 3600 | 2.4 | | 06
JUL | 2 | 2.6 | 118 | 201 | 4.6 | .3 | 13.1 | 412 | .56 | 2660 | 3.8 | | 24
AUG | 2 | 2.9 | 144 | 301 | 6.9 | . 4 | 13.3 | 578 | .79 | 2200 | 3.7 | | 29 | 3 | 3.3 | 147 | 297 | 6.4 | . 4 | 13.9 | 575 | .78 | 2940 | 4.9 | 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | ۵. | PECIFIC | CONDUCTA | IVCE (FIECE | (CONTENEND) | CII AI 23 | DEG. C/, | WAIER IEA | IC OCTOL | ERC IDDD | TO DEFIEND | ER 2000 | | |---|---|--|---|---|--|---|--|--|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 558 | 552 | 555 | 843
812
817 | 776 | 795 | 768 | 756 | 764 | 780 | 767 | 774 | | 2 | 555 | 531 | 544 | 812 | 751 | 768 | 768
771 | 758 | 766 | 785 | 770 | 776 | | 3
4 | 531
505 | 505
490 | 515
498 | 817
805 | 752
787 | 780
799 | 770
773 | 763
764 | 767
769 | 795
802 | 781
782 | 788
790 | | 5 | 491 | 485 | 487 | 826 | 804 | 817 | 773 | 766 | 770 | 790 | 729 | 763 | | 6 | 518 | 482 | 490 | 827 | 816 | 822 | 770 | 744 | 752 | 797 | 766 | 780 | | 7 | 541 | 514 | 527 | 823 | 810 | 818 | 762 | 745 | 754 | 823 | 790 | 804 | | 8
9 | 593
647 | 541
593 | 566
618 | 811
805 | 799
796 | 805
803 | 775
783 | 761
770 | 766
775 | 850
872 | 823
841 | 834
859 | | 10 | 706 | 647 | 667 | 834 | 795 | 805 | 781 | 747 | 763 | 873 | 863 | 867 | | 11 | 761 | 706 | 739 | 912 | 834 | 870 | 771 | 753 | 762 | 866 | 767 | 818 | | 12 | 793
796 | 761
762 | 783
777 | 979
1030 | 912
971 | 950
996 | 780
780 | 769
771 | 774
775 | 767
705 | 705
646 | 746
664 | | 13
14 | 782 | 752 | 764 | 1050 | 798 | 911 | 776 | 752 | 765 | 646 | 624 | 636 | | 15 | 779 | 756 | 767 | 798 | 785 | 790 | 781 | 758 | 769 | 655 | 622 | 641 | | 16 | 790 | 764 | 777 | 797 | 778 | 789 | 765 | 727 | 744 | 723 | 651 | 663 | | 17
18 | 776
768 | 757
750 | 766
760 | 832
830 | 777
812 | 799
823 | 763
770 | 744
758 | 753
764 | 752
803 | 723
751 | 738
775 | | 19 | 772 | 759 | 767 | 833 | 820 | 828 | 775 | 763 | 769 | 941 | 803 | 864 | | 20 | 772 | 757 | 765 | 827 | 786 | 798 | 780 | 771 | 774 | 950 | 928 | 938 | | 21 | 766 | 757 | 763 | 802 | 785 | 791 | 780 | 768 | 776 | 933 | 890 | 908 | | 22 | 805
811 | 764
772 | 784
787 | 812
811 | 796
797 | 805
802 | 779
780 | 754
769 | 774
776 | 892
896 | 868
858 | 875
868 | | 23
24 | 776 | 766 | 770 | 798 | 775 | 786 | 782 | 753 | 770 | 906 | 870 | 887 | | 25 | 770 | 760 | 765 | 781 | 755 | 765 | 772 | 748 | 764 | 875 | 834 | 846 | | 26 | 773 | 763 | 768 | 767 | 754 | 762 | 776 | 762 | 769 | 869 | 832 | 843 | | 27 | 772 | 761
763 | 766
768 | 776 | 763
773 | 768
776 | 785
776 | 770
767 | 776
772 | 957
966 | 869
934 | 910
955 | | 28
29 | 773
803 | 763 | 779 | 781
779 | 766 | 773 | 780 | 766 | 771 | 934 | 934
876 | 901 | | 30 | 802 | 791 | 797 | 776 | 765 | 772 | 784 | 762 | 771
775 | 876 | 818 | 845 | | 31 | 791 | 777 | 785 | | | | 783 | 773 | 778 | 829 | 796 | 816 | | MONTH | 811 | 482 | 699 | 1050 | 751 | 812 | 785 | 727 | 768 | 966 | 622 | 812 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | 813 | FEBRUARY | 799 | | MARCH | | | APRIL
649 | 658 | 396 | MAY
382 | 391 | | 1
2 | 813
888 | FEBRUARY
784
786 | 799
839 | | MARCH | | | APRIL
649
655 | 658
661 | 396
398 | MAY
382
376 | 391
388 | | 1
2
3 | 813
888
850 | FEBRUARY
784
786
771 | 799
839
815 | 825
818
825 | MARCH
807
807
808 | 814
813
818 | 670
668
667 | APRIL
649
655
656 | 658
661
660 | 396
398
381 | MAY
382
376
367 | 391
388 | | 1
2 | 813
888 | FEBRUARY
784
786 | 799
839 | | MARCH | | | APRIL
649
655 | 658
661 | 396
398 | MAY
382
376 | 391 | | 1
2
3
4 | 813
888
850
795
801 | 784
786
771
770
767 | 799
839
815
782
788 | 825
818
825
819
805 | 807
807
808
808
804
791 | 814
813
818
812
798 | 670
668
667
675
650 | APRIL
649
655
656
643
641
621 | 658
661
660
655
644 | 396
398
381
383 | MAY
382
376
367
350
334 | 391
388
375
365
355 | | 1
2
3
4
5 | 813
888
850
795
801
798
794 | 784
786
771
770
767
778
775 | 799
839
815
782
788
785
783 | 825
818
825
819
805 | MARCH
807
807
808
804
791
797
797 | 814
813
818
812
798
805
807 | 670
668
667
675
650 | APRIL 649 655 656 643 641 621 591 | 658
661
660
655
644
635
605 | 396
398
381
383
369
359
372 | MAY
382
376
367
350
334
331
349 | 391
388
375
365
355
351
359 | | 1
2
3
4
5 | 813
888
850
795
801
798
794
786 | 784
786
771
770
767
778
775
769 | 799
839
815
782
788
785
783
778 | 825
818
825
819
805
811
819
885 | 807
807
808
804
791
797
797
810 | 814
813
818
812
798
805
807
838 | 670
668
667
675
650
646
630
599 | APRIL 649 655 656 643 641 621 591 542 | 658
661
660
655
644
635
605 | 396
398
381
383
369
359
372
401 | MAY
382
376
367
350
334
331
349
369 | 391
388
375
365
355
351
359
384 | | 1
2
3
4
5 | 813
888
850
795
801
798
794 | 784
786
771
770
767
778
775 | 799
839
815
782
788
785
783 | 825
818
825
819
805 | MARCH
807
807
808
804
791
797
797 | 814
813
818
812
798
805
807 | 670
668
667
675
650 | APRIL 649 655 656 643 641 621 591 | 658
661
660
655
644
635
605 | 396
398
381
383
369
359
372 | MAY
382
376
367
350
334
331
349 | 391
388
375
365
355
351
359 | | 1
2
3
4
5
6
7
8
9 | 813
888
850
795
801
798
794
786
784
826 | 784
786
771
770
767
778
775
769
766
764 | 799
839
815
782
788
785
783
778
774
793 | 825
818
825
819
805
811
819
885
948
874 | 807
807
808
804
791
797
797
810
873
839 | 814
813
818
812
798
805
807
838
915
854 | 670
668
667
675
650
646
630
599
542
518 | 649
655
656
643
641
621
591
542
512
475 | 658
661
660
655
644
635
605
556
520
503 | 396
398
381
383
369
359
372
401
479
516 | MAY 382 376 367 350 334 331 349 369 401 479 500 | 391
388
375
365
355
351
359
384
431
497 | | 1
2
3
4
5
6
7
8
9
10 | 813
888
850
795
801
798
794
786
784
826 | 784
786
771
770
767
778
775
769
766
764 | 799
839
815
782
788
785
783
778
774
793 |
825
818
825
819
805
811
819
885
948
874 | 807
807
808
804
791
797
797
810
873
839 | 814
813
818
812
798
805
807
838
915
854 | 670
668
667
675
650
646
630
599
542
518 | 649
655
656
643
641
621
591
542
512
475 | 658
661
660
655
644
635
605
556
520
503 | 396
398
381
383
369
359
372
401
479
516 | MAY 382 376 367 350 334 331 349 369 401 479 500 | 391
388
375
365
355
351
359
384
431
497 | | 1
2
3
4
5
6
7
8
9
10 | 813
888
850
795
801
798
794
786
784
826 | 784
786
771
770
767
778
775
769
766
764
826
870
880 | 799
839
815
782
788
785
783
778
774
793
844
884
897 | 825
818
825
819
805
811
819
885
948
874
855
832
817 | MARCH
807
808
804
791
797
797
810
873
839
831
811
806 | 814
813
818
812
798
805
807
838
915
854
844
822
811 | 670
668
667
675
650
646
630
599
542
518
475
469
455 | 649
655
656
6643
641
621
591
542
512
475
443
437
419 | 658
661
660
655
644
635
505
556
520
503
459
453
443 | 396
398
381
383
369
359
372
401
479
516
512
500
528 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 | 391
388
375
365
355
351
359
384
431
497
505
488
502 | | 1
2
3
4
5
6
7
8
9
10 | 813
888
850
795
801
798
794
786
784
826 | 784
786
771
770
767
778
775
769
766
764 | 799
839
815
782
788
785
783
778
774
793 | 825
818
825
819
805
811
819
885
948
874 | 807
807
808
804
791
797
797
810
873
839 | 814
813
818
812
798
805
807
838
915
854 | 670
668
667
675
650
646
630
599
542
518 | 649
655
656
643
641
621
591
542
512
475 | 658
661
660
655
644
635
605
556
520
503 | 396
398
381
383
369
359
372
401
479
516 | MAY 382 376 367 350 334 331 349 369 401 479 500 | 391
388
375
365
355
351
359
384
431
497 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 813
888
850
795
801
798
794
786
784
826
874
899
915
888
859 | 784
786
771
770
767
778
775
769
766
764
826
870
880
857
840 | 799
839
815
782
788
785
783
774
793
844
884
897
869
848 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803 | MARCH
807
808
804
791
797
797
797
810
873
839
831
811
806
801
785
719 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792 | 670
668
667
675
650
646
630
599
542
518
475
469
425
419
428 | APRIL 649 655 656 643 641 621 591 542 512 475 443 437 419 397 394 | 658
661
660
655
644
635
556
520
503
459
453
410
412 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 528 564 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 813
888
850
795
801
798
794
784
826
874
899
915
888
859 | 784
786
771
770
767
778
775
769
766
764
826
870
880
857
840 | 799
839
815
782
788
785
783
774
793
844
884
887
869
848 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803 | MARCH 807 808 804 791 797 797 810 873 839 831 811 806 801 785 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792 | 670
668
667
675
650
646
630
599
542
518
475
469
428
467
476 | APRIL 649 655 656 643 641 621 591 542 475 443 437 419 397 394 421 466 | 658
661
660
655
644
635
605
556
520
503
443
410
412
442
472 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 528 564 590 617 | 391
388
375
365
355
351
359
384
497
505
488
502
542
577
605
641 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 813
888
850
795
801
798
794
786
784
826
874
899
915
888
859
845
843
866 | 784 786 771 770 767 778 775 769 766 764 826 870 880 857 840 832 829 823 | 799
839
815
782
788
785
783
774
793
844
887
869
848
838
835
839 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803 | MARCH
807
808
808
804
791
797
797
810
873
839
831
806
801
785
719
706
706 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758 | 670
668
667
675
650
646
630
599
542
518
475
469
455
419
428 | 649
655
656
643
641
621
591
542
512
475
443
437
419
397
394
421
466
418 | 658
661
660
655
644
635
505
556
520
503
459
453
443
410
412
442
472
446 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 528 564 590 617 550 | 391
388
375
365
355
351
359
384
437
505
488
502
542
577
605
641
590 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 813
888
850
795
801
798
794
784
826
874
899
915
888
859 | 784
786
771
770
767
778
775
769
766
764
826
870
880
857
840 | 799
839
815
782
788
785
783
774
793
844
884
887
869
848 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803 | MARCH 807 808 804 791 797 797 810 873 839 831 811 806 801 785 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792 | 670
668
667
675
650
646
630
599
542
518
475
469
428
467
476 | APRIL 649 655 656 643 641 621 591 542 475 443 437 419 397 394 421 466 | 658
661
660
655
644
635
605
556
520
503
443
410
412
442
472 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 528 564 590 617 | 391
388
375
365
355
351
359
384
497
505
488
502
542
577
605
641 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 813
888
850
795
801
798
794
784
826
874
899
915
888
859
845
843
866 | 784
786
771
770
767
778
775
769
766
764
826
870
880
857
840
832
829
823
866
854 | 799
839
815
782
788
785
783
774
793
844
884
897
869
848
835
835
875
873 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721 | MARCH 807 808 808 804 791 797 797 810 873 839 831 811 806 801 785 719 706 706 600 630 634 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655 | 670
668
667
675
650
646
630
599
542
518
475
469
425
419
428
467
476
423
437 | APRIL 649 655 656 643 641 621 591 542 475 443 437 419 397 394 421 466 418 393 423 435 | 658
661
660
655
644
635
505
556
520
503
459
453
410
412
442
472
474
408
432 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 564 590 617 550 530 496 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
593
515 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 813
888
850
795
801
798
794
784
826
874
899
915
888
859
845
843
866
882
889 | 784 786 771 770 767 778 775 769 766 764 826 870 880 857 840 832 829 823 866 854 834 | 799
839
815
782
788
785
783
774
793
844
884
897
869
848
835
839
875
873 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721 | MARCH 807 808 804 791 797 797 810 873 839 831 811 806 801 785 719 706 706 680 630 634 683 |
814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655 | 670
668
667
675
650
646
630
599
542
518
475
469
428
467
476
423
437 | APRIL 649 655 656 643 641 621 591 542 512 475 443 437 419 397 394 421 466 418 393 423 435 440 | 658
661
660
655
644
635
505
556
520
503
453
4410
412
442
472
446
408
432 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 564 590 617 550 496 468 468 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
590
543
515 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 813
888
850
795
801
798
794
826
874
826
874
899
915
888
859
845
843
866
843
847
869 | 784
786
771
770
767
778
775
769
766
764
826
870
880
857
840
832
829
823
866
854 | 799
839
815
782
788
785
783
774
793
844
884
897
869
848
835
835
875
873 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721
712
761
760
725 | MARCH 807 808 808 804 791 797 797 810 873 839 831 811 806 801 785 719 706 706 600 630 634 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655 | 670
668
667
675
650
646
630
599
542
518
475
449
428
467
476
423
437
465
464
464
466 | APRIL 649 655 656 643 641 621 591 542 475 443 437 419 397 394 421 466 418 393 423 435 | 658
661
660
655
644
635
505
556
520
503
459
453
410
412
442
472
446
408
432
450
450
459 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532
499
469
475
488 | MAY 382 376 367 350 334 331 349 401 479 500 478 488 564 590 617 550 530 496 468 462 465 459 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
593
515
482
465
469 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 813
888
850
795
801
798
794
784
826
874
899
915
888
859
845
843
866
882
889 | 784 786 771 770 767 778 775 769 766 764 826 870 880 857 840 832 829 823 866 854 834 830 831 | 799
839
815
782
788
785
783
774
793
844
887
869
848
835
839
875
873 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721 | MARCH 807 807 808 804 791 797 797 810 873 839 831 811 806 801 785 719 706 706 680 630 634 683 716 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655 | 670
668
667
675
650
646
630
599
542
518
475
469
455
419
428
467
476
466
423
437 | APRIL 649 655 656 643 641 621 591 542 475 443 437 419 397 394 421 466 418 393 423 435 440 446 | 658
661
660
655
644
635
556
520
503
459
453
443
410
412
442
446
408
432
450
456 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532
499
469
475 | MAY 382 376 367 350 334 331 349 369 401 479 500 478 488 528 564 590 617 550 530 496 468 462 465 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
590
543
515 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 813
888
850
795
801
798
794
826
874
826
874
899
915
888
859
845
843
866
843
847
869
858 | 784 786 771 770 767 778 775 769 766 764 826 870 880 857 840 832 829 823 866 854 834 830 831 839 824 | 799
839
815
782
788
785
783
774
793
844
884
897
869
848
835
875
873
851
837
838
847
847 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721
712
761
760
725
810 | MARCH 807 807 808 804 791 797 797 810 873 839 831 811 806 801 785 719 706 630 634 683 716 696 713 706 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655
652
714
735
709
743 | 670
668
667
675
650
646
630
599
542
518
475
449
428
467
476
423
437
465
464
466
461
433 | APRIL 649 655 656 643 641 621 591 592 475 443 437 419 397 394 421 466 418 393 423 435 440 446 452 433 | 658
661
660
655
644
635
505
556
520
503
459
453
410
412
442
472
474
408
432
450
450
450
459
444 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532
499
469
475
488
482 | MAY 382 376 367 350 334 331 349 401 479 500 478 488 564 590 617 550 530 496 468 462 465 459 459 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
590
543
515
482
465
469
471 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 813
888
850
795
801
798
794
784
826
874
899
915
888
859
845
843
866
843
847
869
858 | 784 786 771 770 767 778 775 769 766 764 826 870 8857 840 832 829 823 866 854 834 830 831 839 824 809 794 | 799
839
815
782
788
785
783
774
793
844
884
897
869
848
835
875
873
851
837
838
847
847 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721
712
761
760
725
810 | MARCH 807 808 804 791 797 797 810 873 839 831 811 806 706 660 630 634 683 716 696 6713 706 714 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
655
652
714
735
709
743 | 670
668
667
675
650
646
630
599
542
518
475
469
428
467
476
466
423
437
465
465
466
461 | APRIL 649 655 656 643 641 621 591 542 512 475 443 437 419 397 394 421 466 418 393 423 435 440 446 452 433 423 394 | 658
661
660
655
644
635
505
556
520
503
453
410
412
442
472
446
408
432
450
456
459
444
430
410 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532
499
475
488
482 | MAY 382 376 367 350 334 331 349 401 479 500 478 488 564 590 617 550 496 468 462 465 459 474 520 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
590
543
515
482
465
469
469
471 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 813
888
850
795
801
798
794
826
874
826
874
899
915
888
859
845
843
866
843
867
858
858
858 | 784 786 771 770 767 778 775 769 766 764 826 870 880 857 840 832 829 823 866 854 834 830 831 839 824 809 794 796 798 | 799
839
815
782
788
785
778
774
793
844
884
897
869
848
835
873
871
837
837
851
838
847
858
847 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721
712
761
760
725
810 | 807
807
808
804
791
797
797
797
810
873
839
831
811
806
801
785
719
706
680
630
630
634
683
716
696
713 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655
652
714
735
709
743 | 670
668
667
675
650
646
630
599
542
518
475
469
423
437
466
423
437
465
464
466
461
433
426
396
382 | APRIL 649 655 656 643 641 621 591 592 475 443 437 419 397 394 421 466 418 393 423 435 440 446 452 433 423 3394 357 351 | 658
661
660
655
644
635
505
556
520
503
459
443
410
412
442
472
446
408
432
450
450
456
459
444
430
410
381
364 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532
499
469
475
488
482
520
572
607
611 | MAY 382 376 367 350 334 331 349 401 479 500 478 488 564 590 617 550 530 496 468 462 465 459 459 474 520 572 586 |
391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
590
543
515
482
465
469
471
487
543
5597 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
30
30
30
30
30
30
30
30
30
30
30
30
30 | 813
888
850
795
801
798
794
784
826
874
899
915
888
859
843
866
843
847
869
858
824
813
812
815
815 | 784 786 771 770 767 778 775 769 766 764 826 870 880 857 840 832 829 823 866 854 834 830 831 839 824 809 794 796 798 | 799 839 815 782 788 785 783 774 793 844 884 897 869 848 835 837 873 851 837 838 851 837 838 851 837 838 851 837 838 851 837 838 851 837 838 851 837 838 851 837 838 851 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721
712
761
760
725
810 | MARCH 807 808 804 791 797 797 810 873 839 831 811 806 706 630 634 683 716 696 713 706 714 679 664 669 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655
652
714
735
709
743 | 670
668
667
675
650
646
630
599
542
518
475
469
428
467
476
466
423
437
465
464
464
464
464
465
461
433
426
396
382
383 | APRIL 649 655 656 643 641 621 591 542 512 475 443 437 419 397 394 421 466 418 393 423 435 440 4466 452 433 423 394 357 351 361 | 658
661
660
655
644
635
505
556
520
503
459
453
410
412
442
472
446
408
432
450
456
459
444
430
410
381
430
410
381
381
381
381
381
381
381
381
381
381 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532
499
475
488
482
520
572
607
611
594 | MAY 382 376 367 350 334 331 349 401 479 500 478 488 564 590 617 550 496 468 462 465 459 474 520 572 586 559 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
590
543
515
482
465
469
469
471
487
595
595 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 813
888
850
795
801
798
794
826
874
826
874
899
915
888
859
845
843
866
843
867
858
858
858 | 784 786 771 770 767 778 775 769 766 764 826 870 880 857 840 832 829 823 866 854 834 830 831 839 824 809 794 796 798 | 799
839
815
782
788
785
778
774
793
844
884
897
869
848
835
873
871
837
837
851
838
847
858
847 | 825
818
825
819
805
811
819
885
948
874
855
832
817
820
803
799
745
816
722
721
712
761
760
725
810 | 807
807
808
804
791
797
797
797
810
873
839
831
811
806
801
785
719
706
680
630
630
634
683
716
696
713 | 814
813
818
812
798
805
807
838
915
854
844
822
811
809
792
776
722
758
697
655
652
714
735
709
743 | 670
668
667
675
650
646
630
599
542
518
475
469
423
437
466
423
437
465
464
466
461
433
426
396
382 | APRIL 649 655 656 643 641 621 591 592 475 443 437 419 397 394 421 466 418 393 423 435 440 446 452 433 423 3394 357 351 | 658
661
660
655
644
635
505
556
520
503
459
443
410
412
442
472
446
408
432
450
450
456
459
444
430
410
381
364 | 396
398
381
383
369
372
401
479
516
512
500
528
564
590
617
664
633
555
532
499
469
475
488
482
520
572
607
611 | MAY 382 376 367 350 334 331 349 401 479 500 478 488 564 590 617 550 530 496 468 462 465 459 459 474 520 572 586 | 391
388
375
365
355
351
359
384
431
497
505
488
502
542
577
605
641
590
543
515
482
465
469
471
487
543
5597 | 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | SPECIFIC | CONDUCTA | NCE (MIC | ROSIEMENS/CM | AT 25 | DEG. C), | WATER YEAR | OCTO | BER 1999 TO | SEPTEME | BER 2000 | | |----------------------------------|--------------------------------------|--|--|--|--|--|--|--|--|--|---------------------------------|--| | DAY | MAX | MIN | MEAN | | | | JUNE | | J | ULY | | AU | GUST | | | SEPTEMBER | ! | | 1
2
3
4
5 | 592
611
625
636
648 | 562
583
605
619
629 | 572
593
611
625
636 | 966
953
943
929
908 | 942
929
928
906
882 | 949
940
933
915
897 | 854
836
858
863
856 | 793
809
812
817
819 | 825
824
835
841
834 | 891
899
935
936
925 | 878
886
893
924
913 | 884
894
915
930
920 | | 6
7
8
9
10 | 664
673
695
720
730 | 626
650
660
686
692 | 642
659
675
702
712 | 887
865
891
891
938 | 862
848
842
868
884 | 877
857
857
880
911 | 858
818
810
782
759 | 811
794
758
745
734 | 834
808
792
761
744 | 922
936
934
979
1020 | 913
918
923
926
978 | 917
926
928
954
997 | | 11
12
13
14
15 | 723
755
771
778
783 | 695
721
748
751
756 | 712
743
757
769
771 | 952
946
917
936
921 | 930
906
895
890
913 | 941
932
907
915
916 | 770
783
881
818
818 | 726
728
778
772
783 | 744
759
821
795
798 | 1010
980
962
966
961 | 980
950
949
959
938 | 1000
968
956
963
948 | | 16
17
18
19
20 | 806
820
815
866
880 | 779
805
795
809
862 | 795
810
806
840
869 | 925
957
954
930
923 | 910
918
896
915
907 | 919
934
921
921
916 | 849
863
874
891
900 | 783
819
792
825
841 | 809
845
835
864
873 | 945
936
931
970
996 | 933
929
922
922
970 | 940
934
929
943
985 | | 21
22
23
24
25 | 875
850
882
891
906 | 833
829
841
874
880 | 854
838
865
881
891 | 927
929
914
916
908 | 912
895
880
880
875 | 918
911
906
899
890 | 902
927
934
934
915 | 811
889
906
906
890 | 875
912
920
918
905 | 986
990
998
987
991 | 966
967
980
975
984 | 979
979
992
980
988 | | 26
27
28
29
30
31 | 920
930
945
955
960 | 890
917
924
933
937 | 908
924
933
941
946 | 924
908
904
860
851
808 | 875
897
859
816
803
784 | 907
903
894
841
830
798 | 915
902
892
910
864
878 | 881
860
870
852
852
859 | 895
885
881
881
859
867 | 999
1020
1000
989
1010 | 986
996
989
979
979 | 991
1010
998
985
996 | | MONTH | 960 | 562 | 776 | 966 | 784 | 901 | 934 | 726 | 840 | 1020 | 878 | 958 | | YEAR | 1050 | 331 | 761 | | | | | | | | | | | | | TEMPE: | RATURE, | WATER (DEG. | C), WA | TER YEAR | OCTOBER 199 | 9 TO : | SEPTEMBER 2 | 2000 | | | | DAY | MAX | MIN | MEAN | | | | OCTOBER | | NOV | EMBER | | DEC | EMBER | | | JANUARY | | | 1
2
3
4
5 | 13.2
13.2
13.2
12.6
12.4 | 11.5
12.2
12.1
11.8
11.6 | 12.2
12.6
12.6
12.2
12.1 | 9.3
9.4
9.0
9.0
9.2 | 7.3
7.4
7.0
6.8
6.9 | 8.2
8.2
7.9
7.8
8.0 | 6.1
6.6
6.0
4.6
3.9 | 4.6
5.2
4.6
3.3
2.6 | 5.4
5.9
5.4
4.0
3.3 | 1.6
1.8
2.0
.9 | 1.2
.9
.8
.0 | 1.4
1.4
1.4
.2 | | 6
7
8
9
10 | 13.5
12.9
12.8
13.6
14.1 | 12.2
11.8
11.6
12.2
12.2 | 12.9
12.4
12.1
12.7
13.0 | 9.4
9.1
9.5
9.9
9.4 | 7.1
7.1
7.2
7.9
7.6 | 8.2
8.1
8.3
8.9
8.5 | 3.6
3.5
4.0
3.2
3.3 | 1.9
2.1
2.4

2.1 | 2.8
2.8
3.1

2.7 | .5
.0
.0
.0 | .0.0.0 | .1
.0
.0
.0 | | 11
12
13
14
15 | 14.4
14.4
14.2
13.8
13.4 | 12.2
12.1
11.7
11.5
11.3 | 13.2
13.1
12.9
12.5
12.2 | 8.8
8.2
7.6
7.4
7.5 | 7.0
6.4
6.0
5.3
5.3 | 7.9
7.3
6.9
6.4
6.4 | 3.8
3.7
2.9
1.9 | 2.4
2.4
1.9
.5 | 3.0
3.0
2.4
1.2 | 2.2
3.2
3.3
3.3
3.9 | .4
1.7
2.0
2.1
2.5 | 1.2
2.4
2.7
2.7
3.2 | | 16
17
18
19
20 | 12.0
9.9
9.9
10.2
10.5 | 9.0
7.7
7.9
8.1
8.5 | 10.6
8.8
8.9
9.0
9.3 | 7.5
8.1
7.8
6.7
5.5 |
5.4
5.7
6.1
5.4
4.3 | 6.4
6.8
6.9
6.0
4.9 | 1.3
2.8
3.2
2.9
3.2 | .0
1.0
1.8
1.4 | .6
1.8
2.5
2.2
2.4 | 4.0
4.3
5.2
5.9
5.8 | 3.4
3.6
4.1
4.6
4.5 | 3.7
4.0
4.6
5.2
5.2 | | 21
22
23
24
25 | 10.6
11.0
10.8
10.7 | 8.5
8.6
8.8
8.7
8.5 | 9.4
9.7
9.7
9.6
9.4 | 5.4
5.6
4.9
4.4
3.8 | 3.7
4.5
3.4
2.8
2.3 | 4.6
5.1
4.2
3.6
3.0 | 2.8
2.1
1.9
1.8
2.0 | 1.7
.9
.3
.1 | 2.3
1.6
1.1
1.0 | 5.4
5.2
4.5
4.0
4.2 | 4.3
3.7
3.2
3.0
3.6 | 4.7
4.4
3.9
3.6
3.9 | | 26
27
28
29
30
31 | 10.4
10.4
9.5
9.7
9.7 | 8.4
8.3
8.4
8.6
8.1
7.3 | 9.3
9.2
9.1
9.1
8.8
8.1 | 4.5
5.7
6.2
6.7
6.0 | 2.5
4.0
4.4
4.8
4.9 | 3.4
4.8
5.3
5.7
5.5 | 2.3
2.5
2.6
2.6
2.6
2.1 | .5
.7
.8
.8 | 1.4
1.6
1.7
1.7
1.7 | 4.7
5.0
4.0
3.0
2.5
1.8 | 4.1
3.5
2.5
1.4
.9 | 4.4
4.2
3.2
2.3
1.8
1.6 | MONTH 14.4 7.3 10.9 9.9 2.3 6.4 6.6 .0 2.4 5.9 .0 2.5 # 09152500 GUNNISON RIVER NEAR GRAND JUNCTION, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | TEMPE | RAIURE, | WATER (DE | G. C), W | ALEK IEAK | OCTOBER | 1999 10 | SEP1EMBER | 2000 | | | |---|--|--|--|--|---|--|--|--|--|--|--|--| | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | | 1 3 | 2.0
2.6
3.1
3.1
2.7 | 7.3
7.6
8.5
8.7 | | 6.6
6.7
7.1
7.5
7.0 | 8.6
10.1
10.8
11.8
13.3 | 5.6
7.0
7.3
7.7 | 7.2
8.4
9.0
9.6
11.3 | 14 8 | 10.8
11.5
12.4
13.1
13.1 | 11.9
12.6
13.5
14.0
13.9 | | 6
7
8
9
10 | 4.2
4.9
4.8
4.5
5.0 | 1.9
2.7
3.0
3.4
3.9 | 3.1
3.8
4.0
3.9
4.3 | 6.9
6.3
6.6
8.0
8.7 | 5.5
5.3
4.8
5.5
5.7 | 6.3
5.7
5.6
6.6
7.0 | 14.1
13.6
12.5
12.0
12.0 | 10.8
11.0
10.2
9.5
10.0 | 12.4
12.2
11.3
10.6
10.9 | 14.2
13.7
13.2
11.7
15.2 | 12.9
12.9
11.4
10.4
11.6 | 13.6
13.3
12.1
11.1
13.4 | | 11
12
13
14
15 | 5.8
5.7
5.1
4.6
5.8 | 4.3
4.8
3.7
3.3
3.6 | 5.1
5.1
4.4
3.9
4.5 | 7.9
8.6
9.6
9.1
8.9 | 5.7
6.6
6.8
7.0
6.6 | 6.9
7.5
8.1
8.3
7.6 | 12.5
12.7
12.4
11.6
10.8 | 10.3
10.4
10.7
10.6
8.9 | 11.3
11.6
11.5
11.1
10.0 | 14.2
12.4
12.7
13.0
13.3 | 12.4
11.2
10.9
11.0 | 13.6
11.8
11.6
11.9
12.5 | | 16
17
18
19
20 | 5.0
5.1
5.2
5.5
5.5 | 4.1
4.5
4.4
3.2
4.0 | 4.7
4.8
4.8
4.4
4.8 | 7.6
7.5
7.7
7.0
6.3 | 4.9
5.7
5.0
4.7
4.5 | 6.3
6.7
6.4
6.0
5.2 | 10.1
12.3
11.8
10.6
9.8 | 8.2
9.3
10.6
7.9
7.2 | 9.1
10.6
11.3
9.2
8.4 | 15.2
15.3
13.2
14.2
15.5 | | 13.6
14.0
12.6
12.7
14.3 | | 21
22
23
24
25 | 5.7
6.1
6.7
7.4
6.2 | | 5.1
5.6
5.9
6.4
5.5 | 6.5
6.5
7.6
10.0
11.2 | 3.5
4.4
4.4
6.4
8.2 | 5.0
5.5
6.1
8.2
9.8 | 10.9
10.8
11.6
13.2
12.8 | 8.8
9.5
9.4
10.4
10.6 | 9.8
10.1
10.5
11.7 | 14.8 | 13.4
13.2
14.3
14.8
13.8 | 14.0
14.1
15.2
15.5
14.3 | | 26
27
28
29
30
31 | 4.6
5.7
7.2
8.3 | 2.7
2.7
4.9
6.0 | 3.8
4.3
5.8
7.0 | 11.9
12.4
11.3
10.7
9.9
8.3 | 9.0
9.7 | 10.4
10.8
10.3
9.5
9.2
7.5 | 13.0
13.8
13.7
13.1
11.9 | 10.6
11.5
12.4
11.2
10.1 | 11.7
12.5
12.9
12.3
11.1 | 14.3
16.1
18.4
19.1
18.6
18.3 | 13.5
13.2
15.1
16.8
16.8
16.3 | 13.9
14.5
16.6
17.7
17.7 | | MONTH | 8.3 | 1.3 | 4.4 | 12.4 | 3.5 | 7.3 | 14.1 | 5.6 | 10.7 | 19.1 | 10.4 | 13.8 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | | | AUGUST | | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
18.0
18.4
19.1
19.7
19.0 | | MEAN 16.7 17.2 17.6 18.1 18.0 | 22.4
22.7
22.8
22.2
21.2 | JULY
18.4 | | | AUGUST | 20.7
21.2
21.0
21.1
21.5 | | SEPTEMBE | | | 1
2
3
4 | 18.0
18.4
19.1
19.7 | JUNE 15.4 16.2 16.3 16.9 | 16.7
17.2
17.6
18.1
18.0
17.9
19.0
19.3
18.8
18.1 | 22.4
22.7
22.8
22.2
21.2
21.5
22.0
21.4
21.2 | JULY 18.4 19.3 19.8 19.4 18.0 17.6 18.5 19.3 18.5 19.0 | 20.3
21.2
21.4
21.0
19.9 | | AUGUST 18.9 19.4 19.8 19.9 19.8 19.7 18.8 18.6 19.2 | 20.7
21.2
21.0
21.1
21.5 | 18.7
18.4
19.1
19.6
19.4 | SEPTEMBE
16.9
15.6
15.9
16.3
17.4
16.5
15.2 | 17.8
17.0
17.5
18.0 | | 1
2
3
4
5
6
7
8
9
10 |
18.0
18.4
19.1
19.7
19.0
19.5
20.0
20.0
19.5
20.1
19.8 | JUNE 15.4 16.2 16.3 16.9 16.9 16.3 17.2 18.3 17.7 16.6 | 16.7
17.2
17.6
18.1
18.0
17.9
19.0
19.3
18.8
18.1 | 22.4
22.7
22.8
22.2
21.2
21.5
22.0
21.4
21.2 | JULY 18.4 19.3 19.8 19.4 18.0 17.6 18.5 19.3 18.5 19.0 19.9 20.1 | 20.3
21.2
21.4
21.0
19.9
19.7
20.4
20.5
19.8
20.7 | 22.6
23.1
22.2
22.2
23.3
23.2
22.2
22.7
22.4
22.1 | AUGUST 18.9 19.4 19.8 19.9 19.8 19.7 18.8 18.6 19.2 19.6 18.9 19.1 | 20.7
21.2
21.0
21.1
21.5
20.8
20.6
20.9
21.0 | 18.7
18.4
19.1
19.6
19.4
18.3
18.6
18.4
17.6
18.7 | SEPTEMBE 16.9 15.6 15.9 16.3 17.4 16.5 15.2 16.7 15.2 15.3 15.8 15.4 | 17.8
17.0
17.5
18.0
18.3
17.4
16.6
17.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.0
18.4
19.1
19.7
19.0
19.5
20.6
20.0
19.5
20.1
19.8
20.2 | JUNE 15.4 16.2 16.3 16.9 16.9 16.3 17.2 18.3 17.7 16.6 | 16.7
17.2
17.6
18.1
18.0
17.9
19.0
19.3
18.8
18.1
18.2
18.4 | 22.4
22.7
22.8
22.2
21.2
21.5
22.0
21.4
21.2
22.7
23.9
22.8
22.7
23.9 | JULY 18.4 19.3 19.8 19.4 18.0 17.6 18.5 19.3 18.5 19.0 19.9 20.1 19.4 19.7 | 20.3
21.2
21.4
21.0
19.9
19.7
20.4
20.5
19.8
20.7
21.8
21.6
21.0
21.7 | 22.6
23.1
22.2
22.2
23.3
23.2
22.2
22.7
22.4
22.1
22.5
22.0
21.4
21.2 | AUGUST 18.9 19.4 19.8 19.9 19.8 19.7 18.8 18.6 19.2 19.6 18.9 19.1 18.5 | 20.7
21.2
21.0
21.1
21.5
20.8
20.6
20.9
21.0
20.7
20.5
20.1
20.2 | 18.7
18.4
19.1
19.6
19.4
18.3
18.6
18.7
18.8
18.9 | SEPTEMBE 16.9 15.6 15.9 16.3 17.4 16.5 15.2 16.7 15.2 15.3 15.8 15.4 15.7 15.9 | 17.8
17.0
17.5
18.0
18.3
17.4
16.8
17.6
16.6
17.0
17.4
17.2
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 18.0
18.4
19.1
19.7
19.0
19.5
20.6
20.0
19.5
20.1
19.8
20.7
21.9
21.2
20.4
19.9 | JUNE 15.4 16.2 16.3 16.9 16.9 16.3 17.2 18.3 17.7 16.6 16.4 16.8 16.7 16.2 17.8 | 16.7
17.2
17.6
18.1
18.0
17.9
19.0
19.3
18.8
18.1
18.2
18.4
19.8
19.4
18.3
18.6 | 22.4
22.7
22.8
22.2
21.2
21.5
22.0
21.4
21.2
22.7
23.9
22.8
22.7
23.7
23.7
23.7
23.5
22.9 | JULY 18.4 19.3 19.8 19.4 18.0 17.6 18.5 19.3 18.5 19.0 19.9 20.1 19.7 20.1 20.5 20.4 19.9 19.3 | 20.3
21.2
21.4
21.0
19.9
19.7
20.4
20.5
19.8
20.7
21.8
21.6
21.0
21.7
21.9
22.1
21.7
21.7
21.7 | 22.6
23.1
22.2
22.2
23.3
23.2
22.2
22.7
22.4
22.1
22.5
22.0
21.4
21.2
21.9 | AUGUST 18.9 19.4 19.8 19.9 19.8 19.7 18.8 18.6 19.2 19.6 18.9 19.1 18.5 18.6 18.8 18.5 18.6 18.8 | 20.7
21.2
21.0
21.1
21.5
20.8
20.6
20.9
21.0
20.7
20.5
20.1
20.2
20.3
20.0
20.1
19.7
19.7 | 18.7
18.4
19.1
19.6
19.4
18.3
18.6
18.7
18.8
18.9
19.1
19.4
19.5 | SEPTEMBE 16.9 15.6 15.9 16.3 17.4 16.5 15.2 16.7 15.2 15.3 15.8 15.4 15.7 15.9 16.2 16.3 16.5 15.7 | 17.8
17.0
17.5
18.0
18.3
17.4
16.8
17.6
16.6
17.0
17.4
17.2
17.5
17.7
17.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 18.0
18.4
19.1
19.7
19.0
19.5
20.6
20.0
19.5
20.1
19.8
20.7
21.9
21.2
20.4
19.0
19.2
20.4
20.0
20.0 | JUNE 15.4 16.2 16.3 16.9 16.9 16.3 17.2 18.3 17.7 16.6 16.4 16.8 16.7 16.2 17.8 17.7 16.2 17.8 17.7 16.2 17.2 17.2 17.2 17.2 17.2 17.8 | 16.7
17.2
17.6
18.1
18.0
17.9
19.0
19.3
18.8
18.1
18.2
18.4
18.4
19.8
19.4
18.3
18.6
17.5 | 22.4
22.7
22.8
22.2
21.2
21.5
22.0
21.4
21.2
22.7
23.9
22.8
22.7
23.7
23.7
23.5
22.9
22.8
22.9 | JULY 18.4 19.3 19.8 19.4 18.0 17.6 18.5 19.3 18.5 19.0 19.9 20.1 19.7 20.1 20.5 20.4 19.7 20.1 18.8 19.0 19.3 19.1 | 20.3
21.2
21.4
21.0
19.9
19.7
20.4
20.5
19.8
20.7
21.6
21.0
21.7
21.9
22.1
21.7
21.7
21.2
20.9 | 22.6
23.1
22.2
22.2
23.3
23.2
22.2
22.7
22.4
22.1
22.5
22.0
21.4
21.2
21.9
21.3
21.6
20.8
20.8 | AUGUST 18.9 19.4 19.8 19.9 19.8 19.7 18.8 18.6 19.2 19.6 18.9 19.1 18.5 18.6 18.8 17.9 18.2 17.8 16.4 17.6 18.3 | 20.7
21.2
21.0
21.1
21.5
20.8
20.6
20.9
21.0
20.7
20.5
20.1
20.2
20.3
20.0
20.1
19.7
19.3
19.4 | 18.7
18.4
19.1
19.6
19.4
18.3
18.6
18.7
18.8
18.9
19.1
19.4
19.5
19.8
18.8
18.7
19.2
18.6 | SEPTEMBE 16.9 15.6 15.9 16.3 17.4 16.5 15.2 16.7 15.2 15.3 15.8 15.4 15.7 15.9 16.2 16.3 16.5 15.7 16.5 15.8 15.8 15.1 14.1 14.5 12.2 | 17.8
17.0
17.5
18.0
18.3
17.4
16.6
17.0
17.4
17.2
17.7
17.9
18.1
17.6
17.3
17.7
17.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 18.0
18.4
19.1
19.7
19.0
19.5
20.6
20.0
19.5
20.1
19.8
20.2
20.7
21.9
21.2
20.4
19.9
19.0
19.2
20.4
21.1
20.4
21.1
20.4
21.1
20.4
21.1
20.4
20.6
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | JUNE 15.4 16.2 16.3 16.9 16.9 16.3 17.2 18.3 17.7 16.6 16.4 16.8 16.7 16.2 17.8 17.7 16.6 17.7 16.2 17.2 17.2 17.2 17.2 17.8 17.7 17.8 18.6 | 16.7
17.2
17.6
18.1
18.0
17.9
19.0
19.3
18.8
18.1
18.2
18.4
19.8
19.4
18.3
18.6
17.5
18.5
19.1
19.5
19.5
19.5
18.8
19.7
20.7
20.7
20.7
20.7
20.7
20.7
20.7
20 | 22.4
22.7
22.8
22.2
21.2
21.5
22.0
21.4
21.2
22.7
23.9
22.8
22.7
23.7
23.7
23.7
23.5
22.9
22.8
22.9
22.8
22.9
22.8 | JULY 18.4 19.3 19.8 19.4 18.0 17.6 18.5 19.3 18.5 19.0 19.9 20.1 20.5 20.4 19.9 19.3 19.1 18.8 19.0 19.3 19.1 19.3 19.1 19.3 19.1 | 20.3
21.2
21.4
21.0
19.9
19.7
20.4
20.5
19.8
20.7
21.8
21.6
21.0
21.7
21.9
22.1
21.7
21.7
21.2
20.9
20.8
21.1
20.9
21.1
21.5
20.9 | 22.6
23.1
22.2
22.2
23.3
23.2
22.7
22.4
22.1
22.5
22.0
21.4
21.2
21.9
21.3
21.6
20.7
20.8
19.8
19.0
20.6
21.2
21.2 | AUGUST 18.9 19.4 19.8 19.7 18.8 18.6 19.2 19.6 18.9 19.1 18.5 18.6 18.8 17.9 18.2 17.8 16.4 17.6 18.3 18.2 18.4 17.8 18.6 19.1 18.9 | 20.7
21.2
21.0
21.1
21.5
20.8
20.6
20.9
21.0
20.7
20.5
20.1
20.2
20.3
20.1
19.7
19.3
19.4
18.7
17.6
18.9
19.5
19.6 | 18.7
18.4
19.1
19.6
19.4
18.3
18.6
18.7
18.8
18.9
19.1
19.5
19.8
18.8
18.7
19.2
16.3
17.2
16.3
14.6
14.3 | SEPTEMBE 16.9 15.6 15.9 16.3 17.4 16.5 15.2 16.7 15.2 15.3 15.8 15.4 15.7 15.9 16.2 16.3 16.5 15.7 15.9 16.2 11.1 11.5 12.2 11.1 11.5 12.5
13.9 14.7 15.0 | 17.8
17.0
17.5
18.0
18.3
17.4
16.8
17.6
16.6
17.0
17.4
17.2
17.5
17.7
17.9
18.1
17.6
17.3
17.4
16.1
15.6
15.3
13.4
12.6 | #### 09152520 CALLOW CREEK AT WHITEWATER, CO LOCATION.--Lat $38^{\circ}59^{\circ}21^{\circ}$, long $108^{\circ}26^{\circ}53^{\circ}$, in $NE^{1}/_{4}NE^{1}/_{4}$ of sec.14, T.2 S., R.1 E., Ute Meridian, Mesa County, Hydrologic Unit 14020005, on right bank 100 ft downstream from box culvert under U.S. Highway 50 at Whitewater, and 8 mi southeast of Grand Junction. DRAINAGE AREA. -- 4.17 mi². MIN AC-FT --- --- --- --- --- --- #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July to September 2000. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,680 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period July to September, 0.32 $\mathrm{ft^3/s}$, Sept. 21 at 2345, gage height, 1.34 ft ; no flow many days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP ---------___ ---------___ 2 ___ ___ .00 .01 3 .00 ---.00 ------------------------5 .00 .00 ------------6 7 ------.00 .00 ------___ ___ .00 .00 8 .00 .00 ---------------------------.00 10 .00 .00 11 12 01 .00 ---___ ------------------------.01 .00 13 .01 .00 14 ------___ ___ ---___ ---___ ___ ___ .00 .00 15 ___ ---------.00 .00 16 17 ---------___ ---------___ ___ ___ 01 0.0 ------------.03 .00 18 .03 .04 19 ___ ---___ ___ ___ ___ ___ ___ ___ ___ .03 .04 20 .03 .00 21 ___ ___ ___ ___ ___ ___ ___ ___ 03 .03 22 .00 .16 .01 23 24 ___ ___ ___ ___ ___ ___ ___ ___ ___ .00 01 03 25 .00 .02 .00 26 ---___ ___ ___ 0.0 0.0 05 ___ ___ ___ ___ ___ 27 .00 .09 .01 28 ---------.00 .01 .04 ---------------------___ 29 ___ 0.0 0.1 0.2 30 .00 .01 .03 31 ---------------------.00 .01 TOTAL 0.27 0.65 MEAN ------------------------------.009 .022 ------___ ___ ------------------MAX .03 .16 --- --- --- --- --- --- .00 1.3 .5 ## 09152520 CALLOW CREEK AT WHITEWATER, CO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- August to September 2000. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DISCHARGED CHARGED CHA | E, SPE CIFIC C CON- F DUCT ANCE ND (US/C | FIELI
- (STANI
ARD
M) UNITS | E D TEMPE D- ATUR WATE S) (DEG | E UM-ME
R (COLS.
C) 100 MI | WATE
WHOL
TOTA
UREAS
/ (COL
L) 100 M | R HARD E NESS L TOTA E (MG/) / AS L) CACO | CALCIU
L DIS-
L SOLVI
(MG/1
3) AS CA | DIS-
ED SOLVE
L (MG/L
A) AS MG | I, SODIUM
DIS-
D SOLVEI
(MG/I
AS NA | SORP-
D TION
L RATIO | |------------------------|------|--|--|--|--|---|--|--|--|---|--|--| | AUG
21
SEP | 1145 | .02 | 1450 | 8.3 | 20.2 | K340 | K430 | 620 | 146 | 61.8 | 84.2 | 2 1 | | 27 | 0950 | .09 | 1770 | 8.2 | 10.7 | 1200 | 970 | 750 | 183 | 70.6 | 136 | 2 | | AUG
21
SEP
27 | | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
5.3 | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801)
170
214 | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-RIDE,
DIS-SOLVED (MG/L
AS CL) (00940) | FLUO-RIDE,
DIS-SOLVED (MG/L
AS F) (00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | SELE-NIUM, DIS-SOLVED (UG/L AS SE) (01145) 12.7 | | | | MIS | CELLANEOU | S FIELD M | EASUREMEN | TS, WATER | YEAR OCT | OBER 1999 | TO SEPTE | MBER 2000 | | | | DAT | E | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | AUG
18
28 | | 0927
0900 | .03 | 1420
1540 | 19.2
19.8 | | SE | P
27 | 1355 | .09 | 1720 | 13.9 | #### 287 REED WASH BASIN #### 09153290 REED WASH NEAR MACK, CO LOCATION.--Lat $39^{\circ}12^{\circ}41^{\circ}$, long $108^{\circ}48^{\circ}11^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec.27, T.2 N., R.3 W., Ute Meridian, Mesa County, Hydrologic Unit 14010005, on right bank 250 ft upstream from unnamed tributary, 0.4 mi downstream from Peck and Beede Wash, and 3.5 mi east of Mack. DRAINAGE AREA.--15.7 mi². PERIOD OF RECORD.--October 1975 to September 2000 (discontinued). Water-quality data available, October 1995 to September 1998. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,505 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Flow is mostly return flow and waste water from irrigated lands under Government Highline and Grand Valley Canals. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|--------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 55
57
54
54
57 | 81
80
76
74
75 | 33
73
68
60
58 | 5.7
5.7
5.4
5.3
5.2 | 4.2
4.2
4.2
4.1
4.0 | 3.5
3.5
3.3
3.3 | 3.0
3.0
3.2
3.7 | 61
59
57
61
58 | 54
55
48
50
47 | 60
60
60
62
64 | 67
75
68
64
61 | 72
75
70
61
62 | | 6
7
8
9
10 | 64
66
61
60
55 | 75
25
16
13
12 | 58
60
56
59
24 | 5.0
4.9
4.9
4.8
4.7 | 3.9
3.8
3.9
4.0
4.3 | 3.2
3.4
3.1
3.2
3.0 | 86
70
65
69
63 | 58
58
71
63
62 | 48
55
50
57
57 | 67
65
66
69
70 | 62
60
62
62
63 | 68
68
70
65
62 | | 11
12
13
14
15 | 54
61
62
60
62 | 11
11
11
11
11 | 8.1
7.7
7.6
7.3
7.1 |
4.7
4.6
4.5
4.6
4.5 | 4.0
4.0
3.9
3.8
3.7 | 3.0
3.0
3.0
3.0
3.1 | 64
68
62
49
57 | 64
57
55
59
57 | 61
58
56
52
54 | 64
64
65
65
61 | 69
76
72
75
69 | 66
65
63
58
55 | | 16
17
18
19
20 | 62
64
69
72
63 | 10
10
10
9.8
9.7 | 7.0
6.9
7.0
6.8
6.7 | 4.5
4.3
4.4
4.3
4.3 | 3.7
3.8
3.8
3.8
3.8 | 2.9
3.1
3.1
3.0
3.2 | 51
47
42
47
40 | 57
53
53
57
53 | 54
55
56
58
60 | 61
62
61
64
65 | 72
69
67
67 | 57
54
55
61
61 | | 21
22
23
24
25 | 58
69
65
66
64 | 9.6
8.9
8.6
8.5
8.4 | 6.5
6.2
6.1
6.1
6.1 | 4.6
4.7
4.6
4.6
4.7 | 3.8
3.7
3.7
3.8
3.6 | 3.0
3.0
2.9
2.9
2.8 | 46
41
38
42
41 | 56
56
57
53
51 | 64
66
68
66 | 62
62
70
69
74 | 72
74
70
74
76 | 61
62
64
63
63 | | 26
27
28
29
30
31 | 67
71
75
82
78
69 | 8.3
8.1
7.8
7.6
7.8 | 6.0
6.0
5.9
5.8
5.7 | 5.2
4.5
4.4
4.4
4.3 | 3.5
3.5
3.7
3.5
 | 2.7
2.7
2.9
3.0
3.0 | 40
43
47
53
57 | 58
53
48
44
47
51 | 74
69
66
62
62 | 68
65
61
63
61
65 | 73
78
77
80
93
66 | 66
63
61
60
58 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1976
63.7
82
54
3920 | 715.1
23.8
81
7.6
1420 | 687.6
22.2
73
5.7
1360 | 146.7
4.73
5.7
4.3
291 | 111.7
3.85
4.3
3.5
222 | 95.2
3.07
3.5
2.7
189 | 1379.9
46.0
86
3.0
2740 | 1747
56.4
71
44
3470 | 1748
58.3
74
47
3470 | 1995
64.4
74
60
3960 | 2182
70.4
93
60
4330 | 1889
63.0
75
54
3750 | | | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 75.7
99.4
1977
56.8
1999 | 21.6
39.5
1994
11.5
1976 | 13.8
29.0
1989
6.63
1977 | 5.81
15.3
1986
3.41
1982 | 4.49
6.67
1976
3.29
1983 | 6.98
26.8
1981
2.85
1983 | 47.5
65.3
1986
18.5
1979 | 64.9
112
1980
43.1
1992 | 65.4
95.9
1978
47.6
1992 | 72.7
98.1
1981
58.4
1991 | 76.4
96.3
1978
60.0
1991 | 75.3
115
1978
56.0
1999 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | I | FOR 2000 WAT | TER YEAR | | WATER YEA | ARS 1976 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL MANNUAL MANNUAL MAILY MEATLY MEATLY MEATLY MEATLY MEATEVEN-DAY | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 14807.0
40.6
93
3.0
3.1
29370
74
53
3.4 | Apr 7
Mar 18
Mar 18 | | 93
2.7
2.8
117
5.00
29100
70
55
3.5 | Aug 30
Mar 26
Mar 22
Aug 30
Aug 30 | | 44.4
54.0
35.2
150
2.0
2.5
a390
b6.21
32190
86
55
4.0 | Jan 3
Jan 2
Jul 2 | 1978
1992
12 1980
81 1979
22 1982
23 1983
8 1991 | a Gage height unknown.b Maximum recorded gage height. #### 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE LOCATION.--Lat $39^{\circ}07^{\circ}58^{\circ}$, long $109^{\circ}01^{\circ}35^{\circ}$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.5, T.11 S., R.104 W., Mesa County, Hydrologic Unit 14010005, on right bank 0.5 mi downstream from McDonald Creek, 1.7 mi upstream from Colorado-Utah State line, and 12 mi southwest of Mack. DRAINAGE AREA. -- 17,843 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1951 to current year. REVISED RECORDS.--WRD Colo. 1974: Drainage area. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 4,325 ft above sea level, from topographic map. May 1951 to October 1979, water-stage recorder at site 5.7 mi upstream at different datum. October 1979 to March 1995, water stage recorder at site 0.2 mi downstream at same datum. REMARKS.--Records good except for estimated daily discharges, which are fair. Natural flow of stream affected by transmountain diversions, storage reservoirs, power development, and diversions for irrigation. (Records include all return flow from irrigated areas). DISCULARCE CURTS EVER DED CECOND MATER VEAR OCTOBER 1000 TO CERTEMBER 2000 | | | DISCHA | ARGE, CUB | IC FEET PE | | WATER
Y MEAN | YEAR OCTOB
VALUES | ER 1999 TO |) SEPTEMB | ER 2000 | | | |--|--|---|--|--|---|--|--|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6140
6630
7260
7870
8010 | 5320
5520
5240
4910
4860 | e3700
e3700
3700
3720
3590 | 3230
3390
3450
3320
3070 | 2610
2640
2780
2830
2880 | 2880
2870
2950
3000
2870 | | 7660
7430
7680
8780
9970 | 16300
15500
14400
13500
12500 | 5380
5070
4880
4580
4320 | 2820
2750
2570
2590
2870 | 4480
4210
3890
3750
3740 | | 6
7
8
9
10 | 7300
6600
6420
6280
5780 | 4780
4690
4350
4240
4140 | 3450
3280
3400
3600
3720 | 3120
2950
2750
2800
3210 | 2890
2870
2830
2840
2830 | 2930
3050
3110
3080
3140 | 4140
4530
4930 | 11400
12300
12700
13800
12300 | 11400
10500
10200
9670
9500 | 4230
3890
3600
3520
4020 | 3000
3100
2970
2910
2820 | 3740
3790
3870
4020
3980 | | 11
12
13
14
15 | 5270
4930
4800
4810
4660 | 3770
3510
e3300
e3900
e3850 | 3490
3540
3570
3430
3160 | 3380
3150
3100
3110
3010 | 2940
3090
3040
2980
2940 | 3040
2940
2930
2800
2880 | 5470
5350
5640 | 10900
11500
11700
10300
9300 | 8820
8070
7660
7070
6470 | 4160
3860
3620
3380
3170 | 2850
2950
3100
3210
3310 | 3930
3720
3490
3290
3160 | | 16
17
18
19
20 | 4690
4820
5050
5110
5150 | e3920
3860
3820
e3700
e3750 | 3100
3280
3670
3640
3540 | 2970
2980
3090
3230
3270 | 2920
2900
3230
3120
2960 | 3000
3220
3150
3310
3530 | 5400
5890 | 8510
7960
8430
8400
8200 | 6510
6730
6390
6360
6960 | 3140
3550
4200
4130
3690 | 3250
3240
3450
3630
3930 | 3090
3030
3110
3330
3300 | | 21
22
23
24
25 | 5130
5040
5130
5120
5120 | 3710
e3900
e3870
e3750
e3600 | 3650
3510
3510
3420
3350 | 3240
3240
3170
3000
2820 | 2860
2870
2960
2870
2890 | 3600
3700
3690
3560
3460 | 5050
5090
5210 | 8290
8630
9090
11000
14600 | 7730
7770
7010
6350
6120 | 3180
2900
2690
2630
2610 | 4190
4150
4020
3730
3590 | 3300
3520
3710
4160
3870 | | 26
27
28
29
30
31 | 5110
5100
5200
5190
5150
5280 | e3400
e3750
e3900
e3850
e3650 | 3340
3320
3300
3260
3280
3240 | 2750
e2900
e2950
2910
2700
2560 | 2900
2820
2810
2850
 | 3420
3560
3570
3810
3800
3640 | 5860
6510
7590
7910 | 15700
14600
12700
12900
15300
17000 | 5820
5960
6240
6000
5700 | 2670
2680
2750
2920
2880
2950 | 3460
3510
3920
3940
4060
4510 | 3830
3760
3560
3250
3320 | | MEAN
MAX
MIN
AC-FT | 174150
5618
8010
4660
345400 | 122810
4094
5520
3300
243600 | 107460
3466
3720
3100
213100 | 94820
3059
3450
2560
188100 | 83950
2895
3230
2610
166500 | 100490
3242
3810
2800
199300 | 5245
7910
3530
312100 | 339030
10940
17000
7430
672500 | 259210
8640
16300
5700
514100 | 111250
3589
5380
2610
220700 | 104400
3368
4510
2570
207100 | 109200
3640
4480
3030
216600 | | | | | | | | | O, BY WATE | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4045
7672
1987
1916
1957 | 4064
6925
1987
2363
1978 | 3638
5993
1986
2048
1964 | 3412
6129
1985
1871
1964 | 3480
5996
1985
1815
1964 | 3933
7486
1986
1984
1964 | 15600
1985
1631 | 14340
37960
1984
2283
1977 | 17450
43830
1957
2688
1977 | 7940
29650
1995
1662
1977 | 3976
10190
1983
1350
1977 | 3719
7174
1997
1361
1956 | | SUMMAR | Y STATIS | TICS | FOR | 1999 CALE | ENDAR YEAR | | FOR 2000 | WATER YEAR | 1 | WATER | YEARS 1951 | 1 - 2000 | | LOWEST
HIGHES
LOWEST
ANNUAL
INSTAN
INSTAN
ANNUAL
10 PER
50 PER | MEAN T ANNUAL I ANNUAL I T DAILY M SEVEN-D TANEOUS | MEAN
MEAN
EAN
AY MINIMUN
PEAK FLOW
PEAK STAGE
(AC-FT)
EEDS | |
2203530
6037
17200
1900
2190
4371000
13500
5050
3090 | May 31
Apr 14
Apr 14 | | 1764120
4820
17000
2560
2700
17900
8.
3499000
8320
3710
2880 | May 31
Jan 31
Jul 22
May 31
64 May 31 | - | 6362
13470
2559
68300
960
1110
a69800
b16.
4609000
14000
4050
2280 | Sep
Sep
May | 1984
1977
27 1984
7 1956
2 1956
27 1984
27 1984 | e Estimated. a At site $0.2\ \mathrm{mi}$ downstream, at present datum. b From high-water mark. #### 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National Water-Quality Assessment Program station) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1969 to current year. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: October 1979 to current year. WATER TEMPERATURE: October 1979 to current year. INSTRUMENTATION. -- Water-quality monitor since October 1979. REMARKS.-- Daily records of specific conductance are good, except for periods Oct. 1-8, Apr. 5 to May 8, Sept. 14-30, which are fair, and the periods Dec. 1 to Feb. 24, and June 23 to July 18, which are poor. Daily records of water temperature are good. October 1979, water-quality data collection was moved 5.5 mi upstream to this site from previous site 09163530. Water-quality records for this site are considered to be equivalent to data obtained at old site. Data from the old site are stored with this station. Prior to October 1995, unpublished maximum and minimum specific conductance data available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. Suspended Sediment Discharge table: a sampler code of 3009 is a D-74 suspended sediment sampler; a code of 3039 is a D-77 water-quality sampler. Suspended sediment concentrations associated with a sampler type coded 3039 were determined from a subsample split of a composite sample. EXTREMES FOR PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Maximum, 1,940 microsiemens Aug. 13, 1981; minimum, 277 microsiemens June 11, 1985. WATER TEMPERATURE: Maximum, 27.0°C Aug. 7-9, 1981; minimum, -0.3°C on several days in Dec. 1996 and Jan. 1997. EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 25.7°C, July 14; minimum, 0.0°C, on several days. SPECIFIC CONDUCTANCE: Maximum, 1,230 microsiemens/cm, Aug. 19; minimum, 375 microsiemens/cm, May 31. #### WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |-----------|------|---|--|--|---|--|--|---|---|---| | OCT | | | | | | | | | | | | 08
NOV | 1200 | 6410 | 762 | 8.2 | 12.7 | 9.3 | 250 | 67.4 | 20.3 | 52.1 | | 16
JAN | 1330 | 3970 | 1100 | 8.5 | 5.6 | 11.8 | 340 | 88.5 | 29.6 | 91.6 | | 04 | 1200 | 3350 | 1050 | 8.3 | .1 | 13.0 | 310 | 82.9 | 24.6 | 89.6 | | 27 | 1340 | 3410 | 1120 | 8.1 | 4.1 | 10.5 | 320 | 80.5 | 28.4 | 111 | | FEB | | | | | | | | | | | | 24 | 1130 | 2880 | 1140 | 8.2 | 6.5 | 9.8 | 310 | 79.6 | 28.1 | 105 | | MAR | | | | | | | | | | | | 22 | 1330 | 3740 | 988 | 8.4 | 8.0 | 10.4 | 260 | 66.1 | 22.9 | 84.0 | | APR | | | | | | | | | | | | 05 | 1210 | 3550 | 946 | 8.4 | 11.3 | 11.6 | 280 | 72.4 | 24.4 | 81.8 | | 25 | 1115 | 5590 | 712 | 8.2 | 12.6 | 9.1 | 210 | 57.3 | 17.3 | 54.4 | | MAY | | | | | | | | | | | | 08 | 1300 | 12700 | 426 | 8.1 | 13.5 | 8.8 | 130 | 37.5 | 9.86 | 24.8 | | 31
JUN | 1245 | 17200 | 391 | 8.0 | 16.4 | 8.3 | 140 | 38.5 | 9.82 | 21.6 | | 07 | 1040 | 10800 | 492 | 8.1 | 17.3 | 8.1 | 160 | 44.7 | 11.6 | 30.1 | | 23 | 1045 | 7250 | 642 | 8.1 | 18.8 | 7.7 | 210 | 57.7 | 15.3 | 43.2 | | JUL | 1043 | 7230 | 042 | 0.1 | 10.0 | ,., | 210 | 37.7 | 13.3 | 43.2 | | 18 | 1050 | 4120 | 1060 | 8.3 | 23.0 | 7.0 | 340 | 92.6 | 26.5 | 78.3 | | AUG | 1000 | 1120 | 1000 | 0.5 | 23.0 | , | 510 | ,2.0 | 20.5 | 70.5 | | 23 | 1300 | 4100 | 1060 | 8.2 | 21.0 | 7.2 | 380 | 102 | 29.3 | 75.6 | | SEP | | | | | | | | | | | | 14 | 1230 | 3370 | 1140 | 8.4 | 19.1 | 8.6 | 410 | 110 | 31.9 | 84.9 | 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National Water-Quality Assessment Program station) WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | |------------------|--|--|--|---|--|--|---|--|---|--| | OCT
08 | 1 | 2.8 | 132 | | 108 | | 183 | 48.1 | .3 | 10.3 | | NOV
16 | 2 | 3.3 | 163 | 5 | 142 | | 266 | 87.1 | .3 | 9.2 | | JAN
04
27 | 2 3 | 3.5
3.8 | 170
183 | | 139
150 | | 226
257 | 102
102 | .3 | 11.0
10.2 | | FEB
24
MAR | 3 | 3.8 | 173 | 5 | 150 | | 244 | 108 | .3 | 9.4 | | 22
APR | 2 | 3.3 | 161 | 6 | 142 | | 202 | 91.9 | .3 | 9.0 | | 05
25 | 2
2 | 3.7
3.0 | 159
143 | 4 | 136
117 | | 208
147 | 80.5
53.9 | .3 | 9.3
9.5 | | 08
31
JUN | .9
.8 | 1.6
1.5 | 96
 | | 79
 |
82 | 78.7
74.8 | 25.1
16.5 | <.1
.1 | 8.2
7.6 | | 07
23 | 1
1 | 1.7
2.4 | 100
121 | | 82
99 | | 99.6
144 | 29.0
41.3 | .2 | 7.9
7.6 | | JUL
18 | 2 | 3.6 | 178 | | 146 | | 273 | 79.3 | .3 | 9.8 | | AUG
23
SEP | 2 | 3.8 | 163 | | 134 | | 299 | 66.6 | .4 | 11.3 | | 14 | 2 | 3.7 | 163 | | 134 | | 324 | 78.8 | .5 | 8.8 | | DAT | AT 1
DEG
DI
TE SOL | DUE SUM
80 CONS
C TUEN
S- DI
VED SOL
L/L) (MG | OF SOLI
TI- DI
TS, SOL
S- (TO
VED PE
/L) AC- | S- DI
VED SOL
NS (TO
R PE
FT) DA | S- NITE VED DI NS SOL R (MG Y) AS | EN, GI
EITE NO2:
ES- DI
EVED SOI
E/L (MG
N) AS | EN, GH
+NO3 AMMO
IS- DI
LVED SOI
G/L (MO
N) AS | TRO- NITEN, GEN, GEN, GEN, ORGALVED TOTEN (MG N) AS 1608) (006 | AM- GEN, A + MONI NIC ORGA AL DIS /L (MG N) AS | AM-
A +
NIC
S.
S/L
N) | | OCT
08
NOV | . 48 | 3 45 | 1 .6 | 6 83 | 60 <.0 | 10 .30 |)9 <.(| 020 .2 | 6 .1 | .5 | | 16
JAN | . 68 | 8 66 | 2 .9 | 4 73 | 70 <.0 | 10 .5 | 12 <.0 | 020 .3 | 1 .1 | .4 | | 04
27
FEB | | | | | |)12 .6'
)14 .7: | | 045 .3
070 .8 | | | | 24
MAR | . 68 | 6 66 | 9 .9 | 3 53 | 30 <.0 | 10 .48 | 30 .0 | 079 .4 | 1 .2 | 16 | | 22
APR | . 60 | 0 56 | 7 .8 | 2 60 | 60 <.0 | 10 .40 | . 00 | 034 .4 | 3 .1 | .7 | | 05
25
MAY | | | | | 00 <.0
60 .0 |)10 .3'
)11 .3' | | 020 .6
032 .7 | | | | 08
31
JUN | | | | | | | | 034 1.2
035 1.5 | | | | 07
23 | | | | | 60 <.0
70 <.0 | | | 020 .4
020 .4 | | | | 18
AUG | 67 | 8 65 | 1 .9 | 2 75 | 40 .0 | 21 .8 | 17 .0 | 043 .5 | 5 .3 | 0 | | 23
SEP | . 71 | .6 67 | 2 .9 | 7 79 | 30 .0 | 13 .8 | 52 <.0 | 020 .8 | 6 .2 | 18 | | 14 | . 77 | 8 72 | 6 1.0 | 6 70 | 80 .0 | 10 .7 | 44 <.0 | 020 .4 | 0 .2 | 10 | 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National Water-Quality Assessment Program station) WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(MG/L
AS C)
(00689) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | |-----------|---|--
--|---|--|--|---|---|--| | OCT | | | | | | | | | | | 08
NOV | .069 | .012 | .019 | 2.8 | .3 | | <10 | 3 | 2.7 | | 16 | .022 | <.006 | <.010 | 2.5 | .3 | | <10 | 13 | 4.5 | | JAN
04 | .031 | .008 | <.010 | 2.6 | .3 | | E5 | 18 | 2.8 | | 27 | .103 | .012 | <.010 | 3.0 | 1.7 | | <10 | 20 | 4.4 | | FEB | .103 | .012 | V.010 | 3.0 | 1.7 | | ~10 | 20 | 7,7 | | 24 | .054 | .021 | .019 | 2.5 | .9 | | <10 | 20 | 4.1 | | MAR | | | | | | | | | | | 22 | .097 | .010 | <.010 | 2.7 | .8 | | <10 | 14 | 3.1 | | APR | | | | | | | | | | | 05 | .121 | .016 | <.010 | 3.1 | . 4 | | <10 | 9 | 3.5 | | 25 | .247 | .033 | .026 | 4.1 | .7 | | E9 | 4 | 2.2 | | MAY
08 | .541 | .023 | .013 | 4.4 | 1.1 | <.8 | 10 | 5 | 1.5 | | 31 | .588 | .023 | .013 | 3.7 | .4 | | 10 | 4 | 1.3 | | JUN | . 500 | .017 | .017 | 3.7 | | | 10 | - | 1.5 | | 07 | .126 | .023 | .015 | 3.1 | .5 | | E6 | 2 | 1.8 | | 23 | .092 | .016 | .011 | 3.4 | . 4 | | E5 | <2 | 2.3 | | JUL | | | | | | | | | | | 18 | .181 | .028 | .021 | 3.4 | .8 | | <10 | 3 | 5.1 | | AUG | 0.01 | 0.05 | 014 | 2 5 | 1.0 | | .10 | .0 | F 1 | | 23
SEP | .281 | .025 | .014 | 3.5 | 1.9 | | <10 | <2 | 5.1 | | 14 | .092 | .020 | .014 | 3.8 | .5 | | <10 | 3 | 6.1 | | | .072 | .020 | . 514 | 5.0 | | | -10 | 5 | 0.1 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | | SAMPLER
TYPE
(CODE)
(84164) | | |-----------------|--------------|---|---|---|---|--------|--------------------------------------|--| | OCT | | | | | | | | | | 08
08
NOV | 1130
1200 | 6410
6410 | 12.7
12.7 | 105
51 | 1820
883 | | 3009
3039 | | | 16
16 | 1300
1330 | 3990
3970 | 5.6
5.6 | 24
13 | 257
139 | | 3009
3039 | | | JAN
04 | 1200 | 3350 | .1 | 19 | 172 | | 3039 | | | 04 | 1300 | 3550 | .1
4.1 | 22 | 213 | | 3009 | | | 27
27
FEB | 1320
1340 | 3410
3410 | 4.1 | 845
833 | 7780
7670 | 99 | 3009
3039 | | | 24 | 1100 | 2860 | 6.5 | 224 | 1730 | 99 | 3009 | | | 24
MAR | 1130 | 2880 | 6.5 | 170 | 1320 | | 3039 | | | 22 | 1230 | 3760 | 7.7
8.0 | 93
86 | 948
870 | | 3009
3039 | | | APR | 1330 | 3740 | 8.0 | 86 | 870 | | 3039 | | | 05
05 | 1130
1210 | 3610
3550 | 11.3
11.3 | 246
227 | 2390
2170 | | 3009
3039 | | | 25 | 1045 | 5640 | 12.6 | 277 | 4150 | | 3039 | | | 25 | 1115 | 5590 | 12.6 | 242 | 3650 | | 3039 | | | MAY
08 | 1240 | 12600 | 13.5 | 414 | 14100 | 20 | 3009 | | | 08 | 1300 | 12700 | 13.5 | 715 | 24500 | | 3039 | | | 31
31 | 1210
1245 | 17200
17200 | 16.4
16.4 | 892
535 | 41400
24900 | 61
 | 3009
3039 | | | JUN | | | | | | | | | | 07
07 | 1020
1040 | 10800
10800 | 17.3
17.3 | 183
166 | 5340
4840 | 60
 | 3009
3039 | | | 23 | 1010 | 7250 | 18.8 | 199 | 3900 | | 3009 | | | 23 | 1045 | 7250 | 18.8 | 62 | 1220 | | 3039 | | | JUL
18 | 0940 | 3970 | 23.0 | 157 | 1680 | 93 | 3009 | | | 18 | 1050 | 4120 | 23.0 | 132 | 1470 | | 3039 | | | AUG
23 | 1230 | 4100 | 21.0 | 293 | 3240 | 96 | 3009 | | | 23 | 1300 | 4100 | 21.0 | 287 | 3180 | | 3039 | | | SEP
14
14 | 1230
1330 | 3370
3350 | 19.1 | 94
99 | 860
898 | | 3009
3039 | | | | | | | | | | | | # 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National Water-Quality Assessment Program station) SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |---|---|--|--|--|---|---|---|--|---|---|---|---| | | | OCTOBER | | | NOVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 883
882
845
775
705 | 868
845
775
705
683 | 876
872
809
738
688 | 956
949
941
954
973 | 934
929
922
936
945 | | 1020
1030
986
986
984 | 976
978
979
965
967 | 994
995
983
974
974 | | 1030
1020
1020
1030
1050 | 1030
1030
1030
1040
1050 | | 6
7
8
9
10 | 719
753
805
846
856 | 684
715
753
805
845 | 699
732
773
831
852 | 998
1020
1040
1050
1100 | 998 | 984
1010
1030
1050
1070 | 996
998
1010
1040
1060 | 983
980
994
1010
1040 | 990
991
1000
1030
1050 | 1060
1140
1160
1130
1130 | 991
1030
1110
1090
1100 | 1030
1060
1130
1110
1120 | | 11
12
13
14
15 | 892
925
943
948
957 | 856
892
925
936
938 | 870
911
939
941
947 | 1120
1150
1190
1200
1190 | 1090
1090
1150
1170
1090 | 1100
1130
1170
1190
1150 | 1050
1020
1050
1040
1010 | 1000
1000
1020
1000
973 | 1030
1010
1040
1020
991 | 1060 | 1060
1020
1010
1030
1040 | 1090
1030
1030
1040
1050 | | 16
17
18
19
20 | 963
974
969
973
967 | 943
954
956
956
956 | 956
967
964
964
962 | 1090
1100
1100
1090
1090 | 1080
1090
1090
1080
1080 | 1090
1090
1090
1090
1090 | 1020
1040
1040
1040
996 | 1010
1010
1010
996
961 | 1020
1020
1020
1020
972 | 1060 | 1020
1040
1060
1070
1070 | 1030
1050
1070
1070
1070 | | 21
22
23
24
25 | 966
967
971
977
963 | 958
959
962
960
954 | 962
963
967
968
959 | 1080
1060
1060
1060
1050 | 1050 | 1070
1060
1050
1050
1040 | 983
984
981
983
983 | 963
976
964
966
961 | 972
979
972
974
972 | 1100 | 1080
1080
1070
1080
1090 | 1090
1090
1080
1090
1110 | | 26
27
28
29
30
31 | 958
963
964
973
971
962 | 952
956
958
964
951
956 | 955
959
961
970
956
958 | 1040
1030
1080
1080
1020 | 1020
1010
1030
1020
996 | 1030
1020
1050
1050
1010 | 993
1000
1020
1020
1030
1040 | 976
987
997
1000
1010
1020 | 981
994
1010
1010
1020
1030 | 1120
1130
1150
1180
1180 | 1120
1120
1120
1150
1160
1140 | 1120
1130
1130
1170
1170
1150 | | MONTH | 977 | 683 | 899 | 1200 | 922 | 1050 | 1060 | 961 | 1000 | 1180 | 991 | 1080 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | DAY 1 2 3 4 5 | | FEBRUARY
1140
1150
1170
1140
1110 | 1150
1170
1170
1170
1120 | | MARCH | | MAX
1030
962
938
959
971 | APRIL | 957
942
935
946
953 | 565
573
576
571
538 | | MEAN 559 566 571 558 529 | | 1
2
3
4 | 1160
1180
1190
1210 | FEBRUARY
1140
1150
1170
1140
1110 | 1150
1170
1170
1170
1120 | | MARCH 1110 1110 1110 1110 1100 1110 1090 109 | 1130
1120
1110
1110
1120 | | APRIL | 957
942
935
946 | 565
573
576
571 | MAY
552
561
565
538 | 559
566
571
558 | | 1
2
3
4
5
6
7
8
9
10 | 1160
1180
1190
1210
1140
1120
1100
1090
1080
1080 | FEBRUARY 1140 1150 1170 1140 1110 1090 1080 1070 1070 |
1150
1170
1170
1170
1120
1110
1090
1080
1080 | 1170
1120
1120
1130
1120
1110
1110
1110
111 | MARCH 1110 1110 1110 1110 1100 1110 1090 109 | 1130
1120
1110
1110
1120
1110
1100
1100 | 1030
962
938
959
971 | 923
932
931
930
942
887
840
802
766
729 | 957
942
935
946
953
923
864
819
781 | 565
573
576
571
538
514
477
422
441
483 | MAY
552
561
565
538
513
476
412
407
415 | 559
566
571
558
529
496
447
416
426 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 1160
1180
1190
1210
1140
1120
1100
1080
1080
1080
1100
1100 | 1140
1150
1170
1140
1110
1090
1080
1070
1070
1070
1070
1050
1060
1090 | 1150
1170
1170
1170
1170
1120
1110
1090
1080
1070
1080
1060
1090 | 1170
1120
1120
1130
1120
1110
1110
1140
1150
1110
1120 | MARCH 1110 1110 1110 1110 1110 1090 1090 109 | 1130
1120
1110
1110
1120
1110
1100
1100 | 1030
962
938
959
971
976
888
842
802
766
729
681
661
665 | 923
932
931
930
942
887
840
802
766
729
681
656
648
630 | 957
942
935
946
953
923
864
819
781
743
698
664
655
639 | 565
573
576
571
538
514
477
422
441
483
522
503
476
519 | MAY 552 561 565 538 513 476 412 407 415 441 483 476 468 468 | 559
566
571
558
529
496
447
416
426
463
502
495
473
491 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 1160
1180
1190
1210
1140
1120
1100
1080
1080
1080
1100
1110
1100
1100
1100
1100
1100 | FEBRUARY 1140 1150 1170 1140 1110 1090 1080 1070 1070 1070 1050 1060 1090 1080 1080 1080 1080 1080 | 1150
1170
1170
1170
1170
1120
1110
1090
1080
1070
1080
1090
1100
1090
1090
1090
1080
1090
1080 | 1170
1120
1120
1130
1120
1110
1110
1140
1150
1110
1120
1110
1120
1100
1090
1080
1070 | MARCH 1110 1110 1110 1110 1110 1100 1110 1090 1090 1080 1110 1080 1100 1080 1100 1080 1100 1080 1100 | 1130
1120
1110
1110
1110
1120
1110
1100
1130
113 | 1030
962
938
959
971
976
888
842
802
766
729
681
661
657
631 | APRIL 923 931 930 942 887 840 802 766 729 681 656 648 630 619 624 642 669 653 | 957
942
935
946
953
923
864
819
781
743
698
664
655
639
624
631
654
672
661 | 565
573
576
571
538
514
477
422
441
483
522
503
476
519
563
605
621
631
605 | MAY 552 561 565 538 513 476 412 407 415 441 483 476 468 519 563 605 581 | 559
566
571
558
529
496
447
416
426
463
502
495
473
491
541
585
614
618
618
618 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 1160
1180
1190
1210
1140
1120
1100
1080
1080
1080
1100
1110
1100
1110
1120
1130
1130
113 | FEBRUARY 1140 1150 1170 1140 1110 1090 1080 1070 1070 1070 1060 1090 1080 1080 1080 1080 1080 1080 108 | 1150
1170
1170
1170
1170
1120
1110
1090
1080
1070
1080
1090
1100
1090
1090
1090
1110
1130
113 | 1170
1120
1120
1130
1120
1110
1110
1110
1140
1150
1110
1120
1110
1120
1100
1090
1070
1040 | MARCH 1110 1110 1110 1110 1110 1100 1110 1090 1090 1080 1110 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 1080 1100 | 1130
1120
1110
1110
1110
1110
11100
1100 | 1030
962
938
959
971
976
888
842
802
766
729
681
661
657
631
642
672
675
675
675
675
672 | APRIL 923 931 930 942 887 840 802 766 729 681 656 648 630 619 624 642 669 653 651 672 691 703 712 | 957
942
935
946
953
923
864
819
781
743
698
6655
639
624
654
672
661
658
681
696
705
718 | 565
573
576
571
538
514
477
422
441
483
522
503
476
519
563
605
621
631
631
635
599 | MAY 552 561 565 538 513 476 412 407 415 441 483 476 468 519 563 605 581 583 589 574 560 502 | 559
566
571
558
529
496
447
416
426
463
502
495
473
491
541
585
614
618
587
592
596
583
573
573
573
573
573
574
575
575
575
575
575
575
575
575
575 | MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN 293 # 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National Water-Quality Assessment Program station) SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAY | DAY | MAX | MIN | MEAN | |--|--|---|--|---|--|--|--|--|--|---|---|---| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBI | ER | | 1
2
3
4
5 | 383
395
411
424
450 | 375
381
393
407
422 | 381
391
404
417
437 | 871
934
940
963
979 | 818
871
927
926
953 | 840
907
936
943
965 | 1100
1120
1130
1140
1140 | 1060
1090
1110
1110
1100 | 1080
1100
1120
1120
1120 | 1070
1060
1110
1140
1150 | | 1060
1040
1070
1130
1140 | | 6
7
8
9
10 | 482
509
515
534
550 | 448
475
502
513
531 | 466
492
508
522
538 | 991
1030
1060
1080
1180 | 968
989
1030
1050
1080 | 978
1000
1040
1060
1110 | 1110
1100
1080
1070
1060 | 1090
1070
1060
1060
1050 | 1100
1080
1070
1060
1060 | 1130
1110
1100
1110
1110 | 1110
1090
1040
1030
1060 | 1120
1100
1090
1090
1090 | | 11
12
13
14
15 | 562
602
630
647
682 | 544
562
602
630
646 | 551
584
620
640
666 | 1090
1150
1170
1140
1150 | 1060
1090
1140
1120
1120 | 1070
1120
1150
1130
1130 | 1060
1060
1060
1140
1120 | 1040
1040
1040
1050
1080 | 1060
1050
1050
1090
1090 | 1140
1150
1160
1170
1180 | 1110
1120
1140
1130
1170 | 1120
1130
1150
1150
1180 | | 16
17
18
19
20 | 692
683
675
685
717 | 681
658
658
665
681 | 686
673
667
678
702 | 1150
1110
1070
1020
1000 | 1110
1070
1020
980
976 | 1120
1090
1050
1010
989 | 1080
1070
1100
1230
1080 | 1060
1050
1070
1050
1050 | 1070
1060
1080
1080
1070 | 1200
1190
1190
1180
1180 | 1180
1180
1180
1170
1160 | 1190
1180
1180
1170
1160 | | 21
22
23
24
25 | 717
671
676
728
753 | 669
626
624
676
728 | 695
649
647
710
744 | 1030
1070
1100
1130
1140 | 1000
1030
1070
1100
1120 | 1020
1050
1090
1120
1130 | 1080
1070
1090
1110
1120 | 1040
1030
1050
1080
1090 | 1060
1040
1060
1100 | 1180
1160
1140
1120
1080 | 1160
1140
1120
1080
1070 | 1170
1160
1140
1110
1070 | | 26
27
28
29
30
31 | 774
795
820
829
824 | 747
774
792
813
817 | 762
787
809
821
822 | 1140
1140
1140
1120
1120
1100 | 1130
1130
1120
1110
1090
1070 |
1140
1130
1130
1120
1100
1090 | 1120
1130
1110
1100
1100
1070 | 1100
1100
1080
909
986
1030 | 1110
1110
1100
1070
1050
1050 | 1080
1080
1100
1120
1130 | 1080
1080
1080
1100
1110 | 1080
1080
1090
1110
1120 | | MONTH | 829 | 375 | 616 | 1180 | 818 | | 1230 | 909 | 1080 | 1200 | 1020 | 1120 | | YEAR | 1230 | 375 | 944 | TEMDE | מתודייגת | MATER /DE | G (G) W | ATED VEAD | OCTORER | 1000 TO | CEDTEMBE | 2000 | | | | | MAX | | | WATER (DE | | | | | | | MTN | MEAN | | DAY | MAX | TEMPE
MIN
OCTOBER | MEAN | MAX | MIN | MEAN | MAX | 1999 TO
MIN
DECEMBER | MEAN | R 2000
MAX | MIN
JANUAR! | MEAN
Y | | | MAX
13.3
13.5
13.8
13.8 | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | JANUARY | | | DAY 1 2 3 4 | 13.3
13.5
13.8
13.8 | MIN
OCTOBER
11.8
12.3
12.7
12.1
11.7 | MEAN 12.6 13.0 13.4 13.1 | 8.6
8.6
8.3
8.1 | MIN
NOVEMBER
7.6
7.4
7.0
6.9 | MEAN
8.2
8.1
7.8
7.6 | 5.0
5.3
5.1
4.3 | MIN DECEMBER 4.2 4.6 4.3 3.5 | MEAN 4.6 4.9 4.9 3.9 | 1.3
1.2
.7
.0 | JANUARY .7 .7 .0 .0 .0 .0 .0 .0 | 1.0
1.0
.3 | | DAY 1 2 3 4 5 6 7 8 8 9 | 13.3
13.5
13.8
13.8
13.6
13.8
13.6
13.7 | MIN OCTOBER 11.8 12.3 12.7 12.1 11.7 12.4 12.9 12.1 12.4 12.8 12.8 | MEAN 12.6 13.0 13.4 13.1 12.8 13.0 13.3 12.9 13.2 | 8.6
8.6
8.3
8.1 | MIN NOVEMBER 7.6 7.4 7.0 6.9 6.8 6.8 6.8 7.1 7.4 | 8.2
8.1
7.8
7.6
7.5
7.5
7.5
7.8
8.1 | 5.0
5.3
5.1
4.3
3.6
2.6
2.4
3.1
2.3 | MIN DECEMBER 4.2 4.6 4.3 3.5 2.5 1.8 1.5 2.1 1.4 | MEAN 4.6 4.9 4.9 2.9 2.2 2.0 2.6 1.8 1.7 | 1.3
1.2
.7
.0
.3 | JANUARS . 7 . 7 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | 1.0
1.0
.3
.0
.0 | | DAY 1 2 3 4 5 5 6 6 7 8 8 9 10 11 12 13 14 | 13.3
13.5
13.8
13.8
13.6
13.8
13.6
13.7
14.1 | MIN OCTOBER 11.8 12.3 12.7 12.1 11.7 12.4 12.9 12.1 12.4 12.8 12.8 12.8 12.8 12.8 | MEAN 12.6 13.0 13.4 13.1 12.8 13.0 13.3 12.9 13.2 13.5 13.6 13.6 13.5 13.6 13.5 | MAX
8.6
8.6
8.3
8.1
8.0
7.9
8.0
8.5
8.6
8.6
8.6
8.6 | MIN
NOVEMBER
7.6
7.4
7.0
6.9
6.8
6.8
6.8
7.1
7.4
7.5
7.1
6.5
5.5 | 8.2
8.1
7.8
7.6
7.5
7.5
7.5
7.5
7.7
6.4
6.1 | 5.0
5.3
5.1
4.3
3.6
2.6
2.4
3.1
2.3
2.0
2.4
2.0
1.9 | MIN DECEMBER 4.2 4.6 4.3 3.5 2.5 1.8 1.5 2.1 1.4 1.3 1.6 1.1 1.4 6 | MEAN 4.6 4.9 4.9 3.9 2.9 2.2 2.0 2.6 1.8 1.7 2.0 1.6 1.6 .9 | MAX 1.3 1.2 .7 .0 .3 .0 .0 .0 .0 .0 .1 .9 1.9 2.2 | JANUAR: .7 .7 .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 1.0
1.0
1.0
.3
.0
.0
.0
.0
.0
.0
.0
.4
1.1 | | DAY 1 2 3 4 5 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 13.3
13.5
13.8
13.8
13.6
13.7
14.1
14.3
14.2
14.2
13.8
13.3
12.5
10.5
9.7
10.0 | MIN OCTOBER 11.8 12.3 12.7 12.1 11.7 12.4 12.9 12.1 12.4 12.8 12.8 12.8 12.8 12.8 12.8 12.8 12.8 | MEAN 12.6 13.0 13.4 13.1 12.8 13.0 13.3 12.9 13.2 13.5 13.6 13.6 13.6 13.5 13.2 12.7 | MAX
8.6
8.6
8.3
8.1
8.0
7.9
8.0
8.5
8.6
8.6
8.6
8.5
8.6
8.6
8.6
8.6
8.6
8.7
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6 | MIN NOVEMBER 7.6 7.4 7.0 6.9 6.8 6.8 7.1 7.4 7.5 7.1 6.5 5.2 5.1 5.1 4.9 | 8.2
8.1
7.8
7.6
7.5
7.5
7.5
7.5
7.1
8.1
7.7
7.1
6.1
5.7 | 5.0
5.3
5.1
4.3
3.6
2.6
2.4
3.1
2.3
2.0
2.4
2.0
1.9
1.5
.6 | MIN DECEMBER 4.2 4.6 4.3 3.5 2.5 1.8 1.5 2.1 1.4 1.3 1.6 1.1 1.4 6 0 0 0 0 0 6 6 | MEAN 4.6 4.9 4.9 3.9 2.9 2.2 2.0 2.6 1.8 1.7 2.0 1.6 1.6 .9 .1 | MAX 1.3 1.2 .7 .0 .3 .0 .0 .0 .0 .0 .0 .2 .2 .8 .9 .9 .2.2 .8 .7 4.1 4.8 5.2 | JANUAR: .7 .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .1 .5 .1 .2 .1 .5 .2 .2 .7 .4 .1 .4 .0 | 1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 13.3
13.5
13.8
13.8
13.6
13.7
14.1
14.3
14.2
14.2
14.2
13.8
13.3
12.5
10.5
9.7
10.1
10.3
10.1
10.3
10.1
9.9
9.8
9.8
9.9
10.1
10.9
9.8
9.8
9.9
10.9 | MIN OCTOBER 11.8 12.3 12.7 12.1 11.7 12.4 12.9 12.1 12.4 12.8 12.6 12.3 12.1 10.5 9.1 8.4 8.5 8.5 8.7 8.9 8.8 8.7 8.5 8.5 8.7 8.9 8.8 8.7 | 12.6
13.0
13.4
13.1
12.8
13.0
13.3
12.9
13.5
13.6
13.6
13.5
13.2
12.7
11.5
9.2
9.4
9.2
9.4
9.2
9.4
9.2
9.4
9.2
9.4 | MAX 8.6 8.6 8.3 8.1 8.0 7.9 8.5 8.6 8.6 8.2 7.5 7.0 6.5 6.2 6.1 6.2 6.1 6.2 6.1 6.3 3.6 6.3 3.1 | MIN NOVEMBER 7.6 7.4 7.0 6.9 6.8 6.8 7.1 7.4 7.5 7.1 6.5 9 5.5 5.2 5.1 5.1 5.8 4.9 4.3 3.3 3.6 2.7 2.3 | MEAN 8.2 8.1 7.8 7.6 7.5 7.5 7.5 7.5 7.1 6.4 6.1 5.7 5.6 6.2 5.4 4.7 3.7 3.9 3.2 2.7 | MAX 5.0 5.3 5.1 4.3 3.6 2.6 2.4 3.1 2.0 2.4 2.0 1.9 1.5 1.4 1.0 1.9 1.9 1.9 1.1 1.0 1.2 1.4 1.2 | MIN DECEMBER 4.2 4.6 4.3 3.5 2.5 1.8 1.5 2.1 1.4 1.4 6.6 0 0 0.0 6.6 6.6 9 1.2 7 1.0 0 0 0 1.2 7 1.1 0 0 0 1.2 7 1.1 0 0 0 1.2 7 1.1 0 0 0 1.2 1.3 4 1.4 | MEAN 4.6 4.9 4.9 2.9 2.2 2.0 2.6 1.8 1.7 2.0 1.6 1.1 1.0 1.3 1.5 1.0 1.6 4.4 5.5 6.6 88 9.7 | MAX 1.3 1.2 .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUAR: .7 .7 .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 1.2 1.5 2.2 2.7 4.1 4.0 4.0 4.7 4.2 3.4 3.6 4.1 4.1 3.7 3.0 2.2 1.6 | 1.0
1.0
1.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 4 5 5 6 7 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 13.3
13.5
13.8
13.8
13.6
13.7
14.1
14.3
14.2
13.8
13.3
12.5
10.5
7
10.0
9.8
9.9
10.1
10.1
10.1
9.9
9.8
9.8
9.9
10.1 | MIN OCTOBER 11.8 12.3 12.7 12.1 11.7 12.4 12.9 12.1 12.4 12.8 12.8 12.8 12.6 12.3 12.1 10.5 9.1 8.4 8.8 8.5 8.5 8.7 8.9 8.8 8.7 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 | MEAN 12.6 13.0 13.4 13.1 12.8 13.0 13.3 12.9 13.5 13.6 13.5 13.6 13.5 13.2 12.7 11.5 9.8 9.2 9.4 9.2 9.4 9.2 9.4 9.2 9.4 9.2 9.4 9.5 9.4 | 8.6
8.6
8.3
8.1
8.0
7.9
8.0
8.5
8.6
8.6
6.2
6.1
6.2
6.8
6.0
5.1
4.3
3.6
3.1
3.0
3.8
4.4
5.1 | MIN NOVEMBER 7.6 7.4 7.0 6.9 6.8 6.8 7.1 7.5 7.1 6.5 5.9 5.5.2 5.1 5.8 4.9 4.3 3.3 3.6 2.7 2.3 3.1 4.0 4.4 | 8.2
8.1
7.8
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.1
6.4
6.1
5.7
6.2
2.7
2.5
4.7 | MAX 5.0 5.3 5.1 4.3 3.6 2.4 3.1 2.3 2.0 2.4 2.0 1.9 1.5 6 1.1 1.3 1.5 1.4 1.9 1.9 1.0 1.2 1.2 1.4 1.0 | MIN DECEMBER 4.2 4.6 4.3 3.5 2.5 1.8 1.5 2.1 1.4 1.3 1.6 1.1 1.4 6.0 0 0.0 6.6 .9 1.2 7 .1 0.0 0 0 1.1 1.3 3.4 | MEAN 4.6 4.9 4.9 3.9 2.9 2.2 2.0 2.6 1.8 1.7 2.0 1.6 1.6 1.1 1.0 1.3 1.5 1.0 6.4 .5 6.6 .8 .9 | MAX 1.3 1.2 .7 .0 .3 .0 .0 .0 .0 .0 .1 .3 .9 1.9 2.2 2.8 2.7 4.1 4.8 5.2 5.5 5.2 5.0 4.3 4.5 4.4 4.9 4.5 3.9 3.2 | JANUARY .7 .7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .5 1.2 1.5 2.2 2.7 4.1 4.0 4.0 4.7 4.2 3.4 3.6 4.1 4.1 3.7 3.0 2.2 | 1.0
1.0
.3
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.1
1.6
2.0
2.4
4.7
5.0
4.6
3.4
4.7
5.0
4.2
4.1
3.2
4.1
1.3
5.0
4.2
5.0
4.2
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | # 09163500 COLORADO RIVER NEAR COLORADO-UTAH STATE LINE--Continued (National Water-Quality Assessment Program station) TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | MAX | | | MAX | | | MAX | MIN | MEAN | |---|--|--|--|--|--|--|--|---|--|---
--|--| | | | FEBRUARY | | | | | | APRIL | | | MAY | | | 1
2
3
4
5 | 2.4
3.4
3.8
3.8
4.0 | 1.3
2.1
2.0
2.8
2.6 | 1.9
2.6
2.9
3.2
3.3 | 7.7
8.3
9.1
9.1
8.2 | 6.8
6.2
6.9
7.1
7.1 | 7.2
7.2
7.9
8.1
7.8 | 10.3
10.4
11.8
12.6
13.6 | 7.8
8.7
9.4
9.7
10.8 | 8.9
9.5
10.4
11.1
12.2 | 14.5
15.3
16.1
16.5
16.5 | 13.6
14.4 | 13.6
14.5
15.3
15.8
15.9 | | 6
7
8
9
10 | 4.4
4.9
5.1
4.9
4.9 | 2.7
3.1
3.5
4.3
4.1 | 3.5
3.9
4.2
4.5
4.5 | 7.1
7.5
7.1
7.3
8.3 | 6.4
6.4
5.9
6.3
6.3 | 6.7
6.9
6.5
6.8
7.2 | 14.5
14.9
14.2
14.0
14.0 | 12.5
12.6
12.5
12.2
12.3 | 13.4
13.7
13.5
13.1
13.1 | 16.3
15.6
14.2
13.4
14.8 | 14.5
14.2
12.8
11.5
12.1 | 15.4
14.6
13.2
12.4
13.3 | | 11
12
13
14
15 | 5.9
5.2
4.7
4.9
6.0 | 4.4
4.5
4.3
4.2
4.1 | 5.1
4.7
4.5
4.5
5.0 | 8.4
9.6
9.7
9.9
9.0 | 6.4
7.4
7.6
7.5
7.2 | 7.3
8.3
8.6
8.6
8.4 | 14.1
14.2
14.4
13.9
12.8 | 12.2
12.8
13.1
12.8
11.5 | 13.2
13.5
13.7
13.2
12.1 | 14.8
14.1
13.6
12.8
13.9 | 13.5
12.3
11.5
11.2
11.7 | 14.2
13.1
12.5
12.2
12.7 | | 16
17
18
19
20 | 5.4
5.6
6.2
6.3
5.6 | 4.8
4.9
5.1
4.6
4.5 | 5.2
5.2
5.5
5.4
5.1 | 9.2
8.4
8.6
8.0
7.3 | 6.4
7.3
6.9
6.4
5.3 | 7.7
7.8
7.6
7.2
6.6 | 12.3
13.7
13.5
12.1
12.0 | 10.7
11.5
12.1
10.9
9.7 | 11.6
12.6
12.7
11.4
10.9 | 14.2
14.6
14.6
14.9
16.3 | 12.7
12.7
13.4
12.5
14.1 | 13.5
13.8
13.9
13.6
15.2 | | 21
22
23
24
25 | 6.1
6.5
6.9
6.5
6.2 | 4.8
5.4
5.3
6.2
5.2 | 5.4
5.9
6.1
6.4
5.8 | | | | | | | | 15.2
15.3
16.2
16.6
15.6 | 16.0
16.2
17.2
17.5
16.3 | | 26
27
28
29
30
31 | 5.7
6.4
6.4
8.2 | 4.3
4.4
5.3
5.8 | 5.0
5.3
5.8
6.9 | 12.8
13.1
12.3
11.9
11.1
9.5 | 10.4
11.0
11.0
10.2
9.5
8.6 | 11.5
12.0
11.7
11.0
10.3
9.0 | 14.3
15.4
15.9
15.5
14.7 | 13.0
12.9
14.3
14.5
13.1 | 13.7
14.1
15.1
14.9
14.0 | 15.6
14.8
16.5
17.6
17.7 | 13.9
12.9
13.8
15.5
16.1
15.8 | 14.5
13.8
15.0
16.5
17.0
16.4 | | MONTH | 8.2 | 1.3 | 4.7 | 13.1 | | | 15.9 | | 12.6 | | | 14.7 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | | JULY | | | AUGUST | | | MIN
SEPTEMBE | | | | MAX
16.6
16.8
17.3
17.9
18.3 | JUNE 15.3 15.3 15.6 15.9 | 16.0
16.1
16.4
16.9
17.4 | | JULY 21.3 21.5 21.3 20.7 20.7 | 21.9
22.1
22.0
21.5
21.5 | 24.8
25.2
24.4
25.1
24.9 | AUGUST 22.6 22.7 22.9 22.3 22.9 | 23.7
23.9
23.5
23.6
23.9 | | | 20.0
18.6
18.8
19.3 | | 1
2
3
4 | 16.6
16.8
17.3
17.9 | JUNE 15.3 15.3 15.6 15.9 16.3 16.5 16.6 17.4 16.9 16.3 | 16.0
16.1
16.4
16.9
17.4
17.5
18.0
18.2
17.8
17.6 | 22.8
22.8
22.4
22.1
22.5
21.9
22.4
23.2
23.7
23.4 | JULY 21.3 21.5 21.3 20.7 20.7 20.3 20.5 21.7 21.3 21.1 | 21.9
22.1
22.0
21.5
21.5 | | AUGUST 22.6 22.7 22.9 22.3 22.9 | 23.7
23.9
23.5
23.6
23.9 | 21.3
19.4
20.0
20.5
20.1 | 19.0
17.7
17.7
18.1
18.9 | 20.0
18.6
18.8
19.3
19.5
18.2
18.3
19.1
18.3 | | 1
2
3
4
5
6
7
8
9
10 | 16.6
16.8
17.3
17.9
18.3
18.6
19.1
18.9
18.5
18.6 | JUNE 15.3 15.6 15.9 16.3 16.5 16.6 17.4 16.9 16.3 16.6 17.0 | 16.0
16.1
16.4
16.9
17.4
17.5
18.0
18.2
17.8
17.6 | 22.8
22.8
22.4
22.1
22.5
21.9
22.4
23.2
23.2 | JULY 21.3 21.5 21.7 20.7 20.7 20.3 20.5 21.7 21.3 21.1 22.1 | 21.9
22.1
22.0
21.5
21.5
21.4
22.3
22.4
22.2
23.2
23.3 | 24.8
25.2
24.4
25.1
24.9
24.7
25.0
24.7
24.7
25.4 | AUGUST 22.6 22.7 22.9 22.3 22.9 22.7 22.5 22.5 22.8 22.8 22.8 | 23.7
23.9
23.5
23.6
23.9
23.7
23.6
23.7
23.8
24.0
24.1 | 21.3
19.4
20.0
20.5
20.1
19.1
19.6
19.8
19.2
19.3 | 19.0
17.7
17.7
18.1
18.9
17.7
17.3
18.2
17.3
17.8 | 20.0
18.6
18.8
19.3
19.5
18.2
18.3
19.1
18.3
18.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 16.6
16.8
17.3
17.9
18.3
18.6
19.1
18.9
18.5
18.6
18.7
18.7 | JUNE 15.3 15.3 15.6 15.9 16.3 16.5 16.6 17.4 16.9 16.3 16.6 17.0 17.0 17.2 | 16.0
16.1
16.4
16.9
17.4
17.5
18.0
18.2
17.8
17.6 | 22.8
22.8
22.4
22.1
22.5
21.9
22.4
23.2
23.7
23.4
24.5
24.1
24.9
25.7 | JULY 21.3 21.5 21.3 20.7 20.7 20.3 20.5 21.7 21.3 21.1 22.1 22.5 22.3 23.3 | 21.9
22.1
22.0
21.5
21.5
21.4
22.3
22.4
22.2
23.3
23.5
24.4 | 24.8
25.2
24.4
25.1
24.9
24.7
25.0
24.7
24.9
25.4
25.4
25.4 | AUGUST 22.6 22.7 22.9 22.3 22.9 22.5 22.5 22.8 22.8 22.8 22.7 22.9 22.7 22.7 | 23.7
23.9
23.5
23.6
23.9
23.7
23.6
23.7
23.8
24.0
24.1
23.5
23.5 | 21.3
19.4
20.0
20.5
20.1
19.1
19.6
19.8
19.2
19.3
19.2
20.0
20.2
20.4 | 19.0
17.7
17.7
18.1
18.9
17.7
17.3
18.2
17.3
17.8 | 20.0
18.6
18.8
19.3
19.5
18.2
18.3
19.1
18.3
18.5
18.7
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 16.6
16.8
17.3
17.9
18.3
18.6
19.1
18.9
18.5
18.6
18.7
19.4
19.8
20.1 | JUNE 15.3 15.3 15.6 15.9 16.3 16.5 16.6 17.4 16.9 16.3 16.6 17.0 17.2 17.6 18.4 18.6 18.0 18.3 17.8 | 16.0
16.1
16.4
16.9
17.4
17.5
18.0
17.8
17.6
17.8
18.3
18.7
19.3 | 22.8
22.8
22.4
22.1
22.5
21.9
22.4
23.7
23.4
24.5
24.1
24.9
25.7
25.0
25.1
26.3
24.9 | JULY 21.3 21.5 21.3 20.7 20.7 20.3 20.5 21.7 21.3 21.1 22.1 22.1 22.3 23.3 23.3 23.3 | 21.9
22.1
22.0
21.5
21.5
21.1
21.4
22.3
22.4
22.2
23.2
23.3
23.5
24.4
24.1
23.7
24.0
23.3
22.9 | 24.8
25.2
24.4
25.1
24.9
24.7
25.0
24.7
24.9
25.4
25.4
24.5
24.4
24.2
23.5
23.8
23.8 | AUGUST 22.6 22.7 22.9 22.3 22.9 22.5 22.5 22.8 22.8 22.8 22.7 22.9 22.7 21.9 22.3 21.6 21.6 21.6 | 23.7
23.9
23.5
23.6
23.9
23.7
23.6
23.7
23.8
24.0
24.1
23.5
23.5
23.0
24.2
22.6 | 21.3
19.4
20.0
20.5
20.1
19.1
19.6
19.2
19.3
19.2
20.0
20.2
20.4
20.7 | SEPTEMBE 19.0 17.7 17.7 18.1 18.9 17.7 17.3 18.2 17.3 17.8 17.5 17.8 18.1 18.3 18.4 18.5 18.4 | 20.0
18.6
18.8
19.3
19.5
18.2
18.3
19.1
18.3
18.5
18.7
19.0
19.2
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 16.6
16.8
17.3
17.9
18.3
18.6
19.1
18.9
18.5
18.6
18.7
19.4
19.8
20.1
20.3
19.9
19.1
19.5
19.7
20.0
20.0
20.0
20.0 | JUNE 15.3 15.3 15.6 15.9 16.3 16.5 16.6 17.4 16.9 16.3 16.6 17.0 17.2 17.6 18.4 18.6 18.0 17.2 17.6 18.1 18.6 18.0 17.9 17.7 18.0 18.1 | 16.0
16.1
16.4
16.9
17.4
17.5
18.0
17.8
17.6
17.8
18.3
18.7
19.3
19.5
19.1
19.2
18.4
18.6
18.8
19.0
19.5
19.0 | 22.8
22.8
22.4
22.1
22.5
21.9
22.4
23.7
23.4
24.5
24.1
24.9
25.7
25.0
25.1
26.3
24.9
24.0
23.9 | JULY 21.3 21.5 21.3 20.7 20.7 20.3 20.5 21.7 21.3 21.1 22.1 22.1 22.3 23.3 23.3 21.8 21.6 21.5 21.8 22.0 22.3 | 21.9
22.1
22.0
21.5
21.5
21.1
21.4
22.3
22.4
22.2
23.3
23.5
24.4
24.1
23.7
24.0
23.3
22.9
22.7 | 24.8
25.2
24.4
25.1
24.9
24.7
25.0
24.7
24.9
25.4
25.4
25.4
24.2
23.5
24.4
24.2
23.5
23.5
22.7 | AUGUST 22.6 22.7 22.9 22.3 22.9 22.5 22.5 22.8 22.8 22.8 22.7 21.9 22.3 22.7 21.9 22.3 21.6 21.2 20.7 19.5 20.5 | 23.7
23.9
23.5
23.6
23.7
23.7
23.6
23.7
23.8
24.0
24.1
23.5
23.5
23.0
22.6
22.6
21.9
21.6
20.7
21.6 | 21.3
19.4
20.0
20.5
20.1
19.1
19.6
19.2
19.3
19.2
20.0
20.2
20.4
20.7
20.8
20.2
20.4
19.9
20.1 | SEPTEMBE 19.0 17.7 18.1 18.9 17.7 17.3 18.2 17.3 17.8 17.5 17.8 18.1 18.3 18.4 18.5 18.4 17.7 | 20.0
18.6
18.8
19.3
19.5
18.2
18.3
19.1
18.3
18.5
18.3
18.7
19.0
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
21
22
23
24
25
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 |
16.6
16.8
17.3
17.9
18.3
18.6
19.1
18.5
18.6
18.7
19.9
19.8
20.1
20.3
19.9
19.1
19.5
19.7
20.0
20.4
21.2
21.7 | JUNE 15.3 15.3 15.6 15.9 16.3 16.5 16.6 17.4 16.9 16.3 16.6 17.0 17.6 18.4 18.6 18.0 18.3 17.9 17.7 18.0 18.4 19.9 19.1 19.9 19.1 18.0 18.9 19.8 20.5 | 16.0
16.1
16.4
16.9
17.4
17.5
18.0
17.8
17.6
17.8
18.0
19.3
19.1
19.2
19.1
19.2
18.6
18.8
19.0
19.5
20.1
18.9
19.7
20.4 | 22.8
22.8
22.4
22.1
22.5
21.9
22.4
23.7
23.4
24.5
24.1
25.7
25.0
25.1
25.3
24.9
24.0
23.9
24.2
24.6
24.5
24.8
24.5 | JULY 21.3 21.5 21.3 20.7 20.7 20.3 20.5 21.7 21.3 21.1 22.1 22.5 22.3 23.3 23.3 23.3 21.6 21.8 22.0 22.3 22.1 22.6 22.3 22.1 22.6 23.1 22.9 23.2 | 21.9
22.1
22.0
21.5
21.5
21.5
21.1
21.4
22.3
22.4
22.2
23.3
23.5
24.4
24.1
23.7
24.0
23.3
22.7
22.8
23.1
23.3
23.3
23.3
23.3
23.3
23.3
23.3 | 24.8
25.2
24.4
25.1
24.9
24.7
25.0
24.7
24.9
25.4
24.5
24.4
24.2
24.2
23.5
23.8
23.5
22.7
22.1
23.1
23.7
23.3
23.2
23.5
23.6
23.7 | AUGUST 22.6 22.7 22.9 22.3 22.5 22.5 22.8 22.8 22.8 22.9 22.7 21.9 22.3 21.6 21.2 20.7 19.5 20.0 20.5 21.1 21.5 21.0 21.3 21.2 | 23.7
23.9
23.5
23.6
23.9
23.7
23.7
23.8
24.0
24.1
23.5
23.5
23.0
24.2
22.6
22.4
22.6
21.9
21.6
22.7
21.6
22.3
22.3
22.3
22.3
22.4
22.5 | 21.3
19.4
20.0
20.5
20.1
19.1
19.6
19.2
19.3
19.2
20.0
20.2
20.4
20.7
20.8
20.2
20.4
19.9
20.1
19.3
18.2
17.4
15.1
14.3
14.6
15.7
16.6
6
17.7 | SEPTEMBE 19.0 17.7 17.7 18.1 18.9 17.7 17.3 18.2 17.3 17.5 17.8 17.5 17.8 17.5 17.5 17.8 18.1 18.3 18.4 18.5 18.2 17.7 16.8 16.2 15.1 13.3 12.4 12.3 13.3 14.5 15.6 | 20.0
18.6
18.8
19.3
19.5
18.2
18.3
19.1
18.3
18.5
18.7
19.2
19.2
19.2
19.2
19.2
19.2
19.2
19.2 | #### 09165000 DOLORES RIVER BELOW RICO, CO LOCATION.--Lat 37°38'20", long 108°03'35", Dolores County, Hydrologic Unit 14030002, on left bank at upstream side of Montelores bridge northwest of State Highway 145, at Dolores-Montezuma County line, 0.5 mi upstream from Ryman Creek, and 4.0 mi southwest of Rico. DRAINAGE AREA. -- 105 mi². PERIOD OF RECORD.--October 1951 to September 1996, October 1998 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,422.23 ft above sea level. REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES OUTSIDE PERIOD OF RECORD.--Greatest flood since at least 1885 occurred Oct. 5, 1911. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--|---|--------------------------------------|--|--|--|-------------------------------------|--|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 63
60
56
52
51 | 23
20
19
20
19 | e19
e19
e18
e15
e16 | e15
e15
e15
e14
e15 | e15
e15
e15
e15
e15 | e18
e19
e20
e22
e23 | e50
e44
e41
e45
e50 | 359
421
514
569
598 | 444
383
347
308
280 | 63
58
54
50
46 | 24
23
28
26
23 | 51
58
46
40
39 | | 6
7
8
9 | 51
53
52
48
45 | 19
20
21
19
16 | e16
e15
e16
e15
e16 | e15
e15
e15
e15
e15 | e15
e15
e15
e16
e16 | e26
e25
e22
e20
e16 | e86
e120
e140
e170
e190 | 590
573
609
528
495 | 253
243
223
241
201 | 45
43
51
75
52 | 20
20
20
19
19 | 55
48
47
61
45 | | 11
12
13
14
15 | 44
43
40
37
36 | 18
16
15
16 | e17
e15
e15
e16
e15 | e15
e15
e15
e15
e14 | e15
e15
e16
e16
e16 | e15
e19
e21
e21
e23 | e170
157
186
208
179 | 537
484
401
358
340 | 179
162
148
141
132 | 46
41
40
44
48 | 21
20
35
52
37 | 38
34
32
30
29 | | 16
17
18
19
20 | 34
28
32
31
29 | 15
16
16
9.1
e13 | e15
e16
e16
e15
e15 | e15
e15
e15
e15
e15 | e16
e17
e17
e17
e18 | e24
e23
e22
e21
e25 | 150
171
209
175
166 | 395
411
320
271
258 | 126
113
105
100
91 | 79
80
56
46
40 | 49
54
72
114
61 | 27
26
30
28
25 | | 21
22
23
24
25 | 30
31
29
26
25 | e13
e12
e11
e12
e13 | e15
e15
e15
e15
e15 | e15
e15
e14
e14
e15 | e18
e18
e18
e17
e17 | e27
e25
e26
e28
e32 | 204
201
187
234
281 | 320
438
605
730
679 | 86
82
80
80
76 | 37
33
32
31
32 | 53
56
46
40
38 | 24
46
34
37
33 | | 26
27
28
29
30
31 | 26
26
25
27
19
24 | e14
e15
e17
e18
e18 | e15
e16
e16
e15
e15
e15 | e15
e15
e14
e14
e15 | e18
e18
e18
 | e36
e42
e48
e54
e52
e52 | 330
413
442
399
343 | 568
513
573
628
618
553 | 69
68
66
63
63 | 36
33
30
27
26
25 | 42
43
51
44
70
62 | 29
29
31
35
34 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1173
37.8
63
19
2330 | 489.1
16.3
23
9.1
970 | 487
15.7
19
15
966 | 459
14.8
15
14
910 | 475
16.4
18
15
942 | 847
27.3
54
15
1680 | 5741
191
442
41
11390 | 15256
492
730
258
30260 | 4953
165
444
63
9820 | 1399
45.1
80
25
2770 | 1282
41.4
114
19
2540 | 1121
37.4
61
24
2220 | | STATIST | ICS OF M | ONTHLY MEA | N DATA FO | OR WATER Y | EARS 1952 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 44.1
133
1973
14.5
1957 | 29.3
65.9
1987
12.1
1957 | 21.7
42.6
1958
7.81
1990 | 18.6
37.7
1958
7.74
1990 | 18.4
33.7
1984
7.49
1994 | 31.3
72.2
1972
11.0
1964 | 128
242
1962
42.9
1975 | 455
1015
1958
98.9
1977 | 556
1288
1957
70.7
1977 | 172
646
1957
37.1
1959 | 82.9
267
1999
29.7
1996 | 62.8
224
1982
17.1
1956 | | SUMMARY | STATIST | ICS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1952 | - 2000 | | LOWEST ANIONAL INSTANTANIONAL INSTANTANIONA INSTANTA | MEAN ANNUAL MANNUAL ME DAILY ME DAILY ME SEVEN-DA ANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 59337.1
163
791
9.1
12
117700
515
75
15 | Jun 17
Nov 19
Nov 19 | |
730
92.0
730
9.1
12
831
4.73
66810
320
30
15 | May 24
Nov 19
Nov 19
May 24
May 24 | | 135
230
40.1
1810
4.8
6.3
a2170
b5.95
97970
403
40 | Jun 1
Nov 2
Dec 1
May 2 | 1957
1977
10 1952
29 1989
11 1989
24 1984
24 1984 | a From rating curve extended above 1620 ft³/s. b Maximum gage height, 6.15 ft, Jun 10, 1952. #### 09166500 DOLORES RIVER AT DOLORES, CO LOCATION.--Lat $37^{\circ}28^{\circ}21^{\circ}$, long $108^{\circ}29^{\circ}49^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.10, T.37 N., R.15 W., Montezuma County, Hydrologic Unit 14030002, on left bank 0.30 mi upstream from bridge on State Highway 184 in Dolores and 0.8 mi upstream from Lost Canyon Creek. DRAINAGE AREA. -- 504 mi². PERIOD OF RECORD.--June 1895 to October 1903, August 1910 to November 1912, October 1921 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 859: 1937. WRD Colo. 1972: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,940 ft above sea level, from topographic map. See WSP 1713 or 1733 for history of changes prior to Oct. 7, 1952. Oct. 7, 1952 to Nov. 16, 1983, at site 0.4 mi downstream at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,000 acres upstream from station. Flow partly regulated by Ground Hog Reservoir, capacity, 21,710 acre-ft. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | 2200111 | 02, 0021 | 0 1221 12 | DAILY | MEAN VA | LUES | 1,,,, 10 | 021 121 121 | 2000 | | | |----------|-----------------------|-----------|------------|------------|------------------|----------|--------------|-----------------|-------------|------------|------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 152 | 73 | 58 | e50 | e51 | e65 | 176 | 1560 | 1150 | 163 | 112 | 184 | | 2 | 144 | 70 | 61 | e50 | e50 | e65 | 147 | 1700 | 1030 | 140 | 110 | 182 | | 3 | 137 | 62 | 57 | e50 | e51 | e70 | 156 | 2040 | 930 | 133 | 114 | 178 | | 4 | 131 | 61 | 47 | e48 | e52 | e80 | 165 | 2270 | 835 | 120 | 114 | 159 | | 5 | 126 | 63 | e50 | e49 | e52 | 88 | 247 | 2410 | 734 | 114 | 107 | 149 | | 6 | 125 | 62 | e50 | e50 | e52 | 96 | 381 | 2320 | 673 | 109 | 105 | 165 | | 7 | 130 | 62 | e48 | e50 | e52 | 92 | 490 | 2060 | 639 | 107 | 102 | 179 | | 8 | 131 | 67 | e52 | e50 | e53 | 80 | 596 | 2400 | 584 | 136 | 101 | 163 | | 9
10 | 122
114 | 67
60 | e48
e50 | e50
e50 | e55
e55 | 79
66 | 689
847 | 2100
1800 | 604
537 | 197
193 | 101
100 | 182
169 | | 10 | | | | | | | | | | | | | | 11 | 109 | 58 | e54 | e50 | e54 | 59 | 813
701 | 1970 | 450 | 169 | 101 | 147 | | 12
13 | 107
105 | 54
53 | e48
e47 | e50
e50 | e53
e55 | 80
82 | 854 | 1800
1410 | 408
369 | 159
152 | 106
111 | 133
123 | | 14 | 102 | 53 | e50 | e49 | e56 | 80 | 978 | 1250 | 357 | 155 | 148 | 117 | | 15 | 99 | 57 | e49 | e48 | e56 | 90 | 863 | 1100 | 327 | 174 | 142 | 112 | | 16 | 0.5 | | 4.0 | 4.0 | | 0.0 | 500 | 1100 | 200 | 105 | 1.00 | 100 | | 16
17 | 96
91 | 53
e53 | e49
e50 | e49
e50 | e57
e58 | 89
89 | 690
763 | 1180
1300 | 302
271 | 195
209 | 170
172 | 108
103 | | 18 | 87 | e51 | e50 | e50 | e59 | 87 | 1010 | 1060 | 248 | 186 | 196 | 103 | | 19 | 91 | 45 | e49 | e50 | e60 | 80 | 830 | 908 | 247 | 155 | 318 | 89 | | 20 | 88 | 39 | e48 | e50 | e62 | 101 | 712 | 817 | 228 | 142 | 254 | 69 | | 21 | 85 | e40 | e48 | e50 | 65 | 97 | 946 | 894 | 208 | 134 | 199 | 58 | | 22 | 82 | e38 | e47 | e50 | 65 | 92 | 970 | 1110 | 199 | 122 | 199 | 65 | | 23 | 82 | 34 | e48 | e48 | e64 | 94 | 941 | 1490 | 192 | 115 | 177 | 78 | | 24 | 83 | e38 | e49 | e49 | 62 | 103 | 1130 | 1960 | 193 | 121 | 160 | 78 | | 25 | 82 | e40 | e50 | e50 | e62 | 118 | 1280 | 1890 | 198 | 116 | 159 | 74 | | 26 | 79 | e42 | e50 | e50 | e63 | 141 | 1440 | 1450 | 180 | 122 | 165 | 67 | | 27 | 79 | e46 | e50 | e50 | e65 | 164 | 1770 | 1240 | 169 | 123 | 161 | 61 | | 28 | 78 | e50 | e51 | e50 | e65 | 205 | 2070 | 1290 | 169 | 119 | 161 | 61 | | 29 | 78 | e56 | e50 | e48 | e65 | 196 | 1930 | 1470 | 155 | 112 | 163 | 66 | | 30 | 73 | e58 | e49 | e49 | | 198 | 1590 | 1480 | 147 | 113 | 183 | 74 | | 31 | 74 | | e50 | e50 | | 190 | | 1310 | | 115 | 203 | | | TOTAL | 3162 | 1605 | 1557 | 1537 | 1669 | 3216 | 26175 | 49039 | 12733 | 4420 | 4709 | 3500 | | MEAN | 102 | 53.5 | 50.2 | 49.6 | 57.6 | 104 | 872 | 1582 | 424 | 143 | 152 | 117 | | MAX | 152 | 73 | 61 | 50 | 65 | 205 | 2070 | 2410 | 1150 | 209 | 318 | 184 | | MIN | 73 | 34 | 47 | 48 | 50 | 59 | 147 | 817 | 147 | 107 | 100 | 58 | | AC-FT | 6270 | 3180 | 3090 | 3050 | 3310 | 6380 | 51920 | 97270 | 25260 | 8770 | 9340 | 6940 | | STATIST | ICS OF MO | NTHLY MEA | N DATA F | OR WATER | YEARS 1896 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 135 | 84.6 | 59.2 | 52.6 | 56.8 | 131 | 751 | 1753 | 1376 | 412 | 240 | 183 | | MAX | 1247 | 453 | 199 | 151 | 140 | 458 | 1955 | 3625 | 3470 | 1490 | 650 | 1354 | | (WY) | 1942 | 1942 | 1987 | 1987 | 1987 | 1997 | 1942 | 1922 | 1957 | 1957 | 1999 | 1927 | | MIN | 26.0 | 20.0 | 19.8 | 19.3 | 20.0 | 25.0 | 158 | 235 | 108 | 55.4 | 29.0 | 33.5 | | (WY) | 1902 | 1902 | 1990 | 1990 | 1902 | 1899 | 1977 | 1977 | 1934 | 1934 | 1900 | 1899 | | SUMMARY | STATISTI | CS | FOR | 1999 CALE | NDAR YEAR | F | 'OR 2000 WA' | TER YEAR | | WATER YEA | RS 1896 | - 2000 | | ANNUAL ' | TOTAL | | | 180526 | | | 113322 | | | | | | | ANNUAL I | | | | 495 | | | 310 | | | 437 | | | | | ANNUAL M | | | | | | | | | 790 | | 1942 | | | ANNUAL ME | | | | | | | | | 87.0 | | 1977 | | | DAILY ME
DAILY MEA | | | 3010
34 | May 24 | | 2410 | May 5
Nov 23 | | 6950 | | 5 1922 | | | | MINIMUM | | 34 | Nov 23
Nov 20 | | 34
39 | Nov 23 | | 8.0
12 | | .6 1896
.0 1896 | | | ANEOUS PE | | | 37 | 140 4 20 | | 2810 | May 5 | | a10000 | | 5 1911 | | | ANEOUS PE | | | | | | b5.14 | | | 10.20 | | 5 1911 | | | RUNOFF (A | | | 358100 | | | 224800 | | | 316800 | | | | | ENT EXCEE | | | 1440 | | | 1040 | | | 1410 | | | | | ENT EXCEE | | | 254 | | | 106 | | | 122 | | | | 90 PERC | ENT EXCEE | :DS | | 46 | | | 50 | | | 41 | | | a Site and datum then in use, from rating curve extended above 2800 ft³/s. b Maximum gage height, 5.40 ft, Feb 27, backwater from ice. #### 09166950 LOST CANYON CREEK NEAR DOLORES, CO LOCATION.--Lat $37^{\circ}26^{\circ}46^{\circ}$, long $108^{\circ}28^{\circ}07^{\circ}$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec.23, T.37N., R.15W., Montezuma County, Hydrologic Unit 14030002, on right bank 2.5 mi southeast of Dolores and 3.0 mi upstream from mouth. DRAINAGE AREA.--71.3 mi². PERIOD OF RECORD. -- April 1984 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,030 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Several small storage reservoirs and diversions for irrigation of about 4,700 acres in the San Juan River basin and one diversion for irrigation of about 10 acres in Lost Canyon in the Dolores River basin. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YE
MEAN V | | ER 1999 TO | SEPTEMBE | R 2000 | | | |--|---|--------------------------------------|---|---|--------------------------------------|------------------------------------|---|---|--------------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2
3
4 | 1.9
1.8
1.7
1.6
1.6 | 1.0
.93
1.2
1.1
.94 | .92
e1.0
e1.1
e.90
e.74 | e.60
e.70
e.68
e.68
e.70 | e1.2
e1.2
e1.2
e1.2
e1.2 | | | | .10
.07
.03 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 7
8
9 | 1.6
1.7
1.7
1.7 | .94
1.0
1.1
1.2 | | e.72
e.74
e.76
e.82
e.86 | | | | 16
4.1
3.5
9.2
2.9 | | | .00
.00
.00
.00 | .00
.00
.00
.00 | | | 1.5
1.4
1.4
1.3 | .90
.84
.89 | | e.88
e.90
e.92
e.96
e1.1 | 1.5
e1.4
e1.4
e1.4
e1.5 | 3.8
2.5
3.3
3.8
3.5 | 105
74
111
130
84 | 2.4
2.0
1.8
1.6
1.3 | | | .00
.00
.00
.00 | .00
.00
.00
.00 | | 17
18
19 | 1.3
1.3
1.3
1.2 | .97
1.1
.93 | .50
.49
e.50
e.50 | e1.4
e1.7
1.8
e1.4
e1.3 | e1.8
1.8
1.8
3.6
3.3 | e3.8
3.9
e3.8
e3.6
3.5 | 38
42
87
47
14 | 1.1
.95
.98
.95
.86 | .00
.01
.06
.07 | .24
.11
.01
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | 22
23
24 | 1.2
1.2
1.3
1.3 | .92 | .46
e.46
e.46
.47
.46 | | | | 66 | | .18
.12 | .00
.00
.00
.00 | .00
.00
.00
.00 |
.00
.00
.00
.00 | | 26
27
28
29
30
31 | 1.2
1.1
1.1
1.2
1.1 | .80
.94
.92
.88
.85 | .31
e.30
e.29
.28
.38
e.58 | 1.8
e2.2
e1.6
e1.4
e1.3
e1.2 | e1.8
e1.8
1.9
2.0 | 6.2
7.2
6.1
9.3
10 | 70
92
109
89
54 | .54
.54
.48
.37
.32 | .07
.04
.01
.00 | .00
.00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | | MEAN 1
MAX
MIN
AC-FT | 13.3
40
1.9
1.1
86 | | | | | | | 257.22
8.30
49
.25
510 | | 0.61
.020
.24
.00 | 0.00
.000
.00
.00 | 0.00
.000
.00
.00 | | MEAN 2
MAX 1
(WY) 1
MIN . | 2.48
.7.7
.987
.000 | 4.70
45.2
1987
.000
1990 | 2.26
14.8 | 1.63
5.00
1987
.000
1990 | 2.42
6.85
1997
.000
1990 | 35.8
110
1997
.87
1990 | 119
265
1987
.86
1990 | 112
293
1993
3.32
1990 | 10.5
91.2
1995
.005
1990 | .27
.96
1999
.003
1989 | .69
7.00
1999
.000
1990 | 1.18
6.05
1999
.000
1984 | | SUMMARY ST | CATISTIC | | | 1999 CALENI | DAR YEAR | I | FOR 2000 W | NATER YEAR | | WATER YEA | ARS 1984 | - 2000 | | ANNUAL TOT
ANNUAL MEA
HIGHEST AN
LOWEST ANN
HIGHEST DA
LOWEST DAI
ANNUAL SEV
INSTANTANE
INSTANTANE
ANNUAL RUN
10 PERCENT
90 PERCENT | AN INUAL ME IUAL MEA ILY MEAN LY MEAN ZEN-DAY COUS PEA COUS PEA IOFF (AC EXCEED | N MINIMUM K FLOW K STAGE -FT) S | | 5288.78
14.5
201
.12
.21
10490
54
1.8
.50 | May 15
Jul 2
Jun 28 | | 2265.2
6.1
130
a.(
.0
198
4.4
4490
10
.0 | Apr 14 00 Jun 6 00 Jun 6 Apr 14 13 Apr 14 | | 24.1
49.9
.43
555
a.00
.00
744
7.23
17460
85
1.1
.00 | | 1993
1990
2 1986
1 1984
80 1984
2 1986
2 1986 | e Estimated. a No flow many days each year. #### 09168730 DOLORES RIVER NEAR SLICK ROCK, CO LOCATION.--Lat $38^{\circ}02^{\circ}40^{\circ}$, long $108^{\circ}54^{\circ}17^{\circ}$, in NE $^{1}/_{4}$ SE $^{1}/_{4}$ sec.25, T.44 N., R.19 W., San Miguel County, Hydrologic Unit 14030002, on left bank 15 ft downstream from county road S-8 bridge, 0.7 mi upstream from Summit Canyon, 1.2 mi northwest of Slick Rock Post Office, and 2 mi downstream from Colo. Hwy. 141 at Slick Rock Bridge. DRAINAGE AREA.--1,432 mi² PERIOD OF RECORD. -- May 1997 to June 1999 (seasonal records only), October 1999 to September 2000. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,400 ft above sea level, from topographic map. REMARKS.--Records fair except for Nov. 10-21 and estimated daily discharges, which are poor. Diversions for several hundred acres upstream for irrigation and municipal water supply for city of Dove Creek. Also diversions upstream from station for irrigation in the San Juan River basin amount to about 74,760 acres. Flow regulated since Mar. 19, 1984, by McPhee Reservoir, capacity 381,000 acre-ft. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge (occurred during period of seasonal record), 3,740 ft³/s, May 7, 1998, gage height, 10.18 ft; minimum daily, 30 ft³/s (estimated), Sept. 15, 16, 2000. EXTREMES OUTSIDE PERIOD OF RECORD.--Major flows occurred in Oct. 1911, Sept. 1970, and Apr. 1973. Minimum flow not determined. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,300 $\rm ft^3/s$ at 0015 May 1, gage height, 7.01 ft; minimum daily, 30 $\rm ft^3/s$ (estimated), Sept. 15, 16. | | | DISCHA | KGE, CODI | , reer re | | Y MEAN VA | | .R 1999 10 | OBF TENDE | 2000 | | | |-------|------|--------|-----------|-----------|------|-----------|-------|------------|-----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e70 | e70 | e48 | e48 | e52 | 48 | 78 | 1280 | 94 | 67 | 57 | e100 | | 2 | e70 | e70 | e50 | e48 | e48 | 50 | 72 | 1280 | 100 | 64 | 56 | e75 | | 3 | e70 | e72 | e48 | e46 | e52 | 47 | 70 | 1280 | 83 | 62 | 58 | e110 | | 4 | e60 | e72 | e46 | e48 | e52 | 44 | 74 | 1240 | 77 | 59 | 60 | e75 | | 5 | e50 | e72 | e46 | e48 | e50 | 44 | 117 | 1060 | 75 | 59 | 59 | e57 | | 6 | e40 | e70 | e44 | e50 | e50 | 49 | 137 | 1020 | 72 | 56 | 57 | e55 | | 7 | e40 | e70 | e46 | e50 | e50 | 60 | 213 | 952 | 70 | 54 | 57 | e52 | | 8 | e40 | e68 | e46 | e50 | e50 | 56 | 355 | 983 | 69 | 57 | 58 | e50 | | 9 | e36 | e66 | e48 | e52 | e52 | 54 | 401 | 909 | 67 | 60 | 57 | e50 | | 10 | e32 | 61 | e48 | e50 | e52 | 52 | 523 | 849 | 66 | 61 | 61 | e57 | | 11 | e35 | 62 | e46 | e50 | e54 | 49 | 508 | 841 | 65 | 59 | 81 | e58 | | 12 | e35 | 64 | e46 | e50 | e54 | 47 | 386 | 846 | 65 | 58 | 65 | e45 | | 13 | e230 | 65 | e46 | e50 | e54 | 48 | 372 | 803 | 64 | 59 | 62 | e40 | | 14 | e110 | 68 | e44 | e52 | e52 | 49 | 622 | 788 | 65 | 61 | 81 | e35 | | 15 | e80 | 65 | e44 | e52 | e52 | 49 | 738 | 799 | 63 | 60 | 66 | e30 | | 16 | e76 | 65 | e48 | e54 | e54 | 52 | 665 | 782 | 62 | 59 | 82 | e30 | | 17 | e76 | 59 | e50 | e54 | e54 | 51 | 598 | 765 | 66 | 59 | 55 | e35 | | 18 | e76 | 58 | e46 | e56 | e52 | 50 | 620 | 768 | 60 | 62 | 57 | e40 | | 19 | e76 | 49 | e46 | e58 | e52 | 50 | 620 | 766 | 69 | 57 | 109 | 47 | | 20 | e76 | 38 | e46 | e60 | e52 | 56 | 680 | 774 | 65 | 61 | 67 | 45 | | 21 | e76 | 42 | e48 | e60 | e50 | 67 | 830 | 794 | 65 | 59 | 70 | 43 | | 22 | e76 | e40 | e48 | e58 | e50 | 64 | 1010 | 790 | 63 | 59 | 59 | 39 | | 23 | e76 | e46 | e48 | e58 | e52 | 63 | 1020 | 590 | 63 | 60 | 58 | 35 | | 24 | e76 | e46 | e48 | e56 | e52 | 62 | 1040 | 414 | 64 | 59 | 53 | 37 | | 25 | e76 | e46 | e48 | e56 | e54 | 61 | 1080 | 303 | 65 | 62 | 61 | 41 | | 26 | e76 | e46 | e50 | e54 | e52 | 59 | 1090 | 307 | 64 | 63 | 61 | 42 | | 27 | e76 | e46 | e50 | e52 | e50 | 57 | 1070 | 307 | 65 | 64 | 59 | 40 | | 28 | e76 | e46 | e50 | e52 | e46 | 60 | 1110 | 280 | 78 | 62 | 60 | 38 | | 29 | e74 | e46 | e50 | e52 | 43 | 70 | 1180 | 158 | 69 | 60 | 56 | 40 | | 30 | e74 | e46 | e50 | e50 | | 68 | 1250 | 99 | 69 | 57 | 71 | 49 | | 31 | e70 | | e50 | e50 | | 74 | | 92 | | 56 | 90 | | | TOTAL | 2204 | 1734 | 1472 | 1624 | 1487 | 1710 | 18529 | 22919 | 2082 | 1855 | 2003 | 1490 | | MEAN | 71.1 | 57.8 | 47.5 | 52.4 | 51.3 | 55.2 | 618 | 739 | 69.4 | 59.8 | 64.6 | 49.7 | | MAX | 230 | 72 | 50 | 60 | 54 | 74 | 1250 | 1280 | 100 | 67 | 109 | 110 | | MIN | 32 | 38 | 44 | 46 | 43 | 44 | 70 | 92 | 60 | 54 | 53 | 30 | | AC-FT | 4370 | 3440 | 2920 | 3220 | 2950 | 3390 | 36750 | 45460 | 4130 | 3680 | 3970 | 2960 | e Estimated. #### 09169500 DOLORES RIVER AT BEDROCK, CO LOCATION.--Lat $38^{\circ}18^{\circ}37^{\circ}$, long $108^{\circ}53^{\circ}05^{\circ}$, in $NW^{1}/_{4}SW^{1}/_{4}$ sec.20, T.47 N., R.18 W., Montrose County, Hydrologic Unit 14030002, on right bank at upstream side of bridge, 0.4 mi southeast of Bedrock, and 3.1 mi upstream from East Paradox Creek. DRAINAGE AREA. -- 2,024 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1917 to September 1922 (monthly discharge only for some periods, published in WSP 1313), August 1971 to current year. Statistical summary computed for 1985 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,940 ft above sea level, from topographic map. Prior to Aug. 1, 1971, nonrecording gage at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 5,000 acres upstream from station, and about 74,760 acres in the San Juan River basin. Flow regulated since Mar. 19, 1984, by McPhee Reservoir, capacity 381,000 acre-ft. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 7.15 ft, present datum, from floodmarks (discharge not determined). | | | DISCHAR | GE, CUBIC | C FEET PER | | NATER Y
MEAN V | EAR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|-------------------------------------|---|-------------------------------------|--|---|--|-------------------------------------|---|------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e75
e75
e68
e59
e49 | e76
e76
e76
e75
e76 | e55
e54
e54
e51
e48 | e55
e54
e52
e52
e54 | e54
e54
e58
e58
e56 | e52
e50
e53
e52
e58 | e93
e95
e90
e91
e103 | e1170
e1150
e1150
e1150
e1100 | e98
94
89
87
83 | 65
63
61
57
54 | 46
48
51
48
50 | 111
75
57
54
53 | | 6
7
8
9
10 | e45
e40
e36
e34
e37 | e75
e74
e76
e78
e76 | e46
e50
e52
e54
e54 | e56
e58
e58
e56
e54 | e56
e56
e58
e58
e60 | e58
e57
e63
e69
e71 | e134
e153
254
342
395 | e960
e950
e940
867
806 | 79
75
72
70
69 | 53
54
56
64
64 | 48
45
45
46
46 | 52
53
57
58
43 | | 11
12
13
14
15 | e40
e40
e70
e220
e100 | e76
e76
e76
e76
e76 | e52
e48
e49
e49
e50 | e54
e54
e56
e58
e60 | e60
e60
e58
e58
e58 |
e69
e62
e62
e57
e58 | 446
415
303
361
626 | 776
754
735
720
e720 | 69
68
66
63 | 64
61
58
58
59 | 47
52
69
48
66 | 42
36
29
28
33 | | 16
17
18
19
20 | e76
e74
e74
e74
e74 | e76
e74
e70
e67
e65 | e62
e45
e50
e52
e54 | e62
e64
e66
e64
e62 | e58
e60
e60
e58
e58 | e59
e58
e58
e58
e63 | 594
545
540
533
536 | e720
e720
e720
e720
e720 | 61
59
61
64
68 | 59
62
59
58
54 | 64
92
54
54
100 | 33
33
37
37
37 | | 21
22
23
24
25 | e72
e70
e72
e72
e72 | e58
e58
e55
e52
e50 | e54
e54
e56
e58
e56 | e66
e62
e58
e58
e62 | e56
e56
e58
e60
e60 | e72
e78
e78
e78
e73 | 677
829
944
942
944 | e720
e700
e670
e420
e350 | 61
61
62
62
62 | 52
52
51
49
50 | 81
59
60
55
56 | 37
36
31
26
25 | | 26
27
28
29
30
31 | e74
e72
e72
e70
e72
e74 | e50
e52
e52
e52
e53 | e55
e56
e56
e56
e56 | e60
e58
e58
e56
e56
e54 | e58
e58
e56
e54
 | e70
e71
e75
e83
e93
e95 | 946
945
e1000
e1050
e1150 | e300
e300
e285
e240
e165
e105 | 63
65
65
76
69 | 51
54
56
55
52
48 | 55
53
53
87
103
77 | 29
32
33
35
32 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2152
69.4
220
34
4270 | 2022
67.4
78
50
4010 | 1642
53.0
62
45
3260 | 1797
58.0
66
52
3560 | 1672
57.7
60
54
3320 | 2053
66.2
95
50
4070 | 16076
536
1150
90
31890 | 21803
703
1170
105
43250 | 2104
70.1
98
59
4170 | 1753
56.5
65
48
3480 | 1858
59.9
103
45
3690 | 1274
42.5
111
25
2530 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | OR WATER Y | EARS 1985 | - 2000 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 91.3
257
1987
32.7
1992 | 89.1
399
1987
34.3
1991 | 71.3
254
1987
29.7
1991 | 70.3
198
1985
31.6
1991 | 80.2
181
1987
45.4
1991 | 251
774
1985
45.2
1990 | 960
2551
1993
27.6
1990 | 1398
3243
1993
29.8
1990 | 732
1794
1995
16.4
1990 | 155
626
1995
48.0
1990 | 103
242
1987
43.8
1990 | 103
332
1999
42.5
2000 | | SUMMARY | STATISTI | CS | FOR 1 | .999 CALEN | DAR YEAR | | FOR 2000 WAT | TER YEAR | | WATER YEA | RS 1985 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 87483
240
3100
32
39
173500
641
78
47 | May 25
Jan 28
Oct 6 | | 56206
154
e1170
25
30
1260
d4.30
111500
542
60
48 | May 1
Sep 25
Sep 23
May 1
May 1 | | a343
724
53.5
4690
b4.0
8.6
c5230
9.12
248100
1130
78
41 | Jun 2
Jun 1
May | 1993
1990
5 1986
21 1990
5 1990
5 1986
5 1986 | Average discharge for 17 years (water years 1918-22, 1972-83), 497 ft³/s; 360100 acre-ft/yr, prior to completion of McPhee Reservoir. b Minimum daily discharge for period of record, no flow, Sep 13, 1974, Aug 15-18, 1978. c Maximum discharge and stage for period of record, 9280 ft³/s, Apr 30, 1973, gage height, 12.09 ft, from floodmarks. d From outside high water mark. #### 09169500 DOLORES RIVER AT BEDROCK, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1979 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: November 1979 to current year. WATER TEMPERATURE: November 1979 to current year. INSTRUMENTATION.--Water-quality monitor since November 1979 and water-quality monitor with satellite telemetry since July 1991 REMARKS.-- Specific conductance record is good. Water temperature record is good. Daily data that are not published are due to probes being isolated. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. JUL 06... AUG 17... 3.7 4.8 111 108 50.3 34.0 97.3 94.0 EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 6,970 microsiemens Aug. 14, 1987; minimum, 140 microsiemens May 25, 1983. WATER TEMPERATURE: Maximum, 33.5°C Aug. 7, 1981; minimum, -0.5°C Dec. 3-8, 1982. PH #### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 2,700 microsiemens, Aug. 24; minimum, 271 microsiemens, Apr. 24. WATER TEMPERATURE: Maximum, 28.6° C, Aug. 2; minimum, 0.0° C, on many days. DIS- WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | INST. CUBIC FEET PER SECOND (| CIFIC
CON-
DUCT- (
ANCE
US/CM) | ARD | ATU
WAT
(DEG | ER-
RE
ER
(C) | AS | DIS-
SOLVE
(MG/I
AS CA | M SI DI SOI (MO | LVED SO | IS-
LVED
MG/L
S NA) | SORP-
TION | |------------------------|------------------------------------|--|--|--------------------------------------|------------------------------|-------------------------|---------------------------|--|--|------------------------|-----------------------------------|----------------------| | OCT | | | | | _ | | | | | _ | | | | 27
DEC | 1230 | 77 | 555 | 8.4 | 7. | 8 | 150 | 43.8 | 10. | . 6 | 50.2 | 2 | | 17
MAR | 1030 | e45 | 806 | 8.5 | | 0 | 200 | 54.2 | 15. | . 5 | 85.5 | 3 | | 01
APR | 1145 | 52 | 1010 | 8.4 | 6. | 3 | 250 | 62.6 | 23. | .2 1 | 05 | 3 | | 06 | 1345 | | 1100 | 8.4 | 15. | | 330 | 76.0 | | | 99.7 | 2 | | 24
MAY | 1500 | 947 | 351 | 8.2 | 12. | ь | 140 | 40.6 | 9. | . 85 | 14.3 | .5 | | 15
JUN | 1345 | 716 | 342 | 8.3 | 12. | 2 | 140 | 40.7 | 8. | .91 | 14.6 | .5 | | 01 | 0945 | 98 | 661 | 8.5 | 19. | 4 | 180 | 49.4 | 12. | . 8 | 51.0 | 2 | | JUL
06 | 0715 | 55 | 645 | 8.5 | 19. | 2 | 150 | 39.7 | 11. | . 3 | 67.3 | 2 | | AUG
17 | 0830 | 113 | 594 | 8.2 | 21. | 9 | 120 | 34.9 | 7. | .93 | 54.7 | 3 | | DATE | SIU
DIS
SOLV
(MG,
AS I | ALKA- AS- LINITY JM, WAT.DI S- FET /ED LAB /L CACO3 () (MG/L) 35) (29801 | S SULFAT
DIS-
SOLVE
(MG/L
AS SO4 | E RID
DIS
D SOL
(MG
) AS | E,
-
VED
:/L
CL) | SOLVE
(MG/I
AS F) | DIS
SOI
D (MG
AS | CA, SU
CA, SU | NSTI-
ENTS,
DIS-
OLVED
MG/L) | (TONS
PER
AC-FT) | DIS
SOLV
(TON
PER
DAY | S-
VED
IS
R | | OCT
27
DEC | 2.8 | 3 125 | 42.0 | 74 | .1 | .1 | 4. | 3 | 303 | .41 | 63. | 1 | | 17 | 3. | 7 155 | 66.0 | 120 | | .1 | 6. | 7 | 445 | .60 | 54. | . 0 | | MAR
01 | 4.3 | 146 | 174 | 130 | | .1 | 3. | 9 | 590 | .80 | 82. | . 5 | | APR
06
24
MAY | 4.2 | | 294
57.9 | 86
9 | .4 | .2 | | 4
3 | 691
204 | .94 | 304
522 | | | 15
JUN | 1.6 | 5 108 | 51.3 | 12 | .2 | <.1 | 4. | 9 | 199 | .27 | 385 | | | 01 | 3.3 | 132 | 77.0 | 82 | . 4 | .1 | 5. | 0 | 370 | .50 | 98. | . 3 | .2 .2 2.9 5.3 339 310 .46 .42 50.8 94.7 09169500 DOLORES RIVER AT
BEDROCK, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | PECIFIC | CONDUCTA | IVCD (11IC. | KOSTEMENS/ | CII AI 23 | DEG. C/, | WAILK IL | AR OCTOR | LIC IDDD | TO DELTERE | DIC 2000 | | |---|---|--|--|--|---|---|--|---|---|--|---|---| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | 7 | | 1 | 561 | 544
526
522 | 553 | 568 | 555 | 560 | 741 | 706 | 724 | 718 | 672 | 692 | | 2 | 549 | 526 | 538 | 564 | 554 | 558 | 746 | 713 | 733 | 696 | 672
677
693 | 689 | | 3
4 | 538
547 | 522
507 | 530
525 | 568
564
565
563
564 | 555
554
554
552 | 558
557 | 734
785 | 699
697 | 718
741 | 728
745 | 693
718 | 710
734 | | 5 | 576 | 544 | 557 | 564 | 553 | 558 | 741
746
734
785
760 | 652 | 720 | 743 | 703 | 724 | | 6 | 611 | 564 | 588 | 563 | 543 | 557 | 770 | 679 | 736 | 757 | 708 | 730 | | 7 | 610 | 573 | 593 | 566 | 553 | 558 | 796 | 696 | 765 | 795 | 736
754 | 765 | | 8
9 | 612
641 | 591
598 | 603
628 | 576
574 | 561
567 | 567
571 | 779
771 | 731
728 | 754
748 | 817
835 | 754 | 788
800 | | 10 | 654 | 633 | 644 | 572 | 560 | 566 | 780 | 713 | 744 | 807 | 759 | 786 | | 11 | 657 | 633 | 644 | 569 | 561 | 564 | 781 | 736 | 754 | 801 | 748 | 778 | | 12
13 | 665
936 | 617
634 | 641
655 | 566
567 | 555
557 | 561
561 | 774
801 | 723
694 | 748
768 | 792
755 | 747
741 | 770
747 | | 14 | 1290 | 383 | 512 | 566 | 553 | 561 | 835 | 754 | 798 | 752 | 720 | 738 | | 15 | 383 | 349 | 359 | 565 | 546 | 559 | 920 | 795 | 843 | 731 | 697 | 714 | | 16 | 392 | 364 | 381 | 568 | 549 | 561 | 864 | 781 | 819 | 715 | 687 | 702 | | 17
18 | 397
420 | 383
393 | 390
407 | 574
578 | 554
566 | 564
572 | 881
882 | 765
795 | 809
844 | 708
697 | 681
680 | 695
690 | | 19 | 448 | 419 | 434 | 587 | 566 | 575 | 860 | 776 | 819 | 709 | 682 | 701 | | 20 | 463 | 443 | 452 | 605 | 560 | 582 | 835 | 788 | 809 | 706 | 678 | 694 | | 21 | 475 | 455 | 464 | 645 | 600 | 619 | 838 | 754 | 790 | 709 | 672 | 693 | | 22
23 | 482
481 | 464
468 | 472
474 | 672
701 | 645
659 | 658
680 | 817
822 | 762
751 | 778
786 | 728
733 | 680
680 | 703
713 | | 24 | 480 | 467 | 474 | 708 | 631 | 676 | 775 | 750 | 763 | 779 | 710 | 746 | | 25 | 491 | 468 | 475 | 730 | 644 | 692 | 791 | 750 | 775 | 779 | 723 | 746 | | 26 | 544 | 489 | 518 | 739 | 657 | 698 | 791 | 746 | 765 | 856 | 741 | 774 | | 27
28 | 565
564 | 535
555 | 554
558 | 759
766 | 699
710 | 723
743 | 755
748 | 716
730 | 742
739 | 894
857 | 817
769 | 853
804 | | 29 | 568 | 555 | 560 | 752
743 | 705 | 722 | 756
739 | 708 | 733 | 829 | 724 | 778 | | 30 | 562
563 | 550
551 | 555
556 | 743 | 704 | 728 | 739
734 | 693
681 | 716 | 1040
992 | 771
827 | 902 | | 31 | | | | | | | | | 711 | | | 908 | | MONTH | 1290 | 349 | 526 | 766 | 543 | 607 | 920 | 652 | 764 | 1040 | 672 | 751 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | | FEBRUARY | | | MARCH | 1010 | 1280 | APRIL | | | MAY | 325 | | 1
2 | | FEBRUARY | | | MARCH | 1010 | 1280
1370 | APRIL
1190
1220 | | | MAY | 325
324 | | 1 | | | 915
1020
1020
935 | 1020
1070
1110
1110 | MARCH
982
1020
1060 | 1010
1050
1080 | 1280
1370
1360
1260 | APRIL | | | | 325 | | 1
2
3 | 996
1120
1080 | FEBRUARY
891
928
937 | 915
1020
1020
935
919 | 1020
1070
1110
1110
1070 | 982
1020
1060
963
1010 | 1010
1050
1080
1030
1030 | 1280
1370
1360
1260
1240 | 1190
1220
1180
1140
1170 | 1240
1290
1260
1190
1190 | 332
328
334 | MAY
318
321
316 | 325
324
319 | | 1
2
3
4
5 | 996
1120
1080
999
982 | FEBRUARY
891
928
937
854
871
801 | 915
1020
1020
935
919 | 1020
1070
1110
1110
1070 | 982
1020
1060
963
1010 | 1010
1050
1080
1030
1030 | 1280
1370
1360
1260
1240 | 1190
1220
1180
1140
1170 | 1240
1290
1260
1190
1190 | 332
328
334
334
331 | MAY 318 321 316 309 312 | 325
324
319
317
320 | | 1
2
3
4
5 | 996
1120
1080
999
982
988
997 | 891
928
937
854
871
801
776 | 915
1020
1020
935
919 | 1020
1070
1110
1110
1070 | 982
1020
1060
963
1010 | 1010
1050
1080
1030
1030 | 1280
1370
1360
1260
1240 | 1190
1220
1180
1140
1170 | 1240
1290
1260
1190
1190 | 332
328
334
334
331 | MAY 318 321 316 309 312 321 322 | 325
324
319
317
320
328
329 | | 1
2
3
4
5 | 996
1120
1080
999
982
988
997
901
987 | FEBRUARY
891
928
937
854
871
801 | 915
1020
1020
935
919 | 1020
1070
1110
1110
1070 | 982
1020
1060
963
1010 | 1010
1050
1080
1030
1030 | 1280
1370
1360
1260
1240 | 1190
1220
1180
1140
1170 | 1240
1290
1260
1190
1190 | 332
328
334
334
331
340
338
346 | MAY 318 321 316 309 312 321 322 320 318 | 325
324
319
317
320
328
329
329 | | 1
2
3
4
5
6
7
8 | 996
1120
1080
999
982
988
997 | 891
928
937
854
871
801
776
809 | 915
1020
1020
935
919
922
906
861
882
895 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040 | 982
1020
1060
963
1010 | 1010
1050
1080
1030
1030
1020
1040
1040
1020
1030 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | 1190
1220
1180
1140
1170 | 1240
1290
1260
1190
1190 | 332
328
334
334
331 | MAY 318 321 316 309 312 321 322 | 325
324
319
317
320
328
329 | | 1
2
3
4
5
6
7
8
9 | 996
1120
1080
999
982
988
997
901
987
1030 | 891
928
937
854
871
801
776
809
793
787 | 915
1020
1020
935
919
922
906
861
882
895 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040 | 982
1020
1060
963
1010
1000
1000
1020
1000 | 1010
1050
1080
1030
1030
1030
1040
1040
1040
1020
1030 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | APRIL 1190 1220 1180 1140 1170 1040 1070 820 658 541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375 | MAY 318 321 316 309 312 321 322 320 318 339 353 | 325
324
319
317
320
328
329
329
328
352 | | 1
2
3
4
5
6
7
8
9 | 996
1120
1080
999
982
988
997
901
987
1030 | 891
928
937
854
871
801
776
809
793
787 | 915
1020
1020
935
919
922
906
861
882
895 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040 | 982
1020
1060
963
1010
1000
1000
1020
1000 | 1010
1050
1080
1030
1030
1030
1040
1040
1040
1020
1030 |
1280
1370
1360
1260
1240
1180
1280
1180
987
662 | APRIL 1190 1220 1180 1140 1170 1040 1070 820 658 541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 | 325
324
319
317
320
328
329
329
329
352
359 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 996
1120
1080
999
982
988
997
1030
1020
990
990 | 891
928
937
854
871
801
776
809
793
787 | 915
1020
1020
935
919
922
906
861
882
895
889
886
906
933 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090 | 982
1020
1060
963
1010
1000
1000
1020
1000 | 1010
1050
1080
1030
1030
1020
1040
1020
1030
1010
1010
1070 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | APRIL 1190 1220 1180 1140 1170 1040 1070 820 658 541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 | 325
324
319
317
320
328
329
329
329
352
359 | | 1
2
3
4
5
6
7
8
9
10 | 996
1120
1080
999
982
988
997
901
987
1030 | 891
928
937
854
871
801
776
809
793
787
779
809
849 | 915
1020
1020
935
919
922
906
861
882
895
889
886
906 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1040
1050
1100 | 982
1020
1060
963
1010
1000
1000
1020
1000
1010
992
978
1050 | 1010
1050
1080
1030
1030
1040
1040
1040
1020
1030
1010
1010 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | 1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
331
340
338
346
348
375
373
358
360 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 | 325
324
319
317
320
328
329
329
328
352
352
350
342 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 996
1120
1080
999
982
988
997
1030
1020
990
1010
1020 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834 | 915
1020
1020
935
919
922
906
861
882
895
889
886
906
933
930 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080 | 982
1020
1060
963
1010
1000
1000
1000
1010
992
978
1050
1060
1060 | 1010
1050
1080
1030
1030
1030
1020
1040
1020
1030
1010
1010
1070
1070
1070 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | 1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375
373
358
360
344
343 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 | 325
324
319
317
320
328
329
329
329
352
359
350
342
339
340 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 996 1120 1080 999 982 988 997 901 1030 1020 990 1010 1020 1020 1020 956 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834 | 915
1020
1020
935
919
922
906
861
882
895
889
906
903
933
930
946 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080 | 982
1020
1060
963
1010
1000
1000
1000
1010
992
978
1050
1060
1060
1030
1010 | 1010
1050
1080
1030
1030
1020
1040
1040
1020
1030
1010
1010
1070
1070
1070 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | 1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
331
340
338
346
348
375
373
358
360
344
343 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 340 339 | 325
324
319
317
320
328
329
329
328
352
352
359
340
342
339
340 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 996 1120 1080 999 982 988 997 1030 1020 990 1010 1020 1020 956 1030 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972 | 915
1020
1020
935
919
922
906
861
882
895
889
886
906
933
930
946
942
983 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080 | 982
1020
1060
963
1010
1000
1000
1000
1010
992
978
1050
1060
1060
1030
1010
1010
995 | 1010
1050
1080
1030
1030
1030
1020
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | 1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375
373
358
360
344
343
343 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 338 340 339 335 338 | 325
324
319
317
320
328
329
329
328
352
359
350
342
339
340
342
339
340 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 996 1120 1080 999 982 988 997 901 1030 1020 990 1010 1020 1020 956 1030 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834 | 915
1020
1020
935
919
922
906
861
882
895
889
906
933
930
946
942
983 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080 | MARCH 982 1020 1060 963 1010 1000 1000 1000 1000 1010 992 978 1050 1060 1030 1010 | 1010
1050
1080
1030
1030
1020
1040
1040
1020
1030
1010
1070
1070
1070
1070 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | 1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
331
340
338
346
348
375
373
358
360
344
343
343 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 340 339 335 | 325
324
319
317
320
328
329
329
328
352
359
342
339
340 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 996 1120 1080 999 982 988 997 1030 1020 990 1010 1020 1020 956 1030 1010 976 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950 | 915
1020
1020
935
919
922
906
861
882
895
889
986
933
930
946
942
983
980
964 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1040
1050
1050
1050
1050 | 982
1020
1060
963
1010
1000
1000
1020
1000
1010
992
978
1050
1060
1060
1010
1010
995
974 | 1010
1050
1080
1030
1030
1030
1020
1040
1040
1020
1030
1010
1070
1070
1070
1070
1030
1010
101 | 1280
1370
1360
1260
1240
1180
1280
1180
987
662 | 1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375
373
358
360
344
343
345
343
342
343
336 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 340 339 335 338 340 339 335 338 340 339 | 325
324
319
317
320
328
329
329
328
352
359
350
342
339
340
342
342
337
337
334 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 996 1120 1080 999 982 988 997 901 1030 1020 990 1010 1020 1020 1020 1020 976 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950 | 915
1020
1020
935
919
922
906
861
882
895
889
906
933
930
946
942
983
980
964 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1070
1090
1090
1090
1090
1090
1090
109 | 982
1020
1060
963
1010
1000
1000
1000
1010
992
978
1050
1060
1030
1010
1010
995
974 | 1010
1050
1080
1030
1030
1020
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 |
1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
331
340
338
346
348
375
373
358
360
344
343
343
343
343
343
343
343 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 340 339 335 333 332 | 325
324
317
320
328
329
329
328
352
352
350
342
339
340
342
339
337
334 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 996 1120 1080 999 982 988 997 1030 1020 990 1010 1020 956 1030 1010 976 987 985 957 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950 | 915
1020
1020
935
919
922
906
861
882
895
889
986
933
930
946
942
983
980
964 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1040
1050
1020
1030 | 982
1020
1060
963
1010
1000
1000
1020
1000
1010
992
978
1050
1060
1060
1010
995
974
977
1060
1090 | 1010
1050
1080
1030
1030
1030
1020
1040
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 987 662 | 1190
1220
1180
1140
1170
1040
1070
820
658
541 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375
373
358
360
344
343
343
345
343
343
346
346
346
346
346
346
347
348
348
348
348
348
348
348
348
348
348 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 338 340 339 335 338 340 339 335 338 340 339 331 341 | 325
324
319
317
320
328
329
329
328
352
359
350
342
339
340
342
339
340
342
339
340
342
359
359
359
359
359
359
359
359
359
359 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 996 1120 1080 999 982 988 997 901 1020 990 1010 1020 1020 956 1030 1010 976 987 985 957 977 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950
952
945
936
959 | 915
1020
1020
935
919
922
906
861
882
895
886
906
933
930
946
942
983
984
964
963
994 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1050
1020
1030
1110
1130
1130
1150
1120
1060 | 982
1020
1060
963
1010
1000
1000
1000
1010
992
978
1050
1060
1010
1010
1010
995
974
977
1060
1090
1090
1090 | 1010
1050
1080
1030
1030
1030
1040
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 | 1190
1220
1180
1140
1170
1040
1070
820
658
541

271
276 | 1240
1290
1260
1190
1190
1130
1160
989
 | 332
328
334
331
340
338
346
348
375
373
358
360
344
343
343
342
343
343
342
343
344
343
344
343 | MAY 318 321 316 309 312 321 322 320 318 339 345 332 335 338 340 339 335 333 331 330 330 341 380 | 325
324
319
317
320
328
329
328
352
359
350
342
339
340
342
339
337
334
332
336
359
393 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 996 1120 1080 999 982 988 997 1030 1020 990 1010 1020 1020 956 1030 1010 976 987 985 957 977 1030 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950
952
945
956
959 | 915
1020
1020
935
919
922
906
861
882
895
889
986
933
930
946
942
983
980
964
963
949
964
994 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1050
1020
1030
1110
1130
1150
1120
1060 | 982
1020
1060
963
1010
1000
1000
1020
1000
1010
992
978
1050
1060
1060
1010
995
974
977
1060
1090
1050
1050 | 1010
1050
1080
1030
1030
1030
1020
1040
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 987 662 305 | 1190
1220
1180
1140
1170
1040
1070
820
658
541

271
276 | 1240
1290
1260
1190
1190
1130
1160
989
765
579 | 332
328
334
334
331
340
338
346
348
375
373
358
360
344
343
343
345
343
343
345
343
342
343
343
346
346
346
346
346
347
348
348
348
348
348
348
348
348
348
348 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 338 340 339 335 338 340 339 331 341 380 424 | 325
324
319
317
320
328
329
329
328
352
359
350
342
339
340
342
339
340
342
342
337
337
334
342
359
359
350
342
359
350
360
360
360
360
360
360
360
360
360
36 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 996 1120 1080 999 982 988 997 901 1020 990 1010 1020 1020 956 1030 1010 976 987 985 957 977 1030 1020 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950
952
945
936
959 | 915
1020
1020
935
919
922
906
861
882
895
886
906
933
930
946
942
983
984
964
963
994 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1020
1030
1130
1130
1130
1120
1060 | 982
1020
1060
963
1010
1000
1000
1000
1010
992
978
1050
1060
1010
1010
1010
995
974
977
1060
1090
1090
1090 | 1010
1050
1080
1030
1030
1030
1040
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 | 1190
1220
1180
1140
1170
1040
1070
820
658
541

271
276 | 1240
1290
1260
1190
1190
1130
1160
989
 | 332
328
334
331
340
338
346
348
375
373
358
360
344
343
343
342
343
343
342
343
344
343
344
343 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 340 339 335 333 332 330 341 380 424 434 434 | 325
324
319
317
320
328
329
328
352
359
350
342
339
340
342
339
337
334
334
332
336
359
393 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 996 1120 1080 999 982 988 997 1030 1020 990 1010 1020 1020 996 1030 1010 976 987 985 957 977 1030 1020 1020 1020 1020 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950
952
945
936
959
978
935
974
974 | 915
1020
1020
935
919
922
906
861
882
895
889
986
933
930
946
942
983
980
964
963
949
964
994 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1040
1050
1020
1030
1110
1130
1150
1120
1060 | 982
1020
1060
963
1010
1000
1000
1020
1000
1010
992
978
1050
1060
1060
1010
995
974
977
1060
1090
1090
1090
1090
1090
1090
1090 | 1010
1050
1080
1030
1030
1030
1020
1040
1040
1020
1030
1010
1070
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 987 662 305 313 339 355 356 | 1190
1220
1180
1140
1170
1040
1070
820
658
541

271
276
294
306
324
335 | 1240
1290
1260
1190
1190
1130
1160
989
765
579

290
304
326
338
345 | 332
328
334
334
331
340
338
346
348
375
373
358
360
344
343
343
345
343
343
345
343
342
343
346
346
346
346
346
346
346
346
348
348
346
348
348
348
348
348
348
348
348
348
348 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 338 340 339 335 338 340 339 331 380 341 380 424 434 435 435 | 325
324
319
317
320
328
329
329
328
352
359
340
342
339
340
342
339
337
334
334
335
342
349
340
342
349
340
340
340
340
340
340
340
340
340
340 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 996 1120 1080 999 982 988 997 901 1020 990 1010 1020 1020 956 1030 1010 976 987 985 957 977 1030 1020 | 891 928 937 854 871 801 776 809 793 787 779 809 849 855 834 918 922 953 972 950 952 945 936 956 959 | 915
1020
1020
935
919
922
906
861
882
895
886
903
933
930
946
942
983
964
964
963
994
994
994
994 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1020
1030
1130
1130
1130
1120
1060 | 982
1020
1060
963
1010
1000
1000
1000
1010
992
978
1050
1060
1010
1010
1010
995
974
977
1060
1090
1090
1090
1090 | 1010
1050
1080
1030
1030
1030
1040
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 | 1190 1220 1180 1140 1170 1070 820 541 271 276 294 306 324 | 1240
1290
1260
1190
1190
1130
1160
989
765
579

290
304
326
338 | 332
328
334
331
340
338
346
375
373
358
360
344
343
343
343
343
343
344
343
443
44 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 340 339 335 333 332 330 341 380 424 434 434 | 325
324
319
317
320
328
329
328
352
359
350
342
339
340
342
339
337
334
334
332
336
359
393 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 996 1120 1080 999 982 988 997 1030 1020 990 1010 1020 956 1030 1010 976 985 957 1030 1020 1020 1020 1020 1020 1020 1020 | 891
928
937
854
871
801
776
809
793
787
779
809
849
855
834
918
922
953
972
950
952
945
936
959
978
935
974
 | 915
1020
1020
935
919
922
906
861
882
895
889
986
933
930
946
942
983
964
963
994
994
994
994 | 1020
1070
1110
1110
1070
1030
1060
1070
1040
1040
1050
1100
1090
1080
1060
1040
1050
1020
1030
1110
1130
1150
1120
1060 | 982
1020
1060
963
1010
1000
1000
1010
992
978
1050
1060
1060
1010
1010
1010
1010
1010 | 1010
1050
1080
1030
1030
1030
1020
1040
1020
1030
1010
1070
1070
1070
1070
1030
103 | 1280 1370 1360 1260 1240 1180 1280 1180 987 662 305 313 339 355 356 347 | APRIL 1190 1120 11180 1140 1170 1040 1070 820 658 541 271 276 294 306 324 335 323 | 1240
1290
1260
1190
1190
1130
1160
989
765
579

290
304
326
338
345
331 | 332
328
334
334
331
340
338
346
348
375
373
358
360
344
343
343
342
343
343
344
343
345
344
343
345
346
346
346
346
346
346
348
346
346
346
346
346
346
346
346
346
346 | MAY 318 321 316 309 312 321 322 320 318 339 353 345 332 335 338 340 339 335 338 340 339 341 380 424 434 435 435 436 | 325
324
319
317
320
328
329
329
352
350
342
339
340
342
339
337
334
334
334
335
342
342
342
342
342
342
342
342
342
342 | # 09169500 DOLORES RIVER AT BEDROCK, CO--Continued | SI | PECIFIC | CONDUCTA | NCE (MIC | CROSIEMENS/C | CM AT 25 | DEG. C) | , WATER YE | AR OCTOB | ER 1999 ' | TO SEPTEMB | BER 2000 | | |--|---|---|---|--|---|--|---|---|--|---|--|--| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | | | 1
2
3
4
5 | 707
766
848
876
885 | 631
707
766
838
839 | 667
741
809
863
867 | 675
660
1260
1790
862 | 628
619
623
862
718 | 647
639
714
1380
756 | 660
642
731
900
642 | 597
591
583
599
598 | 639
619
647
707
621 | 642
593
880
1300
1750 | 574
561
593
880
1110 | 611
576
655
1200
1520 | | 6
7
8
9
10 | 881
881
872
868
852 | 836
830
830
825
813 | 864
862
858
855
837 | 732
716
705
692
1130 | 650
627
620
645
639 | 695
677
667
672
760 | 635
640
647
648
639 | 581
595
590
593
585 | 608
615
618
620
612 | 1620
945
747
718
718 | 945
747
684
666
677 | 1250
831
715
682
691 | | 11
12
13
14
15 | 836
811
792
779
758 | 786
758
750
733
718 | 821
794
774
761
740 | 1110
655
661
663
661 | 655
618
612
625
611 | 721
638
643
643
637 | 647
633
664
629
674 | 586
587
502
497
585 | 617
609
598
568
616 | 718
720
746
756
765 | 677
669
680
700
707 | 697
693
708
728
740 | | 16
17
18
19
20 | 754
743
717
708
697 | 704
685
672
670
659 | 732
715
695
690
686 | 655
633
645
637
628 | 604
595
581
595
570 | 630
616
617
622
600 | 849
776
570
1970
1970 | 535
517
503
570
764 | 645
612
536
918
1290 | 859
956
909
851
818 | 703
859
792
738
726 | 749
935
823
787
750 | | 21
22
23
24
25 | 682
683
690
689
680 | 641
630
660
648
639 | 663
663
682
673
662 | 652
651
645
963
922 | 577
596
584
590
648 | 614
623
616
729
723 | 2100
711
1080
2700
2190 | 651
631
618
1080
1070 | 1230
664
676
2300
1650 | 742
736
735
723
774 | 690
703
686
665
681 | 714
720
710
686
709 | | 26
27
28
29
30
31 | 674
664
664
656
677 | 635
618
633
608
607 | 656
644
648
634
621 | 657
641
631
624
623
634 | 602
586
597
576
568
569 | 632
614
616
601
598
602 | 1070
769
729
1030
1030
761 | 768
715
681
680
621
608 | 881
754
708
748
719
654 | 779
754
741
751
805 | 746
726
710
714
743 | 760
739
726
732
769 | | | | | | | | | 0000 | 400 | | 1750 | F.C.1 | 787 | | MONTH | 885 | 607 | 739 | 1790 | 568 | 676 | 2700 | 497 | 784 | 1750 | 561 | 787 | | MONTH | 885 | | | 1790
WATER (DEG | | | | | | | 20⊥ | 787 | | MONTH | 885
MAX | TEMPE
MIN | RATURE,
MEAN | WATER (DEG | . C), WA | | OCTOBER 1 | 999 TO S
MIN | | | MIN | MEAN | | DAY | MAX | TEMPE
MIN
OCTOBER | RATURE,
MEAN | WATER (DEG
MAX | . C), WA
MIN
OVEMBER | TER YEAR
MEAN | OCTOBER 1 MAX | 999 TO S
MIN
ECEMBER | EPTEMBER
MEAN | 2000
MAX | MIN
JANUARY | MEAN | | | | TEMPE MIN OCTOBER 11.9 12.5 12.6 11.8 | RATURE,
MEAN | WATER (DEG. MAX NO. 9.4 9.0 | . C), WA
MIN
OVEMBER | TER YEAR | OCTOBER 1 MAX D: | 999 TO S
MIN
ECEMBER | 2.2
3.2
2.5
1.3 | 2000
MAX
.1
.1
.1
.0
.0 | MIN JANUARY .0 .0 .0 | MEAN | | DAY 1 2 3 4 | MAX
16.2
16.3
16.9
16.0 | TEMPE
MIN
OCTOBER
11.9
12.5
12.6
11.8
11.8
13.0
12.8
11.0 | MEAN 14.1 14.5 14.7 14.0 | WATER (DEG.
MAX
NO.
9.4
9.0
8.5
8.4
8.3
7.8 | . C), WAMIN OVEMBER 5.3 5.2 4.8 4.4 | 7.4
7.2
6.7
6.5
6.4 | OCTOBER 1
MAX Di
3.6
4.2
3.1
2.6 | 999 TO S
MIN
ECEMBER
1.0
1.9
1.6
.2
.0 | 2.2
3.2
2.5
1.3 | 2000
MAX
.1
.1
.1 | MIN JANUARY .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 | MAX 16.2 16.3 16.9 16.0 15.8 15.6 14.2 15.6 | TEMPE
MIN
OCTOBER
11.9
12.5
12.6
11.8
11.8
13.0
12.8
11.0
11.6 | RATURE, MEAN 14.1 14.5 14.7 14.0 13.8 14.1 13.6 13.1 | WATER (DEG. MAX NO. 9.4 9.0 8.5 8.4 8.3 7.8 9.1 9.2 | MIN DVEMBER 5.3 5.2 4.8 4.4 4.4 4.4 5.2 5.5 | 7.4
7.2
6.7
6.5
6.4
6.2
7.2 | OCTOBER 1 MAX D 3.6 4.2 3.1 2.6 1.3 1.2 1.2 1.4 .4 | 999 TO S
MIN
ECEMBER
1.0
1.9
1.6
.2
.0 | 2.2
3.2
2.5
1.3
.4
.3
.4 | 2000
MAX
.1
.1
.1
.0
.0 | MIN JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
.0
.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MAX
16.2 16.3 16.9 16.0 15.6 14.2 15.6 15.8 16.1 15.9 15.6 14.8 | TEMPE
MIN
OCTOBER
11.9
12.5
12.6
11.8
11.8
13.0
12.8
11.0
11.6
12.0 | RATURE, MEAN 14.1 14.5 14.7 14.0 13.8 14.1 13.6 13.1 13.7 14.0 14.2 14.0 13.7 13.3 | WATER (DEG. MAX NO. 9.4 9.0 8.5 8.4 8.3 7.8 9.1 9.2 8.1 7.8 7.4 6.7 6.1 | MIN OVEMBER 5.3 5.2 4.8 4.4 4.4 4.7 4.4 4.4 5.2 5.5 4.7 4.4 3.8 3.0 2.5 | 7.4
7.2
6.7
6.5
6.4
6.4
6.2
7.2
7.4
6.5 | OCTOBER 1 MAX D 3.6 4.2 3.1 2.6 1.3 1.2 1.2 1.4 .6 1.1 .8 .2 .4 | 999 TO S MIN ECEMBER 1.0 1.9 1.6 .2 .0 .0 .0 .0 .0 .0 .0 .0 | 2.2
3.2
2.5
1.3
.4
.3
.4
.1
.2 | 2000 MAX .1 .1 .1 .0 .0 .1 .1 .1 .1 .2 .2 .2 | MIN JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | MAX 16.2 16.3 16.9 16.0 15.8 15.6 14.2 15.2 15.6 15.8 16.1 15.9 14.8 15.0 13.0 11.2 10.9 11.1 | TEMPE MIN OCTOBER 11.9 12.5 12.6 11.8 11.8 13.0 12.8 11.0 11.6 12.0 11.9 11.8 11.6 11.5 10.9 10.2 7.4 6.8 7.2 | RATURE, MEAN 14.1 14.5 14.7 14.0 13.8 14.1 13.6 13.1 13.7 14.0 14.2 14.0 13.7 13.3 12.8 11.5 9.3 8.8 9.2 | WATER (DEG. MAX NO. 9.4 9.0 8.5 8.4 8.3 7.8 9.1 9.2 8.1 7.8 7.4 6.7 6.1 5.7 5.6 7.1 4.7 | MIN OVEMBER 5.3 5.2 4.8 4.4 4.4 4.7 4.4 3.0 2.5 5.7 4.8 3.0 2.5 2.1 2.1 2.6 4.1 1.9 | 7.4
7.2
6.7
6.5
6.4
6.2
7.2
7.4
6.5
6.1
5.6
4.9
4.3
4.0
3.9
4.2
5.4
3.5 | OCTOBER 1 MAX D 3.6 4.2 3.1 2.6 1.3 1.2 1.4 .4 .6 1.1 .8 .2 .4 .4 .4 .5 .5 .5 .4 | 999 TO S MIN ECEMBER 1.0 1.9 1.6 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | 2.2
3.2
2.5
1.3
.4
.3
.4
.1
.2
.3
.2
.0
.1
.1 | 2000 MAX .1 .1 .1 .0 .0 .1 .1 .1 .1 .2 .2 .2 .3 .1 .2 .2 .5 | MIN JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0 4.2 9.4 MONTH 16.9 5.4 11.3 .0 . 4 2.6 .0 .2 4.2 TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 303 DOLORES RIVER BASIN 09169500 DOLORES RIVER AT BEDROCK, CO--Continued | | | TEMPE | RAIURE, | WATER (DEC | 3. C), W | TEK IEAK | OCTOBER | 1999 10 | SEF LEMDEI | 2000 | | | |--|--|---|--|--|--|--|--|---|--|---|---|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 1.7
2.0
2.2
2.2
2.7 | .1
.2
.3
.5 | .7
1.0
1.2
1.4
1.7 | 7.6
9.1
10.2
10.6
8.8 | 6.1
5.6
5.4
5.7
6.5 | 6.9
7.3
7.7
8.1
7.4 | 12.1
12.6
13.8
15.3
16.6 | 7.3
8.3
9.3
9.4
11.3 | 9.4
10.3
11.3
12.1
13.7 | 13.1
13.7
14.2
14.6
15.0 | 10.6
11.2
11.6
12.4
12.5 | 11.6
12.2
12.8
13.3
13.6 | | 6
7
8
9
10 | 3.0
3.3
2.8
2.6
3.5 | .6
.6
.6
1.4
1.7 | 1.9
2.0
1.9
2.2
2.6 | 6.8
7.3
7.0
7.3
8.1 | 5.7
5.7
4.9
4.8
4.4 | 6.3
6.4
6.0
6.1
6.1 | 16.7
16.1
15.1
15.2
14.7 | 12.6
12.8
11.8
11.8 | 14.5
14.5
13.6
13.4
13.3 | 16.0
14.9
14.5
15.3
15.6 | 12.6
12.7
12.1
11.2
12.2 | 14.0
13.7
13.0
13.0
13.9 | | 11
12
13
14
15 | 4.2
2.8
3.0
3.8
6.4 | 1.7
2.0
1.6
2.5
2.4 | 2.9
2.4
2.4
3.1
4.2 | 9.4
10.5
11.4
11.8
10.1 | 4.6
6.5
6.3
6.9
7.4 | 7.0
8.4
8.7
9.4
8.6 | 13.8
13.8
 | 12.1
11.5
 | 12.9
12.6
 | 16.1
14.6
14.5
13.5
13.6 | 12.7
11.3
10.6
10.8
11.1 | 14.3
13.0
12.5
12.3
12.3 | | 16
17
18
19
20 | 5.7
5.8
7.4
6.7
5.3 | 3.8
4.0
4.1
3.4
3.5 | 4.4
4.8
5.5
5.1
4.6 | 11.2
11.0
9.6
9.7
8.6 | 5.8
6.4
6.1
5.2
4.7 | 8.3
8.6
7.7
7.5
6.8 |

 |

 |

 | 14.5
14.8
13.9
15.1
16.2 | 11.1
11.4
11.0
11.3
12.3 | 12.7
13.0
12.5
13.1
14.2 | | 21
22
23
24
25 | 5.8
7.1
6.7
6.3
6.3 | 4.2
4.8
4.2
4.6
3.1 | 4.9
5.9
5.7
5.6
4.6 | 7.7
7.7
10.3
12.2
13.7 | 3.8
5.6
6.6
7.5
9.1 | 5.7
6.7
8.1
9.9
11.3 |

13.0
12.3 |

10.2 |

11.1 | 16.8
18.0
19.3
19.4
18.0 | 13.0
13.5
14.6
16.9
16.4 | 14.9
15.7
16.9
18.2
17.4 | | 26
27
28
29
30
31 | 5.8
7.4
7.4
9.2
 | 2.1
3.1
5.1
5.4 | 4.0
5.1
6.2
7.0 | 13.2
14.4
12.7
13.5
11.9 | 9.6
9.4
11.1
9.5
10.0
8.1 | 11.4
11.9
11.9
11.3
11.2
9.0 | 12.9
14.6
15.2
14.5
13.1 | 10.5
11.1
11.7
12.3
11.2 | 11.5
12.6
13.2
13.2
11.9 | 18.6
21.1
22.2
22.7
23.3
23.8 | 15.5
15.4
17.4
18.7
18.7 | 16.9
18.3
19.9
20.8
21.0
21.2 | | MONTH | 9.2 | .1 | 3.6 | 14.4 | 3.8 | 8.3 | | | | 23.8 | 10.6 | 14.9 | | 1-1014111 | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | MAX
25.0
24.8
24.7
25.9
24.7 | | MEAN 21.7 22.0 21.7 22.6 22.5 | MAX 26.1 26.4 25.6 24.2 24.2 | | MEAN 23.2 23.8 23.1 21.8 21.4 | MAX
27.5
28.6
27.4
28.2
27.9 | AUGUST | MEAN 24.8 25.9 25.5 25.5 | 20.7
21.3
20.9
21.6
20.2 | | | | DAY 1 2 3 4 | 25.0
24.8
24.7
25.9 | JUNE 19.0 19.5 19.1 19.9 | 21.7
22.0
21.7
22.6 | 26.1
26.4
25.6
24.2 | JULY 20.7 21.5 21.1 19.5 | 23.2
23.8
23.1
21.8 | 27.5
28.6
27.4
28.2 | AUGUST 22.0 23.4 23.8 23.2 | 24.8
25.9
25.5
25.5 | 20.7
21.3
20.9
21.6 | 18.4
17.2
17.1
17.5 | 19.5
19.0
18.9
19.5 | | DAY 1 2 3 4 5 5 6 7 8 8 9 10 11 12 | 25.0
24.8
24.7
25.9
24.7
25.8
25.9
23.7
22.2 | JUNE 19.0 19.5 19.1 19.9 20.3 19.9 20.1 20.8 18.8 16.8 | 21.7
22.0
21.7
22.6
22.5
22.6
22.9
22.2
20.3 | 26.1
26.4
25.6
24.2
24.2
24.8
23.0
25.8
25.8
26.9 | JULY 20.7 21.5 21.1 19.5 18.7 19.1 20.6 21.6 21.7 22.0 23.0 | 23.2
23.8
23.1
21.8
21.4
21.9
21.8
22.9
23.7 | 27.5
28.6
27.4
28.2
27.9
25.8
26.6
26.5
27.5 | AUGUST 22.0 23.4 23.8 23.2 22.8 22.2 21.8 21.3 22.5 22.7 | 24.8
25.9
25.5
25.5
25.3
24.6
24.0
24.0
24.6
24.9 | 20.7
21.3
20.9
21.6
20.2
19.5
21.6
20.3
21.1
21.4 | SEPTEMBE 18.4 17.2 17.1 17.5 18.4 17.6 16.4 17.9 16.7 16.4 16.2 | 19.5
19.0
18.9
19.5
19.4
18.5
18.9
19.1
18.3
19.0 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 25.0
24.8
24.7
25.9
24.7
25.8
25.9
23.7
22.2
22.9
23.8
22.7
24.7 | JUNE 19.0 19.5 19.1 19.9 20.3 19.9 20.1 20.8 18.8 16.8 17.9 18.4 18.2 18.3 | 21.7
22.0
21.7
22.6
22.5
22.5
22.9
22.2
20.3
19.7
20.7
20.7
20.9
21.3 | 26.1
26.4
25.6
24.2
24.2
24.8
23.0
25.8
25.8
26.9
27.5
26.2
27.4
28.3 | JULY 20.7 21.5 21.1 19.5 18.7 19.1 20.1 20.6 21.6 21.7 22.0 23.0 22.3 | 23.2
23.8
23.1
21.8
21.4
21.9
21.8
22.9
23.7
24.1
24.7
24.5
24.9
25.3 |
27.5
28.6
27.4
28.2
27.9
27.0
25.8
26.5
27.5
27.4
28.5
27.9 | 22.0
23.4
23.8
23.2
22.8
22.2
21.8
21.3
22.5
22.7
22.6
23.5
23.9
22.9 | 24.8
25.9
25.5
25.5
25.3
24.6
24.0
24.6
24.9
25.1
25.7
25.8
24.9 | 20.7
21.3
20.9
21.6
20.2
19.5
21.6
20.3
21.1
21.4
21.0
21.5
22.1 | SEPTEMBE 18.4 17.2 17.1 17.5 18.4 17.6 16.4 17.9 16.7 16.4 16.2 16.9 17.4 | 19.5
19.0
18.9
19.5
19.4
18.5
18.9
19.1
18.3
19.0
18.8
19.6
20.0 | | DAY 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 | 25.0
24.8
24.7
25.9
24.7
25.8
25.9
22.2
22.9
23.8
22.7
24.7
24.7
25.5
24.7
24.7
25.5 | JUNE 19.0 19.5 19.1 19.9 20.3 19.9 20.1 20.8 18.8 16.8 17.9 18.4 18.2 18.3 19.4 20.0 18.2 19.1 18.5 | 21.7
22.6
22.5
22.6
22.9
22.9
22.2
20.3
19.7
20.7
20.7
20.9
21.3
22.2
22.5
21.2
20.3 | 26.1
26.4
25.6
24.2
24.2
24.8
23.0
25.8
25.8
26.9
27.5
26.2
27.4
28.3
28.1 | JULY 20.7 21.5 21.1 19.5 18.7 19.1 20.6 21.6 21.7 22.0 23.0 22.9 23.2 23.7 23.3 21.9 21.1 | 23.2
23.8
23.1
21.8
21.4
21.9
21.8
22.9
23.7
24.1
24.7
24.5
24.9
25.3
25.5
25.7
25.0
24.4
23.9 | 27.5
28.6
27.4
28.2
27.9
27.0
25.8
26.6
26.5
27.5
27.4
28.5
27.9
27.1
25.6
26.4
26.1
26.1
26.1 | AUGUST 22.0 23.4 23.8 23.2 22.8 22.2 21.8 21.3 22.5 22.7 22.6 23.5 23.9 22.9 22.6 22.3 22.0 21.9 21.9 | 24.8
25.9
25.5
25.5
25.3
24.6
24.0
24.6
24.9
25.1
25.7
25.8
24.9
24.0
24.1
23.8
23.4
23.0 | 20.7
21.3
20.9
21.6
20.2
19.5
21.6
20.3
21.1
21.4
21.0
21.5
22.1
22.4
22.2 | SEPTEMBE 18.4 17.2 17.1 17.5 18.4 17.6 16.4 17.9 16.7 16.4 16.2 16.9 17.4 17.7 18.0 18.2 18.1 17.7 | 19.5
19.0
18.9
19.5
19.4
18.5
18.9
19.1
18.3
19.0
18.8
18.8
19.6
20.0
20.3 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 25.0
24.8
24.7
25.9
24.7
25.8
25.3
22.2
22.9
23.8
22.7
24.7
25.5
24.4
21.9
24.7
25.3
23.4
24.7
25.3
23.4
24.7
25.3
23.7
24.7
25.5 | JUNE 19.0 19.5 19.1 19.9 20.3 19.9 20.1 20.8 18.8 16.8 17.9 18.4 18.2 18.3 19.4 20.0 18.2 19.1 18.5 18.6 18.4 19.7 20.0 20.8 20.6 21.5 19.6 20.1 20.4 20.3 | 21.7
22.6
22.5
22.6
22.9
22.2
20.3
19.7
20.7
20.7
20.7
20.9
21.3
22.2
20.6
21.4
21.7
21.7
21.7
21.7
21.7
21.7
21.7
21.7 | 26.1
26.4
25.6
24.2
24.2
24.8
23.0
25.8
25.8
26.9
27.5
26.2
27.4
28.3
28.1
27.8
26.6
27.2
26.8
26.4
27.5
26.7
27.5
26.7
27.5
26.7 | JULY 20.7 21.5 21.1 19.5 18.7 19.1 20.6 21.6 21.7 22.0 23.0 22.3 22.9 23.2 23.7 23.3 21.9 21.1 21.2 20.8 21.2 21.5 22.2 21.9 22.2 21.9 | 23.2
23.8
23.1
21.8
21.4
21.9
21.8
22.9
23.7
24.1
24.7
24.5
25.3
25.5
25.7
25.0
24.4
23.7
24.2
24.2
24.0
24.5
24.2
24.5
24.2
24.5
24.1 | 27.5
28.6
27.4
28.2
27.9
27.0
25.8
26.5
27.5
27.4
28.5
27.9
25.6
26.4
26.1
25.1
24.1
25.0
25.2
25.3
25.3 | AUGUST 22.0 23.4 23.8 23.2 22.8 22.2 21.8 21.3 22.5 22.7 22.6 23.5 22.9 22.9 22.6 22.3 22.0 21.9 21.2 21.3 20.6 19.6 20.6 20.9 21.1 21.7 21.2 21.5 21.5 22.0 3 | 24.8
25.9
25.5
25.5
25.3
24.6
24.0
24.6
24.9
25.1
25.7
25.8
24.9
24.0
24.1
23.8
23.4
23.0
22.8
21.5
21.7
22.6
23.0
23.0
23.1
23.4
23.0 | 20.7
21.3
20.9
21.6
20.2
19.5
21.6
20.3
21.1
21.4
21.0
21.5
22.1
22.4
22.2
22.4
22.2
22.4
21.2
22.4
21.6
19.5
16.5
16.1 | SEPTEMBE 18.4 17.2 17.1 17.5 18.4 17.6 16.4 17.9 15.9 16.7 16.4 16.2 16.9 17.4 17.7 18.0 18.2 18.1 17.7 17.5 17.1 15.9 14.0 11.9 11.6 11.9 13.4 14.8 15.7 16.0 | 19.5
19.0
18.9
19.5
18.9
19.1
18.3
19.0
18.8
18.8
19.0
20.3
20.5
19.9
20.2
19.9
20.2
19.9
19.7 | | DAY 1 2 3 4 4 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 25.0
24.8
24.7
25.9
24.7
25.8
25.9
23.7
22.2
22.9
23.8
22.7
24.7
25.5
24.7
21.9
24.7
25.3
23.4
21.9
24.7
25.5
25.7
25.3
26.7
27.7
27.7
27.7
27.7
27.7
27.7
27.7 | JUNE 19.0 19.5 19.1 19.9 20.3 19.9 20.1 20.8 18.8 16.8 17.9 18.4 18.2 18.3 19.4 20.0 18.2 19.1 18.5 18.6 18.4 19.7 20.0 20.8 20.6 21.5 19.6 20.1 20.4 | 21.7
22.6
22.5
22.6
22.9
22.2
20.3
19.7
20.7
20.7
20.9
21.3
22.2
22.5
21.4
21.7
21.7
21.7
22.9
23.0 | 26.1
26.4
25.6
24.2
24.2
24.8
23.0
25.8
25.8
25.8
26.9
27.5
26.2
27.4
28.3
28.1
27.8
26.6
27.2
26.8
26.4
27.4
27.5
26.7
27.5
26.7
27.5
26.7
27.5
26.7
27.5
26.7
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27 | JULY 20.7 21.5 21.1 19.5 18.7 19.1 20.6 21.6 21.7 22.0 23.0 22.3 22.9 23.2 23.7 23.3 21.9 21.1 21.2 20.8 21.2 21.9 22.2 21.9 22.2 21.7 21.2 | 23.2
23.8
21.8
21.8
21.9
21.8
22.9
23.7
24.1
24.7
24.5
24.9
25.3
25.5
25.7
24.4
23.9
23.7
24.1
24.7
24.5
24.9
25.3
25.5
25.0
24.4
23.9
23.7
24.1
23.9
23.7
24.1
24.7
25.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26 | 27.5
28.6
27.4
28.2
27.9
27.0
25.8
26.6
26.5
27.5
27.4
28.5
27.9
27.1
25.6
26.4
26.1
25.1
24.9
24.1
22.8
24.1
25.2
25.3 | AUGUST 22.0 23.4 23.8 23.2 22.8 22.2 21.8 21.3 22.5 22.7 22.6 23.5 23.9 22.9 22.6 22.3 22.0 21.9 21.2 21.3 20.6 19.6 20.9 21.1 21.7 21.2 21.5 21.5 | 24.8
25.9
25.5
25.5
25.3
24.6
24.0
24.6
24.9
25.1
25.8
24.9
24.0
24.1
23.8
23.0
22.8
21.5
21.7
22.6
23.0
23.0
23.1
23.1
23.0 | 20.7
21.3
20.9
21.6
20.2
19.5
21.6
20.3
21.1
21.4
21.0
21.5
22.1
22.4
22.2
22.8
21.2
22.4
22.2
19.5
52.1
10.0
10.0
10.0
10.0
10.0
10.0
10.0
1 | SEPTEMBE 18.4 17.2 17.1 17.5 18.4 17.6 16.4 17.9 16.7 16.4 17.7 18.0 18.2 18.1 17.7 17.5 17.1 15.9 14.0 11.9 11.6 11.9 13.4 14.0 11.9 13.4 14.8 | 19.5
19.0
18.9
19.5
19.4
18.5
18.9
19.1
18.3
19.0
18.8
19.6
20.0
20.3
20.5
19.9
20.2
20.3
20.5
19.9
19.7 | ## 09170800 WEST PARADOX CREEK ABOVE BEDROCK, CO #### WATER-QUALITY RECORDS LOCATION.--Lat $38^{\circ}19^{\circ}54^{\circ}$, long $108^{\circ}53^{\circ}59^{\circ}$, in $NE^{1}/_{4}NW^{1}/_{4}$ sec.18, T.47 N., R.18 W., Montrose County. Site is 1,000 ft downstream from former surface water station, 1.3 mi northwest of Bedrock, and 2.6 mi upstream from mouth. DRAINAGE AREA.-- 53.3 mi². PERIOD OF RECORD. -- Chemical analyses: August 1987 to current year. REMARKS.--Natural flow affected by water imported from Rock Creek through Buckeye Reservoir. Diversion for irrigation of about 2,500 acres. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | FIEI
(STAN
ARI
) UNIT | LE LD TEMP ND- ATU) WAT CS) (DEG | ER AS | S CAI
AL DI
A/L SO
(103) AS | LCIUM SI
IS- DI
DLVED SOI
MG/L (MG
S CA) AS | GNE-
IUM, SODII
IS- DIS-
LVED SOLVI
G/L (MG,
MG) AS I
925) (009) | SORP- ED TION /L RATIO NA) | |------------------------------|-------------------------|---|--|--|--|--------------------------------------|---|--|----------------------------| | OCT 27 | 1430 | 1270 | 8.5 | 8. | 2 65 | 0 1: | 25 81 | .0 38. | 5 .7 | | DEC 17 | 0900 | 1260 | 8.3 | 3 . | 0 64 | 0 1: | 26 78 | .6 37. | 7 .6 | | MAR
01 | 1030 | 1230 | 8.4 | ł 6. | 8 63 | 0 1: | 23 79 | .0 34.3 | 1 .6 | | APR
06
24 | 1300
1345 | 500
1230 | 8.1
8.3 | | | | 18.3 23
20 74 | .9 12.3
.3 32.5 | | | DATE | S
S
S
(M
AS | OTAS- LI
SIUM, WA
DIS-
DLVED | AT.DIS
FET
LAB
CACO3
MG/L) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | DIS-
SOLVEI
(MG/L | O (MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLVED
(TONS
PER | | OCT
27
DEC
17 | | 3.7 | 260
251 | 432
432 | 39.2
34.6 | .4 | 12.5
13.7 | 888
877 | 1.21 | | MAR
01
APR
06
24 | 3 | 3.3
3.0
3.4 | 240
113
234 | 429
129
426 | 30.9
10.3
30.9 | .4 | 12.5
9.1
11.2 | 856
303
840 | 1.16
.41
1.14 | #### 09171100 DOLORES RIVER NEAR BEDROCK, CO LOCATION (REVISED).--Lat $38^{\circ}21^{\circ}25^{\circ}$, long $108^{\circ}49^{\circ}58^{\circ}$, in $NE^{1}/_{4}SE^{1}/_{4}$ sec.3, T.47 N., R.18 W., Montrose County, Hydrologic Unit 14030002, on right bank 2.5 mi downstream from West Paradox Creek and 4.2 mi northeast of Bedrock. DRAINAGE AREA. -- 2,145 mi². ####
WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1971 to current year. Statistical summary computed for 1985 to current year. REVISED RECORDS. -- WDR CO-90-2: 1989. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,910 ft above sea level, from topographic map. Prior to Feb. 17, 1972, at site 200 ft downstream at datum 1.98 ft lower. From Feb. 17, 1972 to Aug. 16, 2000 at site 600 ft downstream at datum 3.00 ft. lower. REMARKS.--Records fair except for estimated daily discharges and Aug. 16 to Sept. 30, which are poor. Diversions upstream from station for irrigation of about 80,000 acres, of which about 74,760 acres are in the San Juan River basin. Flow regulated by McPhee Reservoir, capacity 381,000 acre-ft, since Mar. 19, 1984. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Sept. 6, 1970, reached a stage of 11.25 ft, site and datum then in use (discharge, $5,710 \text{ ft}^3/\text{s}$), by slope-area measurement at site 800 ft upstream. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | DAILY | MEAN VA | ALUES | | | | | | |---|-------------------------------------|---|-------------------------------------|---|-------------------------------------|---|---|---|-------------------------------------|--|------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 75
75
72
61
51 | e76
e78
e78
e78
e80 | e56
60
e56
e55
57 | e58
e57
e56
e58
e59 | 62
56
63
62
61 | 61
61
64
67
67 | 96
101
96
95
100 | 1210
1200
1200
1200
1200
1130 | 99
97
93
88
85 | 66
65
63
60
58 | 55
56
59
56
57 | 108
86
70
68
67 | | 6
7
8
9
10 | 47
42
37
35
33 | e78
e78
e78
e79
e78 | 49
51
e55
56
e56 | e60
e62
e62
e61
e58 | 62
61
62
63
62 | 65
71
75
78
75 | 136
168
247
351
388 | 978
971
969
942
863 | 83
75
73
74
69 | 57
58
60
63
66 | 56
54
54
56
56 | 66
66
69
71
60 | | 11
12
13
14
15 | 40
39
39
230
111 | e78
e78
e78
82
81 | e54
50
52
e51
51 | e59
e60
e60
e62
e65 | 66
63
64
63 | 70
70
68
67
67 | 473
433
316
345
627 | 805
791
788
780
770 | 68
68
67
66
65 | 65
64
62
62
62 | 56
56
74
60
63 | 58
55
49
47
49 | | 16
17
18
19
20 | 84
79
79
79
80 | 80
81
78
73
72 | e62
e56
47
e55
e56 | e66
e69
e72
e69
e69 | 63
64
66
64
64 | 67
67
66
66
71 | 623
561
557
549
546 | 765
750
750
751
744 | 64
62
63
66
68 | 62
65
63
62
60 | 79
92
69
68
93 | 51
50
54
54
54 | | 21
22
23
24
25 | 80
78
78
79
78 | 63
62
62
60
55 | e56
e56
e60
e62
e58 | 69
69
62
60
66 | 63
61
61
65
65 | 79
83
84
83
79 | 715
889
1020
1000 | 736
732
671
484
379 | 65
64
65
65
65 | 58
58
57
57
57 | 94
72
72
68
68 | 53
52
49
46
45 | | 26
27
28
29
30
31 | 78
80
79
78
78
e76 | 54
56
e54
e54
e56 | e58
e60
e60
e60
e60 | e67
e64
e62
e60
58
e60 | 62
62
61
59
 | 77
78
81
87
92
98 | 1010
1020
1000
1090
1220 | 313
313
305
270
175
112 | 66
67
66
71
69 | 59
59
61
60
60
57 | 69
66
66
91
99
83 | 46
50
51
54
52 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2250
72.6
230
33
4460 | 2138
71.3
82
54
4240 | 1735
56.0
62
47
3440 | 1939
62.5
72
56
3850 | 1813
62.5
66
56
3600 | 2284
73.7
98
61
4530 | 16772
559
1220
95
33270 | 22847
737
1210
112
45320 | 2156
71.9
99
62
4280 | 1886
60.8
66
57
3740 | 2117
68.3
99
54
4200 | 1750
58.3
108
45
3470 | | STATIST
MEAN
MAX
(WY)
MIN
(WY) | 97.7
269
1987
33.3
1992 | 96.7
430
1987
38.8
1991 | 76.5
262
1987
33.1
1991 | 77.9
208
1985
34.5
1991 | 90.8
207
1987
48.2
1991 | - 2000,
263
811
1985
46.6
1990 | 978
2552
1985
27.3
1990 | YEAR (WY)
1406
3219
1993
30.4
1990 | 741
1766
1995
16.0
1990 | 161
677
1995
44.9
1990 | 107
274
1987
44.7
1990 | 113
379
1999
53.0
1991 | | ANNUAL ANNUAL HIGHEST LOWEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC 50 PERC | | MEAN EAN EAN IN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | FOR | 1999 CAL
89839
246
3040
33
38
178200
727
83
58 | May 26
Oct 10
Oct 7 | | FOR 2000 W
59687
163
1220
33
38
1230
6.54
118400
558
66
54 | Apr 30
Oct 10
Oct 7
Apr 30 | | WATER YE a351 711 55.3 4550 b7.1 10 c5260 10.82 254400 1160 85 46 | May
Jun 2
Jun 1
May | 1993
1990
6 1986
21 1990
6 1990
6 1986
6 1986 | Average discharge for 12 years (water years 1972-83), 502 ft^3/s ; 363700 acre-ft/yr, prior to completion of McPhee Dam Minimum daily discharge for period of record, 0.12 ft³/s, Jul 17-18, 1977. Maximum discharge and stage for period of record, 9500 ft³/s, Apr 30, 1973, gage height, 12.88 ft site and datum then in use, from floodmarks. #### 09171100 DOLORES RIVER NEAR BEDROCK, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- December 1987 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: December 1987 to current year. WATER TEMPERATURE: December 1987 to current year. INSTRUMENTATION. -- Water-quality monitor since December 1987. REMARKS .-- Daily specific conductance record is good except Dec. 18 to Jan. 20, and Apr. 25 to June 1 which is poor. Daily water temperature record is good. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum recorded, 57,700 microsiemens, June 22, 1990 (may have been higher June 19-22, 1990 when probe was out of water); minimum recorded, 256 microsiemens, June 23, 1995 (may have been lower during period of missing record Apr. 3-20, 1993). WATER TEMPERATURE: Maximum, 33.3°C, July 1, 1990; minimum, -1.0°C, Dec. 23, 1995 (temperatures published as 0.0°C may have been lower during water years 1988-95). #### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 11,000 microsiemens, Dec. 12; minimum, 297 microsiemens, May 4. WATER TEMPERATURE: Maximum, 31.9°C, Aug. 2; minimum, -.2°C, Dec. 12, 15, Jan. 7, 8, 31. PH DIS- WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | | ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | WATER | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |------------------|--------------|---------------------------------|---------------------------------------|--|---|--|-----------------|---|---|--| | OCT 27 | 1545 | 76 | 2010 | 8.3 | 13.1 | 200 | 50.1 | 17.5 | 309 | 10 | | DEC
16 | 1645 | 78 | 2010 | 8.2 | .0 | 230 | 58.0 | 21.9 | 296 | 8 | | MAR
01 | 1400 | 60 | 4130 | 8.4 | 7.7 | 380 | 81.4 | 42.1 | 681 | 15 | | APR
06
24 | 1015
1645 | 119
1030 | 2110
372 | 8.4
8.2 | 12.6
13.4 | 350
140 | 78.7
40.6 | 38.2
9.92 | 278
16.9 | 6 | | MAY
15
JUN | 1545 | 740 | 376 | 8.3 | 14.0 | 140 | 40.7 | 9.17 | 20.4 | .8 | | 01
JUL | 0730 | 101 | 2260 | 8.3 | 16.3 | 220 | 56.7 | 19.3 | 340 | 10 | | 06
AUG | 1000 | 57 | 2640 | 8.5 | 18.9 | 220 | 51.7 | 21.0 | 429 | 13 | | 16 | 1500 | 68 | 1350 | 8.4 | 29.8 | 150 | 38.6 | 12.5 | 200 | 7 | | DATE | | VED LAB
/L CACO:
K) (MG/L | Y IS SULFAT DIS- SOLVI (MG/I) AS SO4 | DIS
ED SOI
L (MG | DE, RII
G- DI
LVED SOI
G/L (MC
CL) AS | DE, DIS
IS- SOI
LVED (MG
IS/L AS
IF) SIG | LVED TUEN | OF SOLI
TI- DI
TS, SOL
S- (TC
VED PE
(/L) AC- | VED SOL
NS (TC
R PE
FT) DA | S-
JVED
DNS
ER
LY) | | OCT
27
DEC | 16. | 6 135 | 70.6 | 5 517 | , . | 1 4 | .3 107 | 0 1.4 | :5 22 | 10 | | 16
MAR | 14. | 8 159 | 96.9 | 500 | | 1 6 | .5 109 | 0 1.4 | :8 23 | 1 | | 01
APR | 32. | 9 163 | 246 | 1100 | | 1 5 | .0 229 | 0 3.1 | .1 36 | 19 | | 06
24
MAY | 13. | | 293
58.5 | 400
5 14 | | | .0 120
.3 21 | | | | | 15
JUN | 2. | 0 108 | 52.6 | 5 22 | 2.1 < | 1 4 | .7
21 | 7 .2 | 9 43 | 13 | | 01
JUL | 17. | 9 146 | 98.2 | 2 566 | ; . | 1 4 | .9 119 | 0 1.6 | 2 32 | !5 | | 06
AUG | 21. | 1 120 | 97.5 | 693 | | .2 3 | .3 139 | 0 1.8 | 9 21 | .5 | | 16 | 10. | 2 108 | 45.3 | 3 317 | ' . | .1 3 | .0 69 | 1 .9 | 4 12 | .7 | DOLORES RIVER BASIN 307 09171100 DOLORES RIVER NEAR BEDROCK, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | S | PECIFIC | CONDUCTA | INCE (MIC | ROSIEMENS/ | CM AI 25 | DEG. C), | WAIER IE | AR OCTOR | ER 1999 | IO SEPIEME | DER ZUUU | | |---|---|---|--|--|--|--|--|---|---|---|---|---| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | I | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 2280
2170
2240
2680
3470 | 2160
2000
2000
2240
2680 | 2220
2120
2080
2430
3100 | 2070
2040
2050
2060
2000 | 1960
1900
1920
1930
1900 | 2010
1980
1980
1990
1950 | 3260
3030
2930
2410
3910 | 2430
2620
2410
2130
2300 | 2810
2780
2710
2260
2970 | 3070
3350
3580
3900
3710 | 2430
2380
2460
2110
2590 | 2900
2920
2910
2970
3190 | | 6
7
8
9
10 | 3510
4050
4620
4830
4910 | 3390
3470
4040
4440
4640 | 3440
3780
4300
4580
4750 | 1990
2050
2110
2070
2080 | 1860
1910
1970
1980
1970 | 1920
1960
2030
2030
2020 | 6090
4180
4170
7050
3060 | 1970
2610
2190
1970
2120 | 3450
3290
2720
3000
2510 | 4430
7260
7090
5530
3320 | 3240
4040
4260
2800
2680 | 3730
5570
5670
3810
2940 | | 11
12
13
14
15 | 4710
3980
4110
4010
1370 | 3580
3690
3780
776
806 | 3830
3810
3890
1170
1090 | 2040
2040
2050
2040
2090 | 1950
1920
1930
1930
1950 | 2000
1970
1990
1980
2010 | 3110
11000
5380
3530
7650 | 2430
1860
2250
2030
2400 | 2850
3710
3860
2610
4390 | 3140
2600
2670
2830
3050 | 2410
2350
2320
2400
2540 | 2780
2480
2540
2640
2830 | | 16
17
18
19
20 | 1680
1920
2070
2060
2090 | 1370
1640
1890
1960 | 1540
1770
1960
2010
2010 | 2160
2220
2340
2480
2800 | 2020
2090
2070
2340
2460 | 2080
2140
2170
2390
2550 | 3880
4160
4320
3490
2480 | 2030
1560
2340
1730
1900 | 2670
2670
3270
2550
2270 | 3490
4120
3990
3560
3530 | 3050
3490
3560
3300
2970 | 3330
3900
3840
3400
3360 | | 21
22
23
24
25 | 2130
2180
2190
2180
2210 | 1980
2030
2050
2050
2030 | 2040
2090
2110
2110
2110 | 3540
3510
2930
3110
5440 | 2800
2930
2730
2630
2230 | 3340
3310
2790
2860
3240 | 2470
3000
3380
3630
4820 | 2120
1990
2160
2170
2070 | 2270
2400
2640
2790
3280 | 4360
3880
7800
5380
4720 | 3330
3190
2380
3210
2520 | 3770
3490
3930
4230
3650 | | 26
27
28
29
30
31 | 2200
2160
2110
2100
2060
2080 | 2060
2030
1980
1940
1920
1940 | 2120
2100
2040
2030
1980
2000 | 5170
4010
3380
3110
3150 | 2160
2260
2140
1910
2090 | 3080
2920
2580
2350
2550 | 4020
3610
3120
3890
4360
4060 | 2440
2150
2390
2630
2430
2320 | 3120
2960
2740
3200
3410
3330 | 3920
3070
3160
4960
6250
7580 | 2390
2300
2050
2100
3080
3600 | 3000
2630
2480
3470
4470
4650 | | MONTH | 4910 | 776 | 2540 | 5440 | 1860 | 2340 | 11000 | 1560 | 2950 | 7800 | 2050 | 3470 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY 1 2 3 4 5 | 5810
8840
6220
5880
6220 | | | MAX
4720
4210
4070
3590
3650 | | MEAN 4170 4130 3770 3500 3570 | 2610
2450
2590
2660
2720 | | MEAN 2530 2420 2540 2490 2490 | 310
309
308
303
356 | | MEAN
307
307
303
300
326 | | 1
2
3
4 | 5810
8840
6220
5880 | FEBRUARY
3450
3250
2710
2690 | 4300
5000
4130
4100 | 4720
4210
4070
3590 | MARCH
3880
4050
3480
3410 | 4170
4130
3770
3500 | 2610
2450
2590
2660 | APRIL
2450
2390
2430
2370 | 2530
2420
2540
2490 | 310
309
308
303 | MAY
303
305
301
297 | 307
307
303
300 | | 1
2
3
4
5
6
7
8
9 | 5810
8840
6220
5880
6220
5410
5460
5820
4430
4750 | 3450
3250
2710
2690
2810
2620
2670
2510
2820
3190 | 4300
5000
4130
4100
3970
3790
3800
3710
3490
3750 | 4720
4210
4070
3590
3650
3760
3800
3080
2970
3080 | MARCH 3880 4050 3480 3410 3470 3570 3080 2880 2830 2840 | 4170
4130
3770
3500
3570
3650
3490
2980
2910
2950 | 2610
2450
2590
2660
2720
2410
1560
1470
1080
869 | APRIL 2450 2390 2430 2370 2310 1480 1380 1020 869 706 | 2530
2420
2540
2490
2490
1950
1480
1210
987
779 | 310
309
308
303
356
360
361
362
366 | MAY 303 305 301 297 302 354 353 350 350 365 | 307
307
303
300
326
355
356
355
356 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 5810
8840
6220
5880
6220
5410
5460
5820
4430
4750
4410
3870
3760
3790 | 3450
3250
2710
2690
2810
2620
2670
2510
2820
3190
2980
3610
3600
3700 | 4300
5000
4130
4100
3970
3790
3800
3710
3490
3750
3460
3790
3660
3730 | 4720
4210
4070
3590
3650
3760
3800
2970
3080
3370
3680
3770 | MARCH 3880 4050 3480 3410 3470 3570 3080 2880 2830 2840 3010 3180 3350 3420 | 4170
4130
3770
3500
3570
3650
3490
2980
2910
2950
3140
3290
3480
3590 | 2610
2450
2590
2660
2720
2410
1560
1470
1080
869
706
620
639
652 | 2450
2390
2430
2370
2310
1480
1380
1020
869
706
618
571
607
629 | 2530
2420
2540
2490
2490
1950
1480
1210
987
779
639
595
619
639 | 310
309
308
303
356
360
361
362
366
392
398
384
385
374 | MAY 303 305 301 297 302 354 353 350 365 383 374 367 368 | 307
307
303
300
326
355
356
376
391
380
376
372 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 5810
8840
6220
5880
6220
5410
5460
5820
4430
4750
4410
3870
3760
3790
3910
4200
4360
3960
4200 | 3450
3250
2710
2690
2810
2620
2670
2510
2820
3190
2980
3610
3600
3700
3590
3410
3560
3380
33570 | 4300
5000
4130
4100
3970
3790
3800
3710
3490
3750
3460
3790
3660
3730
3690
3780
4040
3590
3830 | 4720
4210
4070
3590
3650
3760
3800
2970
3080
2970
3680
3770
3680
3770
3610
3560
3510
3860 | MARCH
3880 4050 3480 3410 3470 3570 3080 2880 2830 2840 3010 3180 3350 3420 3490 3410 3410 3390 3370 | 4170
4130
3770
3500
3570
3650
3490
2910
2950
3140
3290
3480
3590
3650
3490
3500
3460
3540 | 2610
2450
2590
2660
2720
2410
1560
1470
1080
869
706
620
639
652
647
535
510
515
520 | 2450
2390
2430
2370
2310
1480
1380
1020
869
706
618
571
607
629
535
505
504
510 | 2530
2420
2540
2490
2490
1950
1480
1210
987
779
639
595
619
639
595
514
507
515 | 310
309
308
303
356
361
362
366
392
398
384
385
374
385 | MAY 303 305 301 297 302 354 353 350 365 383 374 367 368 369 369 387 381 374 | 307
307
303
300
326
355
356
356
376
391
380
376
372
374
390
390
387 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 5810
8840
6220
5880
6220
5410
5420
4430
4750
4410
3760
3790
3910
4200
4200
4050
4380
4490
4420 | FEBRUARY 3450 3250 2710 2690 2810 2620 2670 2510 2820 3190 2980 3610 3600 3700 3590 3410 3560 3380 33570 3790 3920 4060 4060 3790 | 4300
5000
4130
4100
3970
3790
3800
3710
3490
3750
3460
3790
3660
3730
3690
3780
4040
4050
4050
4050
4050
4050
4050
40 | 4720
4210
4070
3590
3650
3760
3800
3970
3080
2970
3080
3770
3680
3770
3740
3610
3560
3880
3330
2880
2750
2740 | MARCH 3880 4050 3480 3410 3470 3570 3080 2880 2840 3010 3180 3350 3420 3490 3410 3490 3410 3390 3370 3330 2880 2690 2620 2530 | 4170
4130
3770
3500
3570
3650
3490
2910
2950
3140
3290
3480
3590
3650
3490
3540
3540
3720
3020
2780
2640 | 2610
2450
2590
2660
2720
2410
1560
1470
1080
869
706
620
639
652
647
535
510
528
515
461
440
396 | APRIL 2450 2390 2430 2370 2310 1480 1380 1020 869 706 618 571 607 629 535 505 504 510 514 460 439 395 374 | 2530
2420
2540
2490
2490
1950
1210
987
779
639
595
619
639
595
514
507
512
516
523
489
449
413
383 | 310
309
308
303
356
360
361
362
366
392
398
384
385
374
385
396
396
392
391
385
384
379
402
523 | MAY 303 305 301 297 302 354 353 350 365 383 374 367 368 369 369 387 381 374 375 364 369 369 364 369 | 307
307
303
300
326
355
356
376
391
380
376
372
374
390
390
387
384
380 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 5810
8840
6220
5880
6220
5410
5460
5820
4430
4750
4410
3870
3790
3910
4200
4360
3960
4450
4410
4420
4450
44100
4100
4240
4390
4710 | \$450 3250 2710 2690 2810 2620 2670 2510 2820 3190 2980 3610 3600 3700 3590 3410 3560 3380 3570 3790 3920 4060 4060 3790 3720 3690 3730 4100 4080 | 4300
5000
4130
4100
3970
3790
3800
3710
3490
3750
3460
3790
3660
3730
3690
3780
4040
4350
4270
4280
4270
3880 | 4720
4210
4070
3590
3650
3760
3800
2970
3080
3370
3680
3770
3740
3610
3560
3880
2750
2740
2960
3090
3120
3110
2790
2710 | MARCH 3880 4050 3480 3410 3470 3570 3080 2880 2840 3010 3180 3350 3420 3490 3410 3410 3390 3410 3390 3490 2620 2530 2660 2820 2800 2790 2600 2400 | 4170
4130
3770
3500
3570
3650
3490
2990
2910
2950
3140
3290
3480
3590
3650
3490
3590
3650
3490
3590
3650
2780
2780
2690
2770
2920
2930
3040
2680
2570 | 2610
2450
2590
2660
2720
2410
1560
1470
1080
869
706
620
639
652
647
535
510
515
520
528
515
461
440
396
385
372
362
369
365
372
362
369
373 | APRIL 2450 2390 2430 2370 2310 1480 1380 1020 869 706 618 571 607 629 535 504 510 514 460 439 395 374 368 357 344 346 325 303 | 2530
2420
2540
2490
2490
1950
1480
1210
987
779
639
595
619
595
514
507
512
516
523
489
449
413
383
376
364
352
354
336
315 | 310
309
308
303
356
360
361
362
366
392
398
384
385
374
385
396
396
391
385
391
385
374
402
523
747
798
800
798
800
798
985
1600 | MAY 303 305 301 297 302 354 353 350 365 383 374 367 368 369 369 367 381 374 375 364 369 369 367 371 375 374 375 | 307
307
303
326
355
356
376
391
380
376
372
374
390
397
387
380
376
372
374
390
377
380
376
377
380
376
377
380
376 | MONTH 19.5 4.5 11.4 11.9 -.1 ## 09171100 DOLORES RIVER NEAR BEDROCK, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |---|--|--|--|--|--|---|--|---|--|---|--|--| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 2 | 2350
2420 | 2160
2270 | 2270
2340 | 2110
2120 | 1950
1960 | 2010
2040 | 1960
1970 | 1700
1770 | 1820
1840 | 1280
1240 | 805
824 | 993
1050 | | 3
4 | 2510
2570 | 2360
2440 | 2430
2500 | 2270
3420 | 2040
2250 | 2130
2790 | 1980
2050 | 1620
1740 | 1760
1880 | 1490
2140 | 1240
1490 | 1360
1810 | | 5 | 2590 | 2470 | 2520 | 3260 | 2630 | 2820 | 1890 | 1700 | 1790 | 2510 | 1860 | 2070 | | 6
7 | 2620
2650 | 2480
2520 | 2540
2590 | 2780
2780 | 2580
2540 | 2690
2640 | 1820
1810 | 1660
1720 | 1760
1770 | 2550
1900 | 1900
1620 | 2270
1710 | | 8 | 2720 | 2610 | 2660 | 2600 | 2410 | 2490 | 1880 | 1660 | 1750 | 1620 | 1500 | 1550 | | 9
10 | 2730
2710 | 2620
2530 | 2670
2630 | 2480
2240 | 2200
1940 | 2380
2100 | 1790
1830 | 1670
1660 | 1750
1730 | 1500
1710 | 1380
1440 | 1430
1570 | | 11 | 2660 | 2550 | 2610 | 2320 | 2030 | 2140 | 1800 | 1550 | 1640 | 1720 | 1660 | 1710 | | 12
13 | 2690
2690 | 2530
2530 | 2600
2620 | 2120
2120 | 1980
1890 | 2050
1990 | 1650
1590 | 1510
1030 | 1580
1270 | 1860
2040 | 1650
1860 | 1730
1920 | | 14
15 | 2690
2710 | 2530
2520 | 2590
2610 | 2040
2050 | 1930
1890 | 1970
1950 | 1460
1490 | 1250
1210 | 1340
1430 | 2130
2130 | 2040
1950 | 2070
2020 | | | | | | | | | | | | | | | | 16
17 | 2650
2650 | 2510
2490 | 2590
2580 | 2060
1910 | 1910
1660 | 2000
1790 | 1510
1640 | 1010
934 | 1230
1200 | 1950
2110 | 1880
1920 | 1910
1990 | | 18
19 | 2630
2510 | 2490
2400 | 2560
2450 | 1920
1930 | 1740
1830 | 1820
1900 | 1490
1560 | 1320
1450 | 1380
1480 | 2110
1940 | 1940
1860 | 2020
1910 | | 20 | 2410 | 2100 | 2260 | 2130 | 1870 | 1960 | 2660 | 1100 | 2010 | 1960 | 1820 | 1890 | | 21 | 2410 | 2230 | 2330 | 2110 | 1850 | 1970 | 2330 | 1090 | 1710 | 1900 | 1840 | 1870 | | 22
23 | 2400
2380 | 2310
2240 | 2350
2300 | 2010
1980 | 1840
1880 | 1920
1930 | 1500
1510 | 1380
1350 | 1430
1470 | 1910
1980 | 1850
1890 | 1880
1930 | | 24
25 | 2310
2270 | 2170
2160 | 2240
2220 | 2050
2230 | 1880
2040 | 1960
2150 | 3220
3180 | 1470
2260 | 2220
2800 | 2150
2240 | 1920
2100 | 2040
2140 | | 26 | 2200 | 2060 | 2110 | 2100 | 1900 | 1990 | 2260 | 1750 | 1900 | 2230 | 2080 | 2190 | | 27 | 2100 | 1960 | 2030 | 1990 | 1790 | 1870 | 1760 | 1620 | 1690 | 2080 | 1920 | 1970 | | 28
29 | 2090
2080 | 2000
1690 | 2040
1910 | 1870
1820 | 1660
1640 | 1760
1740 | 1750
1730 | 1570
982 | 1640
1320 | 1980
2080 | 1920
1890 | 1940
1980 | | 30
31 | 2020 | 1700 | 1850 |
1780
1890 | 1580
1660 | 1690
1760 | 1700
1400 | 865
999 | 1270
1230 | 2120 | 1890 | 1990 | | MONTH | 2730 | 1690 | 2400 | 3420 | 1580 | 2080 | | 865 | 1650 | 2550 | 805 | 1830 | | YEAR | 11000 | 297 | 2320 | | | | | | | | | | | THILL | 11000 | 20, | WATER (DEC | | | | | | | | | | DAY | MAX | MIN | MEAN | MAX | MIN | TER YEAR | MAX | MIN | SEPTEMBER
MEAN | 2000
MAX | MIN | MEAN | | | | MIN | MEAN | XAM | MIN
JOVEMBER | MEAN | MAX
D | MIN | MEAN | MAX | JANUARY | | | 1
2 | 18.6
18.8 | MIN OCTOBER 10.3 11.0 | MEAN 14.2 14.5 | MAX
1 | MIN
NOVEMBER
4.4 | MEAN
7.7
7.4 | MAX
D | MIN
DECEMBER
.3
1.2 | MEAN
2.5
3.6 | | JANUARY
.0
.0 | | | 1
2
3 | 18.6
18.8
19.5 | MIN
OCTOBER
10.3
11.0
11.0 | MEAN 14.2 14.5 14.7 | MAX
1 | MIN
NOVEMBER
4.4 | MEAN
7.7
7.4
6.9 | MAX
D | MIN DECEMBER .3 1.2 1.1 | MEAN 2.5 3.6 2.7 | MAX
.0
.0 | JANUARY
.0
.0
1 | .0 | | 1
2 | 18.6
18.8 | MIN
OCTOBER
10.3
11.0
11.0
9.6 | MEAN 14.2 14.5 | MAX
1 | MIN
JOVEMBER | MEAN
7.7
7.4 | MAX
D | MIN
DECEMBER
.3
1.2 | MEAN
2.5
3.6 | MAX
.0
.0 | JANUARY
.0
.0 | .0 | | 1
2
3
4
5 | 18.6
18.8
19.5
19.4
18.5 | MIN
OCTOBER
10.3
11.0
11.0
9.6
9.5 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 | MAX
11.9
11.4
11.0
10.8
10.7 | MIN
NOVEMBER
4.4
4.3
3.8
3.5
3.6 | 7.7
7.4
6.9
6.7
6.7 | MAX
5.0
6.2
3.8
4.3
2.4 | MIN DECEMBER .3 1.2 1.111 | MEAN 2.5 3.6 2.7 1.5 .6 | .0
.0
.0
.0 | JANUARY .0 .0111 | .0
.0
.0
.0
1 | | 1
2
3
4
5
6
7
8 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.6 | MIN
OCTOBER
10.3
11.0
11.0
9.6
9.5
11.6
11.6
8.9 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 | MAX
11.9
11.4
11.0
10.8
10.7 | MIN
NOVEMBER
4.4
4.3
3.8
3.5
3.6 | 7.7
7.4
6.9
6.7
6.7
6.7 | MAX
5.0
6.2
3.8
4.3
2.4 | MIN DECEMBER .3 1.2 1.111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 | .0
.0
.0
.0
.0
.0 | JANUARY .0 .0111122 | .0
.0
.0
.0
1
1
1 | | 1
2
3
4
5
6
7
8 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.6
19.3 | MIN OCTOBER 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 | MAX
11.9
11.4
11.0
10.8
10.7
10.7
10.2
11.2 | MIN
NOVEMBER
4.4
4.3
3.8
3.5
3.6
3.6
3.8
4.9 | 7.7
7.4
6.9
6.7
6.7
6.7
6.6
7.6 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1 | MIN DECEMBER .3 1.2 1.11111 | 2.5
3.6
2.7
1.5
.6 | .0
.0
.0
.0
.0
.0 | JANUARY .0 .0 .1111221 | .0
.0
.0
.0
1
1
1 | | 1
2
3
4
5
6
7
8
9 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.6
19.3 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 | 11.9
11.4
11.0
10.8
10.7
10.7
10.2
11.2
11.2 | MIN
NOVEMBER
4.4
4.3
3.8
3.5
3.6
3.6
4.9
4.7
3.9 | 7.7
7.4
6.9
6.7
6.7
6.6
7.6
7.6 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0 | MIN DECEMBER .3 1.2 1.1111111 | 2.5
3.6
2.7
1.5
.6
.3
.7
1.1 | .0
.0
.0
.0
.0
.0
.0 | JANUARY .0 .0 .0111111112221 | .0
.0
.0
.0
1
1
1
1 | | 1
2
3
4
5
6
7
8
9
10 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.6
19.3
19.4 | MIN OCTOBER 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 | MEAN 14.2 14.5 14.7 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.4 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.6 3.7 3.9 3.5 | 7.7
7.4
6.9
6.7
6.7
6.6
7.6
7.6
6.6
6.1 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3 | MIN DECEMBER .3 1.2 1.111111111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 1.1 .0 .3 | MAX .0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .0 .0 | JANUARY .0 .0 .1111112211 .0 | .0
.0
.0
.0
-1
-1
-1
-1
-1
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.6
19.3
19.4
19.2
19.0
18.9 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.5 14.2 14.4 14.1 13.8 13.4 | MAX
11.9
11.4
11.0
10.8
10.7
10.7
10.2
11.2
11.2
10.2 | MIN
NOVEMBER
4.4
4.3
3.8
3.5
3.6
3.6
3.6
3.7
2.7
2.7 | 7.7
7.4
6.9
6.7
6.7
6.6
7.6
7.6
6.6
4.9 | MAX 5.0 6.2 3.8 4.3 2.4 1.4 2.5 3.1 .0 1.3 3.5 .8 0 .0 | MIN DECEMBER .3 1.2 1.111111111 .01 .0 | 2.5
3.6
2.7
1.5
.6
.3
.7
1.1
.0
.3 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .1 .1 .1 .1 .1 .2 .2 .2 .1 .1 .0 .0 | .0
.0
.0
.0
1
1
1
1
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18.6
18.8
19.5
19.4
18.5
16.0
18.6
19.3
19.4
19.2
19.0
18.9
16.2
16.6 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
11.2
10.2 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 | 7.7
7.4
6.9
6.7
6.7
6.6
7.6
7.6
6.6
4.9
4.4 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3
3.5
.8 | MIN DECEMBER .3 1.2 1.1111111 .01 | 2.5
3.6
2.7
1.5
.6
.3
.7
1.1
.0
.3 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .0111122211 .0 .0 .0 .0 | .0
.0
.0
.0
1
1
1
1
1
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.6
19.3
19.4
19.2
19.0
18.9
16.2
16.6 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.8 10.8 | MAX
11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
9.7
9.4
8.7
8.1
7.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.6 3.7 2.1 1.6 1.5 | 7.7
7.4
6.9
6.7
6.7
6.6
7.6
6.6
7.6
6.6
4.9
4.4
4.2 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3
3.5
.8
.0
.0 | MIN DECEMBER .3 1.2 1.111111111212121 | 2.5
3.6
2.7
1.5
.6
.3
.7
1.1
.0
.3 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .1 .1 .1 .1 .1 .2 .2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
-1
-1
-1
-1
-1
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 18.6
18.8
19.5
19.4
18.5
16.0
18.6
19.3
19.4
19.2
19.0
18.9
16.2
14.0
14.0 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
11.2
17.9
9.7
9.4
8.7
8.1
7.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 | MEAN 7.7 7.4 6.9 6.7 6.6 7.6 7.6 6.6 4.9 4.4 4.2 4.7 5.3 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3
3.5
.8
.0
.0 | MIN DECEMBER .3 1.2 1.1111111111 | 2.5
3.6
2.7
1.5
.6
.3
.7
1.1
.0
.3
.9
.1
1 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .1 .1 .1 .1 .1 .2 .2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 | .0
.0
.0
.0
1
1
1
1
1
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.6
19.3
19.4
19.2
19.0
18.9
16.2
16.6 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 | 11.9
11.4
11.0
10.8
10.7
10.7
10.2
11.2
11.2
10.2
9.7
9.4
8.7
8.1
7.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 | 7.7
7.4
6.9
6.7
6.6
7.6
7.6
6.6
6.6
6.1
5.6
4.9
4.4
4.2 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3
3.5
.8
.0
.0 | MIN DECEMBER .3 1.2 1.1111111111 | 2.5
3.6
2.7
1.5
.6
.7
1.1
.0
.3
.9
.1
1 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .111122211 .0 .0 .0 .0 .0 .011 | .0
.0
.0
.0
1
1
1
1
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
19.3
19.4
19.2
19.0
18.9
16.2
16.6
14.0
14.0
13.7
13.7
14.0 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 5.8 5.7 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 10.8 9.5 9.0 9.3 9.3 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
17.9
9.7
9.4
8.7
8.1
7.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 1.6 2.2 3.1 1.0 .7 | MEAN 7.7 7.4 6.9 6.7 6.7 6.6 7.6 7.6 6.6 4.9 4.4 4.2 4.2 4.7 5.3 3.5 2.4 2.6 |
5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3
3.5
.8
0.0
.0 | MIN DECEMBER .3 1.2 1.1111111111 | 2.5
3.6
2.7
1.5
.6
.3
.7
1.1
.0
.3
.9
.1
1
.0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .1 .1 .1 .1 .1 .2 .2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 | .0
.0
.0
.0
-1
-1
-1
-1
-1
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
19.3
19.4
19.2
19.0
18.9
16.2
16.6
14.0
14.0
13.7
13.7
14.0 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 5.8 5.7 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 10.8 9.5 9.0 9.3 9.5 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
9.7
9.4
8.7
7.9
7.8
7.4
8.5
6.8
4.7 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 1.6 2.2 3.1 1.0 7 | MEAN 7.7 7.4 6.9 6.7 6.6 7.6 7.6 6.6 6.1 5.6 4.9 4.4 4.2 4.2 4.2 4.2 4.2 3.5 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3
3.5
.8
.0
.0
.0 | MIN DECEMBER .3 1.2 1.1111111111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 1.1 .0 .3 .9 .11 .01 .0 .01 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .11112211 .0 .0 .0 .0 .0 .1111 .0 .0 | .0
.0
.0
.0
.0
1
1
1
1
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
19.3
19.4
19.2
19.0
18.9
16.2
16.6
14.0
14.0
13.7
13.7
14.0 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 5.8 5.7 5.8 5.9 5.7 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 10.8 9.5 9.0 9.3 9.3 9.5 9.5 9.5 | MAX 11.9 11.4 11.0 10.8 10.7 10.2 11.2 11.2 11.2 17.9 7.8 8.7 8.1 7.9 7.8 8.7 8.1 7.9 7.8 8.7 8.1 7.9 7.8 8.7 8.1 7.9 7.8 8.7 8.1 7.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 1.6 2.2 3.1 1.0 7 .2 1.7 .1 | MEAN 7.7 7.4 6.9 6.7 6.7 6.6 7.6 7.6 6.1 5.6 4.9 4.4 4.2 4.2 4.7 5.3 3.5 2.4 2.6 3.5 1.8 | MAX 5.0 6.2 3.8 4.3 2.4 1.4 2.5 3.1 .0 1.3 3.5 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBER .3 1.2 1.1111111111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 1.1 .0 .3 .9 .1 .1 .0 .1 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .1 .1 .1 .1 .2 .2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
-1
-1
-1
-1
-1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.9
19.2
19.0
18.9
16.2
16.6
14.0
13.7
13.7
14.0
14.0
13.7
14.0 | MIN OCTOBER 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 5.8 5.7 5.8 5.9 5.7 5.7 | MEAN 14.2 14.5 14.7 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 10.8 9.5 9.0 9.3 9.3 9.3 9.5 9.5 9.4 9.1 8.8 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
9.7
9.4
8.7
8.1
7.9
7.8
4.7
8.5
6.8
4.7 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 1.6 2.2 3.1 1.0 .7 .2 1.7 .1 .1 .1 | MEAN 7.7 7.4 6.9 6.7 6.6 7.6 7.6 6.6 6.1 5.6 4.9 4.4 4.2 4.2 4.7 5.3 3.5 2.4 2.6 3.5 1.8 1.0 7 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
.0
.0
.0
.0
.0 | MIN DECEMBER .3 1.2 1.1111111111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 1.1 .0 .3 .9 .11 .01 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .1 .1 .1 .1 .1 .2 .2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .0
.0
.0
.0
-1
-1
-1
-1
-1
-1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
19.3
19.4
19.2
19.0
18.9
16.2
16.6
14.0
14.0
13.7
14.0
14.2
14.0
13.5
14.2
14.3
14.2
14.3
14.3
15.5 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 5.8 5.7 5.8 5.7 5.8 5.9 5.7 5.7 5.8 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 10.8 9.5 9.0 9.3 9.5 9.4 9.1 8.8 8.7 9.0 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
9.7
9.4
8.7
8.1
7.9
7.8
4.7
5.5
4.7
3.4
2.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 1.6 2.2 3.1 1.0 7 .2 1.71111 | 7.7 7.4 6.9 6.7 6.6 7.6 7.6 6.6 7.6 6.6 4.9 4.4 4.2 4.2 4.7 5.3 3.5 2.4 2.6 3.5 1.8 1.0 7 | MAX 5.0 6.2 3.8 4.3 2.4 1.4 2.5 3.1 .0 1.3 3.5 .8 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MIN DECEMBER .3 1.2 1.1111111111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 1.1 .0 .3 .9 .1 .1 .0 .1 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .11112211 .0 .0 .0 .0111 .11 .0 .01111111111 | .0
.0
.0
.0
.0
-1
-1
-1
-1
-1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | | 1 2 3 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
18.9
19.2
19.0
18.9
16.2
16.6
14.0
13.7
14.0
14.2
14.0
13.4
13.5 | MIN OCTOBER 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 5.8 5.7 5.8 5.7 5.8 5.7 5.7 5.7 | MEAN 14.2 14.5 14.7 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 10.8 9.5 9.0 9.3 9.3 9.3 9.5 9.4 9.1 8.8 8.7 9.0 8.3 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
9.7
9.4
8.7
8.1
7.9
7.8
4.7
5.2
5.5
4.7
3.4
2.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 1.6 2.2 3.1 1.0 .7 .2 1.7 .1 .1 .1 .1 .1 | MEAN 7.7 7.4 6.9 6.7 6.6 7.6 7.6 7.6 6.6 6.1 5.6 4.9 4.4 4.2 4.2 4.7 5.3 3.5 2.4 2.6 3.5 1.8 1.0 7 1.1 1.5 1.7 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
.0
.0
.0
.0
.0
.0 | MIN DECEMBER .3 1.2 1.1111111111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 1.1 .0 .3 .9 .11 .01 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .1 .1 .1 .1 .1 .2 .2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | .0
.0
.0
.0
-1
-1
-1
-1
-1
-1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 18.6
18.8
19.5
19.4
18.5
16.9
16.0
19.3
19.4
19.2
19.0
18.9
16.2
16.6
14.0
14.0
13.7
14.0
14.2
14.0
13.5
14.2
14.3
14.2
14.3
14.3
15.5 | MIN OCTOBEF 10.3 11.0 11.0 9.6 9.5 11.6 11.6 8.9 9.3 9.4 9.7 9.4 9.2 11.3 9.6 8.0 6.3 5.5 5.8 5.7 5.8 5.7 5.8 5.9 5.7 5.7 5.8 | MEAN 14.2 14.5 14.7 14.1 13.9 14.0 13.4 13.5 14.2 14.4 14.1 13.8 13.4 12.8 10.8 9.5 9.0 9.3 9.5 9.4 9.1 8.8 8.7 9.0 | 11.9
11.4
11.0
10.8
10.7
10.2
11.2
11.2
10.2
9.7
9.4
8.7
8.1
7.9
7.8
4.7
5.5
4.7
3.4
2.9 | MIN NOVEMBER 4.4 4.3 3.8 3.5 3.6 3.6 3.8 4.9 4.7 3.9 3.5 2.7 2.1 1.6 1.5 1.6 2.2 3.1 1.0 7 .2 1.71111 | 7.7 7.4 6.9 6.7 6.6 7.6 7.6 6.6 7.6 6.6 4.9 4.4 4.2 4.2 4.7 5.3 3.5 2.4 2.6 3.5 1.8 1.0 7 | 5.0
6.2
3.8
4.3
2.4
1.4
2.5
3.1
.0
1.3
3.5
.8
.0
.0
.0
.0 | MIN DECEMBER .3 1.2 1.1111111111 | MEAN 2.5 3.6 2.7 1.5 .6 .3 .7 1.1 .0 .3 .9 .11 .01 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | JANUARY .0 .0 .11112211 .0 .0 .0 .0111 .11 .0 .01111111111 | .0
.0
.0
.0
.0
-1
-1
-1
-1
-1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | 4.4 6.2 -.2 .4 5.4 -.2 .5 309 # 09171100 DOLORES RIVER NEAR BEDROCK, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | I Brit Bi | dirond, | WAIER (DE | G. C), W | IIDIC IDIIC | OCIOBER | 1999 10 | OEF LEMDEN | . 2000 | | | |---|--|--|--|---|---
--|--|--|--|--|---|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | | | | APRIL | | | MAY | | | 1
2
3
4
5 | 4.8
6.0
6.3
5.7
6.7 | 1
1
1
.0 | 1.4
1.9
2.4
2.4
3.1 | 8.8
11.8
13.4
14.2
8.9 | 5.7
4.9
4.1
4.3
6.0 | 6.9
8.0
8.2
8.7
7.2 | 15.2
15.3
16.6
18.2
18.5 | 6.7
7.1
7.8
7.7
9.5 | 10.2
10.6
11.6
12.5
13.7 | 13.8
14.6
15.2
15.6
15.8 | 10.1
10.8
11.2
12.0
12.2 | 11.9
12.6
13.1
13.7
13.9 | | 6
7
8
9
10 | | .4
.1
.3
2.0
2.1 | | | | | 17.5
18.1
15.9
16.0
16.1 | | 14.3
14.2
13.4
13.5
13.7 | | 12.5
12.8
12.3
11.3
12.4 | 14.1 | | 11
12
13
14
15 | | 2.5
2.5
1.2
2.5
1.7 | | | | | | | 13.5
13.4
13.8
12.9
11.8 | | 12.8
11.9
10.9
11.1
11.3 | 14.5
13.5
12.9
12.7
12.7 | | 18 | 6.0
7.6
10.5
9.9
7.1 | 2.8
3.9
4.2
2.3
2.7 | 4.4
5.2
6.3
5.6
4.8 | 14.4
12.5
13.2
12.5
8.1 | 4.0
4.7
4.6
3.0
4.3 | | | | | | | 13.2
13.2
13.0
13.6
14.6 | | 43 | 6.9
8.5
8.8
7.9
8.2 | 3.5
4.6
2.8
4.0
2.6 | 5.1
6.0
5.7
6.0
4.9 | 10.7
8.5
13.1
14.4
16.6 | 3.9
4.6
6.7
6.4
7.6 | | | | | 17.1
18.5
19.8
20.7
19.0 | 13.4
13.8
15.1
16.9
16.1 | 15.4
16.2
17.5
18.5
17.4 | | 26
27
28
29
30
31 | 9.9
11.1
9.8
12.9
 | 1.0
1.9
4.4
5.1 | 4.8
6.1
6.7
7.9 | 17.6
18.2
12.2
17.5
11.9 | 8.3
7.4
9.8
8.3
8.6
7.9 | 12.2
12.3
11.2
11.8
10.5
8.9 | 14.2
15.3
15.6
15.2
13.9 | 10.1
10.7
11.5
12.3
11.0 | 12.0
12.9
13.5
13.6
12.4 | 19.9
22.2
23.2
23.8
24.7
25.5 | 15.1
15.5
17.2
18.4
17.7
17.2 | 16.9
18.6
20.2
21.0
21.0
21.1 | | MONTH | 12.9 | 1 | 4.3 | 18.2 | | | 18.5 | 6.7 | | 25.5 | 10.1 | 15.2 | | | | | | | | | | | | | | | | DAY | MAX | MTN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | | MEAN | MAX | | MEAN | MAX | MIN
SEPTEMBE | MEAN
R | | DAY 1 2 3 4 5 | MAX
27.3
26.5
28.4
28.1
27.4 | JUNE
16.4
17.2 | MEAN 21.6 21.6 22.1 22.3 22.1 | 30.7
28.4
27.2
26.4
26.3 | JULY | | | AUGUST | | | 17.9
15.8
15.5 | 19.2
19.0
18.8
20.0 | | 1
2
3
4
5
6
7
8
9 | 27.3
26.5
28.4
28.1 | JUNE 16.4 17.2 16.9 17.1 17.8 | 21.6
21.6
22.1
22.3 | 30.7
28.4
27.2
26.4
26.3
27.2
24.5
26.9
27.6
29.2 | JULY 19.3 19.1 18.9 17.4 16.4 17.7 19.5 20.0 20.3 | 23.7
23.4
22.6
21.7
21.3
21.8
21.3
22.7
23.7
24.5 | 30.6
31.9
29.4
30.2
30.7
29.9
28.8
29.8
29.8 | 19.4
21.4
22.4
22.1
20.6
20.0
19.1
19.0
19.9
20.9 | 24.7
25.8
25.1
25.4
25.0
24.6
23.9
23.9
23.9
24.6 | 21.2
23.1
23.1
24.0
21.9
20.2
25.3
20.9
23.9
24.2 | 17.9
15.8
15.5
16.3
17.4 | 19.2
19.0
18.8
20.0 | | 1
2
3
4
5
6
7
8
9
10 | 27.3
26.5
28.4
28.1
27.4
27.6
28.4
24.1
23.7
25.4 | JUNE 16.4 17.2 16.9 17.1 17.8 17.5 17.4 18.6 17.5 14.8 | 21.6
21.6
22.1
22.3
22.1
22.3
22.6
21.2
20.2
19.9 | 30.7
28.4
27.2
26.4
26.3 | JULY 19.3 19.1 18.9 17.4 16.4 17.7 19.5 20.0 20.3 20.2 21.2 | 23.7
23.4
22.6
21.7
21.3
21.8
21.3
22.7
23.7
24.5 | 30.6
31.9
29.4
30.2
30.7
29.9
28.8
29.8
29.3
29.9 | AUGUST 19.4 21.4 22.4 22.1 20.6 20.0 19.1 19.0 19.9 20.9 | 24.7
25.8
25.1
25.4
25.0
24.6
23.9
23.9
23.9
24.6
24.9
25.5 | 21.2
23.1
24.0
21.9
20.2
25.3
20.9
24.2
23.6
25.3 | SEPTEMBE 17.9 15.8 15.5 16.3 17.4 16.7 14.8 16.9 14.4 14.4 14.1 13.8 | 19.2
19.0
18.8
20.0
19.2
18.4
19.5
18.8
19.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 27.3
26.5
28.4
28.1
27.4
27.6
28.4
24.1
23.7
25.4
26.2
24.5
27.7 | JUNE 16.4 17.2 16.9 17.1 17.8 17.5 14.8 15.6 15.9 16.5 | 21.6
21.6
22.1
22.3
22.1
22.3
22.6
21.2
20.2
19.9
20.7
20.7
20.2
21.1
21.7 | 30.7
28.4
27.2
26.4
26.3
27.2
24.5
26.9
27.6
29.2
30.5
28.5
31.4 | JULY 19.3 19.1 18.9 17.4 16.4 17.7 19.5 20.0 20.3 20.2 21.2 20.4 21.8 | 23.7
23.4
22.6
21.7
21.3
21.8
21.3
22.7
23.7
24.5
25.0
24.5
25.6
25.5 | 30.6
31.9
29.4
30.2
30.7
29.9
28.8
29.3
29.9
31.5
31.4
31.2 | AUGUST 19.4 21.4 22.4 22.1 20.6 20.0 19.1 19.0 19.9 20.9 20.4 21.8 22.1 21.3 | 24.7
25.8
25.1
25.4
25.0
24.6
23.9
23.9
24.6
24.9
25.5
25.7
25.7 | 21.2
23.1
24.0
21.9
20.2
25.3
20.9
23.9
24.2
23.6
25.3
25.7
26.4 | SEPTEMBE 17.9 15.8 15.5 16.3 17.4 16.7 14.8 16.9 14.4 14.4 14.1 13.8 14.3 14.7 | 19.2
19.0
18.8
20.0
19.2
18.4
19.5
18.8
19.0
18.7
19.0
19.6
20.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 27.3
26.5
28.4
28.1
27.4
27.6
28.4
24.1
23.7
25.4
26.2
24.5
27.7
27.9
27.6
27.8
24.3 | JUNE 16.4 17.2 16.9 17.1 17.8 17.5 17.4 18.6 17.5 14.8 15.6 15.9 16.5 17.5 17.6 16.4 17.3 17.2 | 21.6
21.6
22.1
22.3
22.1
22.3
22.1
21.2
20.2
21.2
20.2
21.1
21.7
22.3
22.0
21.6
20.2 | 30.7
28.4
27.2
26.4
26.3
27.2
24.5
26.9
27.6
29.2
30.5
28.5
31.4
31.6
29.9
31.0
29.8
29.8 | JULY 19.3 19.1 18.9 17.4 16.4 16.4 17.7 19.5 20.0 20.3 20.2 21.2 20.4 21.8 21.8 21.8 22.3 22.5 20.0 18.1 | 23.7
23.4
22.6
21.7
21.3
21.8
21.3
22.7
23.7
24.5
25.0
24.5
25.6
25.5
25.4
25.8
25.5
24.3
23.4 | 30.6
31.9
29.4
30.2
30.7
29.9
28.8
29.3
29.9
31.5
31.4
29.0
29.8
28.1
27.7
27.7 | AUGUST 19.4 21.4 22.4 22.1 20.6 20.0 19.1 19.0 20.9 20.4 21.8 22.1 21.3 21.0 20.8 20.9 | 24.7
25.8
25.1
25.4
25.0
24.6
23.9
23.9
24.6
24.9
25.5
25.7
25.0
23.9
24.1
23.7
23.7 | 21.2
23.1
24.0
21.9
20.2
25.3
20.9
23.9
24.2
23.6
25.3
25.7
26.4
26.2 | SEPTEMBE 17.9 15.8 15.5 16.3 17.4 16.7 14.8 16.9 14.4 14.4 14.1 13.8 14.7 14.9 15.6 17.0 15.8 | 19.2
19.0
18.8
20.0
19.2
18.4
19.5
18.8
19.0
18.7
19.0
19.6
20.1
20.2
20.5
19.4
20.5
20.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 27.3
26.5
28.4
28.1
27.4
27.6
28.4
24.1
23.7
25.4
26.2
24.5
27.7
27.9
27.6
27.8
24.3
28.0
28.8
26.4
26.4
26.4
26.4
26.4 | JUNE 16.4 17.2 16.9 17.1 17.8 17.5 17.4 18.6 17.5 14.8 15.6 15.9 16.5 17.5 17.6 16.4 17.3 17.2 17.3 | 21.6
21.6
22.1
22.3
22.1
22.3
22.1
21.2
20.2
21.1
21.7
22.3
22.0
21.1
21.7
22.3
22.0
21.4
20.5
21.8 | 30.7
28.4
27.2
26.4
26.3
27.2
24.5
26.9
27.6
29.2
30.5
28.5
31.4
31.6
29.9
31.0
29.8
29.3
29.3
30.5
31.0
29.8 | JULY 19.3 19.1 18.9 17.4 16.4 16.4 16.4 20.0 20.3 20.2 21.2 20.4 21.8 21.8 22.3 22.5 20.0 18.1 18.3 18.0 18.1 18.7 19.6 | 23.7
23.4
22.6
21.7
21.3
21.8
21.3
22.7
23.7
24.5
25.6
25.5
25.4
25.8
25.5
24.3
23.7
23.7
23.7
24.5 | 30.6
31.9
29.4
30.2
30.7
29.9
28.8
29.3
29.9
31.5
31.4
29.0
29.8
28.1
27.7
27.1
27.8
23.5
26.8
29.0 | AUGUST 19.4 21.4 22.1 20.6 20.0 19.1 19.0 19.9 20.9 20.4 21.8 22.1 21.3 21.0 20.8 20.9 20.8 20.3 20.1 19.6 18.4 19.6 19.0 | 24.7
25.8
25.1
25.4
25.0
24.6
23.9
23.9
24.6
24.9
25.5
25.7
25.0
23.9
24.1
23.7
23.2
23.0
23.2 | 21.2
23.1
24.0
21.9
20.2
25.3
20.9
23.9
24.2
23.6
25.3
25.7
26.4
26.2
26.7
23.9
25.5
25.5
25.5 | SEPTEMBE 17.9 15.8 15.5 16.3 17.4 16.7 14.8 16.9 14.4 14.4 14.1 13.8 14.7 14.9 15.1 15.6 17.0 15.8 15.6 | 19.2
19.0
18.8
20.0
19.2
18.4
19.5
18.8
19.0
18.7
19.0
20.1
20.2
20.5
19.4
20.5
20.2
20.0
18.1
17.3
14.0 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 27.3
26.5
28.4
28.1
27.4
27.6
28.4
24.1
23.7
25.4
26.2
24.5
27.7
27.9
27.6
27.8
24.3
28.0
28.8
26.4
26.4
26.6
29.0
22.6
27.5
26.1
29.0 | JUNE 16.4 17.2 16.9 17.1 17.8 17.5 14.8 15.6 15.9 16.5 17.5 17.6 16.4 17.3 17.4 18.5 19.0 18.7 20.1 17.9 18.3 18.5 18.1 | 21.6
21.6
22.1
22.3
22.1
22.3
22.6
21.2
20.2
19.9
20.7
20.2
21.1,7
22.3
22.0
21.6
20.4
20.5
21.8
21.9
21.4
22.9
23.2
21.4
22.9
23.2
21.4
22.9
23.2 | 30.7
28.4
27.2
26.4
26.3
27.2
24.5
26.9
27.6
29.2
30.5
28.5
31.4
29.9
31.0
29.8
29.3
329.0
28.5
30.1
29.9
30.6
29.2 | JULY 19.3 19.1 18.9 17.4 16.4 16.4 17.7 19.5 20.0 20.3 20.2 21.2 20.4 21.8 21.8 21.8 22.3 22.5 20.0 18.1 18.3 18.0 18.1 18.7 19.6 20.2 20.9 19.9 19.3 19.9 20.8 | 23.7
23.4
22.6
21.7
21.3
21.8
21.3
22.7
24.5
25.6
25.5
25.6
25.5
25.4
25.5
24.3
23.7
23.9
24.2
23.7
23.9
24.2
24.1
24.6
24.6
24.6
24.6 | 30.6 31.9 29.4 30.2 30.7 29.9 28.8 29.3 29.9 31.5 31.4 31.2 30.4 29.0 29.8 28.1 27.7 27.8 23.5 26.8 29.0 29.5 28.9 27.7 27.9 29.88 | AUGUST 19.4 21.4 22.1 20.6 20.0 19.1 19.0 19.9 20.9 20.4 21.8 22.1 21.3 21.0 20.8 20.9 20.8 20.3 20.1 19.6 18.4 19.6 19.0 19.5 20.8 20.0 20.4 21.8 20.0 20.1 | 24.7 25.8 25.1 25.4 25.0 24.6 23.9 23.9 24.6 24.9 25.5 25.7 25.0 23.9 24.1 23.7 23.2 23.0 23.2 21.3 21.9 23.1 23.3 23.1 23.6 23.2 24.0 23.2 24.0 | 21.2
23.1
24.0
21.9
20.2
25.3
20.9
24.2
23.6
25.3
25.7
26.4
26.2
26.7
23.9
25.5
25.5
25.2
21.9
21.5
16.1
19.4
20.7 | SEPTEMBE 17.9 15.8 15.5 16.3 17.4 16.7 14.8 16.9 14.4 14.1 13.8 14.7 14.9 15.1 15.6 17.0 15.8 15.6 15.2 14.3 11.1 10.2 9.1 9.3 11.4 13.5 14.7 14.9 | 19.2
19.0
18.8
20.0
19.2
18.4
19.5
18.8
19.0
18.7
19.0
19.6
20.1
20.2
20.5
19.4
20.5
20.5
20.0
14.1
17.3
14.1
14.0
14.4
14.9
16.1
16.6
17.9
18.8 | #### 09172500 SAN MIGUEL RIVER NEAR PLACERVILLE, CO LOCATION.--Lat 38°02'33", long 108°07'54", in $\mathrm{NW}^1/_4\mathrm{NE}^1/_4$ sec.25, T.44 N., R.12 W., San Miguel County, Hydrologic Unit 14030003, on right bank 1.5 mi downstream from Specie Creek in vicinity of mile marker 88.68 on State Highway 145 and 4.5 mi northwest of Placerville. DRAINAGE AREA. -- 310 mi². PERIOD OF RECORD.--January to December 1909, September 1910 to November 1912, April 1930 to September 1934, April 1942 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Placerville," 1910-12. Statistical summary computed for 1911 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,030 ft above sea level, from topographic map. See WSP 1713 or 1733 for history of changes prior to Oct. 21, 1958. Oct. 22, 1958 to Mar. 4, 1986, gage located 0.8 mi upstream from present site, at different datum. Mar. 5, 1986, gage moved to present site, at present datum. REMARKS.-- Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,700 acres upstream from station. One diversion from Fall Creek for irrigation of about 2,000 acres in Beaver and Saltado Creek basins. One small ditch diverts water from Leopard Creek to Uncompanger River Basin. Slight regulation by Lake Hope and Trout lake operated by the City of Telluride, Public Service Company of Colorado, Pacific Light and Power Company, and Tri State Power Company, combined capacity, 5,040 acre-feet. Several measurements of specific conductance and water temperature were obtained and are published in the "supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Dec | | | DISCHAR | GE, CUBIC | C FEET PE | | WATER YE
MEAN VA | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | ER 2000 | | | |--|---------|------------|------------|-----------|-----------|------------|---------------------|----------------------|----------|----------|-------------|---------|---------| | 2 308 115 e90 e75 e74 87 107 525 904 204 96 131 3 23 211 113 e86 e75 e82 85 114 614 824 203 198 131 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 308 115 e90 e75 e74 87 107 525 904 204 96 131 3 23 211 113 e86 e75 e82 85 114 614 824 203 198 131 | 1 | 351 | 110 | e86 | e78 | e74 | 85 | 116 | 492 | 981 | 212 | 100 | 136 | | 5 284 113 886 e75 e82 885 114 724 802 192 101 113 5 284 113 81 e76 e80 85 1137 782 712 180 98 110 6 261 108 e86 e76 80 85 237 733 609 172 92 126 8 267 106 e80 e80 e80 82 284 297 733 609 172 92 128 8 267 106 e80 e80 e80 82 384 322 876 655 166 92 124 9 245 113 e82 e77 85 85 85 398 733 674 227 86 139 10 234 110 e85 e74 87 85 468 654 592 200 83 113 11 239 100 e81 e74 80 81 81 22 876 166 139 11 239 100 e81 e74 80 81 12 629 546 167 86 112 12 262 106 e81 e74 84 83 421 629 546 167 86 112 13 250 1002 e80 e74 80 81 517 559 514 161 81 108 14 246 e92 e76 e74 82 85 572 519 531 155 89 105 15 228 e90 e83 e79 86 88 501 493 523 155 91 108 16 198 87 e94 e80 86 88 501 493 523 155 91 108 16 199 191 191 191 191 191 191 191 191 1 | | | | | | | | | | | | | | | 5 284 113 886 e75 e82 885 114 724 802 192 101 113 5 284 113 81 e76 e80 85 1137 782 712 180 98 110 6 261 108 e86 e76 80 85 237 733 609 172 92 126 8 267 106 e80 e80 e80 82 284 297 733 609 172 92 128 8 267 106 e80 e80 e80 82 384 322 876 655 166 92 124 9 245 113 e82 e77 85 85 85 398 733 674 227 86 139 10 234 110 e85 e74 87 85 468 654 592 200 83 113 11 239 100 e81 e74 80 81 81 22 876 166 139 11 239 100 e81 e74 80 81 12 629 546 167 86 112 12 262 106 e81 e74 84 83 421 629 546 167 86 112 13 250 1002 e80 e74 80 81 517 559 514 161 81 108 14 246 e92 e76 e74 82 85 572 519 531 155 89 105 15 228 e90 e83 e79 86 88 501 493 523 155 91 108 16 198 87 e94 e80 86 88 501 493 523 155 91 108 16 199 191 191 191 191 191 191 191 191 1 | 3 | 291 | 113 | e90 | e74 | e80 | 83 | 110 | 614 | 824 | 203 | 98 | 121 | | 6 261 108 e86 e76 80 83 204 774 629 179 91 126 7 260 102 e83 e79 80 82 88 292 723 669 177 92 128 8 245 106 82 877 85 84 88 292 723 669 177 92 128 10 244 110 e85 e77 87 88 468 654 582 200 83 113 11 239 108 e82 e73 86 78 434 675 565 182 87 106 11 229 108 e82 e74 87 85 468 654 582 200 83 113 11 239 108 e82 e74 88 81 57 555 565 182 87 106 11 262 100 e81 e74 84 83 434 675 565 182 87 106 11 262 100 e81 e74 84 83 157 559 546 107 86 112 11 299 108 e87 e74 88 88 501 493 523 11 202 108 e87 e74 88 88 501 493 523 11 202 108 e87 e79 86 88 501 493 523 11 203 108 e88 207 88 88 501 493 523 11 203 108 e88 207 88 88 501 493 523 11 203 108 e88 207 88 88 501 493 523 11 203 108 e88 207 88 88 501 493 523 11 203 108 e88 200 883 87 89 88 80 88 80 88 80 88 80 88 80 88 80 88 80 88 80 88 80 88 80 88 80 80 | | 293 | 113 | e86 | e75 | e82 | 85 | 114 | 724 | 802 | 192 | 101 | 113 | | The color | 5 | 284 | 113 | 81 | e76 | e80 | 85 | 137 | 782 | 712 | 180 | 98 | 110 | | 8 267 106 e80 82 84 312 876 655 166 92 124 99 245 113 e82 e77 85 85 85 398 753 674 227 86 139 10 234 110 e85 e74 87 85 85 86 398 753 674 227 86 139 113 11 239 108 e82 e73 86 78 85 468 654 582 200 83 113 11 239 108 e82 e73 86 78 85 468 654 582 200 83 113 11 239 108 e82 e73 86 78 85 86 78 85 86 87 53 674 87 85 112 87 85 112 87 106 113 202 880 881 e74 80 81 41 679 546 147 85 112 11 239 108 e82 e79 86 88 501 493 523 155 91 108 114 246 e92 e76 e74 82 85 572 519 531 155 89 105 15 222 8 e90 e83 e79 86 88 501 493 523 155 91 108 166 198 87 e94 e80 86 88 416 497 513 169 109 99 17 184 e86 e81 e83 85 88 501 493 523 155 91 108 191 191 191 191 191 191 191 191 191 19 | | | |
| | | | | | | | | | | 9 245 113 e82 e77 85 85 398 753 674 227 86 139 10 234 110 e85 e74 87 85 468 654 582 200 83 113 11 234 110 e85 e74 87 85 468 654 582 200 83 113 11 232 106 e81 e74 84 84 83 421 625 546 167 86 112 12 262 1106 e81 e74 84 84 83 421 625 546 167 86 112 14 246 602 e70 e74 82 81 512 152 544 167 86 112 14 246 602 e70 e74 82 81 512 152 549 167 86 112 14 246 602 e70 e74 82 81 512 512 519 511 155 89 108 161 161 161 161 161 161 161 161 161 16 | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | 11 239 108 e82 e73 86 78 424 675 565 182 87 106 12 262 106 e81 e74 84 83 421 629 546 167 86 112 135 250 102 e80 e74 80 81 517 559 514 161 81 108 14 246 e92 e76 e74 82 85 572 519 531 155 89 105 152 228 e90 e83 e79 86 88 501 493 523 155 89 105 166 169 e83 e84 | | | | | | | | | | | | | | | 12 | 10 | 234 | 110 | e85 | e74 | 87 | 85 | 468 | 654 | 582 | 200 | 83 | 113 | | 13 | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 184 | | | | | | | | | | | | | | | 184 | 16 | 100 | 07 | -0.4 | - 90 | 06 | 0.0 | 116 | 407 | E12 | 160 | 100 | 0.0 | | 188 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | 178 | | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | | 22 | 21 | 166 | e86 | e84 | e81 | 81 | 91 | 455 | 467 | 350 | 136 | 139 | 79 | | 23 | | | | | | | | | | | | | | | 25 | 23 | 147 | e80 | | 70 | 81 | 91 | 411 | 792 | 297 | | 124 | 86 | | 26 128 e82 e80 83 75 99 495 796 282 121 135 88 27 113 e82 e78 88 77 106 558 702 284 118 132 90 28 105 e85 e80 e78 81 122 568 848 254 116 135 88 29 119 e85 e80 e76 84 122 589 1070 234 109 129 113 30 110 e86 e80 74 122 524 1070 228 102 138 119 31 107 e78 e74 121 1030 103 142 TOTAL 6389 2841 2556 2414 2361 2849 12033 21473 14981 4864 3548 3193 MEAN 206 94.7 82.5 77.9 81.4 91.9 401 693 499 157 114 106 MAX 351 115 94 88 87 122 618 1070 981 227 223 139 MIN 105 77 76 70 74 78 107 430 228 102 81 79 AC-FT 12670 5640 5070 4790 4680 5650 23870 42590 29710 9650 7040 6330 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1911 - 2000, BY WATER YEAR (WY) MEAN 114 84.4 69.2 63.7 63.4 77.4 236 572 796 450 217 144 MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1997 1942 1958 1983 1983 1999 1999 MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 100 483.4 63.8 (WY) 1957 1990 1977 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL MEAN 1208 1987 1999 21977 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL MEAN 1208 1967 1999 1977 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 1099 1099 1095 100 Jun 21 1985 24 1983 | | | | | 76 | | 95 | | | | | | | | 27 | 25 | 141 | e80 | e80 | 79 | 81 | 97 | 451 | 955 | 285 | 121 | 120 | 91 | | 28 | 26 | 128 | e82 | e80 | 83 | 75 | 99 | 495 | 796 | 282 | 121 | 135 | 88 | | 29 | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | TOTAL 6389 2841 2556 2414 2361 2849 12033 21473 14981 4864 3548 3193 31848 206 94.7 82.5 77.9 81.4 91.9 401 693 499 157 114 106 1088 105 77 76 70 74 78 1070 981 227 223 1393 118 105 77 76 70 74 78 107 430 228 102 81 79 20-7 2 | | | | | | | | | | | | | | | TOTAL 6389 2841 2556 2414 2361 2849 12033 21473 14981 4864 3548 3193 MEAN 206 94.7 82.5 77.9 81.4 91.9 401 693 499 157 114 106 MAX 351 115 94 88 87 122 618 1070 981 227 223 139 MIN 105 77 76 70 74 78 1070 9450 228 102 81 79 AC-FT 12670 5640 5070 4790 4680 5650 23870 42590 29710 9650 7040 6330 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1911 - 2000, BY WATER YEAR (WY) MEAN 114 84.4 69.2 63.7 63.4 77.4 236 572 796 450 217 144 MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1998 1987 1997 1942 1958 1983 1983 1999 1999 MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 104 83.4 63.8 (WY) 1957 1990 1977 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL TOTAL 120875 79502 ANNUAL MEAN 331 2217 240 HIGHEST ANNUAL MEAN 331 217 200 ANNUAL TOTAL 120875 79502 ANNUAL MEAN 360 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RINDER (AC-FT) 239800 155700 15700 173900 10 PERCENT EXCEEDS 786 550 FRO 184 110 106 | | | | | | | | | | | | | | | MEAN 206 94.7 82.5 77.9 81.4 91.9 401 693 499 157 114 106 MAX 351 115 94 88 87 122 618 1070 981 227 223 139 MIN 105 77 76 70 74 78 107 430 228 102 81 79 AC-FT 12670 5640 5070 4790 4680 5650 23870 42590 29710 9650 7040 6330 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1911 2000, BY WATER YEAR (WY) MEAN 114 84.4 69.2 63.7 63.4 77.4 236 572 796 450 217 144 MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 | 31 | 107 | | e78 | e74 | | 121 | | 1030 | | 103 | 142 | | | MAX 351 115 94 88 87 122 618 1070 981 227 223 139 MIN 105 77 76 76 70 74 78 107 430 228 102 81 79 AC-FT 12670 5640 5070 4790 4680 5650 23870 42590 29710 9650 7040 6330 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1911 - 2000, BY WATER YEAR (WY) MEAN 114 84.4 69.2 63.7 63.4 77.4 236 572 796 450 217 144 MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1997 1942 1958 1983 1993 1999 1999 MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 104 83.4 63.8 (WY) 1957 1990 1977 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL MEAN 331 217 240 ANNUAL MEAN 331 227 240 ANNUAL MEAN 120875 79502 M | TOTAL | 6389 | 2841 | 2556 | 2414 | 2361 | 2849 | 12033 | 21473 | 14981 | 4864 | 3548 | 3193 | | MIN 105 77 76 70 74 78 107 430 228 102 81 79 AC-FT 12670 5640 5070 4790 4680 5650 23870 42590 29710 9650 7040 6330 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1911 - 2000, BY WATER YEAR (WY) MEAN 114 84.4 69.2 63.7 63.4 77.4 236 572 796 450 217 144 MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1999 1999 1999 1912 1985 1987 1998 1987 1999 1999 1995 1987 1990 1977 1970 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL TOTAL 120875 79502 ANNUAL MEAN 120875 1990 1990 1990 1990 1990 1990 1990 199 | MEAN | 206 | 94.7 | | 77.9 | 81.4 | 91.9 | | | | | | | | AC-FT 12670 5640 5070 4790 4680 5650 23870 42590 29710 9650 7040 6330 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1911 - 2000, BY WATER YEAR (WY) MEAN 114 84.4 69.2 63.7 63.4 77.4 236 572 796 450 217 144 MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1997 1942 1958 1983 1983 1999 1999 MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 104 83.4 63.8 (WY) 1957 1990 1977 1970 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL MEAN 311 217 240 ANNUAL MEAN 414 1983 LOWEST DAILY MEAN 600 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 INSTANTANEOUS PEAK FLOW 1576 184 184 1870 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 184 110 106 | | | | | | | | | | | | | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1911 - 2000, BY WATER YEAR (WY) MEAN | | | | | | | | | | | | | | | MEAN 114 84.4 69.2 63.7 63.4 77.4 236 572 796 450 217 144 MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1997 1942 1958 1983 1983 1999 1999 MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 104 83.4 63.8 (WY) 1957 1990 1977 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL TOTAL 120875 79502 ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 88.8 1973 LOWEST DAILLY MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILLY MEAN 660 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 INSTANTANEOUS PEAK FLOW 1270 May 30 a3830 Jun 24 1983 INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 155700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 786 555 50 PERCENT EXCEEDS 184 | AC-F1 | 12070 | 3040 | 3070 | 4790 | 4000 | 3030 | 23070 | 42390 | 29/10 | 9650 | 7040 | 0330 | | MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1997 1942 1958 1983 1993 1999 1999 MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 104 83.4 63.8 (WY) 1957 1990 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY
STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL MEAN 120875 79502 ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILY MEAN 63 Feb 23 70 Jan 23 | STATIST | rics of Mo | ONTHLY MEA | N DATA FO | OR WATER | YEARS 1911 | - 2000, | BY WATER | YEAR (WY |) | | | | | MAX 399 138 104 101 94.2 148 593 1515 1528 1197 527 391 (WY) 1912 1985 1987 1998 1987 1997 1942 1958 1983 1993 1999 1999 MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 104 83.4 63.8 (WY) 1957 1990 1977 1990 1980 1951 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 31 217 240 HIGHEST DAILY MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILY MEAN 60 Feb 23 <td>MEAN</td> <td>114</td> <td>84.4</td> <td>69.2</td> <td>63.7</td> <td>63.4</td> <td>77.4</td> <td>236</td> <td>572</td> <td>796</td> <td>450</td> <td>217</td> <td>144</td> | MEAN | 114 | 84.4 | 69.2 | 63.7 | 63.4 | 77.4 | 236 | 572 | 796 | 450 | 217 | 144 | | MIN 50.9 51.4 40.8 38.3 37.1 46.4 79.6 136 186 104 83.4 63.8 (WY) 1957 1990 1977 1977 1990 1980 1951 1977 1977 1934 1977 1972 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL TOTAL 120875 79502 240 414 1983 100 100 100 100 100 100 100 100 100 10 | MAX | 399 | 138 | 104 | 101 | 94.2 | 148 | 593 | 1515 | 1528 | 1197 | 527 | 391 | | Maternal | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1911 - 2000 ANNUAL TOTAL 120875 79502 ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 414 1983 LOWEST ANNUAL MEAN 88.8 1977 HIGHEST DAILLY MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILLY MEAN e60 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 INSTANTANEOUS PEAK FLOW 1270 May 30 a3830 Jun 24 1983 INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | | | | | | | | | | | | | | | ANNUAL TOTAL 120875 79502 ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 414 1983 LOWEST ANNUAL MEAN 88.8 1977 HIGHEST DAILY MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILY MEAN e60 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 INSTANTANEOUS PEAK FLOW 1270 May 30 a3830 Jun 24 1983 INSTANTANEOUS PEAK STAGE 4.43 May 30 b66.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | (WY) | 1957 | 1990 | 1977 | 1977 | 1990 | 1980 | 1951 | 1977 | 1934 | 1977 | 1972 | 1956 | | ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 414 1983 LOWEST ANNUAL MEAN 88.8 1977 HIGHEST DAILY MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILY MEAN e60 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 INSTANTANEOUS PEAK FLOW 1270 May 30 a3830 Jun 24 1983 INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | SUMMARY | Y STATIST | ICS | FOR 1 | 999 CALEI | NDAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YEA | RS 1911 | - 2000 | | ANNUAL MEAN 331 217 240 HIGHEST ANNUAL MEAN 414 1983 LOWEST ANNUAL MEAN 88.8 1977 HIGHEST DAILY MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILY MEAN e60 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 INSTANTANEOUS PEAK FLOW 1270 May 30 a3830 Jun 24 1983 INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | ANNUAL | TOTAL | | | 120875 | | | 79502 | | | | | | | LOWEST ANNUAL MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 | ANNUAL | MEAN | | | 331 | | | 217 | | | 240 | | | | HIGHEST DAILY MEAN 1200 Jun 17 1070 May 29 2740 Jun 21 1983 LOWEST DAILY MEAN e60 Feb 23 70 Jan 23 26 Jan 5 1960 ANNUAL SEVEN-DAY MINIMUM 63 Feb 17 75 Jan 9 31 Dec 25 1976 INSTANTANEOUS PEAK FLOW 1270 May 30 a3830 Jun 24 1983 INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | HIGHEST | r annual n | MEAN | | | | | | | | 414 | | 1983 | | INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | | | | | | | | | | | 88.8 | | | | INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | | | | | | | | | May 29 | | 2740 | - | | | INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | | | | | | | | | Jan 23 | | 26 | Jan | | | INSTANTANEOUS PEAK STAGE 4.43 May 30 b6.20 Jun 24 1983 ANNUAL RUNOFF (AC-FT) 239800 157700 173900 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | | | | | 63 | rep 1/ | | | mar, 20 | | 3383U
3T | Dec . | | | ANNUAL RUNOFF (AC-FT) 239800 157700 173900
10 PERCENT EXCEEDS 786 555 657
50 PERCENT EXCEEDS 184 110 106 | | | | | | | | | May 30 | | h6 20 | | | | 10 PERCENT EXCEEDS 786 555 657 50 PERCENT EXCEEDS 184 110 106 | | | | | 239800 | | | | ray JU | | | Juii | -1 1/0/ | | 50 PERCENT EXCEEDS 184 110 106 | 90 PERG | CENT EXCE | EDS | | 68 | | | 80 | | | 57 | | | e Estimated. Maximum discharge for period of record, 10000 ft³/s, Sep 5, 1909, gage height not determined; result of failure of Trout and Middle Reservoir Dams. Maximum gage height for statistical period of record, 8.58 ft, May 24, 1984, site and datum then in use. #### 09174600 SAN MIGUEL RIVER AT BROOKS BRIDGE NEAR NUCLA, CO LOCATION.--Lat $38^{\circ}14^{\circ}39^{\circ}$, long $108^{\circ}30^{\circ}05^{\circ}$, in $NE^{1}/_{4}NE^{1}/_{4}$ sec.15, T.46 N., R.15 W., Montrose County, Hydrologic Unit 14030003, on right bank at downstream side of Brooks Bridge, 0.5 mi upstream from Tri-State Power Plant, 3 mi upstream from Naturita Creek, and 4.4 mi northeast of Naturita. DRAINAGE AREA.--736 mi². PERIOD OF RECORD. -- March 1995 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,570 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Diversions for irrigation of several thousand acres upstream from station and diversions upstream for an additional several thousand acres downstream from the gage. One small ditch diverts water from Leopard Creek to Uncompangre River basin. Slight regulation by Lake Hope and Trout Lake (combined capacity, 5,040 acre-ft) operated by the City of Telluride, Public Service of Colorado, Pacific Light and Power Company, and Tri State Power Company. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | C FEET PE | | WATER YI
MEAN V | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBI | ER 2000 | | | |---|--|--|-------------------------------------|---|-------------------------------------|--|---|--|-------------------------------------|---|------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 146
142
115
113
182 | 113
122
120
119
117 | 100
110
111
102
79 | 101
109
94
86
86 | 99
98
100
103
102 | 84
48
31
35
37 | 173
159
159
178
312 | 598
581
685
798
875 | 820
747
681
632
580 | 109
109
102
98
80 | 4.1
4.3
3.5
6.2
6.2 | 60
50
46
34
29 | | 6
7
8
9
10 | 180
188
191
184
158 | 118
108
106
118
117 | 80
87
106
104
102 | 86
86
86
86 | 97
94
97
95
97 | 37
53
101
97
96 | 480
659
790
879
1140 | 885
801
1040
1120
816 | 497
544
530
540
476 | 83
75
68
114
110 | 5.3
4.9
5.6
5.9
5.3 | 34
49
43
62
45 | | 11
12
13
14
15 | 153
168
166
148
143 | 115
112
111
98
88 | 99
85
64
66
68 | 87
86
85
83
87 | 99
91
84
82
89 | 88
90
89
93
99 | 979
844
1020
1110
958 | 795
719
596
524
467 | 437
416
399
466
421 | 93
75
65
61
55 | 5.3
5.7
5.2
4.8
6.7 | 34
34
31
28
29 | | 16
17
18
19
20 | 140
126
123
136
133 | 44
25
26
26
24 | 69
80
94
83
74 | 96
91
103
114
106 | 89
93
90
84
79 | 101
99
98
88
101 | 742
814
994
752
586 | 447
461
418
390
351 | 393
311
244
234
256 | 56
89
83
52
39 | 8.3
11
11
79
91 | 28
17
13
26
11 | | 21
22
23
24
25 |
134
133
130
119
117 | 40
57
97
97
82 | 69
58
56
75
74 | 101
103
96
81
100 | 85
93
90
90
89 | 104
102
102
107
119 | 667
612
542
614
618 | 356
434
624
907
902 | 237
211
184
185
176 | 34
26
15
9.8
11 | 52
48
39
28
25 | 6.9
8.8
15
9.7 | | 26
27
28
29
30
31 | 125
126
122
123
124
112 | 93
116
106
98
106 | 86
96
95
112
116
106 | 109
102
96
90
76
75 | 80
83
84
91
 | 129
147
188
204
213
193 | 647
724
811
791
716 | 743
598
682
916
983
916 | 163
171
170
135
122 | 11
14
11
9.0
7.2
3.7 | 30
39
35
41
43
64 | 11
9.1
8.8
12
28 | | TOTAL
MEAN
MAX
MIN
AC-FT | 4400
142
191
112
8730 | 2719
90.6
122
24
5390 | 2706
87.3
116
56
5370 | 2873
92.7
114
75
5700 | 2647
91.3
103
79
5250 | 3173
102
213
31
6290 | 20470
682
1140
159
40600 | 21428
691
1120
351
42500 | 11378
379
820
122
22570 | 1767.7
57.0
114
3.7
3510 | 723.3
23.3
91
3.5
1430 | 825.3
27.5
62
6.9
1640 | | STATIST | CICS OF MC | ONTHLY MEA | N DATA FO | OR WATER | YEARS 1995 | - 2000 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 154
208
1998
107
1999 | 108
129
1998
90.1
1996 | 96.1
106
1998
80.1
1996 | 94.7
106
1998
79.8
1999 | 91.2
108
1997
71.2
1999 | 224
486
1997
84.7
1996 | 685
1127
1997
333
1999 | 969
1317
1995
622
1996 | 879
1631
1995
379
2000 | 449
1059
1995
57.0
2000 | 223
539
1999
11.0
1996 | 119
267
1999
27.5
2000 | | SUMMARY | STATISTI | ICS | FOR 1 | L999 CALE | NDAR YEAR | I | FOR 2000 WAS | TER YEAR | | WATER YE | ARS 1995 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME SEVEN-DAY ANEOUS PE | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 123619
339
1310
15
35
245200
814
184
76 | Jun 18
Feb 23
Nov 16 | | 75110.3
205
1140
3.5
4.8
1600
4.78
149000
671
99
15 | | | 311
499
178
a2370
2.7
3.6
3290
b6.30
225300
998
139
53 | Sep
Aug
Apr | 1997
1996
17 1995
11 1996
14 1996
24 1998
24 1998 | a Also occurred Jun 18, 1995. b Maximum gage height, 6.32 ft, Jun 17, 1995. #### 09177000 SAN MIGUEL RIVER AT URAVAN, CO LOCATION.--Lat $38^{\circ}21^{\circ}26^{\circ}$, long $108^{\circ}42^{\circ}44^{\circ}$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.2, T.47 N., R.17 W., Montrose County, Hydrologic Unit 14030003, on right bank 20 ft downstream from bridge on State Highway 141, 400 ft downstream from Tabeguache Creek, and 1.5 mi southeast DRAINAGE AREA. -- 1,499 mi². PERIOD OF RECORD.--August 1954 to September 1962, October 1973 to September 1994, August 1996 to current year. REVISED RECORDS. -- WRD Colo. 1974: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,000 ft above sea level, from topographic map. Prior to Sept. 3, 1959, at site 0.5 mi downstream at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by storage reservoirs, diversions for irrigation of about 28,000 acres upstream from station, and return flow from irrigated areas. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 6, 1970, reached a stage of 12.6 ft, from floodmarks, discharge, 8,910 ft³/s, by slope-area measurement at site 5.5 mi downstream. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBI | C FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | ER 2000 | | | |----------|-------------------------|------------|-------------|--------------|------------|---------------------|--------------------|-------------|------------|---|----------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 208 | 124 | 113 | e110 | 116 | 116 | 238 | 913 | 905 | 150 | 27 | 116 | | 2 | 206 | 130 | 118 | e115 | 110 | 99 | 222 | 873 | 823 | 138 | 26 | 111 | | 3 | 182 | 133 | 126 | e110 | 111 | 89 | 219 | 994 | 757 | 129 | 25 | 98 | | 4 | 172 | 131 | 119 | 99 | 117 | 79 | 232 | 1140 | 708 | 122 | 26 | 88 | | 5 | 216 | 129 | 98 | 92 | 118 | 84 | 340 | 1240 | 662 | 107 | 27 | 76 | | 6 | 214 | 130 | 91 | e90 | 117 | 88 | 524 | 1250 | 597 | 101 | 26 | 71 | | 7 | 219 | 122 | 109 | e90 | 109 | 100 | 751 | 1130 | 606 | 91 | 25 | 89 | | 8 | 224 | 118 | 120 | 93 | 109 | 143 | 901 | 1350 | 604 | 84 | 20 | 101 | | 9 | 217 | 124 | 116 | e100 | 116 | 133 | 984 | 1630 | 590 | 133 | 18 | 118 | | 10 | 189 | 128 | e116 | e105 | 120 | 132 | 1430 | 1110 | 551 | 159 | 19 | 107 | | 11 | 182
193 | 124
122 | e110 | e105 | 126 | 126 | 1250 | 1020
923 | 497
475 | 130 | 16 | 79
68 | | 12
13 | 193 | 122 | 103
101 | e105
e105 | 119
111 | 119
122 | 1030
1250 | 923
774 | 475
456 | 111
98 | 16
16 | 68 | | 14 | 176 | 114 | e100 | e105 | 106 | 122 | 1410 | 674 | 496 | 88 | 17 | 64 | | 15 | 169 | 111 | 94 | e110 | 106 | 127 | 1220 | 612 | 476 | 91 | 25 | 59 | | 16 | 165 | 82 | 108 | e130 | 106 | 134 | 953 | 593 | 435 | 88 | 24 | 64 | | 17 | 152 | 64 | 122 | 142 | 114 | 132 | 1010 | 583 | 381 | 111 | 26 | 60 | | 18 | 146 | 58 | 122 | 146 | 120 | 131 | 1300 | 556 | 305 | 131 | 45 | 59 | | 19 | 156 | 62 | 110 | 151 | 111 | 123 | 1020 | 528 | 297 | 94 | 53 | 64 | | 20 | 155 | 55 | 105 | 137 | 106 | 127 | 781 | 482 | 318 | 77 | 154 | 71 | | 21 | 150 | 74 | 93 | 126 | 109 | 142 | 879 | 463 | 293 | 70 | 110 | 50 | | 22 | 150 | 81 | 93 | 129 | 115 | 142 | 849 | 520 | 265 | 58 | 90 | 44 | | 23 | 148 | 126 | 77 | 109 | 118 | 141 | 787 | 680 | 237 | 54 | 85 | 38 | | 24 | 141 | 99 | 94 | 102 | 116 | 141 | 886 | 954 | 238 | 39 | 72 | 51 | | 25 | 135 | 99 | 100 | 120 | 118 | 153 | 909 | 1000 | 220 | 36 | 65 | 48 | | 26
27 | 140
141 | 107
127 | e105
112 | 152
143 | 108
107 | 163 | 948 | 839
700 | 208
210 | 38
47 | 63
83 | 50
46 | | 28 | 138 | 127 | 111 | 118 | 110 | 181
224 | 1060
1190 | 700 | 210 | 39 | 88 | 43 | | 29 | 138 | 114 | 121 | 97 | 114 | 263 | 1200 | 943 | 184 | 33 | 104 | 66 | | 30 | 141 | 116 | 128 | 92 | | 266 | 1070 | 1080 | 163 | 31 | 182 | 64 | | 31 | 127 | | 117 | 85 | | 256 | | 1020 | | 30 | 121 | | | TOTAL | 5281 | 3246 | 3352 | 3528 | 3283 | 4397 | 26843 | 27301 | 13170 | 2708 | 1694 | 2131 | | MEAN | 170 | 108 | 108 | 114 | 113 | 142 | 895 | 881 | 439 | 87.4 | 54.6 | 71.0 | | MAX | 224 | 133 | 128 | 152 | 126 | 266 | 1430 | 1630 | 905 | 159 | 182 | 118 | | MIN | 127 | 55 | 77 | 85 | 106 | 79 | 219 | 463 | 163 | 30 | 16 | 38 | | AC-FT | 10470 | 6440 | 6650 | 7000 | 6510 | 8720 | 53240 | 54150 | 26120 | 5370 | 3360 | 4230 | | STATIST | CICS OF MC | NTHLY MEA | N DATA FO | OR WATER Y | ZEARS 1954 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 141 | 120 | 96.9 | 90.4 | 108 | 199 | 863 | 1204 | 1015 | 440 | 199 | 132 | | MAX | 333 | 385 | 188 | 139 | 226 | 612 | 2154 | 3420 | 2361 | 1306 | 646 | 416 | | (WY) | 1987 | 1987 | 1987 | 1985 | 1958 | 1997 | 1985 | 1984 | 1957 | 1957 | 1999 | 1982 | | MIN | 30.6 | 60.9 | 49.6 | 49.9 | 54.1 | 66.8 | 110 | 86.6 | 177 | 87.4 | 37.2 | 16.8 | | (WY) | 1957 | 1956 | 1977 | 1977 | 1990 | 1977 | 1977 | 1977 | 1977 | 2000 | 1994 | 1956 | | SUMMARY | STATISTI | CS. | FOR 3 | 1999 CALEN | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1954 | - 2000 | | ANNUAL | TOTAL | | | 154038 | | | 96934 | | | | | | | ANNUAL | MEAN | | | 422 | | | 265 | | | 385 | | | | HIGHEST | ANNUAL M | IEAN | | | | | | | | 758 | | 1984 | | | ANNUAL ME | | | | | | | | | 89.3 | | 1977 | | | DAILY ME | | | 1800 | May 1 | | 1630 | May 9 | | 5440 | May 1 | | | | DAILY MEA | | | 52 | Feb 23 | | 16
17 | Aug II | | 9.4 | | .0 1977 | | | SEVEN-DAY
CANEOUS PE | | | 68 | Nov 16 | | 2090 | Aug 8 | | 89.3
5440
9.4
14
a8050
10.14
278900 | | 8 1977
.0 1983 | | | ANEOUS PE | | | | | | b5.73 | May 9 | | 10.14 | | .0 1983 | | | RUNOFF (A | | | 305500 | | | 192300 | Tidy 5 | | 278900 | racy 1 | | | | CENT EXCEE | | | 1030 | | | 881 | | | 1080 | | | | | CENT EXCEE | | | 233 | | | 121 | | | 138 | | | | 90 PERC | CENT EXCEE | DS | | 99 | | | 55 | | | 59 | | | e Estimated. a From rating curve extended above 4100 ${\rm ft}^3/{\rm s}$. b Maximum gage height, 5.76 ft Apr 10, from channel change. #### GREEN RIVER BASIN 313 ## 404417108524900 GREEN RIVER ABOVE GATES OF LODORE, CO #### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}44^{\circ}17^{\circ}$, long $108^{\circ}52^{\circ}49^{\circ}$, in $NE^{1}/_{4}SE^{1}/_{4}$ sec.17, T.9 N., R.102 W., Moffat County. Hydrologic Unit 14040106, in Dinousaur National Monument, 0.83 mi upstream from the Lodore Ranger Station, and 18 mi west of Greystone. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- SUSPENDED SEDIMENT AND BEDLOAD: May 1998 to current year. REMARKS.-- Natural flow regulated by Flaming Gorge Reservoir. Upstream diversions for an unknown amount of irrigation. #### SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
FALL
DIAM.
%
FINER
THAN
.062 MM
(70342) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.125 MM
(70343) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.250 MM
(70344) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.500 MM
(70345) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |------|------|---|---|---|---|---|---|---|--| | APR | | | | | | | | | | | 04 | 1140 | 2350 | 57 | 362 | 61 | 70 | 89 | 100 | | | 18 | 1045 | 1920 | 72 | 373 | | | | | 85 | | MAY | | | | | | | | | | | 02 | 1027 | 2220 | 45 | 270 | 70 | 84 | 100 | | | | JUN | | | | | | | | | | | 01 | 1315 | 4830 | 158 | 2060 | 31 | 51 | 64 | 100 | | | JUL | | | | | | | | | | | 06 | 1055 | 1340 | 27 | 98 | | | | | 74 | #### BEDLOAD SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DIC | DATE | TIME | WATER
(DEG C) | FEET
PER | CIFIC
CON-
DUCT-
ANCE
(US/CM) | | DIAM.
% FINER
THAN
.062 MM | SIEVE
DIAM.
% FINER
THAN
.125 MM | | |-----------------|-----------------------------------|---|--|---|--|---|--|--| | APR | | | | | | | | | | 04
18
MAY | | 6.1
8.6 | 2350
1920 | 679
 | 392
671 | 0 | 0 | | | 02 | 1027 | 10.7 | 2220 | 645 | 497 | 0 | 0 | | | JUN
01 | 1315 | 12.5 | 4830 | 624 | 1330 | 0 | 0 | | | JUL
06 | 1055 | 15.8 | 1340 | 640 | 228 | 0 | 0 | | | DATE | SIEVE
DIAM.
% FINER
THAN | BEDLOAD
SIEVE
DIAM.
% FINER
THAN
.500 MM | SIEVE
DIAM.
% FINER
THAN
1.00 MM | BEDLOAD
SIEVE
DIAM.
% FINER
THAN
2.00 MM | BEDLOAD
SIEVE
DIAM.
% FINER
THAN | BEDLOAD
SIEVE
DIAM.
% FINER
THAN
8.00 MM | SIEVE
DIAM.
% FINER
THAN
16.0 MM | | | APR 04 | 1
4 | 48
84 | 83
89 | 93
96 | 98
99 | 100
100 | 100 | | | MAY
02 | 3 | 42 | 84 | 97 | 100 | 100 | 100 | | | JUN
01 | 13 | 77 | 95 | 98 | 100 | 100 | | | | JUL
06 | 2 | 67 | 94 | 99 | 100 | 100 | | | | | | | | | | | | | 314 GREEN RIVER BASIN #### 09237450 YAMPA RIVER ABOVE STAGECOACH RESERVOIR, CO LOCATION.--Lat $40^{\circ}16^{\circ}09^{\circ}$, long $106^{\circ}52^{\circ}49^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.36, T.4 N., R.85 W., Routt County, Hydrologic Unit 14050001, on left bank 1.4 mi downstream from Jack Creek and 4.0 mi east of Oak Creek. DRAINAGE AREA. -- 208 mi2 (revised). PERIOD OF RECORD.--October 1988 to current year. Water-quality data available, July 1984 to September 1992. GAGE.--Water-stage recorder with satellite telemetry and concrete control. Elevation of gage is 7,240 ft above sea level, from topographic map. REMARKS.--Records good except for the periods Apr. 10 to May 9 and July 19-27, which are fair, and estimated daily discharges, which are poor. Diversions for irrigation of about 12,000 acres upstream from station. Natural flow of stream affected by 2 diversions for irrigation to Egeria Creek into Colorado River basin and by storage in Stillwater, Yampa and YamColo Reservoirs (total capacity 15,820 acre-ft). Several measurements of specifc conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIO | C FEET PER | | WATER YE
MEAN VA | EAR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |---|-------------------------------------|---|--|--|--------------------------------------|-------------------------------------|--|---|------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 65
e63
61
59
58 | 56
54
56
54
53 | 55
50
50
55
41 | e47
e47
e46
e46
e48 | e50
e50
e51
e50
e51 | e52
e50
e48
e48
e50 | 65
65
60
71
122 | 135
150
146
152
136 | 126
117
99
88
80 | 74
81
78
69
64 | 49
44
53
73
74 | 59
56
52
48
46 | | 6
7
8
9
10 | 58
59
64
62
61 | 51
52
53
52
51 | 40
37
38
e40
e45 | e47
e46
e48
e48
e46 | e52
e52
e51
e52
e51 | e50
e52
e50
52
51 | 176
159
133
139
141 | 146
162
170
156
133 | 76
77
75
67
59 | 61
58
69
100
99 | 70
65
62
57
55 | 47
45
47
48
45 | | 11
12
13
14
15 | 60
57
55
55
e57 | 51
52
51
52
52 | e47
e45
e40
e42
e40 | e47
e45
e47
e47 | e50
e49
e49
e49
e49 | 48
53
48
48
50 | 125
125
123
120
122 | 142
139
127
121
108 | 58
64
68
66
65 | 91
80
78
80
82 | 52
49
48
50
53 | 44
43
41
39
33 | | 16
17
18
19
20 | e57
e57
e58
e58 | 51
51
57
52
61 | e42
e43
e42
e44
e45 | e45
e47
e48
e49
e50 | e50
e51
e50
e50
e50 | 48
46
45
42
47 | 104
112
120
108
96 | 97
107
117
109
91 | 64
66
66
82
115 | 88
100
116
97
98 | 59
62
66
71
66 | 31
32
38
33
33 | | 21
22
23
24
25 | 57
57
55
54
56 | 57
52
44
67
63 | e44
e43
e45
e45
e45 | e48
e48
e48
e50 | e52
e52
e52
e50
e47 | 45
44
47
52
55 | 98
111
152
153
134 | 86
83
82
103
128 | 92
84
84
88 | 98
97
92
91
85 | 58
58
65
63
61 | 37
64
50
46
47 | | 26
27
28
29
30
31 | 57
56
58
63
55
56 | 128
90
69
59
55 | e46
e45
e46
e48
e47
e45 | e49
e48
e44
e48
e46
e48 | e48
e50
e52
e52 | 62
75
87
89
84
72 | 124
128
144
154
142 | 169
147
119
153
162
133 | 94
96
100
89
81 | 77
81
e80
e80
e80
e66 | 61
71
66
65
70
62 | 48
47
45
48
48 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1805
58.2
65
54
3580 | 1746
58.2
128
44
3460 | 1380
44.5
55
37
2740 | 1467
47.3
50
44
2910 | 1462
50.4
52
47
2900 | 1690
54.5
89
42
3350 | 3626
121
176
60
7190 | 4009
129
170
82
7950 | 2474
82.5
126
58
4910 | 2590
83.5
116
58
5140 | 1878
60.6
74
44
3730 | 1340
44.7
64
31
2660 | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1989 - 2000, BY WATER YEAR (WY) | | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 53.8
116
1998
32.0
1995 | 54.5
85.1
1998
32.0
1995 | 43.9
71.1
1996
29.2
1990 | 41.8
74.2
1996
21.4
1990 | 42.7
75.4
1996
29.4
1991 | 64.1
113
1998
38.7
1992 | 119
259
1996
48.7
1995 | 132
278
1996
38.5
1990 | 127
348
1997
39.4
1994 | 109
167
1995
50.4
1994 | 79.0
153
1997
43.1
1994 | 55.6
135
1997
28.5
1994 | | SUMMARY STATISTICS FOR 1999 CALEN | | | | DAR YEAR FOR 2000 WATER YEAR | | | | | WATER YEARS 1989 - 2000 | | | | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | CAN CAN LIN C MINIMUM CAK FLOW CAK STAGE LC-FT) LDS CDS | | 31335
85.8
205
37
41
62150
143
76
45 | Jun 16
Dec 7
Dec 5 | | 25467
69.6
176
31
34
239
a4.44
50510
123
57
45 | Apr 6
Sep 16
Sep 15
Apr 6
Apr 6 | | 77.0
135
44.6
582
14
15
765
b5.96
55760
142
58 | Jan 2
Jan 2
Mar 2 | 1997
1994
9 1997
24 1990
22 1990
26 1998
26 1998 | b Maximum gage height 5.11 ft, Feb 20, backwater from ice. b Maximum gage height, 7.31 ft, Dec 4, 1997, backwater from ice. #### 09237500 YAMPA RIVER BELOW STAGECOACH RESERVOIR, CO LOCATION.--Lat $40^{\circ}17^{\circ}15^{\circ}$, long $106^{\circ}49^{\circ}33^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$ sec.29, T.4 N., R.84 W., Routt County, Hydrologic Unit 14050001, on left bank, 0.3 mi downstream from Stagecoach Reservoir, 1.0 mi downstream from Morrison Creek, and 6.5 mi east of Oak Creek. DRAINAGE AREA. -- 228 mi2 (revised). PERIOD OF RECORD.--September 1939 to September 1944, monthly discharge only for some periods, published in WSP 1313; October 1956 to September 1972; October 1984 to current year. Water-quality data available, July 1984 to September 1992. Prior to October 1990, published as Yampa River near Oak Creek. Statistical summary computed for 1989 to current year. REVISED RECORDS. -- WDR
CO-89-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,050 ft above sea level, from topographic map. Sept. 1939 to Nov. 15, 1939, nonrecording gage, Nov. 16, 1939 to Sept. 1944 and Oct. 1956 to Sept. 1972, water-stage recorder at site 0.5 mi upstream, at different datum. REMARKS.--No estimated daily discharges. Records fair. Flow regulated since Dec. 20, 1988, by Stagecoach Reservoir (capacity 33,275 acre-ft), 0.3 mi upstream. Diversions for irrigation of about 12,0000 acres upstream from station. Natural flow of stream affected by 2 diversions for irrigation to Egeria Creek into Colorado River basin and by storage in Stillwater, Yampa and YamColo Reservoirs (total capacity, 15,820 acre-ft). Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality For Gaging Stations" section of this report. Average discharge for 25 years (water years 1940-44, 1957-72, 1985-88), $89.4~\mathrm{ft}^3/\mathrm{s}$; $64770~\mathrm{acre-ft/yr}$, prior to completion of Stagecoach Reservoir. h completion of Stagecoach Reservoir. Maximum daily discharge for period of record, 1020 ft³/s, Apr 16, 1962. Minimum daily discharge for period of record, 8.9 ft³/s, May 22, 1963. Maximum discharge and stage for period of record, 1400 ft³/s, Apr 16, 1962, gage height, 7.56 ft, from rating curve extended above 570 ft³/s, site and datum then in use. Maximum gage height, 8.08 ft, Mar 8, 1987, backwater from ice. ## 09238900 FISH CREEK AT UPPER STATION, NEAR STEAMBOAT SPRINGS, CO LOCATION.--Lat $40^{\circ}28'30"$, long $106^{\circ}47'11"$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec.15, T.6 N., R.84 W., Routt County, Hydrologic Unit 14050001, on right bank 2.6 mi upstream from mouth, and 2.5 mi east of Steamboat Springs. DRAINAGE AREA.--25.8 mi² (revised). PERIOD OF RECORD.--October 1966 to September 1972, May 1982 to current year. GAGE.--Water-stage recorder with satellite telemetry, and concrete control. Elevation of gage is 7,150 ft above sea level, from topographic map. REMARKS.--Records good. Diversions upstream from station by Mount Werner Recreation District and City of Steamboat Springs for domestic use began in 1972 (see table below for figures of diversion). Natural flow of stream affected by storage in Fish Creek and Long lake Reservoir, combined capacity 2,237 acre-ft. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|--|--|--|--|---|---|---|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.1
4.0
3.7
3.7
3.5 | 5.4
5.7
5.4
3.4
3.7 | 3.5
3.6
2.5
2.8
2.5 | 1.6
1.5
2.3
2.5
2.3 | 2.5
2.7
2.1
1.7 | 3.1
3.1
2.9
3.6
4.2 | 8.4
9.0
8.6
10 | 129
160
192
227
274 | 717
593
563
632
595 | 45
42
37
32
27 | 7.6
7.8
7.8
5.0
3.0 | 5.3
3.8
2.9
2.4
2.6 | | 6
7
8
9
10 | 3.5
4.2
4.7
3.0
1.7 | 3.8
3.6
3.9
3.7
3.8 | 2.1
1.6
2.4
2.2
2.2 | 2.4
2.2
2.3
2.0
2.6 | 1.7
2.4
2.7
2.2
2.4 | 4.5
4.7
4.3
4.1
3.9 | 18
17
19
29
35 | 287
254
230
221
240 | 589
580
536
495
412 | 22
21
22
29
24 | 4.1
2.5
3.8
3.8
3.8 | 2.9
2.7
2.5
3.4
2.5 | | 11
12
13
14
15 | 1.1
2.0
2.1
3.2
2.5 | 3.9
2.8
2.1
2.9
3.5 | 2.4
2.4
2.4
2.7
3.0 | 3.3
2.7
2.6
2.4
2.3 | 2.7
3.0
2.8
3.8
3.7 | 3.9
3.7
3.1
3.7
3.1 | 39
46
50
55
53 | 266
178
146
134
129 | 365
318
333
276
239 | 19
15
13
12
11 | 3.7
3.9
4.4
5.0
4.6 | 2.2
2.1
1.6
3.9
5.8 | | 16
17
18
19
20 | 3.1
3.1
4.3
4.2
3.9 | 2.6
2.9
e3.0
3.4
3.9 | 2.5
2.8
2.7
2.7
2.7 | 2.1
2.0
2.1
3.5
3.1 | 2.9
2.8
2.8
3.0
2.5 | 3.9
3.5
3.2
3.4
3.5 | 40
46
54
45
40 | 159
202
149
128
138 | 203
168
147
187
231 | 12
17
22
14
6.3 | 6.7
7.9
5.3
3.9
3.7 | 4.1
4.4
5.7
4.7 | | 21
22
23
24
25 | | 3.2
2.9
1.6
1.4
2.0 | 2.7
2.3
2.4
2.2
2.6 | 3.0
3.1
2.8
2.9
2.4 | 2.6
2.6
2.9
2.6
2.8 | 3.1
4.2
4.2
4.5
4.7 | 44
50
51
49
42 | 179
277
453
508
512 | 157
134
117
87
95 | 3.2
2.3
9.5
13
7.2 | 3.6
3.9
6.7
4.1
3.0 | 13
65
25
18
13 | | 26
27
28
29
30
31 | | | | | | | 49
75
97
117
121 | 593
556
588
690
678
632 | 90
78
68
59
50 | 3.4
2.9
2.8
4.7
8.3
7.5 | 3.4
2.7
6.9
8.1 | 16
9.5
8.2
7.2
6.0 | | TOTAL
MEAN
MAX
MIN
AC-FT
a | 109.8
3.54
4.8
1.1
218
137 | 93.4
3.11
5.7
1.4
185
136 | 75.2
2.43
3.6
1.6
149
168 | 78.8
2.54
3.5
1.5
156
183 | 77.4
2.67
3.8
1.7
154
174 | 150.3
4.85
11
2.9
298
199 | 1333.0
44.4
121
8.4
2640
136 | 9509
307
690
128
18860
191 | 9114
304
717
50
18080
374 | 507.1
16.4
45
2.3
1010
469 | 146.9
4.74
8.1
2.5
291
429 | 250.7
8.36
65
1.6
497
234 | | STATIST | rics of MC | NTHLY MEA | N DATA FO | OR WATER Y | EARS 1967 | - 2000 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | MAX 51.9 31.6 23
(WY) 1998 1998 19
MIN 2.52 3.07 2. | | 7.93
23.3
1998
2.43
2000 | 6.19
19.2
1998
2.46
1989 | 5.76
15.8
1998
2.67
2000 | 9.36
17.0
1998
4.85
2000 | 35.0
59.0
1987
8.21
1983 | 211
358
1969
85.5
1983 | 381
580
1997
124
1987 | 85.8
331
1995
9.82
1987 | 9.57
21.6
1997
.86
1994 | | | SUMMARY | Y STATISTI | CS | FOR 1 | 1999 CALEN | DAR YEAR | I | FOR 2000 WA | TER YEAR | | WATER YE | EARS 1967 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 19590.4
53.7
505
1.1
1.7
38860
235
5.0
2.6 | Jun 19
Oct 11
Nov 23 | | 21445.6
58.6
717
1.1
1.7
854
2.83
42540
195
3.9
2.2 | Jun 1
Oct 11
Dec 27
May 29
May 29 | | 98.6
41.6
814
.01
.11
1110
3.14
241
9.9
3.4 | l Aug
L Aug
Jun | 1984
1989
21 1968
7 1972
7 1972
20 1968
20 1968 | | e Estimated. a Diversions, in acre-feet, by Mount Werner Water and Sanitation District, and City of Steamboat Springs. #### 09239500 YAMPA RIVER AT STEAMBOAT SPRINGS, CO LOCATION.--Lat $40^{\circ}29^{\circ}01^{\circ}$, long $106^{\circ}49^{\circ}54^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.17, T.6 N., R.84 W., Routt County, Hydrologic Unit 14050001, on left bank 30 ft upstream from Fifth Street Bridge in Steamboat Springs and 0.6 mi upstream from Soda Creek. DRAINAGE AREA. -- 568 mi2 (revised). #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1904 to October 1906, October 1909 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 764: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,695.47 ft above sea level. Prior to May 8, 1905, nonrecording gage at bridge 0.2 mi upstream at datum 4.16 ft higher. May 8, 1905 to Oct. 31, 1906, nonrecording gage on bridge 30 ft upstream at datum 0.44 ft higher. Mar. 8, 1910 to Sept. 11, 1934, water-stage recorder on right bank, 60 ft downstream, at datum 0.44 ft higher. Sept. 11, 1934 to Aug. 17, 1988, water-stage recorder on right bank, 60 ft downstream, at present datum. REMARKS.--No estimated daily discharges. Records good. Natural flow of stream affected by two diversions for irrigation to Egeria Creek in Colorado River basin, one diversion for irrigation from Trout Creek drainage to Oak Creek drainage, irrigation of about 19,700 acres upstream from station, and by storage in Stillwater, Yampa, YamColo, Stagecoach, and Catamount Reservoirs, (total capacity 56,895 acre-ft) and pumping of water to ski area for snow making during winter. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER YE
MEAN VA | EAR OCTOBER | R 1999 TO | SEPTEMBE | ER 2000 | | |
---|--|-----------------------------------|---|--|------------------------------------|---|--|--|---|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 130
129
116
112
121 | 115
122
124
122
124 | 115
114
112
108
108 | 105
102
98
98
95 | 137
130
131
127
124 | 137
139
157
174
177 | 234
244
222
233
308 | 1160
1270
1480
1680
1930 | 3450
2880
2600
2560
2380 | 255
243
229
213
195 | 108
110
106
103
100 | 130
120
111
110
109 | | 6
7
8
9
10 | 126
133
134
128
116 | 121
113
124
150
152 | 107
98
98
96
99 | 91
87
111
107
106 | 119
117
110
111
111 | 190
205
199
195
191 | 414
467
457
555
750 | 2110
2090
1980
1750
1690 | 2220
2120
1960
1810
1530 | 180
164
158
176
169 | 99
97
93
93 | 107
104
106
108
106 | | 11
12
13
14
15 | 112
115
118
121
123 | 168
176
174
174
173 | 96
95
100
103
99 | 109
111
109
118
126 | 113
111
113
112
114 | 188
185
185
183
172 | 804
734
713
711
780 | 1970
1650
1350
1230
1200 | 1340
1180
1190
1030
908 | 153
138
128
124
122 | 88
86
78
73
72 | 103
96
89
84
80 | | 16
17
18
19
20 | 120
107
107
118
125 | 177
189
197
185
188 | 104
105
102
105
102 | 123
123
126
142
124 | 111
112
112
112
111 | 175
174
176
175
170 | 677
628
701
680
611 | 1320
1680
1430
1260
1260 | 812
693
618
712
963 | 120
132
164
155
136 | 82
87
92
109
118 | 76
73
83
87
91 | | 21
22
23
24
25 | 127
125
124
115
107 | 190
171
142
134
124 | 102
100
103
104
107 | 119
116
114
116
121 | 112
115
115
118
127 | 175
182
186
203
207 | 590
660
867
943
792 | 1440
1780
2310
2970
3070 | 694
566
497
435
424 | 123
121
124
124
122 | 118
110
111
106
101 | 108
306
230
183
144 | | 26
27
28
29
30
31 | 116
119
120
131
125
115 | 126
128
126
126
122 | 113
109
107
116
106
101 | 122
125
128
128
131
126 | 126
128
135
136
 | 231
250
261
269
260
232 | 707
817
1030
1200
1220 | 3570
3250
3260
3820
3860
3620 | 404
357
318
297
276 | 120
119
118
116
114
112 | 99
101
104
108
125
135 | 133
120
113
109
105 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3735
120
134
107
7410 | 4457
149
197
113
8840 | 3234
104
116
95
6410 | 3557
115
142
87
7060 | 3450
119
137
110
6840 | 6003
194
269
137
11910 | 19749
658
1220
222
39170 | 64440
2079
3860
1160
127800 | 37224
1241
3450
276
73830 | 4667
151
255
112
9260 | 3103
100
135
72
6150 | 3524
117
306
73
6990 | | STATIST | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 136
378
1998
49.6
1935 | | 105
205
1998
56.6
1916 | 101
190
1998
45.0
1916 | 103
176
1998
50.0
1916 | 168
433
1910
73.5
1964 | 658
1675
1962
236
1995 | 1734
3350
1984
702
1977 | 1817
3771
1917
141
1934 | 368
1684
1957
16.2
1934 | 153
387
1984
40.5
1931 | 111
432
1997
19.5
1944 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | IDAR YEAR | F | FOR 2000 W | ATER YEAR | | WATER YEA | ARS 1910 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 159259
436
2820
95
97
315900
1300
161
108 | May 30
Dec 12
Dec 7 | | 157143
429
3860
72
81
4620
6.82
311700
1280
126
100 | May 30
Aug 15
Aug 11
May 29
May 29 | | 466
821
169
5870
44.0
4.9
b6820
c7.08
337700
1520
138
75 | Jun 1
Sep
Sep
Jun 1
Jun 1 | 1984
1977
4 1921
8 1934
9 1944
4 1921
4 1921 | | a Also occurred Sep 10-13, 1944. b Present datum, from rating curve extended above 4800 ${\rm ft}^3/{\rm s}.$ c Maximum gage height, 7.65 ft, Jun 3, 1997. ## 09239500 YAMPA RIVER AT STEAMBOAT SPRINGS, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1990 to September 1993, October 1996 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | | | | | | | | |---|---|---|--|---|--|---|---|--|---|--|--|--| | DATE | CHA
IN
CU
F
TIME P | EET DUC
ER ANC
COND (US/ | FIC WHO I- FIE CT- (STA CE AR (CM) UNI | TER DLE LD TEMP AND- ATU RD WAT TTS) (DEG | G C) (MG | FOF
FEC
EN, 0.7
SS- UM-
VED (COL
S/L) 100 | CAL, WHO TOT MF UREA S./ (COL ML) 100 | TER HAF
DLE NES
TAL TOT
LSE (MG
L / AS
ML) CAC | :03) AS | MAGNE-
SIUM,
S- DIS-
JVED SOLVED
S/L (MG/L
CA) AS MG)
115) (00925) | | | | OCT 20 | 1105 1 | 20 31 | L7 8. | 5 4. | 6 10. | 9 K | .5 K | | 10 36. | 6 12.6 | | | | MAR
08
13 | | 96 30
86 30 |)8 8.
)7 8. | | 1 11. | | | .5 14
15 | | | | | | JUN
22 | 1500 5 | 45 7 | 73 7. | 0 16. | .0 7. | 8 2 | 26 2 | .7 2 | 29 7. | .98 2.20 | | | | AUG
17 | 1000 | 87 24 | 12 8. | 5 19. | 1 7. | 7 5 | 58 2 | .7 11 | .0 27. | 8.93 | | | | DATE | SOLVED
(MG/L
AS NA) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | (MG/L
AS K) | WAT.DIS
FET
LAB
CACO3
(MG/L) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | | | | OCT 20 | 9.2 | .3 | 2.0 | 131 | 32.3 | 3.5 | .2 | 13.2 | 188 | . 26 | | | | MAR
08
13 | 9.2
9.1 | .3 | 1.9 | 127
144 | 27.4
29.5 | 4.8
4.0 | .1
.1 | 14.5
14.7 | 183
189 | . 25
. 26 | | | | JUN
22 | 2.6 | .2 | .8 | 29 | 5.7 | .9 | <.1 | 8.2 | 46 | .06 | | | | AUG
17 | 8.0 | .3 | 1.7 | 99 | 19.5 | 3.5 | .2 | 10.5 | 140 | .19 | | | | DATE | SOLVED
(TONS
PER
DAY) | DIS-
SOLVED | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | ORGANIC
DIS.
(MG/L
AS N) | PHORUS
TOTAL
(MG/L
AS P) | PHORUS
DIS-
SOLVED
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS P) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | | | OCT
20 | 61.0 | <.010 | <.050 | <.020 | .27 | .19 | .020 | .011 | <.010 | | | | | MAR
08
13 | 96.6
94.9 | .003
<.010 | .208
.127 | <.002
<.020 | .32 | .21 | E.044 | .021
<.050 | .010
.011 |
3.9 | | | | JUN
22 | 65.1 | <.001 | <.005 | .003 | .33 | .22 | .026 | .009 | <.001 | | | | | AUG
17 | 32.9 | .001 | <.005 | .008 | .41 | .33 | .065 | .046 | .034 | | | | | DATE | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | | | OCT
20 | <.1 | <1 | 330 | <1 | 106 | 76 | <.2 | <2.4 | <.2 | <20 | | | | MAR
08 | <.1 | <1 | 400 | <1 | 87 | 80 | <.2
 <2.4 | <.2 | <20 | | | | JUN
22 | <.1 | <1 | 250 | <1 | 19 | 4 | <.2 | <2.4 | <.2 | <20 | | | | AUG
17 | <.1 | <1 | 250 | <1 | 48 | 13 | <.2 | <2.4 | <.2 | <20 | | | | | | | | | | | | | | | | | ## 09239500 YAMPA RIVER AT STEAMBOAT SPRINGS, CO--Continued # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------|------|---|---|---|------|------|---|--|---| | OCT | | | | | APR | | | | | | 04 | 1215 | 114 | 306 | 9.3 | 11 | 0930 | 737 | 235 | 3.7 | | NOV | | | | | MAY | | | | | | 08 | 0955 | 107 | 316 | 4.0 | 16 | 1420 | 1240 | 75 | 11.5 | | 29 | 1045 | 123 | 333 | 1.3 | 31 | 0655 | 3500 | 42 | 6.7 | | JAN | | | | | JUL | | | | | | 19 | 1000 | 144 | 296 | . 4 | 11 | 1130 | 160 | 152 | 20.8 | | FEB | | | | | AUG | | | | | | 29 | 1305 | 133 | 312 | 4.6 | 15 | 1540 | 67 | 263 | 22.2 | | MAR | | | | | SEP | | | | | | 14 | 1125 | 185 | 328 | 2.0 | 25 | 1305 | 137 | 259 | 10.4 | #### 09240900 ELK RIVER ABOVE CLARK, CO LOCATION.--Lat $40^{\circ}44^{\circ}36^{\circ}$, long $106^{\circ}51^{\circ}17^{\circ}$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.18, T.9 N., R.84 W., Routt County, Hydrologic Unit 14050001, on right bank 0.7 mi downstream from Coulton Creek, 1.5 mi upstream from Willow Creek, and 4.2 mi northeast of Clark. DRAINAGE AREA.--122 mi². PERIOD OF RECORD.--October 1987 to September 1993. April 1998 to current year (seasonal records only). REVISED RECORDS. -- WDR CO-92-2: 1991. GAGE.--Water-stage recorder. Elevation of gage is 7,520 ft above sea level, from topographic map. Prior to Apr. 1998 at site 90 ft upstream at same datum. REMARKS.--No estimated daily discharges. Records fair. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. AVERAGE DISCHARGE.--5 years (water years 1988-93), 200 ft³/s; 144,700 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge (occurred during period of seasonal record), 2,680 ft³/s, May 29, 2000, gage height, 4.70 ft; maximum gage height, 6.13 ft, June 16, 1993, at site then in use; minimum daily, 17 ft³/s, Nov. 9, 10, and 13, 1987. EXTREMES FOR CURRENT YEAR (seasonal only).--Maximum discharge, 2,680 ft³/s, May 29 at 2130, gage height, 4.70 ft; minimum daily, 34 ft³/s Sept. 17. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAILY MEAN VALUES | | | | | | | | | | | | | | |-------------------|-----|-----|-----|-----|-----|-----|-------|-------|-------|------|------|------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | | | | | | | 44 | 657 | 1770 | 307 | 73 | 58 | | | 2 | | | | | | | 44 | 812 | 1510 | 298 | 70 | 54 | | | 3 | | | | | | | 42 | 978 | 1440 | 280 | 69 | 47 | | | 4 | | | | | | | 45 | 1130 | 1380 | 258 | 68 | 45 | | | 5 | | | | | | | 61 | 1310 | 1370 | 237 | 67 | 43 | | | J | | | | | | | 01 | 1310 | 1370 | 237 | 07 | 43 | | | 6 | | | | | | | 67 | 1330 | 1350 | 222 | 65 | 47 | | | 7 | | | | | | | 64 | 1150 | 1330 | 210 | 61 | 43 | | | 8 | | | | | | | 63 | 897 | 1250 | 202 | 59 | 43 | | | 9 | | | | | | | 80 | 707 | 1180 | 225 | 57 | 56 | | | 10 | | | | | | | 94 | 873 | 1020 | 200 | 55 | 45 | | | | | | | | | | | | | | | | | | 11 | | | | | | | 108 | 899 | 904 | 186 | 57 | 41 | | | 12 | | | | | | | 128 | 642 | 833 | 172 | 54 | 39 | | | 13 | | | | | | | 156 | 550 | 799 | 161 | 54 | 39 | | | 14 | | | | | | | 187 | 539 | 692 | 156 | 53 | 37 | | | 15 | | | | | | | 183 | 595 | 700 | 148 | 52 | 36 | | | 16 | | | | | | | 154 | 725 | 674 | 142 | 58 | 35 | | | 17 | | | | | | | 181 | 842 | 539 | 144 | 56 | 34 | | | | | | | | | | | | | | | | | | 18 | | | | | | | 235 | 645 | 503 | 152 | 56 | 43 | | | 19 | | | | | | | 195 | 589 | 594 | 129 | 57 | 41 | | | 20 | | | | | | | 171 | 665 | 725 | 119 | 53 | 40 | | | 21 | | | | | | | 199 | 787 | 525 | 111 | 51 | 42 | | | 22 | | | | | | | 242 | 983 | 496 | 106 | 50 | 184 | | | 23 | | | | | | | 257 | 1400 | 472 | 101 | 57 | 146 | | | 24 | | | | | | | 278 | 1640 | 448 | 97 | 50 | 109 | | | 25 | | | | | | | 230 | 1420 | 431 | 94 | 54 | 81 | | | | | | | | | | | | | | | | | | 26 | | | | | | | 277 | 1760 | 404 | 91 | 58 | 87 | | | 27 | | | | | | | 407 | 1490 | 445 | 89 | 56 | 79 | | | 28 | | | | | | | 536 | 1650 | 389 | 85 | 59 | 74 | | | 29 | | | | | | | 610 | 2140 | 343 | 81 | 53 | 73 | | | 30 | | | | | | | 638 | 2030 | 321 | 78 | 62 | 78 | | | 31 | | | | | | | | 1970 | | 75 | 67 | | | | 31 | | | | | | | | 1770 | | 7.5 | 0 / | | | | TOTAL | | | | | | | 5976 | 33805 | 24837 | 4956 | 1811 | 1819 | | | MEAN | | | | | | | 199 | 1090 | 828 | 160 | 58.4 | 60.6 | | | MAX | | | | | | | 638 | 2140 | 1770 | 307 | 73 | 184 | | | MIN | | | | | | | 42 | 539 | 321 | 75 | 50 | 34 | | | AC-FT | | | | | | | 11850 | 67050 | 49260 | 9830 | 3590 | 3610 | | #### 09241000 ELK RIVER AT CLARK, CO LOCATION.--Lat $40^{\circ}43^{\circ}03^{\circ}$, long $106^{\circ}54^{\circ}55^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.27, T.9 N., R.85 W., Routt County, Hydrologic Unit 14050001, on left bank 15 ft downstream from bridge on State Highway 129, 0.8 mi north of Clark, and 2.0 mi upstream from Cottonwood Gulch DRAINAGE AREA. -- 216 mi². PERIOD OF RECORD.--May 1910 to September 1922 (published as "near Clark"), April 1930 to September 1991. Monthly discharge only for some periods, published in WSP 1313. April 1998 to current year (seasonal records only). REVISED RECORDS.--WSP 1733: 1956. WDR CO-88-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,267.75 ft above sea level (State Highway bench mark). May 1910 to Sept. 1922, nonrecording gage at site 30 ft upstream at datum 0.15 ft lower. Apr. 23, 1930 to Sept. 27, 1934, water-stage recorder at present site at datum 0.15 ft lower. REMARKS.--No estimated daily discharges. Records fair. Diversions upstram from station for irrigation of about 230 acres upstream from and about 460 acres downstream from station. Natural flow of stream affected by storage in Lester Creek Reservoir (known also as Pearl Lake), capacity, 5,660 acre-ft, since 1963, and Steamboat Lake, capacity, 23,060 acre-ft, since 1968. Several measurements for specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report AVERAGE DISCHARGE.--73 years (water years 1910-22, 1930-91), 333 ft³/s; 241,300 acre-ft/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,910 ft³/s, May 23, 1984, gage height, 6.12 ft; minimum daily determined, 22ft³/s, Dec. 12, 1963, but a lesser discharge may have occurred during periods of no gage height record prior to 1939. EXTREMES FOR CURRENT YEAR (seasonal only).--Maximum discharge, 3,420 ft³/s, May 29 at 2300, gage height, 5.35 ft; minimum daily, 49 ft³/s, Sept. 5, 7, and 8. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR JUN JUL AUG SEP JAN APR MAY 1120 2180 301 80 76 2 ------___ ---------58 1260 1800 293 77 59 3 1400 1600 276 53 257 4 5 ___ ___ ___ ___ ___ 60 1460 1500 74 51 ---___ ___ ---237 73 79 1520 1430 49 6 7 ---------___ ------90 1470 1410 219 71 52 ---___ ------------207 92 1330 1370 49 68 8 1130 1290 199 66 49 ___ ___ ___ ___ ___ ___ 120 933 1220 222 63 62 10 152 1140 200 51 1050 62 11 ___ ___ ___ ___ ___ ___ 247 1120 914 187 63 50 12 276 172 890 835 60 69 794 13 ---310 838 14 ___ ___ ___ ___ ___ ___ 354 810 685 157 59 68 350 149 15 67 689 58 975 ---___ 660 63 65 16 ___ ___ ___ ___ 311 144 17 358 1070 534 146 64 67 ---------433 892 494 155 80 76 18 19 ___ ___ ___ ___ ___ ___ 366 798 595 132 81 71 79 20 21 379 1070 507 74 ------------------115 75 22 ---___ ___ ___ ___ ---476 72 240 ---23 ---------------493 1720 451 121 79 191 ------------24 ------522 1890 428 116 71 151 25 ------___ ---------112 117 26 645 2060 390 110 81 124 27 ------___ ---------853 423 115 1720 108 81 ------------28 ------1020 1910 374 104 83 110 29 335 75 1130 2610 102 110 30 ------116 1120 2660 314 89 31 ------------------2550 82 90 ---TOTAL 11284 43016 25877 5118 2244 2571 MEAN ------------------376 1388 863 165 72.4 85.7 90 1130 2660 2180 301 240 MAX MIN ___ ___ ___ ___ ___ 798 314 5.0 49 22 ------------22380 10150 AC-FT ---85320 51330 4450 5100 #### 09242500 ELK RIVER NEAR MILNER, CO LOCATION.--Lat $40^{\circ}30^{\circ}53^{\circ}$, long $106^{\circ}57^{\circ}12^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.5, T.6 N., R.85 W., Routt County, Hydrologic Unit 14050001, on left bank 30 ft downstream from bridge on County Road 44, 2.5 mi upstream from mouth, and 3.2 mi east of Milner. DRAINAGE AREA. -- 460 mi2 (revised). PERIOD OF RECORD.--May 1904 to September 1927 (published as "near Trull"). April 1990 to current year. Records for 1910-27 furnished by State Engineer of Colorado. Monthly discharge only for some periods, published in WSP 1313. Water-quality data available, August 1975 to September 1976 and April 1990 to September 1997. REVISED RECORDS. -- WDR CO-98-2: 1997 (M). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,590 ft above sea level, from topographic map. May 1904 to Sept. 1909, nonrecording gage, at different datum, Oct. 1910 to Sept. 1927, water-stage recorder at
different REMARKS.--Records good except for estimated daily discharges, which are poor. During high flows, channel overflow may occur and cause some streamflow to bypass gage. Diversions upstream from station for irrigation of about 6,500 acres upstream from and about 1,000 acres downstream from station. Natural flow of stream affected by storage in Lester Creek Reservoir (known also as Pearl lake), capacity, 5,660 acre-ft, since 1963, and Steamboat lake, capacity, 23,060 acre-ft, since 1968. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCIAN | GE, CODI | C FEET FE | DAILY | MEAN V | | ER 1999 10 | OBF TEMO | EIC 2000 | | | |----------|---|------------|------------|------------|------------|------------|------------|--------------|--------------|-----------------|-----------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 92 | e74 | e75 | e62 | e58 | e85 | 186 | 2050 | 3660 | 430 | 83 | 92 | | 2 | 90 | e74 | e78 | e62 | e58 | e86 | 195 | 2310 | 2990 | 416 | 79 | 71 | | 3 | 89 | e74 | e75 | e62 | e58 | e87 | 170 | 2640 | 2750 | 382 | 77 | 61 | | 4 | 88 | e72 | e72 | e62 | e58 | e88 | 187 | 2810 | 2560 | 343 | 78 | 53 | | 5 | 86 | e72 | e70 | e61 | e59 | e88 | 337 | 3070 | 2430 | 308 | 81 | 49 | | 6 | 108 | e72 | e73 | e61 | e59 | e89 | 524 | 3150 | 2370 | 280 | 79 | 50 | | 7 | 128 | e71 | e76 | e61 | e60 | e89 | 543 | 2800 | 2330 | 263 | 70 | 48 | | 8
9 | 116 | 67 | e73 | e62 | e60 | e90 | 490 | 2310 | 2180 | 252 | 62
60 | 39 | | 10 | 109
103 | 65
57 | e72
e70 | e61
e61 | e60
e59 | e90
e90 | 589
691 | 1830
2070 | 2060
1810 | 275
266 | 58 | 46
48 | | 11 | 100 | 56 | e70 | e61 | e58 | e90 | 765 | 2300 | 1580 | 228 | 50 | 45 | | 12 | 98 | 55 | e70 | e61 | e60 | e90 | 818 | 1750 | 1440 | 214 | 50 | 52 | | 13 | 97 | 51 | e70 | e60 | e62 | e90 | 868 | 1530 | 1370 | 198 | 49 | 57 | | 14 | 109 | 51 | e69 | e60 | e61 | e92 | 944 | 1440 | 1150 | 187 | 47 | 57 | | 15 | 112 | 53 | e69 | e60 | e63 | e92 | 936 | 1480 | 1160 | 184 | 44 | 60 | | 16 | 111 | 51 | e67 | e60 | e60 | e92 | 745 | 1640 | 1150 | 178 | 46 | 62 | | 17 | 98 | 57 | e67 | e60 | e61 | e92 | 836 | 2020 | 880 | 181 | 54 | 63 | | 18 | 110 | 87 | e67 | e60 | e61 | 92 | 1050 | 1620 | 814 | 210 | 60 | 82 | | 19 | 113 | 59 | e66 | e60 | e61 | 84 | 858 | 1410 | 950 | 169 | 69 | 94 | | 20 | 109 | 55 | e65 | e59 | e60 | 89 | 745 | 1440 | 1320 | 149 | 70 | 86 | | 21 | 112 | 70 | e65 | e58 | e61 | 81 | 814 | 1640 | 897 | 138 | 70 | 96 | | 22 | 85 | 67 | e65 | e58 | e64 | 85 | 981 | 1920 | 820 | 138 | 65 | 383 | | 23 | 71 | 65 | e64 | e58 | e64 | 99 | 1130 | 2570 | 756 | 137 | 75 | 326 | | 24 | 68 | e66 | e64 | e59 | e67 | 118 | 1280 | 3360 | 688 | 123 | 73 | 247 | | 25 | 66 | e68 | e64 | e59 | e76 | 123 | 1010 | 2790 | 670 | 129 | 71 | 191 | | 26 | 65 | e72 | e63 | e60 | e75 | 147 | 1180 | 3420 | 615 | 124 | 75 | 182 | | 27 | 64 | e70 | e63 | e62 | e77 | 171 | 1550 | 2880 | 611 | 120 | 79 | 168 | | 28 | 67 | e71 | e63 | e59 | e82 | 213 | 1910 | 3000 | 582 | 119 | 81 | 157 | | 29 | 75 | e73 | e64 | e58 | e84 | 255 | 2150 | 3960 | 496 | 111 | 69 | 153 | | 30
31 | e76
e76 | e74
 | e63
e62 | e59
e59 | | 254
205 | 2090 | 4290
4020 | 454 | 106
89 | 84
104 | 166
 | | TOTAL | 2891 | 1969 | 2114 | 1865 | 1846 | 3536 | 26572 | 75520 | 43543 | 6447 | 2112 | 3284 | | MEAN | 93.3 | 65.6 | 68.2 | 60.2 | 63.7 | 114 | 886 | 2436 | 1451 | 208 | 68.1 | 109 | | MAX | 128 | 87 | 78 | 62 | 84 | 255 | 2150 | 4290 | 3660 | 430 | 104 | 383 | | MIN | 64 | 51 | 62 | 58 | 58 | 81 | 170 | 1410 | 454 | 89 | 44 | 39 | | AC-FT | 5730 | 3910 | 4190 | 3700 | 3660 | 7010 | 52710 | 149800 | 86370 | 12790 | 4190 | 6510 | | STATIST | CICS OF MO | ONTHLY MEA | N DATA FO | OR WATER | YEARS 1905 | - 2000 | , BY WATE | R YEAR (WY) | | | | | | MEAN | 146 | 113 | 93.8 | 89.4 | 91.8 | 172 | 741 | 2131 | 2245 | 702 | 172 | 117 | | MAX | 424 | 234 | 154 | 135 | 145 | 320 | 1214 | 3977 | 3824 | 1940 | 445 | 518 | | (WY) | 1919 | 1919 | 1998 | 1998 | 1921 | 1916 | 1919 | 1920 | 1917 | 1917 | 1912 | 1997 | | MIN | 58.9 | 58.0 | 48.8 | 51.5 | 45.9 | 52.0 | 377 | 940 | 767 | 160 | 59.6 | 33.1 | | (WY) | 1993 | 1991 | 1993 | 1992 | 1991 | 1991 | 1995 | 1990 | 1992 | 1994 | 1994 | 1994 | | SUMMARY | STATIST: | ICS | FOR 3 | 1999 CALEI | NDAR YEAR | 1 | FOR 2000 1 | WATER YEAR | | WATER Y | EARS 1905 | - 2000 | | ANNUAL | TOTAL | | | 202111 | | | 171699 | | | | | | | ANNUAL | | | | 554 | | | 469 | | | 575 | | | | | ANNUAL N | MEAN | | | | | | | | 886 | | 1917 | | LOWEST | ANNUAL MI | EAN | | | | | | | | 282 | | 1992 | | | DAILY M | | | 4070 | May 31 | | 4290 | May 30 | | 5350 | | .5 1921 | | | LOWEST DAILY MEAN | | | 51 | Nov 13 | | 39 | Sep 8 | | a17 | | .2 1994 | | | ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW | | | 53 | Nov 10 | | 46 | Sep 5 | | 21 | | 7 1994 | | | | | | | | | 5020 | May 30 | | b5740 | | 3 1997 | | | RUNOFF (A | EAK STAGE | | 400900 | | | 340600 | 74 May 30 | | c7.18
416600 | s Jun | 3 1997 | | | CENT EXCE | | | 2080 | | | 1670 | | | 1960 | | | | | ENT EXCE | | | 120 | | | 86 | | | 135 | | | | | ENT EXCE | | | 68 | | | 58 | | | 65 | | | | | | | | | | | | | | | | | A lesser discharge may have occurred during periods of no gage-height record prior to Sep 20, 1919. Peak discharge includes 370 ${\rm ft}^3/{\rm s}$ overflow that bypassed the main channel. Gage height reflects the discharge flowing in the main channel (5370 ${\rm ft}^3/{\rm s}$). ## 09243700 MIDDLE CREEK NEAR OAK CREEK, CO LOCATION.--Lat $40^{\circ}23^{\circ}08^{\circ}$, long $106^{\circ}59^{\circ}33^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.13, T.5 N., R.86 W., Routt County, Hydrologic Unit 14050001, on left bank 1.1 mi upstream from mouth of Foidel Creek and 13.5 mi northwest of Oak Creek. DRAINAGE AREA.--23.5 mi². PERIOD OF RECORD.--October 1975 to September 1981, April 1982 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,720 ft above sea level, from topographic map. Oct. 1975 to Oct. 1, 1996, water-stage recorder at site 70 ft upstream at same datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | | YEAR OCTOBER
VALUES | 1999 TO | SEPTEMBER | 2000 | | | |--|--|--|--------------------------------------|--|-------------------------------------|--|--|--|-------------------------------------|---|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | . 29
. 30
. 25
. 25
. 26 | | | | | e1.1
e1.1
e1.2
e1.2 | 1.4
1.5
1.4
1.5
3.5 | 11
9.1
8.2
7.5
7.0 | 1.4
1.4
1.4
1.3 | . 25
. 24
. 24
. 24
. 24 | .00
.00
.00
.00 | .25
.21
.16
.12 | | 6
7
8
9
10 | . 27
. 25
. 27
. 28
. 28 | .64
.53
.39
.37 | e.40
.25
.24
.25
.29 | .32
.29
.35
.30 | .59
.58
.52
.51 | e1.3
e1.4
e1.3
e1.4 | 6.4
6.5
5.5
5.9
6.8 | 6.4
6.2
7.8
7.7
5.2 | 1.1
1.1
1.0
1.0
.98 | .21
.21
.24
.40 | .00
.00
.00
.00 | .04
.03
.04
.05 | | 11
12
13
14
15 | .27
.23
.21
.22
.21 | .57
.52
.47
.54 | .33
.30
.26
.27 | .32
.45
.53
.63 | .58
.54
.40
.48
.40 | e1.4
1.5
e1.1
e.85 | 6.3
5.8
5.9
6.4
7.1 | 4.9
5.6
4.8
4.6
4.4 | .97
.90
.79
.78 | .26
.23
.22
.19 | .00
.00
.17
.81 | .03
.04
.02
.01 | | 16
17
18
19
20 | .26
.31
.32
.41 | .44
.70
.64
e.70
.84 | . 47
. 57
. 50
. 56
. 58 | .70
.66
.99
e.90
e1.0 | .50
.55
.48
.43 | e1.0
e.90
e.90
e.80 | 6.4
6.1
6.5
6.6
5.7 | 4.2
4.3
5.3
4.3
3.7 | .80
.57
.67
.66 | .13
.16
.27
.18 | .71
.86
1.0
1.3
2.2 | .00
.00
.01
.00 | | 21
22
23
24
25 | .40
.35
.33
.30 | e.70
.47
e.70
.77
.24 | .64
.64
.60
.60 | .84
e1.0
e1.0
e.80
.74 | .50
.52
.43
.52 | e.80
e.80
.83
.97
1.1 | 5.4
6.1
11
15
16 | 3.5
3.2
2.9
2.8
3.3 | .47
.41
.39
.38 | .10
.08
.06
.05 | 2.6
1.0
.82
1.0 | .03
.63
.42
.38
.24 | | 26
27
28
29
30
31 | . 29
. 28
. 47
. 68
. 74
. 73 | .28
e.40
e.40
e.45 | .60
.56
.50
.41
.33 | .76
e.60
e.60
e.65
.76
.47 | . 49
. 49
. 73
. 54
 | 1.3
1.6
1.8
2.1
2.0
1.6 | 14
13
13
13
12 | 3.7
3.4
2.7
2.2
1.9 | .50
.41
.35
.28
.27 | .03
.04
.03
.02
.00 | 1.1
.86
.81
.76
.72 | .20
.18
.16
.16 | | TOTAL
MEAN
MAX
MIN
AC-FT | 10.43 | 16.15 | 13.48 | 18.14
.59 | 15.36
.53 | | 221.7 |
153.5
4.95
11
1.7
304 | 23.24
.77
1.4
.27
46 | 5.02
.16
.40
.00 | 18.78 | 3.69
.12
.63
.00
7.3 | | | | | | | | | 0, BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | .50
1.85
1998
.000
1978 | .65
1.98
1985
.000
1978 | .57
1.83
1985
.000
1978 | .55
1.85
1985
.000
1977 | .73
2.46
1986
.000
1978 | 1.96
7.90
1986
.67
1991 | 41.9
1996
1.01 | 24.4
98.2
1984
1.00
1981 | 5.84
26.1
1984
.49
1990 | 1.89
5.89
1984
.092
1989 | 1.19
9.06
1995
.000
1977 | .40
2.52
1997
.000
1976 | | SUMMARY | Y STATIST | ICS | FOR 1 | .999 CALENI | DAR YEAR | | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1976 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN I ANNUAL I ANNUAL MI I DAILY ME DAILY ME SEVEN-DAI IANEOUS PI | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 1260.09
3.45
31
.21
.24
2500
9.0
.81
.33 | May 1
Oct 13
Oct 10 | | 537.03
1.47
16
a.00
.00
18
c1.39
1070
5.2
.56 | Apr 25
Jul 30
Jul 30
Apr 24
Apr 24 | | 4.33
13.2
.50
297
a.00
.50
b329
d4.08
3130
11
.78 | May 1
Oct
Oct
May 1
May 1 | 1984
1977
4 1984
1 1975
1 1975
4 1984
4 1984 | e Estimated. a No flow many days most years. b From rating curve extended above 77 ft³/s. c Maximum gage height, 1.77 ft, Mar 17, backwater from ice. d Maximum gage height, 4.34 ft, Apr 24, 1996. #### 09243800 FOIDEL CREEK NEAR OAK CREEK, CO LOCATION.--Lat $40^{\circ}20^{\circ}45^{\circ}$, long $107^{\circ}05^{\circ}04^{\circ}$, in $NW^{1}/_{4}SW^{1}/_{4}$ sec.31, T.5 N., R.86 W., Routt County, Hydrologic Unit 14050001, on right bank 2.3 mi downstream from Reservoir No. 1, 6.9 mi upstream from mouth, and 8.7 mi northwest of Oak Creek. DRAINAGE AREA.--8.61 mi². PERIOD OF RECORD.--October 1975 to October 1981, April 1982 to September 1983, October 1984 to current year. Water-quality data available, September 1975 to September 1983, and October 1984 to September 1993. Daily record for specific conductance and water temperature available, May 1976 to September 1981, April 1982 to September 1983, and March 1986 to September 1988. GAGE.--Water-stage recorder. Elevation of gage is 6,880 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharge, which are poor. Natural flow of stream effected by Reservoir No. 1, which is 2.3 mi upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | | | | | | | | | |---|--------------------------------------|--------------------------------------|--|--|--------------------------------------|--|---------------------------------------|--------------------------------------|---|--------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | . 23
. 32
. 26
. 36
. 28 | .27
.35
.31
.24 | e.43
e.43
e.42
e.32
e.32 | e.26
e.26
e.26
e.24
e.24 | e.36
e.38
e.38
e.40
e.40 | .39
.36
.41
.47 | 1.5
1.8
1.8
2.8
7.6 | 1.7
1.6
1.5
1.4 | 1.4
1.3
1.3
1.3 | . 43
. 45
. 43
. 46
. 45 | .18
.16
.16
.18 | .15
.16
.13
.11 | | | 6
7
8
9
10 | . 27
. 25
. 24
. 23
. 23 | .24
.18
.06
.18 | e.33
e.32
e.40
e.39
e.36 | e.22
e.20
e.20
e.18
e.20 | e.40
e.42
.39
.33 | .80
.76
.68
.55 | 11
8.8
7.7
8.5
7.9 | 1.4
1.5
2.0
2.1
1.8 | | .41
.43
.42
.43
.45 | | .14
.12
.07
.06 | | | 11
12
13
14
15 | .22
.22
.21
.20 | .18
.17
.16
.15
e.11 | e.35
e.29
e.30
e.29
e.25 | e.22
e.22
e.22
e.24
e.25 | .34
.36
.41
.43 | .46
.59
.60
.57 | 6.4
4.7
4.0
3.6
3.0 | 1.8
2.0
1.9
1.8
1.8 | .87
.82
.76
.74
.64 | .41
.51
.49
.48 | .12
.15
.16
.18 | .08
.05
.05
.02 | | | 16
17
18
19
20 | | e.11
e.17
e.19
e.15
e.16 | | e.26
e.27
e.28
e.28
e.29 | | | | 1.8
2.0
2.3
2.1
2.0 | | | .15
.16
.14
.15 | .00
.00
.00
.00 | | | 21
22
23
24
25 | | | | e.30
e.25
e.20
e.10
e.20 | | | .96
1.2
5.5
5.4
3.5 | | | .38
.39
.38
.34 | .14
.16
.14
.09 | .02
.12
.15
.17 | | | 26
27
28
29
30
31 | .53
.52
.53
.11
.55 | e.30
e.41
e.37
e.42
e.41 | e.20
e.21
e.24
e.24
e.25
e.25 | e.30
e.27
e.30
e.28
e.32
e.36 | .36
.36
.36
.40 | 1.2
1.7
2.0
2.5
2.3
1.7 | 2.4
1.8
1.7
1.5
1.7 | 2.5
2.4
2.1
1.9
1.7 | .51
.48
.48
.44
.46 | .32
.33
.29
.25
.22 | .08
.09
.11
.12
.09 | .12
.10
.07
.05
.04 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 12.90
.42
.87
.11
26 | 6.67
.22
.42
.06
13 | 8.62
.28
.43
.15 | 7.67
.25
.36
.10 | | 26.28
.85
2.5
.36
52 | 114.66
3.82
11
.96
227 | 58.0
1.87
2.5
1.4
115 | 24.06
.80
1.4
.44
48 | 12.52
.40
.51
.20
25 | 4.39
.14
.19
.08
8.7 | 2.31
.077
.17
.00
4.6 | | | STATIST | CICS OF MO | ONTHLY MEA | N DATA FO | OR WATER Y | ZEARS 1976 | - 2000 | , BY WATER | YEAR (WY |) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | .54
3.37
1986
.000
1976 | .54
2.24
1986
.000
1976 | .44
1.11
1986
.000
1976 | .41
1.13
1986
.000
1976 | .69
6.34
1986
.000
1977 | 2.02
7.90
1986
.000
1978 | 7.02
23.5
1996
.11
1977 | 5.68
17.2
1997
.077
1977 | 1.98
6.63
1997
.024
1977 | .82
2.09
1995
.000
1977 | .45
1.43
1985
.000
1976 | .37
2.15
1997
.000
1976 | | | SUMMARY | STATIST | ICS | FOR 3 | 1999 CALEN | NDAR YEAR | I | FOR 2000 W | ATER YEAR | | WATER YE | ARS 1976 | - 2000 | | | SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | Apr 26
5 Nov 8
5 Nov 13 | | 15 | Apr 6 3 Sep 15 5 Sep 14 Apr 5 8 Apr 5 | | 1.75
4.59
.02
49
a.00
.00
b65
4.47
1270
4.6
.58 | May Oct Oct May May | 1996
1977
5 1996
1 1975
1 1975
5 1996
5 1996 | | | e Estimated. a No flow many days most years. b From rating curve extended above 23 ft³/s. #### 09243900 FOIDEL CREEK AT MOUTH NEAR OAK CREEK, CO LOCATION.--Lat $40^{\circ}23^{\circ}25^{\circ}$, long $106^{\circ}59^{\circ}39^{\circ}$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec.14, T.5 N., R.86 W., Routt County, Hydrologic Unit 14050001, on left bank 1.0 mi upstream from mouth and 13.6 mi northwest of Oak Creek. DRAINAGE AREA.--17.5 mi². PERIOD OF RECORD.--October 1975 to September 1981, June 1982 to current year. Water-quality data available, April 1976 to September 1981, June 1982 to September 1988. Daily records for water temperature and specific conductance are available, April 1976 to September 1981. Daily records for suspended-sediment discharge are available, January 1978 to September 1981. Precipitation records are available, July 1978 to September 1997. REVISED RECORDS. -- WDR CO-78-3: 1976 (M), 1976. GAGE.--Water-stage recorder and wooden control. Elevation of gage is 6,730 ft above sea level, from topographic map. Prior to Feb. 19, 1992, at site 600 ft downstream, at same datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCULARCE CURTS EVER DED CECOND MATER VEAR OCTOBER 1000 TO CERTEMBER 2000 | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|--|--|--|--------------------------------------|--------------------------------------|---|---|--------------------------------------|--|---------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | |
1
2
3
4
5 | .43
.38
.35
.33 | .26
.24
.20
.17 | .60
.61
.60
.50 | e.44
e.44
e.44
e.42
e.42 | .55
.52
.54
.54 | .70
.72
.73
.72
.74 | 4.5
4.8
4.4
6.3 | 2.4
2.4
2.2
2.1
2.0 | 1.8
1.7
1.6
1.5 | .66
.63
.61
.52 | .00
.00
.00
.06 | .00
.00
.00
.00 | | | 6
7
8
9
10 | | .17
.17
.19
.19 | .51
.50
.62
.59 | e.40
e.38
e.38
.36
e.38 | .56
.60
.70
.69 | .76
.79
.76
.79 | 26
22
13
11
12 | 1.9
2.0
2.8
2.7
2.5 | 1.5
1.3
1.3
1.4 | . 48
. 45
. 43
. 48
. 41 | .00
.00
.00
.03 | .00
.00
.00
.00 | | | 11
12
13
14
15 | . 28
. 28
. 27
. 27
. 29 | .16
.15
.14
.15 | .55
.49
.50
.49 | e.40
e.40
e.40
e.53 | .65
.64
.65
.64 | 1.2
1.5
1.6
1.6 | 9.5
7.0
5.5
4.8
4.8 | 2.4
2.5
2.5
2.4
2.3 | 1.3
1.2
1.2
1.1 | . 28
. 25
. 26
. 24
. 20 | .00
.02
.06
.05 | .00
.00
.00
.00 | | | 16
17
18
19
20 | .23
.25
.26
.30 | .15
.17
.33
.29 | .41
.41
.39
.39 | e.60
e.66
e.70
.53 | .89
.70
.66
.65 | 1.3
1.2
1.2
1.2 | 4.1
3.3
2.8
2.6
2.5 | 2.2
2.2
2.6
2.5
2.3 | .97
.87
.90
.99 | .18
.24
.38
.30
.22 | .00
.00
.00
.00 | .00
.00
.00
.00 | | | 21
22
23
24
25 | .27
.27
.26
.24 | .31
.33
.31
.39 | .34
.31
.32
.34
.35 | .73
.55
.34
.12 | .71
.71
.71
.71
.68 | 1.1
1.1
1.2
1.4
1.8 | 2.2
2.4
5.1
8.0
6.6 | 2.2
2.2
2.2
2.1
2.3 | 1.0
.91
.81
.72
.66 | .18
.17
.11
.06 | .00
.00
.00
.00 | .01
.31
1.4
1.1 | | | 26
27
28
29
30
31 | . 26
. 24
. 24
. 34
. 33
. 30 | .44
.55
.52
.57 | .36
.37
e.40
e.40
e.42
e.42 | .51
.44
.47
.43
.50 | .71
.72
.75
.74
 | 3.7
8.0
9.1
13
11
5.9 | 4.1
3.2
2.7
2.5
2.4 | 3.0
3.0
2.5
2.3
2.1
2.0 | .77
.83
.82
.82
.76 | .03
.04
.01
.01
.00 | .00
.00
.00
.00
.00 | .65
.44
.34
.32
.31 | | | TOTAL
MEAN
MAX
MIN
AC-FT | 9.11
.29
.43
.23
18 | .14 | 14.04
.45 | | | 78.39
2.53
13
.70
155 | 210.1
7.00
26
2.2
417 | 72.8
2.35
3.0
1.9
144 | 33.83
1.13
1.8
.66
67 | 8.37
.27
.66
.00 | 0.28
.009
.06
.00 | 5.90
.20
1.4
.00 | | | STATIST | | NTHLY ME | AN DATA F | OR WATER Y | ZEARS 1976 | - 2000, | BY WATER | YEAR (WY | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | .87
4.05
1986
.000
1976 | 1.03
5.03
1986
.000
1977 | .95
5.96
1986
.000
1976 | .94
6.01
1986
.000
1977 | 1.41
10.4
1986
.000
1978 | 5.17
17.0
1986
.39
1977 | 14.6
41.1
1996
.41
1977 | 9.80
34.9
1984
.043
1977 | 3.26
10.9
1984
.000
1977 | 1.42
3.68
1984
.000
1976 | .72
2.84
1983
.000
1976 | .54
3.39
1997
.000
1976 | | | SUMMARY | STATISTI | CS | FOR | 1999 CALEN | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1976 | - 2000 | | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 23
.00
.15
1640
7.3
.70 | Apr 27
) Jun 5
5 Nov 11 | | 475.03
1.30
26
.00
.00
53
4.83
942
2.5
.50 | Apr 6
Jul 30
Aug 21
Apr 5
Apr 5 | | 3.39
7.63
.07
79
a.00
.00
b90
c6.43
2460
9.0
1.0 | Apr 2
Oct
Oct
Apr 1
Apr 1 | 1986
1977
25 1984
1 1975
1 1975
1 1996
11 1996 | | a No flow many days, most years. b Also occurred Apr 22, 1980. c Maximum gage height, 6.75 ft, Mar 20, 1997, backwater from ice. ## 09246200 ELKHEAD CREEK ABOVE LONG GULCH NEAR HAYDEN, CO LOCATION.--Lat $40^{\circ}35'30"$, long $107^{\circ}19'13"$, in $NW^{1}/_{4}SE^{1}/_{4}$ sec.1, T.7 N., R.89 W., Routt County, Hydrologic Unit 14050001, on left bank 0.3 mi upstream from Long Gulch, and 9.0 mi northwest of Hayden. DRAINAGE AREA.--171 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1995 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage 6,405 ft above sea level, from topographic map. REMARKS.--Record good except for estimated daily discharges, which are poor. Natural flow affected by diversions for irrigation of several hundred acres upstream from station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | | | | | | | | |---|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|---|--|------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.2
6.2
5.9
5.6
5.5 | 7.8
8.3
6.9
6.7
7.1 | e7.0
e6.0
e5.0
e6.5
e7.5 | e9.0
e9.5
e9.5
e9.0
e10 | e15
e14
e14
e16
e15 | e22
e24
26
24
22 | 69
92
67
120
294 | 887
1010
1060
1020
1030 | 148
132
118
104
87 | 11
11
11
8.6
7.2 | .55
.44
.34
.25 | 3.2
2.9
2.2
1.8
1.5 | | 6
7
8
9
10 | 5.6
6.3
8.0
8.1
6.8 | 7.3
7.1
7.1
7.1
7.1 | e8.5
e8.0
9.5
e9.5 | e10
e9.5
e9.5
e10
e10 | e13
e13
e13
e13
e14 | 27
30
34
28
22 | 308
247
231
327
352 | 943
739
644
479
589 | 80
71
62
54
53 | 6.8
5.0
4.1
5.6
7.3 | .14
.26
.24
.19 | 1.1
.90
.91
1.4
1.7 | | 12
13
14
15 | | | | e10
e10
e9.5
e10
e12 | | | | | 49
45
41
37
33 | | | | | 16
17
18
19
20 | 6.0
5.4
4.7
5.8
6.1 | 6.6
7.0
10
9.4
7.0 | e9.0
e9.5
e10
e10 | e14
e13
e14
e15
e16 | e15
e15
e15
e14
e14 | 17
22
22
22
21 | 295
424
607
392
309 | 308
352
307
268
256 | 29
26
26
28
54 | 2.0
2.0
2.7
2.5
2.4 | .02
.03
.05
1.1
3.2 | .83
.68
1.0
1.0 | | | | | | e17
e17
e16
e15
e15 | | | | | | 1.7
1.3
.91
.78 | | | | 26
27
28
29
30
31 | 6.6
6.6
8.5
8.2
7.8 | e7.0
e6.5
e7.0
e7.0 | e9.0
e9.0
e9.0
e9.0
e9.0 | e14
e13
e12
e14
e15
e15 | e17
e18
e20
e21 | 99
141
144
137
112
80 | 583
930
1150
1110
851 | 337
292
234
231
202
171 | 21
20
19
17
13 | .61
1.0
1.6
1.4
1.1 | 1.1
1.0
2.7
3.6
3.6
3.3 | 7.0
6.4
5.4
4.7
4.2 | | | | | | 382.5
12.3
17
9.0
759 | | 2750 | 465
1150
67
27680 | 14765
476
1060
171
29290 | 1512
50.4
148
13
3000 | 123.58
3.99
11
.61
245 | 30.64
.99
3.6
.02
61 | 3 79 | | | | | | OR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.6
39.5
1998
5.10
1997 | 16.3
33.2
1998
7.16
2000 | 15.9
34.0
1998
7.76
1999 | 17.3
34.5
1998
8.56
1996 | 19.0
39.3
1998
10.3
1996 | 87.7
151
1998
35.6
1996 | 400
493
1998
268
1999 | 800
1189
1997
476
2000 | 194
337
1997
50.4
2000 | 19.5
42.5
1998
3.99
2000 | 6.52
13.5
1997
.99
2000 | 10.1
37.6
1997
2.10
1996 | | SUMMARY | STATIST: | ICS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 W | | | WATER YE | ARS 1995 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 37525.4
103
1010
3.7
4.2
74430
403
11
5.7 | Apr 30
Aug 17
Aug 14 | | 33397.73
91.3
1150
.04
1750
6.60
66240
314
10 | | | 134
187
91.3
1860
.02
.04
a2760
7.86
97150
434
17
4.1 | May
Aug
Aug
May
May | 1997
2000
7 1997
15 2000
12 2000
7 1997
7 1997 | e Estimated. a From rating extended above 1,120 ft³/s. ## 09246200 ELKHEAD CREEK ABOVE LONG GULCH, NEAR HAYDEN, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1995 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: August 1995 to September 1999. WATER TEMPERATURE: September 1995 to September 1999. INSTRUMENTATION.--Water-quality monitor with satellite telemetry August 1995 to September 1999. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. ## EXTREMES FOR PERIOD OF DAILY RECORD.
-- SPECIFIC CONDUCTANCE: Maximum, 1120 microsiemens, Mar. 19, 1999; minimum, 86 microsiemens, May 21, 1999. WATER TEMPERATURE: Maximum, 29.0°C, July 23, 1999; minimum, 0.0°C, on many days during winter months. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------------|---|--|--|--|--|--|---|---|--|--|---| | OCT 27 | 1610 | 6.0 | 404 | 8.5 | 7.5 | 14 | 10.4 | | | 160 | 41.0 | | JAN
27 | 1515 | e13 | 616 | 8.2 | .0 | 4.9 | 12.0 | | | 240 | 53.2 | | MAR
29 | 1320 | 102 | 534 | 8.2 | 7.1 | 160 | 10.5 | 80 | 45 | 170 | 35.9 | | MAY
05
18
JUN | 2320
1500 | 1040
288 | 112
166 | 7.8
7.9 | 11.8
8.7 | 67
41 | 8.3
9.2 | K30
 | K16
 | 47
67 | 12.7
17.1 | | 20
29
AUG | 1137
1230 | 62
18 | 302
331 | 8.3
8.6 | 16.6
21.4 | 7.6
.8 | 8.0
7.4 | 54
 | 47
 | 120
130 | 29.5
31.1 | | 09 | 1045 | .28 | 658 | 8.4 | 22.6 | 3.6 | 7.3 | 37 | K18 | 240 | 49.9 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | CONSTI- | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT 27 | 14.8 | 20.3 | .7 | 2.0 | 154 | 54.9 | 3.6 | .1 | 13.0 | 242 | .33 | | JAN
27 | 25.2 | 40.4 | 1 | 2.1 | 148 | 165 | 5.2 | .2 | 13.9 | 394 | .54 | | MAR
29 | 19.1 | 37.6 | 1 | 2.7 | 94 | 160 | 4.1 | <.1 | 8.8 | 325 | .44 | | MAY
05
18
JUN | 3.83
5.77 | 3.6
6.5 | .2 | 1.1 | 42
61 | 11.3
21.3 | .5 | <.1
<.1 | 9.6
11.4 | 68
100 | .09
.14 | | 20
29
AUG | 11.5
12.4 | 15.0
17.8 | .6
.7 | 1.3
1.6 | 130
120 | 43.5
48.6 | 1.7
1.9 | .1
.1 | 12.3
7.5 | 193
193 | .26
.26 | | 09 | 27.9 | 50.9 | 1 | 4.5 | 212 | 125 | 7.4 | .2 | 5.6 | 399 | .54 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | | | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | OCT 27 | 3.90 | <.010 | <.050 | <.020 | .26 | .20 | .020 | <.006 | <.010 | | | | JAN
27 | | <.010 | .132 | <.020 | .15 | .14 | .011 | E.003 | <.010 | | | | MAR
29 | 97.4 | <.010 | .142 | <.020 | .69 | .35 | .196 | .048 | .033 | 11 | 7.2 | | MAY
05
18
JUN | 190
76.5 | <.010
<.010 | <.050
.050 | <.020
<.020 | 1.7
.48 | <.10
.22 | .843
.091 | <.006
.011 | <.010
<.010 | 14 | 7.2 | | 20
29
AUG | 32.5
9.37 | <.010
<.010 | <.050
<.050 | <.020
<.020 | .38 | . 23
. 25 | .026
.011 | .006
E.003 | <.010
<.010 | 5.5
 | 5.1 | | 09 | .30 | <.010 | <.050 | <.020 | .72 | .55 | .025 | .006 | <.010 | 9.1 | 8.3 | ## 09246200 ELKHEAD CREEK ABOVE LONG GULCH, NEAR HAYDEN, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | |------------------|---|--|---|--|--|--|---|--|--|---| | MAY
05
JUN | 8150 | <2.0 | 3 | 25 | 197 | <5 | <.1 | .7 | <.8 | 9 | | 29
AUG | 88 | <2.0 | <3 | 46 | 46.8 | <5 | <.1 | <.1 | E.5 | <1 | | 09 | 141 | E2.0 | <3 | 94 | 93.3 | <5 | <.1 | <.1 | <.8 | <1 | | DATE | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI)
(01132) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | MAY
05
JUN | 9 | 14 | 1 | 15000 | 70 | 15 | <1 | 12.5 | 356 | 7 | | 29 | <2 | 1 | E1 | 110 | E10 | <1 | <1 | 9.6 | 11 | 10 | | AUG
09 | <2 | E1 | 1 | 230 | <10 | <1 | <1 | 19.1 | 89 | E1 | | DATE | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | | MAY
05 | <.2 | <.3 | <1 | 21 | <2.4 | <3 | <1 | <1 | <20 | 56 | | JUN
29 | <.2 | <.3 | 1 | <2 | <2.4 | <3 | <1 | <1 | <20 | <31 | | AUG
09 | <.2 | <.3 | 4 | 3 | <2.4 | <3 | <1 | <1 | <20 | <31 | | | | | | | | | | | | | # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---|-----------|------|---|--|---| | OCT | | | | | MAR | | | | | | 05 | 1517 | 5.4 | 370 | 10.5 | 13 | 1225 | 24 | 681 | 1.2 | | NOV
19 | 0900 | 11 | 392 | .0 | 28
JUN | 1130 | 128 | 522 | 2.3 | | JAN | 0900 | 11 | 392 | .0 | 07 | 1430 | 72 | 263 | 22.3 | | 18 | 1045 | 14 | 527 | .1 | JUL | | | | | | FEB | | | | | 12 | 0735 | 5.3 | 394 | 17.8 | | 23 | 1325 | 14 | 658 | .0 | 25 | 1530 | .83 | 597 | 26.1 | | | | | | | SEP | 1500 | 0.0 | 0.55 | 10.0 | | | | | | | 25 | 1530 | 8.2 | 277 | 12.2 | ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | SEDI- | |------|------|---------|---------|---------| | | | CHARGE, | | MENT, | | | | INST. | SEDI- | DIS- | | | | CUBIC | MENT, | CHARGE, | | | | FEET | SUS- | SUS- | | DATE | TIME | PER |
PENDED | PENDED | | | | SECOND | (MG/L) | (T/DAY) | | | | (00061) | (80154) | (80155) | | | | | | | | OCT | | | | | | 27 | 1610 | 6.0 | 12 | .20 | | JAN | | | | | | 27 | 1515 | e13 | 8 | .30 | | MAY | | | | | | 05 | 2320 | 1040 | 1450 | 4070 | ## 09246400 ELKHEAD CREEK BELOW MAYNARD GULCH NEAR CRAIG, CO LOCATION.--Lat $40^{\circ}32^{\circ}31^{\circ}$, long $107^{\circ}23^{\circ}50^{\circ}$, in $SW^{1}/_{4}SE^{1}/_{4}$ sec.20, T.7 N., R.89 W., Moffat County, Hydrologic Unit 14050001, on left bank 2.0 mi downstream from Maynard Gulch, and 8.5 mi northeast of Craig. DRAINAGE AREA.--212 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1995 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,280 ft above sea level, from topographic map. REMARKS.--Record good except for estimated daily discharges, which are poor. Natural flow affected by diversions for irrigation of several hundred acres upstream from station and storage in Elkhead Reservoir. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000
DAILY MEAN VALUES | | | | | | | | | | | | |---|--|--|--------------------------------------|---|--------------------------------------|-------------------------------------|--|--|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.0
3.2
2.5
2.6
2.5 | 7.5
32
32
32
32
31 | 2.3
2.3
2.4
2.2
2.1 | e3.5
e3.0
e3.0
e3.0
e3.0 | 15
15
15
16
20 | 19
22
23
25
28 | 83
92
87
79
222 | 937
1020
1140
1100
1090 | 163
142
128
107
86 | 9.3
8.9
6.7
5.2
4.8 | 2.1
2.1
2.1
2.2
2.4 | 2.6
2.5
2.1
2.2
2.2 | | 6
7
8
9
10 | 2.9
4.5
4.1
4.8
5.2 | 31
31
30
30
30 | e2.1
e2.1
2.4
e2.2
e2.3 | e3.0
e3.5
e3.5
e3.6
e3.8 | 12
11
10
10 | 31
38
43
42
37 | 348
331
256
312
382 | 1020
817
709
548
548 | 73
65
59
51
42 | 3.9
3.5
3.7
4.8
4.5 | 2.1
2.0
2.0
1.8
1.8 | 2.3
2.3
2.3
2.4
2.0 | | 11
12
13
14
15 | 5.4
5.0
20
40
40 | 20
2.2
2.1
2.1
1.8 | e2.2
e2.2
e2.2
e2.4
e2.5 | e4.0
e4.2
e4.0
e3.8
e3.4 | 19
17
21
17
19 | 29
27
26
25
29 | 391
413
474
564
563 | 667
512
387
345
317 | 38
33
32
28
26 | 3.6
3.8
3.6
3.4
3.3 | 1.9
2.0
1.9
2.2
2.2 | 1.9
2.0
2.1
2.0
1.7 | | 16
17
18
19
20 | 41
41
41
41
40 | 2.0 | e2.5
2.9
2.5
2.4
2.9 | e3.0
e3.1
e3.7
e3.5
e3.0 | 16
16
16
15
14 | 29
25
26
25
26 | 396
399
617
514
374 | 312
341
342
298
278 | 23
20
20
22
23 | 3.4
3.6
3.3
2.3
2.1 | 2.2
2.6
2.7
2.9
2.5 | 1.6
1.9
2.1
1.7 | | 21
22
23
24
25 | 40
40
40
39
40 | 2.6
11
3.7
2.9
3.0 | 3.6
3.3
3.5
3.7
e3.5 | e2.4
e2.2
e2.3
e1.8
e1.9 | 14
15
15
16
17 | 25
23
27
48
71 | 415
495
771
927
609 | 260
269
279
304
297 | 31
25
19
17
15 | 2.4
2.4
2.5
2.7
2.6 | 2.2
2.6
2.7
2.7
2.8 | 2.0
3.9
2.1
2.1
2.0 | | 26
27
28
29
30
31 | 33
2.7
2.4
3.3
3.1
2.8 | 2.5 | e3.5
e3.5
e3.5
e3.5
e3.5 | 5.6
13
21
17
22
17 | 17
17
17
17
 | 98
143
194
179
159 | 563
862
1180
1270
954 | 337
341
278
254
237
196 | 14
14
12
12
9.9 | 2.5
2.4
2.3
2.3
2.3
2.6 | 2.6
2.9
3.2
2.9
3.3
3.0 | 1.7
1.8
1.5
1.6 | | TOTAL
MEAN
MAX
MIN
AC-FT | 596.0
19.2
41
2.4
1180 | 361.6
12.1
32
1.8
717 | 85.7
2.76
3.7
2.1
170 | 174.8
5.64
22
1.8
347 | 451
15.6
21
10
895 | 1656
53.4
194
19
3280 | 14943
498
1270
79
29640 | 15780
509
1140
196
31300 | 1349.9
45.0
163
9.9
2680 | 114.7
3.70
9.3
2.1
228 | 74.6
2.41
3.3
1.8
148 | 62.1
2.07
3.9
1.5
123 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 15.5
39.3
1998
2.56
1997 | 17.6
33.2
1998
12.1
2000 | 14.4
29.8
1998
2.76
2000 | 16.4
29.6
1998
5.64
2000 | 19.3
32.0
1998
12.1
1999 | 91.5
169
1998
53.4
2000 | 426
503
1998
253
1999 | 808
1224
1997
509
2000 | 195
362
1997
45.0
2000 | 17.3
39.3
1998
3.70
2000 | 6.28
13.6
1997
2.41
2000 | 7.90
32.0
1997
2.07
2000 | | SUMMARY | STATIST | ICS | FOR : | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | ર | WATER YEA | ARS 1995 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL M DAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 36311.1
99.5
938
1.8
2.1
72020
407
13
2.5 | May 10
Nov 15
Nov 12 | | 35649.4
97.4
1270
1.5
1.8
1610
a5.62
70710
343
8.2
2.1 | Apr 29
Sep 28
Sep 24
Apr 29
Apr 29 | 9
3
1
1
9 | 137
192
97.4
1870
1.4
1.5
2430
b6.83
99200
449
18
2.5 | Sep
Aug 2
May | 1997
2000
4 1998
2 1996
29 1996
8 1997
8 1997 | e Estimated. Maximum gage height, 6.66 ft, Dec 12, backwater from ice. b Maximum gage height, 8.00 ft, Dec 29, 1996, backwater from ice. ## 09246400 ELKHEAD CREEK BELOW MAYNARD GULCH, NEAR CRAIG, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1995 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: August 1995 to September 1999. WATER TEMPERTURE: August 1995 to September 1999. INSTRUMENTATION.--Water-quality monitor with satellite telemetry August 1995 to September 1999. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD. -- EXPECIFIC CONDUCTANCE: Maximum recorded, 588 microsiemens, Apr. 11, 1998: minimum recorded, 126 microsiemens, May 19, 1996. WATER TEMPERATURE: Maximum recorded, 31.3°C, July 24, 1996: minimum recorded, 0.0°C on many days during winter period. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------------|---|--|--|--|---|--|--|---|--|--|---| | OCT
28 | 0935 | 2.5 | 313 | 8.7 | 5.4 | 9.8 | 9.9 | | | 120 | 29.8 | | JAN
27 | 1230 | 13 | 325 | 8.1 | .0 | 7.4 | 12.4 | | | 120 | 30.3 | | MAR
29 | 1000 | 197 | 362 | 8.1 | 4.7 | 4.5 | 10.7 | 54 | 47 | 130 | 31.9 | | MAY
06
18
JUN | 1015
1200 | 1110
347 | 139
152 | 8.0 | 11.0
10.0 | 59
67 | 9.2
8.9 | K35
 | K22
 | 57
60 | 14.9
15.7 | | 20
29
AUG | 0945
1030 | 25
11 | 201
235 | 8.2
8.3 | 16.0
21.1 | 23
8.7 | 8.0
7.2 | 40
 | 52
 | 77
89 | 19.5
22.6 | | 09 | 1200 | 1.8 | 327 | 8.6 | 25.1 | 9.9 | 7.1 | 87 | 21 | 120 | 29.5 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) |
FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT 28 | 10.6 | 17.2 | .7 | 1.3 | 103 | 51.6 | 4.2 | .1 | 8.5 | 185 | . 25 | | JAN
27 | 11.8 | 19.3 | .8 | 1.3 | 107 | 52.2 | 4.4 | .2 | 10.8 | 195 | .26 | | MAR
29
MAY | 12.7 | 21.1 | .8 | 1.6 | 119 | 58.9 | 4.0 | <.1 | 10.9 | 213 | .29 | | 06
18
JUN | 4.79
5.12 | 5.4
5.7 | .3 | 1.2 | 48
55 | 17.0
18.3 | .7
.8 | <.1
<.1 | 9.1
10.1 | 83
90 | .11
.12 | | 20
29
AUG | 6.85
7.93 | 9.2
12.0 | .5
.6 | .8
1.2 | 69
82 | 26.8
31.5 | 1.3
2.0 | <.1
<.1 | 10.6
10.3 | 117
137 | .16
.19 | | 09 | 11.1 | 19.1 | .8 | 1.5 | 112 | 48.7 | 4.2 | .2 | 10.2 | 192 | .26 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
TOTAL
(MG/L
AS C)
(00680) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | OCT
28
JAN | 1.25 | <.010 | <.050 | <.020 | .33 | . 27 | .021 | <.006 | <.010 | | | | 27
MAR | 6.83 | <.010 | <.050 | <.020 | .27 | .22 | .015 | E.004 | <.010 | | | | 29
MAY | 113 | <.010 | .126 | <.020 | .23 | . 25 | .018 | E.003 | <.010 | 5.3 | 5.5 | | 06
18
JUN | 247
81.2 | <.010
<.010 | .103
.098 | <.020
<.020 | .78
.55 | <.10
.31 | .222
.115 | .012 | <.010
<.010 | 9.0 | 7.1 | | 20
29
AUG | 7.99
4.06 | <.010
<.010 | <.050
<.050 | <.020
<.020 | .38 | . 25
. 28 | .032 | .006
E.005 | <.010
<.010 | 7.1 | 6.4 | | 09 | .95 | <.010 | <.050 | <.020 | .47 | .33 | .025 | E.003 | <.010 | 6.2 | 7.3 | # 09246400 ELKHEAD CREEK BELOW MAYNARD GULCH, NEAR CRAIG, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | BERYL-
LIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BE)
(01012) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | |------------------|---|--|---|--|--|--|---|--|--|---| | MAY
06
JUN | 3650 | <2.0 | <3 | 24 | 69.9 | <5 | <.1 | E.1 | <.8 | 5 | | 29 | 273 | <2.0 | <3 | 37 | 38.9 | <5 | <.1 | <.1 | <.8 | <1 | | DATE | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS LI)
(01132) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | | MAY
06
JUN | 2 | 5 | 2 | 4670 | 30 | 5 | <1 | 7.0 | 90 | 7 | | 29 | <2 | 2 | 1 | 410 | 20 | E1 | <1 | E5.7 | 20 | 11 | | DATE | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | MOLYB-
DENUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS MO)
(01062) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | | MAY
06
JUN | <.2 | <.3 | <1 | 7 | <2.4 | <3 | <1 | <1 | <20 | <31 | | 29 | <.2 | <.3 | 2 | 2 | <2.4 | <3 | <1 | <1 | <20 | <31 | # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | OCT | | | | | MAR | | | | | | 06 | 1112 | 4.1 | 364 | 9.7 | 13 | 1350 | 22 | 310 | 6.2 | | 19 | 1603 | 40 | 245 | 10.9 | 28 | 1300 | 197 | 353 | 4.7 | | NOV | | | | | JUN | | | | | | 18 | 1730 | 2.2 | 446 | 4.0 | 07 | 1555 | 61 | 181 | 21.8 | | JAN | | | | | JUL | | | | | | 18 | 1215 | 4.0 | 437 | .1 | 12 | 1230 | 3.8 | 356 | 24.8 | | FEB | | | | | SEP | | | | | | 23 | 1450 | 15 | 313 | 6.1 | 25 | 1650 | 1.8 | 304 | 15.3 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | SEDI- | SED. | |------|------|---------|---------|---------|---------| | | | CHARGE, | | MENT, | SUSP. | | | | INST. | SEDI- | DIS- | SIEVE | | | | CUBIC | MENT, | CHARGE, | DIAM. | | | | FEET | SUS- | SUS- | % FINER | | DATE | TIME | PER | PENDED | PENDED | THAN | | | | SECOND | (MG/L) | (T/DAY) | .062 MM | | | | (00061) | (80154) | (80155) | (70331) | | | | | | | | | OCT | | | _ | | | | 28 | 0935 | 2.5 | 2 | .02 | | | JAN | | | _ | | | | 27 | 1230 | 13 | 6 | .22 | | | MAY | | | | | | | 06 | 1015 | 1110 | 243 | 728 | 86 | ## 09247600 YAMPA RIVER BELOW CRAIG, CO LOCATION.--Lat $40^{\circ}28^{\circ}51^{\circ}$, long $107^{\circ}36^{\circ}49^{\circ}$, in $SW^{1}/_{4}NW^{1}/_{4}$ sec.16, T.6 N., R.91 W., Moffat County, Hydrologic Unit 14050001, on left bank 0.5 mi downstream from state highway 13-789 bridge, and 3.3 mi southwest of Craig. DRAINAGE AREA.--1,750 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1975 to September 1980 (discharge measurements only). October 1984 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,100 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by diversions for irrigation, power plants at Hayden and Craig, transbasin diversions, storage reservoirs, and return flow from irrigated areas. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | | | | | | | | |--
---|--|--|--|--|---|--|--|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 274 | 222 | 223 | e240 | 276 | 353 | 866 | 4760 | 9090 | 720 | 127 | 192 | | | 2 | 268 | 231 | 220 | e240 | e275 | 375 | 858 | 5040 | 8080 | 667 | 95 | 200 | | | 3 | 267 | 241 | 215 | e240 | e270 | 391 | 879 | 5670 | 6440 | 642 | 95 | 153 | | | 4 | 263 | 237 | 184 | e250 | e270 | 416 | 776 | 6130 | 5940 | 537 | 106 | 119 | | | 5 | 243 | 241 | 180 | e250 | e270 | 466 | 1140 | 6660 | 5520 | 502 | 97 | 105 | | | 6 | 248 | 246 | 199 | e250 | e270 | 478 | 2110 | 7190 | 5190 | 455 | 92 | 97 | | | 7 | 279 | 247 | 189 | e250 | e270 | 503 | 2290 | 6960 | 4990 | 402 | 90 | 82 | | | 8 | 286 | 229 | 171 | e260 | e270 | 546 | 2000 | 6200 | 4710 | 361 | 83 | 87 | | | 9 | 293 | 218 | 163 | e260 | e280 | 514 | 2050 | 5320 | 4390 | 382 | 76 | 96 | | | 10 | 293 | 255 | 149 | e260 | e280 | 466 | 2440 | 4730 | 4070 | 425 | 76 | 82 | | | 11 | 277 | 254 | 185 | e270 | e285 | 414 | 2620 | 5500 | 3540 | 391 | 57 | 77 | | | 12 | 267 | 229 | 181 | e260 | 290 | 423 | 2680 | 5220 | 3180 | 335 | 50 | 76 | | | 13 | 249 | 231 | 158 | e260 | 268 | 406 | 2750 | 4200 | 2900 | 313 | 46 | 72 | | | 14 | 267 | 229 | 133 | e260 | 266 | 392 | 2940 | 3740 | 2810 | 292 | 48 | 60 | | | 15 | 280 | 227 | e150 | e270 | 258 | 418 | 3060 | 3520 | 2430 | 274 | 44 | 58 | | | 16 | 290 | 229 | e175 | e280 | e250 | 421 | 2720 | 3580 | 2330 | 277 | 51 | 65 | | | 17 | 297 | 221 | e190 | e280 | 241 | 392 | 2390 | 4160 | 2030 | 297 | 57 | 54 | | | 18 | 281 | 244 | e200 | e280 | e250 | 399 | 2870 | 4240 | 1750 | 314 | 73 | 57 | | | 19 | 276 | 293 | e210 | e270 | e250 | 395 | 2890 | 3660 | 1690 | 362 | 72 | 62 | | | 20 | 288 | 257 | 214 | e270 | e250 | 382 | 2470 | 3390 | 2370 | 314 | 80 | 66 | | | 21 | 288 | 265 | 220 | e270 | 245 | 397 | 2430 | 3550 | 2190 | 276 | 96 | 92 | | | 22 | 310 | 280 | 213 | e270 | 275 | 380 | 2590 | 3960 | 1750 | 239 | 103 | 201 | | | 23 | 279 | 231 | 203 | e270 | 288 | 397 | 3310 | 4750 | 1520 | 218 | 98 | 681 | | | 24 | 274 | 169 | 195 | e270 | 304 | 565 | 3850 | 6410 | 1370 | 211 | 106 | 592 | | | 25 | 267 | 179 | 207 | e270 | 316 | 736 | 3550 | 7210 | 1230 | 186 | 103 | 469 | | | 26
27
28
29
30
31 | 256
244
234
253
256
246 | 198
243
241
239
225 | 212
235
262
237
e240
e240 | e280
e290
e300
314
301
290 | 330
284
299
344
 | 823
1030
1190
1310
1310
1110 | 3060
3520
4370
4930
4860 | 7440
8550
7410
7710
9160
9650 | 1200
1130
1040
895
798 | 183
174
171
168
166
159 | 104
119
129
146
160
170 | 363
338
280
258
271 | | | TOTAL MEAN MAX MIN AC-FT STATIST | 8393
271
310
234
16650 | 7051
235
293
169
13990 | 6153
198
262
133
12200 | 8325
269
314
240
16510 | 8024
277
344
241
15920
YEARS 1985 | 17798
574
1310
353
35300 | 79269
2642
4930
776
157200 | 175670
5667
9650
3390
348400
R YEAR (WY | 96573
3219
9090
798
191600 | 10413
336
720
159
20650 | 2849
91.9
170
44
5650 | 5405
180
681
54
10720 | | | MEAN | 342 | 319 | 245 | 240 | 296 | 811 | 2432 | 5001 | 4269 | 1066 | 289 | 250 | | | MAX | 884 | 506 | 407 | 371 | 841 | 1718 | 4835 | 7524 | 8471 | 3683 | 712 | 1011 | | | (WY) | 1998 | 1998 | 1985 | 1998 | 1986 | 1986 | 1985 | 1985 | 1995 | 1995 | 1997 | 1997 | | | MIN | 144 | 165 | 146 | 114 | 111 | 229 | 931 | 2172 | 1370 | 233 | 41.3 | 50.6 | | | (WY) | 1990 | 1995 | 1988 | 1989 | 1989 | 1988 | 1995 | 1990 | 1987 | 1989 | 1994 | 1994 | | | SUMMARY | STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | H | FOR 2000 I | WATER YEAR | 1 | WATER YEA | RS 1985 | - 2000 | | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL MANNUAL MANNUAL MANNUAL MANNUAL MANUAL | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 480738
1317
9190
110
146
953500
4460
293
200 | May 31
Jan 30
Jan 28 | | 425923
1164
9650
44
50
10900
8.4
844800
276
102 | May 31
Aug 15
Aug 11
May 31
94 May 31 | | 1299
1925
734
12000
1.3
13
12900
10.78
940700
4280
360
155 | Sep
Aug :
Jun | 1997
1989
4 1997
1 1988
31 1988
4 1997
4 1997 | | e Estimated. ## 09247600 YAMPA RIVER BELOW CRAIG, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- June 1975 to September 1980. October 1990 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECON
(00061 | C CONC
C CONC
C DUC
ANCI
DUC (US/O | IC WHO
- FIE
I- (STA
E AR
CM) UNI | ER
LE
LD TEME
ND- AT
D WAT
TS) (DEC | TER SO | DIS-
DLVED
MG/L) | FORM
FECA
0.7
UM-N
(COLS | MF UREA
S./ (COL
ML) 100 | ER HAF
LE NES
AL TOT
SE (MG
/ AS
ML) CAG | RD-
SS CALC
FAL DIS
S/L SOI
S (MC
CO3) AS | S- DIS-
LVED SOLVED
G/L (MG/L
CA) AS MG) | |-----------------|------------------------------|--|--|--|---|--|--|--|---|--|--|---| | 20
MAR | 1630 | 281 | 37 | 9. | 2 7. | .8 1 | 5.0 | K3 | K2 | 14 | 10 33 | .5 13.2 | | 08
14 | 1300
1500 | 580
397 | 80:
77: | | | | 2.1
3.8 | 66
 | | | | | | JUN
22 | 1105 | 1700 | 14 | 3 7. | 9 16. | .0 | 8.1 | 66 | 74 | 4 | 19 12 | .4 4.26 | | AUG
01 | 1115 | 128 | 33 | 2 8. | 2 23. | .1 | 8.0 | 20 | 13 | 11 | .0 27 | .9 10.8 | | DATE | DIS
SOLV
(MC
AS | IUM,
S-
/ED
S/L
NA) | SORP-
TION
RATIO | DIS-
SOLVED
(MG/L
AS K) | WAT.DIS
FET
LAB
CACO3
(MG/L) | DIS-
SOLVEI
(MG/L
AS SO4 | E RII
DIS
D SOI
(MO | DE,
S-
LVED
S/L
CL) | DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT) | | OCT
20 | 23. | . 4 | .9 | 2.2 | 118 | 62.6 | 9. | . 6 | .2 | 6.5 | 222 | .30 | | MAR
08
14 | 66.
62. | | 2 2 | 2.5
2.7 | 145
157 | 240
235 | 16.
16. | | .2 | 7.2
3.0 | 509
520 | .71
.71 | | JUN
22 | 7. | . 6 | .5 | .9 | 45 | 20.0 | 2. | . 4 | .2 | 7.2 | 82 | .11 | | AUG
01 | 21. | . 9 | .9 | 2.3 | 105 | 49.0 | 8. | . 6 | .2 | .1 |
184 | .25 | | DATE | DI
SOI
(TO
PI
DA | IS- N
LVED
ONS
ER
AY) | UTRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN, AM-
MONIA -
ORGANIO
TOTAL
(MG/L
AS N) | - GEN,
+ MONI
C ORGA
DIS
(MC | AM-
IA +
ANIC
S.
G/L
N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | PHORUS DIS- SOLVED (MG/L AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | OCT 20 | 169 |) | <.010 | <.050 | <.020 | .40 | .2 | 25 | .037 | .014 | <.010 | | | MAR
08
14 | 808
558 | | .010
<.010 | 1.56
.600 | <.002
<.020 | .51 | | 36
34 | .060 | .017
<.050 | .011
<.010 |
5.3 | | JUN
22 | 376 | 5 | .005 | .011 | <.002 | .33 | .2 | 22 | .037 | .017 | .007 | | | AUG
01 | 63 | 3.4 | <.001 | <.005 | .003 | .40 | . 2 | 27 | .024 | .029 | .016 | | | DATE | DI
SOI
(UC | IS-
LVED
E/L
CD) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA
NESE,
TOTAL
RECOV
ERABLI
(UG/L
AS MN
(01055 | MAN
NES
- DI
E SOI
(UC | IS-
LVED
B/L
MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT
20 | <. | .1 | E1 | 190 | <1 | 19 | 7 | 7 | <.2 | <2.4 | <.2 | <20 | | MAR
08 | <. | | E1 | 540 | <1 | 83 | 61 | | <.2 | 11.5 | <.2 | <20 | | JUN
22 | <. | | <1 | 530 | <1 | 28 | 7 | | <.2 | <2.4 | <.2 | <20 | | AUG
01 | <. | | 1 | 110 | <1 | 49 | 10 |) | <.2 | <2.4 | <.2 | <20 | | | | | | | | | | | | | | | ## 09247600 YAMPA RIVER BELOW CRAIG, CO--Continued # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------|------|---|---|---|------|------|---|--|---| | OCT | | | | | MAY | | | | | | 06 | 1435 | 260 | 420 | 12.4 | 01 | 1445 | 5130 | 176 | 10.4 | | 06 | 1520 | 260 | 429 | 12.3 | JUN | | | | | | NOV | | | | | 01 | 0815 | 8600 | 83 | 10.9 | | 18 | 1317 | 244 | 466 | 4.4 | JUL | | | | | | JAN | | | | | 11 | 1730 | 375 | 285 | 25.1 | | 18 | 1335 | 289 | 506 | .1 | 17 | 1000 | 315 | 313 | 21.6 | | FEB | | | | | SEP | | | | | | 23 | 1105 | 357 | 675 | 1.0 | 12 | 1035 | 83 | 478 | 18.3 | | APR | | | | | 18 | 1038 | 50 | 500 | 19.4 | | 17 | 1640 | 2510 | 329 | 10.5 | 26 | 0920 | 384 | 327 | 9.7 | #### 09249750 WILLIAMS FORK RIVER AT MOUTH, NEAR HAMILTON, CO LOCATION.--Lat $40^{\circ}26'14"$, long $107^{\circ}38'50"$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.31, T.6 N., R.91 W., Moffat County, Hydrologic Unit 14050001, on left bank at coal mine service road crossing, 2,300 ft upstream from confluence with Yampa River, 6.1 mi north-northeast of Hamilton, and 8 mi south-southwest of Craig. DRAINAGE AREA. -- 419 mi². PERIOD OF RECORD.--February 1984 to current year. Water-quality data available, June 1975 to September 1980, December 1985 to September 1992, and October 1993 to September 1996. Sediment data available, June 1975 to September 1980, and April 1987 to September 1991. GAGE.--Water stage recorder with satellite telemetry. Elevation of gage is 6,170 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | ATER YE
MEAN VA | AR OCTOBER | 1999 TO | SEPTEMBE | ER 2000 | | | |---|-------------------------------------|--|-------------------------------------|---|-------------------------------------|------------------------------------|---|--|------------------------------------|--|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 52
49
46
47
45 | 61
58
50
54
55 | 61
65
56
40
30 | 50
52
52
51
50 | 54
58
57
57
55 | 60
64
61
60
67 | 78
77
77
72
90 | 479
570
759
856
963 | 798
646
546
488
439 | 57
58
57
54
49 | 24
22
20
17
16 | 52
43
36
31
29 | | 6
7
8
9
10 | 46
49
51
50
48 | 53
52
53
54
53 | 49
48
48
39
38 | 51
52
51
54
54 | 57
58
56
59
64 | 71
70
69
64
66 | 135
139
126
142
181 | 1100
1060
961
690
636 | 402
367
331
295
266 | 47
44
44
54
66 | 17
17
16
15
16 | 28
27
28
29
34 | | 11
12
13
14
15 | 46
47
47
48
52 | 51
51
50
48
49 | 54
49
48
44 | 54
53
55
55
56 | 69
70
64
66
69 | 57
68
61
66
70 | 189
197
227
256
273 | 966
676
490
482
495 | 227
200
182
175
159 | 58
47
40
40
38 | 16
19
21
20
20 | 29
26
25
25
24 | | 16
17
18
19
20 | 46
45
45
56
52 | 49
53
65
57
44 | 47
60
57
55
55 | 57
60
69
85
81 | 75
71
67
74
75 | 66
65
62
57
67 | 215
205
285
259
211 | 524
678
533
443
436 | 143
129
125
129
210 | 36
38
54
53
41 | 22
27
31
43
41 | 24
24
27
34
31 | | 21
22
23
24
25 | 52
52
50
49
49 | 64
57
42
31
40 | 55
55
54
52
50 | 76
69
70
64
64 | 72
75
67
67
63 | 60
62
65
75
78 | 212
266
330
413
316 | 548
633
782
1030
1090 | 152
120
108
98
94 | 37
36
31
33
33 | 30
28
37
43
46 | 28
126
138
101
83 | | 26
27
28
29
30
31 | 48
48
48
59
59 | 52
80
59
62
58 | 51
51
51
51
51
50 | 68
64
52
45
51
44 | 57
61
72
66
 | 78
84
98
108
98
87 | 338
416
634
738
539 | 1230
1050
875
1020
1050
944 | 98
93
82
72
62 | 29
26
27
29
26
26 | 36
41
44
39
56
68 | 69
69
57
51
50 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1537
49.6
59
45
3050 | 1605
53.5
80
31
3180 | 1558
50.3
65
30
3090 | 1809
58.4
85
44
3590 | 1875
64.7
75
54
3720 | 2184
70.5
108
57
4330 | 7636
255
738
72
15150 | 24049
776
1230
436
47700 | 7236
241
798
62
14350 | 1308
42.2
66
26
2590 | 908
29.3
68
15
1800 | 1378
45.9
138
24
2730 | | STATIST | ICS OF MO | NTHLY MEAI | N DATA FO | R WATER Y | EARS 1984 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 70.5
150
1998
32.3
1993 | 66.8
118
1998
34.4
1995 | 59.6
106
1985
38.3
1995 | 60.6
116
1998
37.9
1991 | 63.3
108
1986
40.8
1991 | 100
180
1998
64.1
1995 | 318
680
1985
101
1995 | 1049
2228
1984
396
1990 | 673
1720
1984
147
1994 | 170
494
1984
28.0
1994 | 74.1
220
1984
25.3
1994 | 60.4
203
1997
19.7
1994 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALEN | DAR YEAR | F | OR 2000 WAS | TER YEAR | | WATER YEA | ARS 1984 | - 2000 | | LOWEST HIGHEST LOWEST : ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 73300
201
1630
30
42
145400
595
75
47 | May 26
Dec 5
Dec 4 | | 53083
145
1230
15
16
1470
6.06
105300
454
57
29 | May 26
Aug 9
Aug 5
May 26
May 26 | | 217
358
105
3980
13
15
4750
9.96
157500
674
78
38 | Sep 1
Sep
May 1 | 1985
1994
16 1984
13 1994
9 1994
9 1994
16 1984 | #### 09251000 YAMPA RIVER NEAR MAYBELL, CO LOCATION.--Lat $40^{\circ}30^{\circ}10^{\circ}$, long. $108^{\circ}01^{\circ}45^{\circ}$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.2, T.6 N., R.95 W., Moffat County, Hydrologic Unit 14050002, on left bank 60 ft downstream from bridge on U.S. Highway 40, 2.0 mi downstream from Lay Creek, and 3.0 mi east of Maybell. DRAINAGE AREA.--3,410 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1904 to October 1905, June 1910 to November 1912, April 1916 to current year. Monthly discharge only for some periods, published in WSP
1313. No winter records prior to 1917. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,900.23 ft above sea level. See WSP 1733 for history of changes prior to Mar. 9, 1937. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions, numerous storage reservoirs, and diversions upstream from station for irrigation of about 65,000 acres upstream from, and about 800 acres downstream from station. | | | DISCHAF | RGE, CUBI | C FEET PE | R SECOND, DAILY | WATER Y | | R 1999 TC | SEPTEMB | ER 2000 | | | |---|--|--|--|---|------------------------------|--|--|--|------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 262 | 289 | 298 | e320 | e375 | 450 | 1110 | 5490 | 9640 | 734 | 130 | 227 | | 2 | 265 | 274 | 292 | e325 | e370 | e455 | 914 | 5520 | 9020 | 652 | 108 | 226 | | 3 | 257 | 265 | 304 | e320 | e375 | e465 | 938 | 6240 | 7420 | 585 | 83 | 204 | | 4 | 248 | 282 | 256 | e335 | e390 | e480 | 907 | 7010 | 6540 | 548 | 67 | 176 | | 5 | 249 | 284 | 174 | e330 | e385 | e500 | 825 | 7510 | 6190 | 464 | 66 | 143 | | 6 | 233 | 291 | 188 | e340 | e385 | e550 | 1350 | 8190 | 5730 | 419 | 75 | 108 | | 7 | 228 | 294 | 226 | e335 | e380 | e555 | 2260 | 8470 | 5360 | 376 | 64 | 98 | | 8 | 268 | 299 | 229 | e345 | e385 | e580 | 2250 | 8030 | 5170 | 352 | 62 | 92 | | 9 | 275 | 280 | 221 | e360 | e340 | e620 | 1930 | 7020 | 4770 | 356 | 76 | 86 | | 10 | 293 | 273 | 291 | e365 | e315 | e590 | 2170 | 5830 | 4430 | 354 | 47 | 87 | | 11 | 286 | 305 | 315 | e375 | e310 | e545 | 2630 | 6280 | 3810 | 409 | 47 | 79 | | 12 | 277 | 311 | 292 | e365 | e340 | e490 | 2750 | 6950 | 3310 | 396 | 46 | 69 | | 13 | 264 | 290 | e305 | e360 | e345 | e500 | 2840 | 5530 | 2930 | 332 | 37 | 70 | | 14 | 252 | 281 | e200 | e365 | e380 | e480 | 2990 | 4650 | 2830 | 297 | 33 | 74 | | 15 | 261 | 284 | e215 | e385 | e385 | e485 | 3200 | 4280 | 2460 | 264 | 35 | 74 | | 16 | 286 | 282 | e235 | e405 | e380 | e495 | 3200 | e4480 | 2250 | 240 | 30 | 59 | | 17 | 301 | 285 | e260 | e410 | 409 | e490 | 2560 | e4680 | 2140 | 232 | 35 | 53 | | 18 | 312 | 289 | e270 | e420 | 364 | e465 | 2650 | 4880 | 1770 | 243 | 39 | 59 | | 19 | 298 | 318 | e285 | e405 | 358 | e470 | 3300 | 4080 | 1610 | 263 | 51 | 57 | | 20 | 300 | 366 | e315 | e410 | 352 | e465 | 2870 | 3550 | 1680 | 313 | 73 | 50 | | 21 | 308 | 319 | e300 | e405 | 383 | e450 | 2470 | 3550 | 2470 | 281 | 82 | 65 | | 22 | 329 | 350 | e290 | e425 | 372 | e475 | 2580 | 3940 | 1870 | 238 | 76 | 113 | | 23 | 358 | 335 | e275 | e420 | 398 | 470 | 3030 | 4660 | 1580 | 207 | 108 | 286 | | 24 | 318 | 249 | e260 | e440 | 398 | 493 | 4000 | 6040 | 1390 | 170 | 107 | 797 | | 25 | 300 | 425 | e280 | e430 | 410 | 662 | 4240 | 7760 | 1270 | 171 | 115 | 632 | | 26
27
28
29
30
31 | 294
281
275
284
300
305 | 269
266
352
305
318 | e285
e320
e345
e320
e315
e325 | e440
e460
e475
e445
e435
e405 | 361
419
402
413
 | 814
914
1110
1290
1380
1370 | 3360
3460
4540
5540
5910 | 7550
8670
7870
7590
8710
9830 | 1210
1140
1070
941
820 | 153
154
131
131
141
134 | 131
123
135
145
177
199 | 518
420
400
334
296 | | TOTAL | 8767 | 9030 | 8486 | 12055 | 10879 | 19558 | 82774 | 194840 | 102821 | 9740 | 2602 | 5952 | | MEAN | 283 | 301 | 274 | 389 | 375 | 631 | 2759 | 6285 | 3427 | 314 | 83.9 | 198 | | MAX | 358 | 425 | 345 | 475 | 419 | 1380 | 5910 | 9830 | 9640 | 734 | 199 | 797 | | MIN | 228 | 249 | 174 | 320 | 310 | 450 | 825 | 3550 | 820 | 131 | 30 | 50 | | AC-FT | 17390 | 17910 | 16830 | 23910 | 21580 | 38790 | 164200 | 386500 | 203900 | 19320 | 5160 | 11810 | | | | | | | YEARS 1916 | | | | | | | | | MEAN | 353 | 357 | 299 | 280 | 335 | 720 | 2619 | 6295 | 5567 | 1411 | 387 | 250 | | MAX | 1174 | 768 | 624 | 610 | 1071 | 2063 | 6496 | 14000 | 12810 | 5819 | 1052 | 1366 | | (WY) | 1998 | 1998 | 1948 | 1948 | 1986 | 1986 | 1962 | 1984 | 1917 | 1957 | 1957 | 1997 | | MIN | 117 | 184 | 137 | 115 | 160 | 221 | 735 | 1850 | 548 | 20.4 | 26.5 | 27.8 | | (WY) | 1964 | 1977 | 1964 | 1934 | 1964 | 1964 | 1944 | 1977 | 1934 | 1934 | 1934 | 1934 | | SUMMARY | STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | : | FOR 2000 W | ATER YEAR | : | WATER YEA | RS 1916 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN
CANNUAL M
ANNUAL ME
CDAILY ME
DAILY MEA | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 542556
1486
9980
166
201
1076000
5090
429
245 | Jun 1
Aug 28
Sep 12 | | 9830
30
36
10900
8.4
927300
4570
359
108 | May 31
Aug 16
Aug 12
May 31
0 May 31 | | 1575
3025
477
24400
a2.0
3.0
25100
12.42
1141000
5350
404
177 | Jul :
Jul :
May : | 1984
1977
17 1984
17 1934
30 1934
17 1984
17 1984 | e Estimated. a Also occurred July 18-19, 1934. #### 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- November 1950 to current year. PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: November 1950 to August 1973, July 1975 to current year. pH: November 1998 to current year. WATER TEMPERATURE: November 1950 to August 1973, July 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: December 1950 to May 1958, October 1975 to September 1976, October 1977 to September 1978, October 1981 to September 1982. INSTRUMENTATION:--Water-quality monitor July 1975 to October 1997; water-quality monitor with satellite telemetry October 24, 1997 to current year. REMARKS.--Specific-conductance record is good, pH record is good, and water-temperature record is good. Periods of missing record are caused by sensor fouling or instrument malfunction. Unpublished maximum and minimum specific-conductance data for period of daily record available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. #### EXTREMES FOR PERIOD OF DAILY RECORD. - SPECIFIC CONDUCTANCE: Maximum, 1260 microsiemens, Nov. 17, 1985; minimum, 78 microsiemens, June 1-2, 1994. pH: Maximum, 9.0 units, Mar. 18, 1999; minimum, 7.7 units, June 27, 2000. WATER TEMPERATURE: Maximum, 33.0°C, Aug. 29, 1976; minimum, 0.0°C, on many days during winter months. SEDIMENT CONCENTRATIONS: Maximum daily, 6,180 mg/l, Aug. 16, 1981; minimum daily, 1 mg/l, several days during Dec. 1975 to Feb. 1976, Jan. 6, 1980. SEDIMENT LOADS: Maximum daily, 47,100 tons, May 9, 1958; minimum daily, 0.04 ton, Oct. 2-3, 1982. #### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 974 microsiemens, Feb. 18; minimum, 90 microsiemens, June 2. pH: Maximum, 8.9 units, Feb. 21; minimum, 7.7 units, June 27. WATER TEMPERATURE: Maximum, 28.0°C, Aug. 12; minimum, 0.0°C, on many days. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |-----------|------|---|--|--|---|--|--|---|---|---| | OCT | | | | | | | | | | | | 22
NOV | 1310 | 316 | 587 | 8.6 | 7.8 | 10.1 | 200 | 40.3 | 23.7 | 40.3 | | 16 | 1415 | 267 | 648 | 8.6 | 4.6 | 11.0 | 230 | 15.4 | 46.5 | 48.1 | | JAN
24 | 1530 | 459 | 776 | 8.2 | .0 | | 280 | 52.3 | 35.8 | 58.0 | | FEB 21 | 0900 | 342 | 957 | 8.6 | .1 | 12.2 | 320 | 57.0 | 42.4 | 75.7 | | MAR
15 | 1520 | 497 | 857 | 9.0 | 4.0 | 12.0 | 310 | 58.4 | 41.1 | 69.7 | | APR 25 | 1500 | 4420 | 338 | 8.0 | 10.0 | 9.3 | 120 | 28.8 | 12.8 | 16.2 | | MAY
16 | 1500 | 3600 | 186 | 8.1 | 13.7 | 8.2 | 72 | 17.8 | 6.70 | 7.9 | | JUN
27 | 1400 | 1150 | 236 | 8.2 | 19.0 | 7.7 | 81 | 19.5 | 7.85 | 14.3 | | JUL
24 | 1400 | 160 | 450 | 8.6 | 24.1 | 7.2 | 150 | 34.9 | 15.4 | 34.0 | | SEP
05 | 1244 | 147 | 588 | 8.5 | 20.3 | 7.3 | 200 | 44.1 | 22.1 | 47.1 | | | | | ALKA- | | | | | SOLIDS, | | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | SODIUM | POTAS- | LINITY | | CHLO- | FLUO- | SILICA, | SUM OF | SOLIDS, | | | AD- | SIUM, | WAT.DIS | SULFATE | RIDE, | RIDE, | DIS- | CONSTI- | DIS- | | | SORP- | DIS- | FET | DIS- | DIS- | DIS- |
SOLVED | TUENTS, | SOLVED | | | TION | SOLVED | LAB | SOLVED | SOLVED | SOLVED | (MG/L | DIS- | (TONS | | DATE | RATIO | (MG/L | CACO3 | (MG/L | (MG/L | (MG/L | AS | SOLVED | PER | | | | AS K) | (MG/L) | AS SO4) | AS CL) | AS F) | SIO2) | (MG/L) | AC-FT) | | | (00931) | (00935) | (29801) | (00945) | (00940) | (00950) | (00955) | (70301) | (70303) | | 0.077 | | | | | | | | | | | OCT
22 | 1 | 2.5 | 160 | 125 | 14.2 | . 2 | 6.6 | 348 | .47 | | NOV | 1 | 2.5 | 100 | 125 | 14.2 | . 4 | 0.0 | 348 | .4/ | | 16 | 1 | 2.5 | 172 | 141 | 17.3 | . 3 | 6.6 | 381 | .52 | | JAN | 1 | 2.5 | 1/2 | 141 | 17.3 | . 3 | 0.0 | 301 | . 32 | | 24 | 2 | 3.0 | 160 | 213 | 19.4 | . 2 | 9.3 | 487 | .66 | | FEB | - | 3.0 | 100 | 213 | 17.1 | | 5.5 | 107 | .00 | | 21 | 2 | 3.0 | 176 | 283 | 25.3 | . 2 | 5.5 | 597 | .81 | | MAR | | | | | | | | | | | 15 | 2 | 3.0 | 177 | 263 | 20.7 | . 2 | 1.5 | 576 | .78 | | APR | | | | | | | | | | | 25 | .6 | 1.9 | 84 | 73.5 | 3.6 | . 2 | 10.4 | 198 | .27 | | MAY | | | | | | | | | | | 16 | . 4 | 1.1 | 57 | 30.4 | 2.5 | <.1 | 9.8 | 111 | .15 | | JUN | _ | | | | | _ | | | | | 27 | .7 | 1.1 | 69 | 36.3 | 5.6 | .3 | 7.6 | 134 | .18 | | JUL | - | 0 0 | 100 | | 16.5 | | 1 0 | 050 | 2.5 | | 24 | 1 | 2.3 | 126 | 77.1 | 16.7 | . 2 | 1.9 | 258 | .35 | | SEP | 1 | 2.4 | 1.64 | 100 | 10 1 | 2 | г 1 | 2.47 | 47 | | 05 | 1 | 3.4 | 164 | 109 | 18.1 | . 2 | 5.1 | 347 | .47 | # 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | NITRO- | NITRO- | NITRO- | NITRO- | | PHOS- | | | |-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | SOLIDS, | GEN, | GEN, | GEN, | GEN,AM- | PHOS- | PHORUS | CARBON, | SELE- | | | DIS- | NITRITE | NO2+NO3 | AMMONIA | MONIA + | PHORUS | ORTHO, | ORGANIC | NIUM, | | | SOLVED | DIS- | DIS- | DIS- | ORGANIC | DIS- | DIS- | DIS- | DIS- | | | (TONS | SOLVED | SOLVED | SOLVED | DIS. | SOLVED | SOLVED | SOLVED | SOLVED | | DATE | PER | (MG/L (UG/L | | | DAY) | AS N) | AS N) | AS N) | AS N) | AS P) | AS P) | AS C) | AS SE) | | | (70302) | (00613) | (00631) | (00608) | (00623) | (00666) | (00671) | (00681) | (01145) | | OCT | | | | | | | | | | | 22 | 297 | | | | | | | | <2.4 | | NOV | | | | | | | | | | | 16 | 274 | | | | | | | | | | JAN | | | | | | | | | | | 24 | 603 | | | | | | | | | | FEB | | | | | | | | | | | 21 | 552 | | | | | | | | 5.6 | | MAR | 770 | . 010 | 266 | . 000 | 20 | . 050 | . 010 | F 0 | | | 15 | 772 | <.010 | .266 | <.020 | .29 | <.050 | <.010 | 5.0 | | | APR
25 | 2360 | | | | | | | | | | MAY | 2300 | | | | | | | | | | 16 | 1070 | | | | | | | | | | JUN | 2070 | | | | | | | | | | 27 | 417 | | | | | | | | E.7 | | JUL | | | | | | | | | | | 24 | 111 | | | | | | | | | | SEP | | | | | | | | | | | 05 | 138 | | | | | | | | .7 | | | | | | | | | | | | SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | No | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1 | 581 | 574 | 579 | 667 | 641 | 655 | 764 | 704 | 726 | 788 | 769 | 780 | | 2 | 581 | 574 | 578 | 670 | 658 | 664 | 739 | 707 | 724 | 794 | 782 | 788 | | 3 | 580 | 571 | 576 | 667 | 654 | 661 | 746 | 715 | 730 | 795 | 769 | 782 | | 4 | 581 | 574 | 578 | 659 | 645 | 651 | 750 | 735 | 745 | 769 | 753 | 760 | | 5 | 582 | 577 | 580 | 659 | 635 | 648 | 778 | 745 | 754 | 758 | 738 | 747 | | 6 | 587 | 578 | 584 | 655 | 637 | 642 | 836 | 749 | 778 | 770 | 746 | 754 | | 7 | 590 | 584 | 587 | 665 | 651 | 658 | 786 | 750 | 765 | 773 | 757 | 765 | | 8 | 592 | 584 | 587 | 653 | 626 | 636 | 816 | 749 | 787 | 757 | 742 | 748 | | 9 | 613 | 592 | 602 | 637 | 626 | 630 | 870 | 812 | 829 | 753 | 739 | 747 | | 10 | 614 | 598 | 606 | 634 | 624 | 628 | 881 | 843 | 867 | 750 | 738 | 742 | | 11 | 604 | 582 | 595 | 639 | 626 | 632 | 857 | 820 | 840 | 738 | 720 | 727 | | 12 | 582 | 574 | 578 | 629 | 620 | 625 | 885 | 838 | 863 | 720 | 712 | 717 | | 13 | 578 | 564 | 572 | 622 | 605 | 611 | 870 | 838 | 854 | 715 | 701 | 708 | | 14 | 573 | 564 | 570 | 617 | 600 | 606 | 866 | 842 | 853 | 705 | 697 | 702 | | 15 | 583 | 573 | 579 | 642 | 614 | 621 | 877 | 849 | 859 | 716 | 703 | 710 | | 16 | 589 | 581 | 586 | 657 | 627 | 639 | 879 | 868 | 875 | 733 | 713 | 717 | | 17 | 586 | 566 | 575 | 662 | 635 | 648 | 876 | 815 | 839 | 736 | 722 | 730 | | 18 | 579 | 569 | 575 | 675 | 651 | 661 | 888 | 826 | 869 | 762 | 724 | 736 | | 19 | 571 | 540 | 554 | 679 | 659 | 670 | 862 | 812 | 837 | 790 | 762 | 773 | | 20 | 568 | 550 | 558 | 685 | 658 | 671 | 812 | 803 | 807 | 845 | 790 | 828 | | 21 | 570 | 551 | 558 | 673 | 645 | 658 | 803 | 753 | 784 | 830 | 790 | 818 | | 22 | 577 | 561 | 570 | 670 | 636 | 648 | 767 | 743 | 756 | 790 | 745 | 773 | | 23 | 569 | 540 | 552 | 658 | 601 | 634 | 756 | 740 | 749 | 760 | 730 | 745 | | 24 | 554 | 537 | 544 | 679 | 601 | 641 | 758 | 735 | 745 | 776 | 742 | 756 | | 25 | 547 | 528 | 537 | 694 | 590 | 647 | 784 | 744 | 756 | 804 | 764 | 781 | | 26
27
28
29
30
31 | 554
566
569
585
607
645 | 540
553
557
561
584
605 | 548
559
564
577
595
620 | 688
751
763
799
787 | 655
688
739
761
748 | 669
715
746
776
763 | 788
804
809
821
807
789 | 765
772
785
800
779
771 | 779
787
797
811
792
780 | 815
856
894
877
863
887 | 800
815
856
847
812
850 | 806
834
871
863
837
870 | | MONTH | 645 | 528 | 575 | 799 | 590 | 658 | 888 | 704 | 798 | 894 | 697 | 771 | 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | 011 111 20 | D20. 0// | *************************************** | | | IO DEFIEND | DIC 2000 | | |--|---|--|--|---|--|---|---|---|---|---|---|---| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | _ | | | | | | | | | | | | | | 1
2 | 871
869 | 805
804 | 838
841 | | | | | | | 225
216 | 213
206 | 217
210 | | 3 | 876 | 820 | 847 | | | | | | | 210 | 195 | 200 | | 4 | 854 | 800 | 827 | | | | | | | 198 | 178 | 184 | | 5 | 818 | 764 | 789 | | | | | | | 178 | 159 | 165 | | 6 | 786 | 723 | 752 | | | | | | | 160 | 141 | 149 | | 7 | 763 | 706 | 731 | | | | | | | 144 | 129 | 135 | | 8 | 740 | 704 | 720 | | | | | | | 146 | 128 | 136 | | 9 | 736 | 699 | 716 | | | | | | | 166 | 142 | 153 | | 10 | 719 | 680 | 699 | | | | | | | 181 | 164 | 172 | | 11 | 748 | 659 | 702 | | | | | | | 182 | 165 | 173 | | 12 | 789 | 722 | 756 | | | | | | | 167 | 148 | 153 | | 13 | 834 | 763 | 807 | | | | 376 | 360 | 372 | 174 | 153 | 164 | | 14
15 | 886
882 | 821
853 | 856
865 | | | | 367
358 | 336
336 | 359
348 | 193
192 | 174
186 | 182
188 | | | | | | | | | | | | | | | | 16 | 920 | 861 | 886 | | | | 342 | 327 | 337 | | | | |
17
18 | 960
974 | 884
891 | 913
937 | | | | 345
353 | 331
336 | 337
345 | 177
177 |
144 |
158 | | 19 | 928 | | | | | | 345 | 306 | 326 | 183 | 160 | 172 | | 20 | 950 | | | | | | 313 | 307 | 310 | 195 | 182 | 188 | | 0.1 | 0.4.4 | 000 | 000 | | | | 222 | 212 | 202 | 100 | 106 | 104 | | 21
22 | 944 | 898 | 929
 | | | | 333 | 313 | 323 | 198 | 186
164 | 194 | | 23 | | | | | | | 338
325 | 323
311 | 334
320 | 193
171 | 145 | 176
156 | | 24 | | | | | | | 349 | 307 | 323 | 156 | 125 | 135 | | 25 | 889 | | | | | | 350 | 325 | 336 | 133 | 110 | 120 | | 26 | 007 | 0.41 | 060 | | | | 226 | 222 | 224 | 120 | 115 | 101 | | 26
27 | 887
878 | 841
842 | 868
860 | | | | 336
335 | 332
304 | 334
321 | 128
131 | 115
118 | 121
125 | | 28 | 858 | 829 | 843 | | | | 305 | 265 | 282 | 140 | 126 | 132 | | 29 | 843 | 824 | 832 | | | | 270 | 235 | 246 | 135 | 115 | 122 | | 30 | | | | | | | 241 | 225 | 233 | 121 | 106 | 111 | | 31 | | | | | | | | | | 115 | 102 | 108 | | MONTH | DAY | MAX | MIN | MEAN | _ | | | | ~~~~~ | | | | | JUNE | | | JULY | | I | AUGUST | | | SEPTEMBE | IR. | | 1 | 112 | 96 | 103 | 283 | 271 | 275 | 504 | 497 | 500 | 581 | 562 | 573 | | 2 | 107 | 96
90 | 97 | 294 | 271
280 | 285 | 504
518 | 497
499 | 508 | 581
564 | 562
539 | 573
549 | | 2 | 107
116 | 96
90
94 | 97
103 | 294
297 | 271
280
289 | 285
294 | 504
518
550 | 497
499
517 | 508
532 | 581
564
553 | 562
539
543 | 573
549
550 | | 2
3
4 | 107
116
114 | 96
90
94
98 | 97
103
106 | 294
297
311 | 271
280
289
294 | 285
294
302 | 504
518
550
578 | 497
499
517
545 | 508
532
560 | 581
564
553
555 | 562
539
543
546 | 573
549
550
550 | | 2 | 107
116 | 96
90
94 | 97
103 | 294
297 | 271
280
289 | 285
294 | 504
518
550 | 497
499
517 | 508
532 | 581
564
553 | 562
539
543 | 573
549
550 | | 2
3
4
5 | 107
116
114
114 | 96
90
94
98
95 | 97
103
106
104 | 294
297
311
327 | 271
280
289
294
310 | 285
294
302
318 | 504
518
550
578
598 | 497
499
517
545
575 | 508
532
560
584 | 581
564
553
555
572 | 562
539
543
546
553 | 573
549
550
550
565 | | 2
3
4
5 | 107
116
114
114
115
116 | 96
90
94
98
95 | 97
103
106
104
106
106 | 294
297
311
327
341
361 | 271
280
289
294
310
327
341 | 285
294
302
318
334
353 | 504
518
550
578
598
599
596 | 497
499
517
545
575
572
573 | 508
532
560
584
582
584 | 581
564
553
555
572
632
625 | 562
539
543
546
553
572
615 | 573
549
550
550
565
591
619 | | 2
3
4
5
6
7
8 | 107
116
114
114
115
116
116 | 96
90
94
98
95
98
99 | 97
103
106
104
106
106
105 | 294
297
311
327
341
361
372 | 271
280
289
294
310
327
341
358 | 285
294
302
318
334
353
363 | 504
518
550
578
598
599
596
616 | 497
499
517
545
575
572
573
593 | 508
532
560
584
582
584
603 | 581
564
553
555
572
632
625
629 | 562
539
543
546
553
572
615
621 | 573
549
550
550
565
591
619
625 | | 2
3
4
5
6
7
8
9 | 107
116
114
114
115
116
116
115 | 96
90
94
98
95
99
99 | 97
103
106
104
106
106
105
106 | 294
297
311
327
341
361
372
378 | 271
280
289
294
310
327
341
358
371 | 285
294
302
318
334
353
363
373 | 504
518
550
578
598
599
596
616
624 | 497
499
517
545
575
572
573
593
607 | 508
532
560
584
582
584
603
616 | 581
564
553
555
572
632
625
629
646 | 562
539
543
546
553
572
615
621
627 | 573
549
550
550
565
591
619
625
640 | | 2
3
4
5
6
7
8 | 107
116
114
114
115
116
116 | 96
90
94
98
95
98
99 | 97
103
106
104
106
106
105 | 294
297
311
327
341
361
372
378
395 | 271
280
289
294
310
327
341
358 | 285
294
302
318
334
353
363 | 504
518
550
578
598
599
596
616 | 497
499
517
545
575
572
573
593 | 508
532
560
584
582
584
603 | 581
564
553
555
572
632
625
629 | 562
539
543
546
553
572
615
621 | 573
549
550
550
565
591
619
625 | | 2
3
4
5
6
7
8
9
10 | 107
116
114
114
115
116
116
115
114 | 96
90
94
98
95
99
95
99
105 | 97
103
106
104
106
106
105
106
110 | 294
297
311
327
341
361
372
378
395 | 271
280
289
294
310
327
341
358
371
372 | 285
294
302
318
334
353
363
373
379 | 504
518
550
578
598
599
596
616
624
626 | 497
499
517
545
575
572
573
593
607
602 | 508
532
560
584
582
584
603
616
610 | 581
564
553
555
572
632
625
629
646
654 | 562
539
543
546
553
572
615
621
627
645 | 573
549
550
550
565
591
619
625
640
650 | | 2
3
4
5
6
7
8
9
10 | 107
116
114
114
115
116
116
115
114
128
130 | 96
90
94
98
95
98
99
105 | 97
103
106
104
106
106
105
106
110
118
125 | 294
297
311
327
341
361
372
378
395
406
408 | 271
280
289
294
310
327
341
358
371
372
391
402 | 285
294
302
318
334
353
363
373
379
396
406 | 504
518
550
578
598
599
596
616
624
626
665
668 | 497
499
517
545
575
572
573
593
607
602
626
655 | 508
532
560
584
582
584
603
616
610 | 581
564
553
555
572
632
625
629
646
654 | 562
539
543
546
553
572
615
621
627
645 | 573
549
550
565
565
591
619
625
640
650 | | 2
3
4
5
6
7
8
9
10
11
12
13 | 107
116
114
114
115
116
115
114
128
130
136 | 96
90
94
98
95
98
99
95
105
111
122
130 | 97
103
106
104
106
105
106
110
118
125
134 | 294
297
311
327
341
361
372
378
395
406
408
412 | 271
280
289
294
310
327
341
358
371
372
391
402
402 | 285
294
302
318
334
353
363
373
379
396
406
406 | 504
518
550
578
598
599
596
616
624
626
665
668
696 | 497
499
517
545
575
572
573
593
607
602
626
655
660 | 508
532
560
584
582
584
603
616
610
642
662
671 | 581
564
553
555
572
632
625
629
646
654
649
663
684 | 562
539
543
546
553
572
615
621
627
645
638
645
658 | 573
549
550
550
565
591
619
625
640
650 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 107
116
114
114
115
116
116
115
114
128
130
136
146 | 96
90
94
98
95
98
99
95
99
105
111
122
130
135 | 97
103
106
104
106
105
106
110
118
125
134
142 | 294
297
311
327
341
361
372
378
395
406
408
412
416 | 271
280
289
294
310
327
341
358
371
372
391
402
405 | 285
294
302
318
334
353
363
373
379
396
406
406
409 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696 | 508
532
560
584
582
584
603
616
610
642
662
671
712 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705 | 562
539
543
546
553
572
615
621
627
645
638
645
658 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 107
116
114
114
115
116
116
115
114
128
130
136
146
158 | 96
90
94
98
95
98
99
105
111
122
130
135
141 | 97
103
106
104
106
105
106
110
118
125
134
142
149 | 294
297
311
327
341
361
372
378
395
406
408
412
416
422 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741 |
508
532
560
584
582
584
603
616
610
642
662
671
712
757 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
683 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 107
116
114
115
116
115
114
128
130
136
146
158 | 96
90
94
98
95
98
99
105
111
122
130
135
141 | 97
103
106
104
106
105
106
110
118
125
134
142
149 | 294
297
311
327
341
361
372
378
395
406
408
412
416
422 | 271
280
289
294
310
327
341
358
371
372
391
402
402
405
411 | 285
294
302
318
334
353
363
373
379
396
406
409
419 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
683 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 107
116
114
114
115
116
116
115
114
128
130
136
146
158 | 96
90
94
98
95
98
99
105
111
122
130
135
141 | 97
103
106
104
106
105
105
110
118
125
134
142
149 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435 | 271
280
289
294
310
327
341
358
371
372
391
402
402
405
411
416
427 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770 | 497
499
517
545
575
572
573
607
602
626
655
660
741
746
754 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
683 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 107
116
114
115
116
116
115
114
128
130
136
146
158 | 96
90
94
98
95
98
99
95
99
105
111
122
130
135
141 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430 | 285
294
302
318
334
353
363
373
379
396
406
409
419
423
432
434 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
683
704
715 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 107
116
114
114
115
116
116
115
114
128
130
136
146
158 | 96
90
94
98
95
98
99
105
111
122
130
135
141 | 97
103
106
104
106
105
105
110
118
125
134
142
149 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435 | 271
280
289
294
310
327
341
358
371
372
391
402
402
405
411
416
427 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770 | 497
499
517
545
575
572
573
607
602
626
655
660
741
746
754 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
683 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 107
116
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208 | 96
90
94
98
95
98
99
95
99
105
111
122
130
135
141
156
158
168
186 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415 | 285
294
302
318
334
353
363
373
379
396
406
409
419
423
432
434
430
421 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754
776
744
718 | 508
532
560
584
582
584
603
610
642
662
671
712
757
761
778
791
764
736 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
683
704
715
703
704 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 107
116
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208 | 96
90
94
98
95
98
99
105
111
122
130
135
141
156
158
186
194 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198 | 294
297
311
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419
423
432
432
430
421 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754
776
744
718 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791
764
736 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
727
728 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
692
714
721
708
711 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 107
116
114
114
115
116
115
114
128
130
136
146
147
171
189
197
208
208
193 | 96
90
94
98
95
98
99
95
99
105
111
122
130
135
141
156
158
168
186 | 97
103
106
104
106
105
105
110
118
125
134
142
149
161
164
176
191
198 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419
423
432
434
430
421 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
750 |
497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754
774
718 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791
764
736 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
708
714
721
708
711 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 107
116
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208
208
193
208 | 96
90
94
98
95
98
99
105
111
122
130
135
141
156
158
168
194
170
170
170
179
204 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
189
189
199
211 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415 | 285
294
302
318
334
353
363
373
379
396
406
409
419
423
432
434
430
421
424
430
429
442 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750
721
744
761
723 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754
718
703
712
723
693 | 508
532
560
584
582
584
603
610
642
662
671
712
757
761
778
791
764
736
709
729
750
704 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
727
728
696
629 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711
720
671
671
671
671
671
671
671 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 107
116
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208 | 96
90
94
98
95
98
99
95
99
105
111
122
130
135
141
156
158
168
194
170
170
192 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419
423
432
434
430
421 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
776
744
718 | 508
532
560
584
582
584
603
610
642
671
712
757
761
778
791
764
736 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711
720
671
671
671 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 107
116
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208
208
216
215 | 96
90
94
98
95
98
99
95
99
105
111
122
130
135
141
156
158
168
194
170
170
192
204
206 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
180
199
211
212 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415
424
424
435
444 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419
423
432
434
430
421
424
430
429
442 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750
721
744
761
723
697 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
776
744
718
703
712
723
693
633 | 508
532
560
584
603
610
642
671
712
757
761
778
791
764
736
709
729
750
704
680 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727
728
696
696
629 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704
696
601
629
466
410 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711
720
671
671
671
673
671
673 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 107
116
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208
208
193
208
216
215 | 96
90
94
98
95
98
99
105
111
122
130
135
141
156
158
168
194
170
170
170
192
204
206
214 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
189
189
211
212
219 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425
430
436
436
435
449
454 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415
420
424
424
424
435
444 | 285
294
302
318
334
353
363
373
379
396
406
409
419
423
432
434
430
421
424
430
429
442
448 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
786
750
721
744
761
723
697 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754
776
744
718
703
712
723
693
633 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791
764
736
709
729
750
704
680 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727
728
696
736
629
466 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704
696
601
629
466
410 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711
720
671
678
561
433 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 107
116
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208
208
216
215 | 96
90
94
98
95
98
99
95
99
105
111
122
130
135
141
156
158
168
194
170
170
192
204
206 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
180
199
211
212 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415
424
424
435
444 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419
423
432
434
430
421
424
430
429
442 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750
721
744
761
723
697 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
776
744
718
703
712
723
693
633 |
508
532
560
584
603
610
642
671
712
757
761
778
791
764
736
709
729
750
704
680 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727
728
696
696
629 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704
696
601
629
466
410 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711
720
671
671
671
673
671
673 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 107
1116
1114
1115
1116
1116
1115
1114
128
130
136
146
158
164
171
189
197
208
208
218
219
215
232
237
253
273 | 96
90
94
98
95
98
99
105
111
122
130
135
141
156
158
168
194
170
170
170
172
204
206
214
225
237
250 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
189
189
211
212
219
230
245
262 | 294
297
311
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425
430
436
435
449
454 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415
420
424
435
444
447
460
466
490 | 285
294
302
318
334
353
363
373
379
396
406
409
419
423
432
434
430
421
424
430
429
442
448
454
466
481
495 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750
721
744
761
723
697
663
664
663
663
664
665
663
664
665
766
766
766
766
766
766
766 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754
774
718
703
712
723
693
633
610
604
592
583 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791
764
736
709
729
750
704
680 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727
728
696
736
629
466 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
696
601
629
466
410
382
391
427 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711
720
671
433
390
411
446
477 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 107
1114
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208
208
219
208
215
232
237
253
275 | 96
90
94
98
95
98
99
105
111
122
130
135
141
156
158
186
194
170
170
192
204
206
214
225
237
250
261 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
189
211
212
219
230
245
266
266 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425
439
454
461
469
491
499
504 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415
424
424
424
424
424
424
424
424
424
42 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419
423
432
434
430
421
424
430
429
442
448
454
466
481
495
501 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
786
750
721
744
761
723
697
663
614
618
593
593 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
774
774
774
718
703
712
723
693
633
604
592
593
633 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791
764
736
709
729
750
760
760
760
760
760
760
760
760
760
76 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
727
728
696
736
696
736
629
466 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704
696
601
629
446
410
382
391
426
476 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
708
711
720
671
672
743
743
741
743
741
741
741
741
741
741
741
741
741 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 107
1116
1114
1115
1116
1116
1115
1114
128
130
136
146
158
164
171
189
197
208
208
218
219
215
232
237
253
273 | 96
90
94
98
95
98
99
105
111
122
130
135
141
156
158
168
194
170
170
170
172
204
206
214
225
237
250 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
189
189
211
212
219
230
245
262 | 294
297
311
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425
430
436
435
449
454 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415
420
424
435
444
447
460
466
490 | 285
294
302
318
334
353
363
373
379
396
406
409
419
423
432
434
430
421
424
430
429
442
448
454
466
481
495 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
815
786
750
721
744
761
723
697
663
664
663
663
664
665
663
664
665
766
766
766
766
766
766
766 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
754
774
718
703
712
723
693
633
610
604
592
583 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791
764
736
709
729
750
704
680 | 581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
725
715
727
728
696
736
629
466 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
696
601
629
466
410
382
391
427 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
721
708
711
720
671
433
390
411
446
477 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 107
1114
114
115
116
116
115
114
128
130
136
146
158
164
171
189
197
208
208
219
208
215
232
237
253
275 | 96
90
94
98
95
98
99
105
111
122
130
135
141
156
158
186
194
170
170
192
204
206
214
225
237
250
261 | 97
103
106
104
106
105
106
110
118
125
134
142
149
161
164
176
191
198
189
189
211
212
219
230
245
266
266 | 294
297
3111
327
341
361
372
378
395
406
408
412
416
422
427
435
439
434
425
439
454
461
469
491
499
504 | 271
280
289
294
310
327
341
358
371
372
391
402
405
411
416
427
430
424
415
424
424
424
424
424
424
424
424
424
42 | 285
294
302
318
334
353
363
373
379
396
406
406
409
419
423
432
434
430
421
424
430
429
442
448
454
466
481
495
501 | 504
518
550
578
598
599
596
616
624
626
665
668
696
741
770
771
815
786
750
721
744
761
723
697
663
614
618
593
593 | 497
499
517
545
575
572
573
593
607
602
626
655
660
696
741
746
774
774
774
718
703
712
723
693
633
604
592
593
633 | 508
532
560
584
582
584
603
616
610
642
662
671
712
757
761
778
791
764
736
709
729
750
760
760
760
760
760
760
760
760
760
76 |
581
564
553
555
572
632
625
629
646
654
649
663
684
705
697
704
725
727
728
696
736
696
736
629
466 | 562
539
543
546
553
572
615
621
627
645
638
645
658
683
704
715
703
704
696
601
629
446
410
382
391
426
476 | 573
549
550
550
565
591
619
625
640
650
646
652
674
695
691
708
711
720
671
672
743
743
741
743
741
741
741
741
741
741
741
741
741 | # 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | PH, | WATER, | WHOLE, | FIELD, STA | NDARD UN | ITS, WATE | R YEAR OCT | OBER 199 | 9 TO SEP | TEMBER 200 | 0 | | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | 2 | | NOVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 8.7
8.6
8.6
8.6
8.6 | 8.5
8.5
8.5
8.5 | 8.6
8.6
8.6
8.6 | 8.5
8.5
8.5
8.5 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.3
8.3
8.3
8.3 | 8.2
8.2
8.2
8.2
8.2 | 8.3
8.3
8.2
8.2 | | 6
7
8
9
10 | 8.6
8.6
8.6
8.6 | 8.5
8.5
8.5
8.5
8.5 | 8.5
8.5
8.5
8.5
8.6 | 8.5
8.5
8.5
8.5 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.2
8.2
8.2
8.2
8.2 | 8.2
8.1
8.1
8.1
8.1 | 8.2
8.2
8.1
8.1 | | 11
12
13
14
15 | 8.6
8.6
8.6
8.7
8.6 | 8.5
8.5
8.5
8.5
8.5 | 8.6
8.6
8.6
8.6 | 8.5
8.5
8.5
8.5 | 8.4
8.4
8.4
8.4 | 8.4
8.5
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.3 | 8.4
8.4
8.4
8.4 | 8.2
8.2
8.2
8.3
8.3 | 8.1
8.1
8.2
8.2
8.2 | 8.1
8.2
8.2
8.2
8.3 | | 16
17
18
19
20 | 8.6
8.6
8.6
8.6 | 8.5
8.5
8.5
8.5
8.5 | 8.6
8.6
8.5
8.5 | 8.5
8.5
8.5
8.5 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.5
8.5 | 8.4
8.4
8.4
8.4 | 8.3
8.3
8.3
8.4
8.3 | 8.3
8.4
8.4
8.4 | 8.3
8.4
8.3
8.3 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 | | 21
22
23
24
25 | 8.5
8.6
8.6
8.6 | 8.5
8.5
8.5
8.5
8.5 | 8.5
8.5
8.6
8.5
8.5 | 8.5
8.5
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3 | 8.4
8.4
8.3
8.4 | 8.3
8.3
8.3
8.3 | 8.4
8.4
8.3
8.3 | | 26
27
28
29
30
31 | 8.6
8.6
8.5
8.5
8.5 | 8.5
8.4
8.4
8.4
8.4 | 8.5
8.5
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4 | 8.4
8.4
8.4
8.4
 | 8.3
8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3
8.3 | 8.3
8.3
8.3
8.3
8.3 | 8.4
8.4
8.5
8.6 | 8.3
8.3
8.4
8.5
8.5 | 8.3
8.4
8.4
8.5
8.5 | | MONTH | 8.7 | 8.4 | 8.5 | 8.5 | 8.4 | 8.4 | 8.4 | 8.2 | 8.4 | 8.6 | 8.1 | 8.3 | | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 8.6
8.6
8.6
8.6 | 8.5
8.5
8.5
8.6 | 8.5
8.5
8.6
8.6 |

 |

 |

 |

 | |

 | 8.0
8.0
8.1
8.1 | 8.0
8.0
8.0
8.0 | 8.0
8.0
8.0
8.0 | | 6
7
8
9
10 | 8.7
8.7
8.7
8.7
8.7 | 8.6
8.6
8.7
8.7 | 8.6
8.7
8.7
8.7 |

 |

 |

 |

 |

 |

 | 8.1
8.1
8.0
8.0 | 8.0
8.0
8.0
8.0 | 8.1
8.0
8.0
8.0 | | 11
12
13
14
15 | 8.7
8.7
8.7
8.6
8.6 | 8.6
8.6
8.6
8.6 | 8.7
8.6
8.6
8.6
8.6 |

 |

 |

 |

8.1
8.1 |

8.1
8.1 |

8.1
8.1 | 8.1
8.0
8.0
8.0 | 8.0
8.0
7.9
8.0
8.0 | 8.0
8.0
8.0
8.0 | | 16
17
18
19
20 | 8.6
8.6
8.6
8.6
8.7 | 8.6
8.6
8.6
8.5 | 8.6
8.6
8.6
8.6 |

 |

 |

 | 8.1
8.2
8.2
8.2
8.1 | 8.1
8.1
8.1
8.1 | 8.1
8.1
8.2
8.1
8.1 | 8.1
8.1
8.1
8.1 | 8.1
8.1
8.1
8.1 | 8.1
8.1
8.1
8.1 | | 21
22
23
24
25 | 8.9

8.7 | 8.6

8.7 | 8.7

8.7 |

 |

 |

 | 8.2
8.2
8.1
8.1 | 8.1
8.1
8.0
8.0 | 8.1
8.1
8.1
8.0
8.0 | 8.1
8.1
8.2
8.2 | 8.1
8.0
8.0
8.0 | 8.1
8.1
8.1
8.1 | | 26
27
28
29
30
31 | 8.7
8.7
8.7
8.7 | 8.7
8.6
8.6
8.6 | 8.7
8.6
8.7 |

 |

 |

 | 8.1
8.1
8.0
8.0 | 8.0
8.0
8.0
8.0 | 8.1
8.0
8.0
8.0 | 8.1
8.0
8.0
8.0
8.0 | 8.0
8.0
7.9
7.9
7.9 | 8.0
8.0
8.0
7.9
8.0
7.9 | | MONTH | 341 ## 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | FII, | WAIEK, | WHOLE, | FIEDD, SIA | MDAKD OIN | IIS, WAIEK | IEAR OCIO | JDER 199. | J IO SEP | IEMBER 200 | U | | |---|--|--|---|--|---|--|--|---|--|---|---|--| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | I | | | | SEPTEMBER | ? | | 1
2
3
4
5 | 7.9
7.9
7.9
7.9
7.9 | | 7.9
7.8
7.8
7.9
7.9 | 8.6
8.6
8.6
8.6 | 8.3
8.3
8.4
8.4 | 8.4
8.4
8.5
8.5 | 8.7
8.7
8.6
8.6 | 8.3
8.2
8.2
8.2
8.2 | 8.5
8.5
8.4
8.4 | 8.8
8.8
8.8
8.8 | 8.5
8.6
8.6
8.5 | 8.7
8.7
8.7
8.7
8.6 | | 6
7
8
9
10 | 79 | 7.8
7.8
7.8
7.9
7.9 | 7.9
7.9
7.9
7.9 | 8.6
8.6
8.5
8.5 | 8.4
8.4
8.3
8.3 | 8.5
8.5
8.4
8.4 | 8.6
8.7
8.7
8.7 | 8.2
8.2
8.2
8.2
8.2 | 8.4
8.4
8.5
8.5 | 8.8
8.6
8.6
8.6 | 8.5
8.3
8.3
8.3 | 8.6
8.5
8.4
8.5
8.4 | | 11
12
13
14
15 | 7.9
7.9
8.0
8.0 | 7.9
7.9
7.9
7.9
7.8 | 7.9
7.9
7.9
8.0
7.9 | 8.6
8.6
8.7
8.7 | 8.3
8.4
8.4
8.4 | 8.5
8.5
8.6
8.6 | 8.7
8.8
8.8
8.8 | 8.2
8.2
8.2
8.2
8.3 | 8.4
8.5
8.5
8.5
8.5 | 8.6
8.5
8.5
8.5 | 8.3
8.3
8.3
8.3 | 8.5
8.4
8.4
8.4 | | 18
19
20 | 8.0
8.0
8.0
8.1
8.3 | 7.8
7.8
8.0
8.0 | 7.9
7.9
8.0
8.1
8.1 | 8.7
8.7
8.7
8.8
8.8 | 8.4
8.4
8.5
8.6
8.6 | 8.6
8.6
8.7
8.7 | 8.7
8.7
8.8
8.8 | 8.3
8.2
8.3
8.3 | 8.5
8.5
8.5
8.6 | 8.5
8.5
8.5
8.5 | 8.3
8.3
8.3
8.3 | 8.4
8.4
8.4
8.4 | | 23 | | 8.1
8.2
8.1
8.1 | | | 8.7
8.6
8.6
8.5
8.4 | 8.7
8.7
8.7
8.6
8.6 | 8.8
8.7
8.7
8.8 | 8.4
8.4
8.4
8.4 | 8.6
8.6
8.6
8.6 | 8.5
8.5
8.5
8.4 | 8.4
8.3
8.4
8.3 | 8.4
8.4
8.4
8.3 | | 26
27
28
29
30
31 | 8.2
8.2
8.3
8.4
8.4 | 8.1
7.7
8.0
8.1
8.2 | 8.1
8.2
8.2
8.2
8.3 | 8.7
8.7
8.7
8.7
8.7 | 8.4
8.4
8.3
8.3
8.3 | 8.6
8.6
8.5
8.5
8.5 | 8.8
8.8
8.8
8.7
8.8 | 8.4
8.4
8.4
8.5
8.5 | 8.6
8.6
8.6
8.6
8.6 | 8.4
8.5
8.6
8.7
8.7 | 8.3
8.3
8.5
8.5
8.6 | 8.4
8.6
8.6
8.6 | | MONTH | 8.4 | 7.7 | 8.0 | | | 8.5 | | | | | 8.3 | 8.5 | | | | | | | | | | | | | | | | | | TEMPE | RATURE, | WATER (DE | G. C), W. | ATER YEAR (| OCTOBER 19 | 999 TO SI | EPTEMBER | 2000 | | | | DAY | MAX | TEMPE: | RATURE,
MEAN | WATER (DE | | | OCTOBER 19 | | | 2000
MAX | MIN | MEAN | | DAY | MAX | | MEAN | | MIN | MEAN | | MIN | | MAX | MIN
JANUARY | | | DAY 1 2 3 4 5 | 13.4 | MIN
OCTOBER
9.1
8.3
8.2
7.9
8.3 | MEAN
10.9
10.2
10.1
10.0
10.5 | 7.5
6.9
6.8
7.2
7.7 |
MIN
NOVEMBER
4.6
3.4
3.3
3.7
4.1 | 5.7
4.8
4.7
5.1
5.6 | MAX DE 2.6 2.4 1.7 1.3 .6 | MIN ECEMBER .3 .4 .4 .0 .0 | 1.4
1.2
1.1
.3 | .2
.1
.1
.1 | JANUARY .0 .0 .0 .0 .0 .0 | .1
.0
.0
.1 | | 1
2
3
4 | 13.4
12.5
12.4
12.7
13.0 | MIN
OCTOBER
9.1 | MEAN
10.9
10.2
10.1
10.0
10.5 | 7.5
6.9
6.8
7.2
7.7 | MIN
NOVEMBER
4.6
3.4
3.3
3.7
4.1 | MEAN | MAX DE 2.6 2.4 1.7 1.3 .6 | MIN ECEMBER .3 .4 .4 .0 .0 | 1.4
1.2
1.1
.3 | .2
.1
.1
.1 | JANUARY .0 .0 .0 .0 .0 .0 | .1
.0
.0
.1 | | 1
2
3
4
5
6
7
8
9 | 13.4
12.5
12.4
12.7
13.0
13.4
13.5
13.5
14.3 | MIN
OCTOBER
9.1
8.3
8.2
7.9
8.3 | 10.9
10.2
10.1
10.0
10.5
11.5
11.5
11.2
11.9 | 7.5
6.9
6.8
7.2
7.7
7.5
7.0
7.5
7.7 | MIN NOVEMBER 4.6 3.4 3.3 3.7 4.1 4.3 4.1 4.3 4.5 4.1 | 5.7
4.8
4.7
5.1
5.6
5.3
5.5
5.7
5.3 | MAX DE 2.6 2.4 1.7 1.3 .6 | MIN ECEMBER .3 .4 .4 .0 .0 .0 .0 .0 .0 .0 | 1.4
1.2
1.1
.3 | .2
.1
.1
.1 | JANUARY . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 | .1
.0
.0
.1
.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.4
12.5
12.4
12.7
13.0
13.4
13.5
14.3
14.6
14.6
14.3
14.2
13.5 | MIN OCTOBER 9.1 8.3 8.2 7.9 8.3 10.1 10.6 9.1 10.1 10.5 | MEAN 10.9 10.2 10.1 10.0 10.5 11.5 11.5 11.2 11.9 12.3 12.5 12.1 11.9 11.3 | MAX 7.5 6.9 6.8 7.2 7.7 7.5 7.0 7.5 7.7 7.2 6.6 6.2 5.7 5.4 | MIN
NOVEMBER
4.6
3.4
3.3
3.7
4.1
4.3
4.5
4.1
4.1
3.4
2.8 | 5.7
4.8
4.7
5.1
5.6
5.3
5.5
5.7
5.3
5.1
4.5
3.9
3.5 | MAX DE 2.6 2.4 1.7 1.3 .6 .9 .1 .1 .1 | MIN ECEMBER .3 .4 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 1.4 1.2 1.1 .3 .1 .0 .0 .1 .0 .0 .0 | MAX .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .1
.0
.0
.1
.0
.0
.1
.1
.1
.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 13.4
12.5
12.4
12.7
13.0
13.4
13.5
14.3
14.6
14.6
14.3
14.2
13.5
11.5 | MIN OCTOBER 9.1 8.3 8.2 7.9 8.3 10.1 10.6 9.1 10.1 10.5 10.8 10.4 10.1 9.6 8.9 5.8 4.1 5.2 4.7 | MEAN 10.9 10.2 10.1 10.0 10.5 11.5 11.2 11.9 12.3 12.5 12.1 11.9 11.3 10.2 7.5 5.7 6.2 6.2 | MAX 7.5 6.9 6.8 7.2 7.5 7.7 7.5 7.7 7.5 7.9 4.7 5.9 6.6 4.1 | MIN NOVEMBER 4.6 3.4 3.3 3.7 4.1 4.3 4.5 4.1 4.1 3.4 5.2 1.9 1.9 2.2 3.4 2.2 | 5.7
4.8
4.7
5.6
5.6
5.3
5.5
5.7
5.3
5.1
4.5
3.9
3.5
3.1 | MAX DE 2.6 2.4 1.7 1.3 .6 .9 .1 .6 .1 .1 .2 .2 .2 .3 .2 .2 | MIN ECEMBER .3 .4 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 1.4 1.2 1.1 .3 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .2 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .1 .2 .1 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .1
.0
.0
.1
.0
.0
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 13.4
12.4
12.7
13.0
13.4
13.5
14.3
14.6
14.6
14.3
14.2
13.5
11.5
8.9
7.6
7.8
8.1
8.4
8.9
8.9
8.9
8.5
8.8 | MIN OCTOBER 9.1 8.3 8.2 7.9 8.3 10.1 10.6 9.1 10.1 10.5 10.8 10.4 10.1 9.6 8.9 5.8 4.1 5.2 4.7 4.6 5.1 5.4 5.3 5.2 | MEAN 10.9 10.2 10.1 10.0 10.5 11.5 11.2 11.9 12.3 12.5 12.1 11.9 11.3 10.2 7.5 6.2 6.3 6.8 6.9 6.8 6.9 6.8 | MAX 7.5 6.9 6.8 7.2 7.5 7.7 7.5 7.7 7.5 7.6 6.6 6.2 5.7 5.4 4.9 4.7 5.9 2.8 2.0 1.1 | MIN NOVEMBER 4.6 3.4 3.3 3.7 4.1 4.3 4.5 4.1 3.4 5 4.1 3.4 1.9 1.9 2.2 3.4 1.9 1.9 1.9 2.2 3.4 1.0 0.0 | MEAN 5.7 4.8 4.7 5.6 5.6 5.3 5.5 5.7 5.3 5.1 4.5 3.9 3.5 3.1 3.0 3.8 4.5 3.0 2.4 1.9 1.2 .1 | MAX DH 2.6 2.4 1.7 1.3 .6 .9 .1 .6 .1 .1 .2 .2 .2 .2 .2 .1 .1 .2 .2 .2 .2 .2 | MIN ECEMBER .3 .4 .4 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MEAN 1.4 1.2 1.1 .3 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | MAX .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .2 .1 .2 .1 .2 .2 .2 .1 | JANUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | .1
.0
.0
.1
.0
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1 | MONTH 14.6 3.5 8.7 7.7 .0 3.3 2.6 .0 .2 .2 .0 .1 # 09251000 YAMPA RIVER NEAR MAYBELL, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | TEMPE | RATURE, | WATER (DE | G. C), W | ATER YEAR | OCTOBER 1 | L999 TO S | SEPTEMBER | R 2000 | | | |---|--|--|--|--|---|--|--|--|--|---|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | .2 | .0 | .0 | | | | | | | 11.2 | 9.0 | 10.2 | | 2 | .2 | .0 | .0 | | | | | | | 12.2 | 10.1 | 11.2 | | 3 | .3 | .0 | .1 | | | | | | | 12.7 | 11.0 | 11.9 | | 4 | .2 | .0 | .1 | | | | | | | 12.6 | 11.0 | 12.0 | | 5 | . 2 | .0 | .0 | | | | | | | 12.6 | 11.3 | 12.0 | | 6 | .3 | .0 | .1 | | | | | | | 12.2 | 11.0 | 11.7 | | 7 | .3 | .0 | .1 | | | | | | | 11.9 | 10.3 | 10.8 | | 8 | .3 | .0 | .1 | | | | | | | 10.3 | 8.2 | 8.9 | | 9
10 | .3
.5 | .0 | .1
.2 | | | | | | | 9.4
12.0 | 7.0
9.1 | 8.2
10.4 | | 10 | | .0 | | | | | | | | 12.0 | ٧. ـ | 10.1 | | 11 | .7 | .0 | .2 | | | | | | | 11.4 | 9.5 | 10.6 | | 12
13 | .5 | .0 | .2 | | | | | | | 9.5
7.8 | 6.7 | 7.7 | | 14 | .6
.6 | .0 | .1
.2 | | | | 10.9 | 9.1 | 10.1 | 10.5 | 5.6
7.3 | 6.8
8.9 | | 15 | 1.4 | .0 | .3 | | | | 10.1 | 8.4 | 9.2 | 12.7 | 10.3 | 11.3 | | | | | | | | | | | | | | | | 16 | .5 | .0 | .1 | | | | 9.6 | 7.6 | 8.7 | 13.0 | 10.6 | 11.9 | | 17
18 | $\frac{1.0}{1.4}$ | .0 | .2 | | | | 11.1
11.0 | 7.6
9.7 | 9.3
10.4 | 12.3
10.1 | 10.1
8.2 | 11.1
9.4 | | 19 | 1.9 | .0 | .4 | | | | 9.8 | 7.4 | 8.3 | 11.0 | 7.9 | 9.4 | | 20 | 1.4 | .0 | .3 | | | | 9.3 | 6.0 | 7.6 | 14.2 | 10.7 | 12.3 | | 0.1 | 1 0 | 0 | 2 | | | | 10.4 | 7 7 | 0 1 | 14.0 | 10.7 | 12.0 | | 21
22 | 1.8 | .0
.1 | .3
.1 | | | | 10.4
10.4 | 7.7
9.2 | 9.1
9.8 | 14.9
14.8 | 12.7
13.1 | 13.8
14.0 | | 23 | .1 | .1 | .1 | | | | 11.0 | 8.8 | 9.9 | 15.0 | 12.9 | 14.1 | | 24 | .1 | .1 | .1 | | | | 10.1 | 8.4 | 9.2 | 14.7 | 13.2 | 13.7 | | 25 | 2.3 | .1 | .8 | | | | 10.2 | 7.9 | 9.0 | 13.2 | 10.9 | 11.8 | | 26 | 1.8 | .0 | .6 | | | | 11.9 | 8.6 | 10.1 | 11.9 | 10.6 | 11.1 | | 27 | 3.3 | .0 | 1.6 | | | | 14.0 | 10.5 | 12.2 | 11.1 | 9.3 | 10.3 | | 28 | 4.3 | 2.1 | 3.0 | | | | 13.8 | 11.6 | 12.7 | 13.8 | 10.5 | 12.0 | | 29 | 6.0 | 2.8 | 4.3 | | | | 12.4 | 10.6 | 11.6 | 14.4 | 12.2 | 13.4 | | 30
31 | | | | | | | 10.7 | 9.3 | 10.1 | 14.6
14.3 | $12.6 \\ 12.4$ | 13.7
13.5 | | 31 | | | | | | | | | | 14.5 | 12.1 | 13.3 | | MONTH | 6.0 | .0 | .5 | | | | | | | 15.0 | 5.6 | 11.2 | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 | 14.1 | JUNE
12.2 | 13.2 | 23.6 | JULY
20.1 | 21.8 | 27.6 | AUGUST | 23.1 | 19.8 | SEPTEMBE | IR 18.2 | | | | JUNE
12.2
11.9 | |
23.6
22.4 | JULY
20.1
19.5 | | | AUGUST | 23.1
23.4 | 19.8
20.0 | SEPTEMBE | 18.2
17.6 | | 1
2
3
4 | 14.1
14.1 | JUNE
12.2 | 13.2
13.1 | 23.6 | JULY
20.1 | 21.8
21.0 | 27.6
27.8 | AUGUST
19.5
20.5 | 23.1 | 19.8 | 17.0
15.7 | IR 18.2 | | 1
2
3 | 14.1
14.1
14.7 | JUNE
12.2
11.9
12.1 | 13.2
13.1
13.5 | 23.6
22.4
22.0 | JULY
20.1
19.5
18.7 | 21.8
21.0
20.5 | 27.6
27.8
26.4 | AUGUST
19.5
20.5
19.4 | 23.1
23.4
22.4 | 19.8
20.0
20.1 | 17.0
15.7
14.8 | 18.2
17.6
17.2 | | 1
2
3
4
5 | 14.1
14.1
14.7
15.3
15.4 | JUNE 12.2 11.9 12.1 13.0 13.3 | 13.2
13.1
13.5
14.3
14.6 | 23.6
22.4
22.0
21.8
21.9 | JULY 20.1 19.5 18.7 17.9 17.2 | 21.8
21.0
20.5
19.9
19.8 | 27.6
27.8
26.4
27.4
25.2 | 19.5
20.5
19.4
19.7
19.5 | 23.1
23.4
22.4
23.0
22.6 | 19.8
20.0
20.1
20.2
21.3 | 17.0
15.7
14.8
15.2
15.6 | 18.2
17.6
17.2
17.3
17.8 | | 1
2
3
4 | 14.1
14.1
14.7
15.3 | JUNE 12.2 11.9 12.1 13.0 | 13.2
13.1
13.5
14.3 | 23.6
22.4
22.0
21.8 | JULY 20.1 19.5 18.7 17.9 17.2 | 21.8
21.0
20.5
19.9 | 27.6
27.8
26.4
27.4 | AUGUST 19.5 20.5 19.4 19.7 19.5 | 23.1
23.4
22.4
23.0
22.6 | 19.8
20.0
20.1
20.2 | 17.0
15.7
14.8
15.2 | 18.2
17.6
17.2
17.3 | | 1
2
3
4
5 | 14.1
14.7
15.3
15.4
15.9
16.4
16.3 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6 | 23.6
22.4
22.0
21.8
21.9
22.0
22.3
22.6 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 | 23.1
23.4
22.4
23.0
22.6
22.6
21.5
21.8 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4 | SEPTEMBE
17.0
15.7
14.8
15.2
15.6
15.0
12.7
14.9 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2 | | 1
2
3
4
5
6
7
8
9 | 14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.9 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4 | 23.6
22.4
22.0
21.8
21.9
22.0
22.3
22.6
23.8 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
20.8 | 17.0
15.7
14.8
15.2
15.6
15.0
12.7
14.9
13.8 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9 | | 1
2
3
4
5 | 14.1
14.7
15.3
15.4
15.9
16.4
16.3 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6 | 23.6
22.4
22.0
21.8
21.9
22.0
22.3
22.6 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 | 23.1
23.4
22.4
23.0
22.6
22.6
21.5
21.8 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4 | SEPTEMBE
17.0
15.7
14.8
15.2
15.6
15.0
12.7
14.9 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8 | | 1
2
3
4
5
6
7
8
9 | 14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.9 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.0 14.7 14.2 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4 | 23.6
22.4
22.0
21.8
21.9
22.0
22.3
22.6
23.8 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
20.8 | 17.0
15.7
14.8
15.2
15.6
15.0
12.7
14.9
13.8 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9 | | 1
2
3
4
5
6
7
8
9 | 14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.9
15.5 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
20.8
21.1 | 17.0
15.7
14.8
15.2
15.6
15.0
12.7
14.9
13.8
12.9 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9 | | 1
2
3
4
5
6
7
8
9
10 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.3
16.6
17.4 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2 | 19.5
20.5
19.4
19.7
19.5
18.2
17.6
16.8
18.0
19.1 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
20.8
21.1 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.6
17.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
15.9
15.5
16.3
16.6
17.4 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.9 | 23.6
22.4
22.0
21.8
21.9
22.0
22.3
22.3
23.6
23.8
23.6
23.9
23.6
24.7
25.9 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.8 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 | 23.1
23.4
22.4
23.0
22.6
21.5
21.5
22.5
22.9
22.8
22.5
22.2
21.5 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
17.5
17.5 | | 1
2
3
4
5
6
7
8
9
10 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.3
16.6
17.4 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2 | 19.5
20.5
19.4
19.7
19.5
18.2
17.6
16.8
18.0
19.1 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
20.8
21.1 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 | 18.2
17.6
17.2
17.3
17.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
16.6
17.8
18.3 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
15.9
16.2 | 23.6
22.4
22.0
21.8
21.9
22.0
22.3
22.6
23.8
23.6
23.9
23.6
24.7
25.9
26.5 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 |
18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
17.5
17.5
17.9
18.4
18.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.3
17.4
17.8
18.3 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
15.9
16.2 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.6
24.7
25.9
26.5 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.5 21.1 22.3 21.2 20.7 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.7 19.2 17.7 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
17.9
18.4
18.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.6
17.4
17.8
18.3
17.5
18.1
17.7 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
15.9
16.2 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
24.7
25.9
26.5
27.5
25.1
25.3 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
23.6 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.0 17.7 19.2 17.3 17.5 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8
22.5
22.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
21.4
22.4
22.7
23.3
23.0
23.0 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
16.9
18.4
18.4
18.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 14.1
14.7
15.3
15.4
15.9
16.4
15.9
15.5
16.3
16.6
17.8
18.3
17.5
18.1
17.7 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.8 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.9
23.6
24.7
25.9
26.5 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.1
26.9
25.9
26.8
25.8 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.8
22.5
21.8
22.5
22.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
20.6 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4
18.4
18.2
16.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.6
17.4
17.8
18.3
17.5
18.1
17.7
16.7
18.0 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
14.3
14.9
16.5
16.2
16.3
16.5
15.8
16.1 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.3 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
23.6
22.9
22.1
22.3
22.5 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
26.2
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.0 17.7 19.2 17.3 17.5 17.6 17.9 | 23.1
23.4
22.6
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8
21.5
21.8
22.5
22.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
21.4
22.7
23.3
23.0
23.0
21.1
21.2
22.4
22.7
23.3
23.0 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
16.9
18.4
18.4
18.4
18.5
16.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
16.6
17.8
18.3
17.5
18.1
17.7
18.0 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.8
16.2
16.3
16.5
16.5
16.1 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.9
23.6
24.7
25.9
26.5
27.5
25.1 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
23.6
22.9
22.1
22.3
22.5 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.1
26.9
25.9
26.8
25.8
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.8
22.5
21.8
22.5
21.8
22.5
21.5
21.8 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
20.6
20.2 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4
18.4
18.2
16.9
17.3
16.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.9
15.5
16.3
17.4
17.8
18.3
17.5
18.1
17.7
18.0 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.8
16.2
16.3
16.5
15.5
17.0
17.7 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.6
23.9
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.1 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 19.2 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
25.8
27.2 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8
21.4
20.9
20.8
21.3
20.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
21.4
20.6
20.2 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
16.9
16.8
17.5
17.9
18.4
18.4
18.2
16.9
17.3
16.9
17.3
17.3
18.4
18.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
16.6
17.8
18.3
17.5
18.1
17.7
18.0 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.8
16.2
16.3
16.5
16.5
16.1
| 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.1
25.3
25.1 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
23.6
22.9
22.1
22.3
22.5 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
26.2
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.8
22.5
21.8
22.5
21.8
22.5
21.5
21.8 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
24.0
6
20.2 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
17.9
18.4
18.4
18.2
16.9
17.3
16.7
15.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.6
17.4
17.8
18.3
17.5
18.1
17.7
16.7
18.0 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
14.3
14.9
15.5
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.6
23.9
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.1 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 19.2 19.5 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
23.6
22.9
22.1
22.3
22.5
22.4
22.5
22.3 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
25.8
27.2 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 17.7 19.1 18.8 18.0 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8
21.4
20.9
20.8
21.3
20.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
21.4
20.6
20.2 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
16.9
16.8
17.5
17.9
18.4
18.4
18.2
16.9
17.3
16.9
17.3
17.3
18.4
18.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.6
17.4
17.8
18.3
17.5
18.1
17.7
16.7
18.0
19.4
20.2
20.8
19.5 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 15.3 18.3 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.1
25.3
25.1
25.1
25.9
25.6
24.5 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 19.2 19.5 20.0 18.5 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5
22.4
22.5
22.3
21.6
21.0 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
26.2
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.0 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 16.4 18.3 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8
21.3
20.9
20.8
21.3
20.9
20.3
18.2
18.6
20.4
21.5 | 19.8 20.0 20.1 20.2 21.3 20.3 21.4 21.4 20.8 21.1 21.2 22.4 22.7 23.3 23.0 23.0 23.0 24.7 13.1 10.1 9.4 11.4 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 12.1 10.1 6.9 6.6 7.6 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
17.9
18.4
18.4
18.2
16.9
17.3
16.7
15.9
18.6
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
16.6
17.4
17.8
18.3
17.5
18.1
17.7
18.0
18.6
19.4
20.2
20.8
19.5 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.8 17.2 17.3 18.3 17.0 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.8
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7
19.1
18.9 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.9
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.3
25.1
25.9
24.8 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.8 20.0 19.8 19.2 19.8 20.0 19.8 19.2 19.8 20.0 18.5 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5
22.4
22.5
22.3
21.0
21.0 | 27.6
27.8
26.0
27.3
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
26.2
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 16.4 18.3 18.6 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.8
22.5
21.8
20.9
20.3
18.2
21.3
20.9 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
20.6
20.2
14.7
13.1
10.1
9.4
11.4 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 12.1 10.1 6.6 7.6 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4
18.4
18.2
16.7
17.3
16.7
17.3
16.7
17.3
16.7
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 14.1
14.1
14.7
15.3
15.4
15.9
16.4
16.3
15.5
16.6
17.4
17.8
18.3
17.5
18.1
17.7
16.7
18.0
19.4
20.2
20.8
19.5 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 15.3 18.3 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.1
25.3
25.1
25.1
25.9
25.6
24.5 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 19.2 19.5 20.0 18.5 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5
22.4
22.5
22.3
21.6
21.0 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
26.2
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.0 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 16.4 18.3 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
22.2
21.5
21.8
21.3
20.9
20.8
21.3
20.9
20.3
18.2
18.6
20.4
21.5 | 19.8 20.0 20.1 20.2 21.3 20.3 21.4 21.4 20.8 21.1 21.2 22.4 22.7 23.3 23.0 23.0 23.0 24.7 13.1 10.1 9.4 11.4 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 12.1 10.1 6.9 6.6 7.6 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.8
17.5
17.9
18.4
18.4
18.2
16.9
17.3
16.7
15.9
18.6
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
16.6
17.4
17.8
18.3
17.5
18.1
17.7
18.0
18.6
19.4
20.2
20.8
19.5
19.5 | JUNE 12.2 11.9 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.8 17.2 17.3 18.3 17.0 15.9 16.7 18.1 | 13.2
13.1
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.8
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7
19.1
18.9 |
23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.9
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.3
25.1
25.3
25.1
25.4
24.8
24.8
24.8 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.8 20.0 19.8 19.2 19.8 20.0 19.8 19.2 19.8 20.0 19.8 19.2 19.5 19.8 20.0 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5
22.1
22.3
22.5
22.4
22.4
22.4 | 27.6
27.8
26.0
27.3
27.3
27.8
27.2
27.4
28.0
27.1
26.9
25.9
26.8
27.1
26.9
25.8
27.1
26.9
25.8
26.2
24.9
25.2
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 16.4 18.3 18.6 18.9 19.1 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.5
21.8
22.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
21.4
20.6
20.2
14.7
13.1
10.1
9.4
11.4 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 12.1 10.1 6.6 7.6 9.6 10.5 11.6 13.1 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4
18.4
18.2
16.7
17.3
16.7
15.9
13.2
11.9
8.1
9.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
17.8
18.3
17.5
18.1
17.7
18.0
18.6
19.4
20.2
20.8
19.5 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 15.8 17.2 15.8 17.2 15.8 17.2 15.9 16.7 18.3 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
15.9
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7
19.1
18.9 | 23.6
22.4
22.0
21.8
21.9
22.3
22.3
23.6
23.8
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.1
25.3
25.1
25.3
25.4
24.8
24.8
24.8
26.7
26.2
26.2 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5
22.3
21.6
21.0
21.7
22.4
22.4
22.5 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
25.8
25.2
24.9
25.0
19.7
22.9
26.2
24.0
25.3
23.5
24.7
22.2 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 16.4 18.3 18.6 18.9 19.4 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.5
21.8
21.5
22.9
22.8
22.5
21.5
21.5
21.8
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
20.6
20.2
14.7
13.1
10.1
9.4
11.4 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 12.1 10.1 6.9 6.6 7.6 9.6 10.5 11.6 13.1 13.2 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4
18.4
18.2
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
16.9
17.3
17.3
17.3
17.3
17.3
17.3
17.3
17.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
16.6
17.4
17.8
18.3
17.5
18.1
17.7
18.0
18.6
19.4
20.2
20.8
19.5
19.5 | JUNE 12.2 11.9 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.8 17.2 17.3 18.3 17.0 15.9 16.7 18.1 | 13.2
13.1
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
16.2
16.8
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7
19.1
18.9 | 23.6
22.4
22.0
21.8
21.9
22.3
22.6
23.8
23.6
23.9
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.3
25.1
25.3
25.1
25.4
24.8
24.8
24.8 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.8 20.0 19.8 19.2 19.8 20.0 19.8 19.2 19.8 20.0 19.8 19.2 19.5 19.8 20.0 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5
22.1
22.3
22.5
22.4
22.4
22.4 | 27.6
27.8
26.0
27.3
27.3
27.8
27.2
27.4
28.0
27.1
26.9
25.9
26.8
27.1
26.9
25.8
27.1
26.9
25.8
26.2
24.9
25.2
24.9 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 16.4 18.3 18.6 18.9 19.1 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.5
21.8
22.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
21.4
20.6
20.2
14.7
13.1
10.1
9.4
11.4 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 12.1 10.1 6.6 7.6 9.6 10.5 11.6 13.1 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4
18.4
18.2
16.7
17.9
17.3
16.7
15.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 14.1
14.1
14.7
15.3
15.4
15.9
16.3
15.9
15.5
16.3
17.8
18.3
17.5
18.1
17.7
18.0
18.6
19.4
20.2
20.8
19.5 | JUNE 12.2 11.9 12.1 13.0 13.3 14.0 14.7 14.2 12.9 13.6 14.4 14.6 14.7 15.5 15.0 14.4 15.2 15.1 14.2 15.8 17.2 15.8 17.2 15.8 17.2 15.9 16.7 18.3 | 13.2
13.1
13.5
14.3
14.6
15.0
15.3
15.6
15.4
14.3
14.9
15.5
15.9
16.2
16.3
16.5
15.8
16.1
17.0
17.7
18.7
19.1
18.9 | 23.6
22.4
22.0
21.8
21.9
22.3
22.3
23.6
23.8
23.6
24.7
25.9
26.5
27.5
25.1
25.3
25.1
25.3
25.1
25.3
25.4
24.8
24.8
24.8
26.7
26.2
26.2 | JULY 20.1 19.5 18.7 17.9 17.2 17.6 17.7 20.0 19.6 18.8 19.4 20.4 20.5 21.1 22.3 21.2 20.7 19.5 19.8 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 19.8 19.2 19.5 20.0 | 21.8
21.0
20.5
19.9
19.8
20.0
20.3
21.1
21.3
21.1
21.8
21.9
22.6
23.5
23.6
22.9
22.1
22.3
22.5
22.3
21.6
21.0
21.7
22.4
22.4
22.5 | 27.6
27.8
26.4
27.4
25.2
27.2
26.0
27.3
27.8
27.2
27.4
28.0
27.8
27.1
26.9
25.9
26.8
25.8
25.8
25.2
24.9
25.0
19.7
22.9
26.2
24.0
25.3
23.5
24.7
22.2 | AUGUST 19.5 20.5 19.4 19.7 19.5 18.2 17.6 16.8 18.0 19.1 18.8 18.3 18.0 17.9 17.7 19.2 17.3 17.5 17.6 17.9 16.8 16.7 14.9 16.4 18.3 18.6 18.9 19.4 | 23.1
23.4
22.4
23.0
22.6
21.5
21.8
22.5
22.9
22.8
22.5
21.5
21.8
21.5
22.9
22.8
22.5
21.5
21.5
21.8
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 19.8
20.0
20.1
20.2
21.3
20.3
21.4
20.8
21.1
21.2
22.4
22.7
23.3
23.0
23.0
19.4
20.6
20.2
14.7
13.1
10.1
9.4
11.4 | SEPTEMBE 17.0 15.7 14.8 15.2 15.6 15.0 12.7 14.9 13.8 12.9 12.4 13.1 13.5 14.1 14.4 14.0 14.2 14.1 13.3 12.3 12.1 10.1 6.9 6.6 7.6 9.6 10.5 11.6 13.1 13.2 | 18.2
17.6
17.2
17.3
17.8
17.2
16.8
17.2
16.9
16.8
16.6
17.5
17.9
18.4
18.4
18.2
16.9
17.3
17.3
17.3
18.4
18.2
18.3
18.3
18.3
18.4
18.4 | ## 09251100 YAMPA RIVER ABOVE LITTLE SNAKE RIVER, NEAR MAYBELL, CO LOCATION.--Lat $40^{\circ}27^{\circ}39^{\circ}$, long $108^{\circ}25^{\circ}30^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.20, T.6 N., R.98 W., Moffat County, Hydrologic Unit 14050002, attached to center pier of Moffat Count Road 25 bridge 1 mi upstream from the mouth of Little Snake River and 18 mi west of Maybell. DRAINAGE AREA. -- 3,837 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1996 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,640 ft above sea level, from topographic map. REMARKS.--Record good, except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions, numerous storage reservoirs and diversions for irrigation of about 65,800 acres upstream from station. | | | DISCHAR | GE, CUBI | C FEET PEF | | WATER YI
MEAN V | | ER 1999 TC | SEPTEMB | ER 2000 | | | |---
--|--|--|---|-----------------------------------|--|---|--|--------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 283 | 332 | 363 | e335 | 463 | 416 | 1430 | 6240 | e9700 | 1350 | 101 | 180 | | 2 | 303 | 315 | 342 | e340 | 449 | 451 | 1140 | 5680 | e9100 | e1100 | 119 | 201 | | 3 | 306 | 305 | 349 | e330 | 428 | 462 | 1010 | 6100 | e8100 | e1000 | 128 | 201 | | 4 | 297 | 294 | 333 | e350 | 416 | 477 | 1110 | 6840 | e7730 | e800 | 99 | 196 | | 5 | 291 | 309 | 269 | e335 | 454 | 496 | 954 | 7200 | e7340 | e600 | 81 | 186 | | 6 | 299 | 310 | 288 | e350 | 458 | 541 | 1100 | 7640 | e6150 | e550 | 65 | 167 | | 7 | 287 | 315 | 295 | e345 | 443 | 591 | 2270 | 7910 | e6000 | e500 | 74 | 150 | | 8 | 273 | 320 | 309 | e350 | 417 | 616 | 2610 | 7700 | e5830 | e460 | 72 | 125 | | 9 | 303 | 327 | 274 | e365 | 439 | 667 | 2330 | 7180 | e5690 | e430 | 62 | 121 | | 10 | 312 | 308 | 326 | e380 | 399 | 676 | 2370 | 6160 | e5490 | e400 | 67 | 115 | | 11 | 323 | 305 | 280 | e390 | 387 | 640 | 2900 | 5840 | e4790 | 386 | 62 | 111 | | 12 | 314 | 332 | 275 | e385 | 417 | 567 | 3170 | 6820 | e4010 | 454 | e60 | 113 | | 13 | 308 | 340 | 296 | e360 | 431 | 521 | 3280 | 6000 | e3400 | 413 | e60 | 114 | | 14 | 293 | 321 | 368 | e370 | 415 | 542 | 3390 | 5010 | 3140 | 357 | e55 | 113 | | 15 | 283 | 311 | 274 | e380 | 433 | 510 | 3630 | 4590 | 3080 | 314 | e40 | 103 | | 16 | 286 | 315 | 298 | e385 | 386 | 517 | 3730 | 4380 | 2720 | 264 | e30 | 101 | | 17 | 305 | 315 | 289 | e410 | 397 | 558 | 3280 | 4450 | 2540 | 238 | 73 | 109 | | 18 | 329 | 332 | 326 | e415 | 427 | 517 | 2900 | 5350 | 2300 | 237 | 73 | 106 | | 19 | 333 | 334 | 325 | e425 | 364 | 499 | 3540 | 5080 | 1950 | 248 | 73 | 105 | | 20 | 322 | 363 | e330 | e405 | 344 | 535 | 3530 | 4410 | 1780 | 256 | e70 | 100 | | 21 | 326 | 393 | e320 | e425 | 367 | 501 | 3060 | 4150 | 2060 | 302 | 70 | 105 | | 22 | 335 | 359 | e315 | e420 | 398 | 528 | 3040 | 4440 | 2370 | 261 | 110 | 135 | | 23 | 352 | 353 | e300 | e440 | 386 | 491 | 3360 | 4950 | 1950 | 227 | 117 | 175 | | 24 | 364 | 292 | e295 | e430 | 409 | 490 | 4290 | 5990 | 1670 | 187 | 137 | 206 | | 25 | 337 | 289 | e285 | e440 | 407 | 542 | 4960 | 7570 | 1540 | 150 | 154 | 280 | | 26
27
28
29
30
31 | 324
316
306
314
313
329 | 321
334
323
377
363 | e300
e330
e355
e340
e345
e350 | e460
e475
e435
e425
e450
471 | 411
358
435
408
 | 822
918
1150
1360
1530
1560 | 4520
4130
4830
6020
6810 | 7820
8400
8510
7850
8420
e9900 | 1470
1420
1400
1390
1350 | 152
129
121
97
91
99 | e150
e155
e160
e155
e160 | 412
423
368
361
328 | | TOTAL | 9666 | 9807 | 9744 | 12276 | 11946 | 20691 | 94694 | 198580 | 117460 | 12173 | 2997 | 5510 | | MEAN | 312 | 327 | 314 | 396 | 412 | 667 | 3156 | 6406 | 3915 | 393 | 96.7 | 184 | | MAX | 364 | 393 | 368 | 475 | 463 | 1560 | 6810 | 9900 | 9700 | 1350 | 165 | 423 | | MIN | 273 | 289 | 269 | 330 | 344 | 416 | 954 | 4150 | 1350 | 91 | 30 | 100 | | AC-FT | 19170 | 19450 | 19330 | 24350 | 23690 | 41040 | 187800 | 393900 | 233000 | 24150 | 5940 | 10930 | | MEAN
MAX
(WY)
MIN
(WY) | 576
1250
1998
312
2000 | 513
758
1998
327
2000 | 379
494
1998
314
2000 | 433
532
1998
396
2000 | 442
546
1998
403
1999 | 1194
1908
1998
667
2000 | 3212
4258
1998
2143
1999 | R YEAR (WY
7309
9419
1997
5400
1999 | 6240
9348
1997
3915
2000 | 1408
2004
1998
393
2000 | 469
921
1997
96.7
2000 | 476
1448
1997
184
2000 | | SUMMARY | STATISTI | CS | FOR : | 1999 CALEN | DAR YEAR | 1 | FOR 2000 | WATER YEAR | ! | WATER YEA | RS 1996 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | | CAN CAN IN MINIMUM CAK FLOW CAK STAGE IC-FT) IDS CDS | : | 550167
1507
9610
190
216
1091000
5100
440
282 | Jun 1
Sep 19
Sep 13 | | 505544
1381
e9900
e30
53
unknown
unknown
1003000
4980
378
118 | May 31
Aug 16
Aug 10 | | 1887
2458
1381
15500
30
53
16400
10.74
1367000
6420
542
259 | Aug 1
Aug 1
Jun | 1997
2000
5 1997
16 2000
10 2000
5 1997
5 1997 | e Estimated. # 09251100 YAMPA RIVER ABOVE LITTLE SNAKE RIVER NEAR MAYBELL, CO--Continued ${\tt WATER-QUALITY\ RECORDS}$ PERIOD OF RECORD. -- October 1997 to current year. SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | SUSPENDE | D SEDIM | ENT D | ISCHARGE | , WATE | R YEAR | OCTOB | ER 199 | 99 T | SEP' | TEMB | ER 20 | 00 | |---|--|---|---|--|---|--|--|--|--|--|---|---| | DATE | TIME | ひたし | יו) עווע | 1G/L/) | (I/DAI) | .00 | | .00 | # IAIIAI | .00 | O IATIAI | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.016 MM
(70340) | | APR
05
19
MAY | 1530
1435 | 908
3930 | B
0 3 | 33
391 | 81
4150 | | | | | | | | | | 1615
1240 | 5670
7620 | 0 4 | 158
519 | 7010
10700 | 2 | 2
1 | 3: | 3
4 | 4 | 1
1 | 56
52 | | 05 | 1450 | 558 | 8 | 13 | 20 | | | | | | | | | DATE | % FI
TH | :NER ?
IAN | SED.
SUSP.
FALL
DIAM.
FINER
THAN
.062 MM
(70342) | % FIN | ER % F
N T | 'INER
'HAN | % FII | NER
AN | % FII | NER
AN | % FI | NER
AN | | APR
05
19
MAY | | - |
59 |
70 | |
2 | 100 | | | - | 91
- | | | 02
26
JUL | 69
60 |) | 70
63 | 80
78 | 9 | 0 | 100
94 | | 10 | | - | -
- | | 05 | - | - | | | | | | - | - | - | 85 | | | | | | | | | | | | | | | | | DEDI OLE | CEDIL | D.T. | 20113 D.O.D. | | | CELO DE | D 100 | 0 500 | CEDE | | D 000 | 0 | | BEDLOAD |) SEDIME | ENT DIS | SCHARGE, | WATER | YEAR O | CTOBE | R 1999 | 9 TO | SEPT | EMBE | R 200 | 0 | | BEDLOAL
DATE | | TEMPI
ATUI
WATI
(DEG
(000) | SCHARGE, I CHA IN ER- CU RE F ER F C) SE | WATER DIS- ARGE, IST. JBIC FEET PER GCOND 0061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | SE
ME
DI
CHA
BED
(TO
DA
(80 | R 1999 DI- NT S- RGE, LOAD NS/ Y) 225) | 9 TO SI BEDI SII DIZ F: TI .062 | SEPT:
LOAD
EVE
AM.
INER
HAN
2 MM
226) | SEMBE
SI
SI
DI
% F
T.
.12 | R 200
ED.
LOAD
EVE
AM.
INER
HAN
5 MM
227) | SED. BEDLOAD SIEVE DIAM. FINER THAN .250 MM (80228) | | DATE APR 05 19 | | 10.8 | 8 9 | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | R 1999 DI- NT S- RGE, LOAD NS/ Y) 225) | (| | | | SED. BEDLOAD SIEVE DIAM. FINER THAN .250 MM (80228) | | DATE APR 05 19 MAY 02 26 | TIME
1530
1435 | 10.8 | 8 9 | 908 |
366 | 86 | .44 | (| | | | | | DATE APR 05 19 MAY 02 26 JUL | TIME
1530
1435
1615
1240 | 10.8
8.2
12.9
14.2 | 8 9
2 39 | 908
930
570
520 |
366
216
144 | 86
144
442 | . 44 | (| 0 | | 1
2
1
0 | 3
14
13
2 | | DATE APR 05 19 MAY 02 26 JUL | 1530
1435
1615
1240
1450
SE
BEDL
SIE
DIA
% FI
TH | 10.8
8.2
12.9
14.2
20.3
CD.
OAD I | 8 9
2 39
9 56
2 76 | 908
930
570
520
558
SEL
BEDLC
SIEV
DIAM
% FIN
TH#
2.00 | 366 216 144 339 0. S NAD BED E SI 1. DI LER % F LM T MM 4.0 | 86
144
442
ED.
LOAD
EVE
AM.
TNER
HAN
0 MM | .44 .24 SEI BEDLC SIEV DIAN % FII THE | D.
CAD
VE
M.
NER
AN
MM | O
O
O
O
SEI
BEDL | D.
OAD
VE
M.
NER
AN
MM | 1
2
1
0
3
SE
BEDL
SIE
DIA
% FI | 3 14 13 2 3 D. OAD VE M. NER NER AN MM | | DATE APR 05 19 MAY 02 26 JUL 05 | 1530
1435
1615
1240
1450
SE
BEDL
SIE
DIA
% FI
TH | 10.8
8.2
12.9
14.2
20.1
CD.
OAD HOVE
IM.
NER SIAN
1 MM 1229) | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 908
930
570
520
558
SEI
BEDLC
SIEV
DIAM
* FIN
THA
2.00
(8023 | 366 216 144 339 0. S AAD BED TE SI I. DI IER % F NN T MMM 4.00 (11) (80 | 86
144
442
ED.
LOAD
EVE
AM.
TNER
HAN
0 MM | .44 .24 SEI BEDLC SIEV DIAN % FII THE | O. D. DAD VVE M. NER MM MM 333) | SEE BEDLA SIE DIA TH. 16.0 | D.
OAD
VE
M.
NER
AAN
MM
34) | 1
2
1
0
3
SE
BEDL
SIE
DIA
% FI
TH
32.0
(802 |
3
14
13
2
3
D.
OAD
VVE
M.
NER
AN
MM
35) | | DATE APR 05 19 MAY 02 26 JUL 05 DATE APR 05 19 | TIME 1530 1435 1615 1240 1450 SE BEDLI SIE DIA % FI TH .500 (802 | 10.8
8.2
12.9
14.2
20.3
CD.
OAD H.
CVE
IM.
INER S
IAN
229) | 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 908
930
570
520
558
SEI
BEDLC
SIEV
DIAM
% FIN
THA
2.00
(8023 | 366 216 144 339 0. S NAD BED 1. DI 1. DI 1. DI 1. DI 1. DI 1. ER % F N T MM 4.0 11) (80 | 86 144 442 ED. LOAD EVE AM. TINER HAN 0 MM 232) | .24 SEI BEDLO SIEV DIAN FII THE | D. DAD VVE M. NER AN MM 333) | SEI
BEDLA
SIF
D
TH
16.0 | D.
OAD
VE
M.
NER
AN
MM
34) | 1
2
1
0
3
SE
BEDL
SIE
DIA
% FI
TH
32.0
(802 | 3
14
13
2
3
D. OAD
VVE
M. NER
(AN
MM
35) | #### 09255000 SLATER FORK NEAR SLATER, CO LOCATION.--Lat $40^{\circ}58^{\circ}57^{\circ}$, long $107^{\circ}22^{\circ}56^{\circ}$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.21, T.12 N., R.89 W., Moffat County, Hydrologic Unit 14050003, on right bank 15 ft downstream from highway bridge, 1.0 mi upstream from mouth, and 1.5 mi south of Slater. DRAINAGE AREA. -- 161 mi². PERIOD OF RECORD.--May to October, December 1910, March to October 1911, and April to May 1912 (published as Slater Creek), July 1931 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 618: 1910-11. WSP 764: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,600 ft above sea level, from river-profile map. May 28, 1910 to May 25, 1912, nonrecording gage at site 1.5 mi upstream at different datum. July 9, 1931 to May 6, 1932, nonrecording gage at site 0.2 mi downstream at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of about 500 acres upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBIC | C FEET PER | | IATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--|---|--|--------------------------------------|--|---|---|--------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e19
e19
e20
e20
20 | e20
20
22
22
23 | 24
23
21
19
14 | e22
e22
e22
e23
26 | 22
24
23
21
22 | 26
26
25
26
e29 | 32
34
30
33
69 | e419
e465
e515
e523
e559 | e312
e239
e232
e215
e188 | 14
13
12
11
8.8 | 2.5
1.7
1.5
1.7
2.0 | 7.8
6.8
7.5
7.5
6.3 | | 6
7
8
9
10 | 20
31
37
26
23 | 21
20
22
21
20 | 20
21
19
15
21 | 27
25
30
28
28 | 22
21
22
22
23 | e29
e31
e28
27
e25 | 82
79
72
101
118 | e558
e483
e452
e319
e463 | e165
170
140
123
115 | 6.4
5.6
4.5
6.9 | 2.7
2.5
2.2
2.6
2.0 | 5.2
3.9
2.9
4.1 | | 11
12
13
14
15 | 21
20
19
19 | 21
19
19
19 | 20
21
21
21
21 | 26
25
23
25
25 | 26
25
23
25
23 | e11
e14
e16
25
26 | 118
132
167
202
214 | e522
e341
e260
e250
e257 | 91
73
63
59
54 | 18
13
10
10 | 2.5
2.5
2.3
1.5 | 7.4
5.5
4.5
4.0
4.3 | | 16
17
18
19
20 | 19
15
21
18
19 | 20
21
29
20
25 | 24
24
23
22
23 | 25
26
29
36
29 | 22
28
25
23
26 | 24
25
24
24
25 | 142
189
279
202
160 | e279
e358
e307
e335
e278 | 48
44
37
32
45 | 7.8
8.1
8.8
12
9.7 | 2.3
3.1
4.2
4.9
5.8 | 3.9
4.1
4.4
4.3
4.2 | | 21
22
23
24
25 | e20
e20
20
20
19 | 23
22
17
12
18 | 23
22
23
22
23 | 27 | 31
29
28
27
26 | 25
26
24
29
36
33 | 197
243
326
e407
e450 | e308
e336
e404
e491
e418 | 60
36
32
27
26 | 6.8
6.3
5.3
4.6
4.5 | 4.5
3.1
3.0
3.1
3.3 | 4.8
8.2
59
31
20 | | 26
27
28
29
30
31 | 20
20
20
e20
e20
e20 | 31
29
26
23
25 | e22
e22
e22
e22
e22
e22 | 26
22
13
22
16
20 | 26
27
29
29
27
 | 40
47
54
48
43
36 | e500
e525
e528
e558
e432 | e540
e395
e360
e454
e431
e367 | 29
26
24
25
18 | 4.3
4.0
6.7
6.0
4.2
3.4 | 3.5
5.5
8.1
7.5
7.4
7.1 | 13
11
11
10
11 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1280 | 649
21.6
31
12
1290 | 1310 | 1520 | 721
24.9
31
21
1430 | 902
29.1
54
11
1790 | 6621
221
558
30
13130 | 250
24690 | 312
18
5450 | 274.8
8.86
31
3.4
545 | 8.1 | 287.6
9.59
59
2.9
570 | | MEAN
MAX
(WY)
MIN
(WY) | 20.1
62.4
1986
7.29
1934 | 19.4
49.2
1985
7.73
1934 | N DATA FO
17.5
44.1
1985
7.30
1932 | 17.3
36.9
1985
4.42
1992 | 18.7
46.5
1986
9.82
1981 | - 2000,
29.8
144
1998
12.6
1965 | 120
323
1985
25.2
1933 | YEAR (WY)
384
801
1984
45.7
1934 | 255
660
1995
23.6
1977 | 38.3
189
1983
1.27
1977 | 9.99
38.4
1945
1.39
1994 | 11.7
55.0
1984
3.20
1960 | | SUMMARY | STATISTI | CS | FOR 1 | 1999 CALEN | DAR YEAR | F | OR 2000 W. | ATER YEAR | | WATER YE | EARS 1932 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN A | | 37303.8
102
760
8.7
10
73990
375
25
14 | May 30
Aug 20
Aug 14 | | 26831.3
73.3
559
1.3
2.0
759
7.3
53220
279
23
4.4 | May 5
Aug 15
Aug 2
Apr 29
5 Apr 29 | | 78.6
157
20.5
1500
a.00
b2250
c11.78
56970
258
20
7.1 | May 1
) Aug
) Aug
May 1
) May 1 | 1984
1934
16 1984
2 1934
2 1934
16 1984 | e Estimated. a Also occurred several days during years 1936, 1954, and 1977. b From rating curve extended above 1000 ft³/s. c From floodmark. #### 09260000 LITTLE SNAKE RIVER NEAR LILY, CO LOCATION.--Lat $40^{\circ}32^{\circ}50^{\circ}$, long $108^{\circ}25^{\circ}25^{\circ}$, in $NW^1/_4NE^1/_4$ sec.20, T.7 N., R.98 W., Moffat County, Hydrologic Unit 14050003, on left bank 170 ft downstream from highway bridge, 6.0 mi north of Lily, and 10 mi upstream from mouth. DRAINAGE AREA.--3,730 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June to August 1904 (published as "near Maybell"), October 1921 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1713: 1959. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,685 ft above sea level, from river-profile map. June 9 to Aug. 14, 1904, nonrecording gage, and May 5, 1922 to Nov. 30, 1935, water-stage recorder, at site 300 ft upstream at different datums. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of about 21,000 acres upstream from station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | 2200111 | .02, 0021 | 0 1221 12 | DAILY | MEAN VA | LUES | 1999 10 | 021 121 121 | 2000 | | | |---|--|--|--|--|--|--|--------------------------------------|--|--|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 94
96
103
108
107 | 123
127
124
128
129 | 169
156
148
162
77 | e125
e130
e135
e140
e135 | e155
e170
e180
e200
e195 | 195
188
186
175
175 | 334
286
242
228
228 | 2150
1950
1920
2250
2380 | 2610
2330
1740
e1420
e1320 | 95
70
58
55
53 | 13
14
14
12
10 | 3.6
3.2
4.2
5.0
3.3 | | 6
7
8
9
10 | 105
114
108
105
107 | 115
122
131
133
127 | 72
133
113
139
e135 | e130
e135
e130
e135
e140 | e220
e245
e250
e270
e290 | 160
179
207
222
234 | 190
263
561
562
427 | 2560
2750
2590
2390
1960 | e1210
1150
1050
969
900 |
50
48
45
43
42 | 7.9
6.2
3.0
e1.9
e1.8 | 1.4
1.0
2.1
4.7
1.4 | | 11
12
13
14
15 | 131
130
119
105
97 | 129
127
122
116
113 | e130
e135
e125
e130
e120 | e135
e130
e135
e150
e145 | e260
e265
e235
e240
e245 | 203
209
181
160
188 | 533
652
650
740
909 | 1810
2570
2140
1740
1480 | 783
715
615
513
443 | 80
145
45
41
39 | e2.1
e1.9
e2.2
e2.5
3.9 | .60
.54
.45
.37 | | 16
17
18
19
20 | 100
99
102
103
110 | 113
114
113
106
126 | e115
e110
e115
e110
e115 | e160
e170
e175
e165
e185 | e240
e190
e205
e190
e195 | 175
173
177
137
146 | 1130
1300
880
946
1220 | 1300
1250
1510
2020
1940 | 392
296
270
256
225 | 36
34
35
e31
e30 | 3.2
3.6
2.9
2.9
1.7 | .38
.37
.40
.34 | | 21
22
23
24
25 | 101
114
113
111
113 | 155
138
97
45
81 | e110
e125
e115
e120
e115 | e190
e210
e220
e215
e230 | e190
e205
e210
e215
e235 | 93
197
202
142
295 | 1140
963
1130
1350
1790 | 1910
1870
1780
1920
2410 | 189
192
266
189
153 | e27
e28
e25
e24
32 | 1.1
1.4
1.8
.99
1.2 | .39
.40
.37
36
301 | | 26
27
28
29
30
31 | 112
114
111
120
115
112 | 136
192
193
173
175 | e110
e105
e115
e120
e125
e130 | e210
e215
e200
e175
e145
e130 | e180
164
182
206
 | 299
263
258
333
400
380 | 1650
1280
1450
1950
2320 | 2580
2960
2900
2610
2550
2970 | 143
129
111
94
110 | e24
e19
e15
13
14
14 | 1.3
1.9
.74
2.0
4.6
3.6 | 830
821
479
296
239 | | TOTAL
MEAN
MAX
MIN
AC-FT | 3379
109
131
94
6700 | 3823
127
193
45
7580 | 3799
123
169
72
7540 | 5025
162
230
125
9970 | 6227
215
290
155
12350 | 6532
211
400
93
12960 | 27304
910
2320
190
54160 | 67120
2165
2970
1250
133100 | 20783
693
2610
94
41220 | 1310
42.3
145
13
2600 | 131.33
4.24
14
.74
260 | 3037.23
101
830
.34
6020 | | MEAN
MAX
(WY)
MIN
(WY) | 116
385
1926
.000
1935 | 123
363
1928
.000
1935 | 99.7
244
1928
25.0
1931 | 92.7
227
1999
16.0
1933 | YEARS 1922
126
595
1986
18.0
1933 | 381
1260
1962
80.5
1964 | 1074
3259
1952
320
1961 | 2594
5967
1984
477
1934 | 1904
4601
1983
36.7
1934 | 306
1395
1995
.29
1934 | 70.4
534
1941
.000
1924 | 56.6
314
1965
.000
1934 | | SUMMARY | STATISTI | CS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 W | ATER YEAR | | WATER Y | EARS 192 | 2 - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 272200
746
5260
36
47
539900
2680
210
76 | May 25
Aug 20
Aug 16 | | .3
4200 | May 31
4 Sep 19
7 Sep 14
May 27
0 May 27 | | 580
1252
110
13400
a.C
16700
b9.8
420000
1960
130 | 00 Jul
00 Jul
May | 1984
1934
18 1984
30 1924
30 1924
18 1984
18 1984 | E BESTHELEGU. Also occurred Jul 31 to Sep 11, Sep 13-20, 1924, Aug 25-29, Aug 31 to Sep 13, and Sep 28-29, 1994. b Maximum gage height, 11.10 ft, Feb 13, 1962 backwater from ice. ## 09260000 LITTLE SNAKE RIVER NEAR LILY, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD.--September 1969 to September 1986, October 1994 to September 1998, March to September 2000. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 1975 to September 1985. WATER TEMPERATURES: July 1975 to September 1985. INSTRUMENTATION:--Water-quality monitor July 1975 to September 1985. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record are available in district office. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 2,020 microsiemens Oct. 11, 1977; minimum, 110 microsiemens June 1, 1985. WATER TEMPERATURE: Maximum, 32.0°C Aug. 6, 1981; minimum, 0.0°C, on many days during winter months. SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | DIS- CHARGE, INST. CUBIC FEET TE TIME PER SECOND (00061) | | SED
MEN'
SUS
PENI
D (MG | T, CHAR
- SU
DED PEN
/L) (T/D | TT,
SS-
SGE,
IS- %
IDED
OAY) . | SED.
SUSP.
FALL
DIAM.
FINER
THAN
002 MM
70337) | TH <i>A</i>
.004 | SP. SU L FA M. DI JER % FI MN TH MM .008 | SP. SU LL FA AM. DI NER % FI AN TH MM .016 | IAN THAN
5 MM .031 M | |------------------|--|--------------------|---|--|---|---|--|--|---|--| | MAR
27
APR | 1415 | 271 | 271 321 | | 0 | | | - | | | | 04
18
27 | 1700
1545
1345 | 250
792
1160 | 66
246
61 | 0 526 | 0 | 24
62
 | 33
74
 | | 86 | | | MAY
02
25 | 1410 1970
1800 3070 | | 133 | | | 17 | 25
 | | | 45 | | JUN
06 | 1300 1270 | | 19 | 4 66 | 5 | | | - | | | | DATE | %
.0 | THAN
62 MM . | SED.
SUSP.
FALL
DIAM.
FINER
THAN
125 MM
70343) | | THAI
.500 I | P. (
L 1
M. I
ER % 1
N 1 | SED.
SUSP.
FALL
DIAM.
FINER
IHAN
00 MM | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | SUSP.
SIEVE
DIAM.
% FINER
THAN
1.00 MM | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
2.00 MM
(70336) | | MAR
27
APR | | | | | | | | 100 | | | | 04
18
27 | | 46
88
 | 52
92
 | 58
94
 | 76
99
 | : | 94
100
 |

93 | 94

 | 100 | | MAY
02
25 | | 46
46 | 59
93 | 76
100 | 98 | : | 100 | | | | | JUN
06 | | | | | | | | 52 | | | #### 09260050 YAMPA RIVER AT DEERLODGE PARK, CO LOCATION.--Lat $40^{\circ}27^{\circ}06^{\circ}$, long $108^{\circ}31^{\circ}28^{\circ}$, in $\mathrm{SE}^{1}/_{4}\mathrm{SW}^{1}/_{4}$ sec.21, T.6 N., R.99 W., Moffat County, Hydrologic Unit 14050002, in Dinosaur National Monument, on left bank at Deerlodge Park, 1,150 ft upstream from Disappointment Draw and 5.5 mi downstream from Little Snake River. DRAINAGE AREA. -- 7,660 mi², approximately. WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August 1975 and January 1978 (discharge measurements only) April 1982 to September 1994, and October 1996 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,600 ft above sea level, from topographic map. Prior to Oct. 1, 1996, gage located 100 ft upstream at same datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 REMARKS.--Records good except for estimated daily discharges, which are poor. Natural flow of stream affected by transbasin diversions, numerous storage reservoirs and diversions for irrigation of about 86,800 acres upstream from station. DAILY MEAN VALUES DAY OCT NOV DEC FEB AUG SEP e680 e1730 e8390 e10200 e435 e495 e440 e505 e1440 e7630 e10100 e430 e515 e710 €1310 e8020 e9110 e730 e9090 e450 e520 e1410 e745 e1180 e540 e7470 e455 e545 e790 e1920 e10200 e540 e840 e2530 e10700 e6750 e445 e450 e520 e870 e3170 e10300 e6570 e535 e880 e2890 e9570 e5950 e465 e505 e875 e2790 e8120 e480 e490 e480 e840 e3430 e7650 13 e485 e490 e760 e3820 e9390 e470 e485 e720 e3930 e8140 e3450 e460 e470 e740 e4130 e6750 e465 e710 e4540 e6070 e480 e485 e480 e720 e4860 421 e500 e490 e760 e4580 e3780 e5700 2150 305 e720 e510 e495 e6860 e700 e435 e4480 e445 e735 e6350 e515 e440 e4750 e700 e565 e525 e460 e4200 e6060 e415 e690 e4000 78 e510 e480 e6310 e400 e520 e500 e695 e4490 e6730 e395 e510 e720 e5640 e385 e525 e570 e720 e6750 e6170 e400 e530 e590 e1020 e430 e540 e605 e1180 e5410 e455 e530 e1410 e6280 e635 e7970 e440 e520 e655 e1680 e445 e515 e1930 e9130 e485 e505 e1940 TOTAL MEAN 90.4 MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 2000, BY WATER YEAR (WY) MEAN MAX (WY) MTN 66.6 66.4 (WY) SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1983 - 2000 ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DATLY MEAN May 31 May 18 1984 Jun 1 LOWEST DAILY MEAN Dec Aug 16 Aug 16 ANNUAL SEVEN-DAY MINIMUM Sep 14 Aug 15 Sep 5 1989 INSTANTANEOUS PEAK FLOW May 18 1984 May 31 INSTANTANEOUS PEAK STAGE 9.76 May 31 19.13 May 18 1984 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS e Estimated. #### 09260050 YAMPA RIVER AT DEERLODGE PARK, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD.--November 1977 to September 1981 published as "09260025, below Little Snake River." April 1982 to September 1983, October 1993 to September 1994, October 1996 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: November 1977 to September 1982. WATER TEMPERATURE: October 1979 to September 1982. ${\tt INSTRUMENTATION.--Water-quality\ monitor\ November\ 1977\ to\ September\ 1982.}$ REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. November 1977 to April 1980, all water-quality data collected approximately 3.5 mi upstream. All data subsequent to April 1980
were collected at present site. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. ## EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 1040 microsiemens, Oct. 4, 1979; minimum, 64 microsiemens, July 13, 1978. WATER TEMPERATURE: Maximum, 29.5°C Aug. 2, 1980; minimum, 0.0°C on many days during winter months. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |------------------|---|---|--|--|--|--|---|--|--|--|---| | OCT
21 | 1600 | 410 | 622 | 8.6 | 10.7 | 9.8 | К6 | K4 | 210 | 46.6 | 23.0 | | MAR
01
16 | 1400
1430 | 641
797 | 851
839 | 8.4
8.6 | 6.2
6.0 | 10.9
11.1 | 78
 | K19
 | 280
280 | 57.7
57.3 | 33.4
34.0 | | 08 | 1146 | 6730 | 133 | 8.0 | 17.1 | 7.6 | 62 | 49 | 47 | 13.0 | 3.66 | | AUG
21 | 1300 | 38 | 760 | 8.4 | 26.0 | 7.2 | 44 | K18 | 230 | 52.2 | 24.0 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | SIUM, WAT.DIS DIS- FET SOLVED LAB (MG/L CACO3 AS K) (MG/L) | | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | OCT
21
MAR | 48.7 | 1 | 2.8 | 172 | | 132 | 19.0 | .3 | 7.4 | 383 | .52 | | 01
16 | 1 71.7 2 | | 2.8
2.9 | 176
 |
167 | 233
225 | 24.2
19.9 | .3 | 7.6
6.7 | 538
514 | .73
.70 | | JUN
08 | . 6.3 .4 | | .7 | 44 | | 15.2 | 1.9 | <.1 | 8.2 | 76 | .10 | | AUG
21 | 70.9 | 2 | 4.5 | 180 | | 152 | 42.8 | .3 | 7.2 | 462 | .63 | | | I
SC
(1
DATE I
I | LIDS, CODIS- NITOLVED INTONS SCREER (MODAY) AS | GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN, | EN, G
HNO3 AMM
DIS- D
DLVED SO
IG/L (M
N) AS | EN, GEN ONIA MON DIS- ORG DLVED TO G/L (M | ,AM- GEN
IA + MON
ANIC ORO
TAL DI
G/L (N | GANIC PHO
IS. TO
MG/L (M
S N) AS | IOS- PHO
DRUS D
DTAL SO
IG/L (M
S P) AS | HOS-PHO DRUS OF DIS-DIS-DIVED SOL HG/L (MG | THO, ORG
S- DI
VED SOL
S/L (M
P) AS | EBON,
BANIC
SS-
WED
IG/L
S C)
681) | | | 43 | 33 <. | 010 <. | 050 <. | 020 | .28 | .19 . | 031 E. | 003 <. | 010 | | | 16 | 931
5 1110 | | | | | | . 24 | | | 010 | | | | 137 | 370 <.010 | | 050 <. | 020 | .36 | .18 . | 061 . | 018 . | 010 | | | AUG
21 | | 47.4 <. | 001 . | 011 <. | 002 | .38 | . 29 . | 047 E. | 005 <. | 001 | | # 09260050 YAMPA RIVER AT DEERLODGE PARK, CO--Continued | WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | | | | | | | | | | | | |---|------------------|-------------------|---|---|--|--|---|---|--|---|---|-------------------------------|--|---|---|---| | | DATE | S
(| ADMIUM
DIS-
SOLVED
(UG/L
AS CD)
01025) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON
TOTA
RECC
ERAE
(UG/
AS F | L L1 | EAD,
DIS-
DLVED
UG/L
S PB)
1049) | MANGA
NESE,
TOTAL
RECOV
ERABL
(UG/L
AS MN
(01055 | MZ
NE
- I
E SC
(U | ANGA-
ESE,
DIS-
DLVED
UG/L
G MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | NIU
DI
SOI
(UC
AS | IS-
LVED
G/L
SE) | SILVEN
DIS-
SOLVI
(UG/1
AS AC | - DI
ED SOL
L (UG
G) AS | S-
VED
J/L
ZN) | | (| OCT
21 | | <.1 | E1 | 470 | | <1 | 21 | | 2 | <.2 | <2 | . 4 | <.2 | <2 | 0 | | I | MAR
01 | | <.1 | E1 | 860 | | <1 | 26 | | 5 | <.2 | 3 | .5 | <.2 | <2 | 0 | | | JUN
08 | | <.1 | E1 | 960 | | <1 | 37 | E | :1 | <.2 | <2 | . 4 | <.2 | <2 | 0 | | i | AUG
21 | | <.1 | E1 | 660 | | <1 | 42 | | 7 | <.2 | <2 | . 4 | <.2 | <2 | 0 | | MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | | | | | | | | | | | | | D) | ATE | TIME | DIS
CHARG
INST
CUBI
FEE
PEF
SECC
(0006 | GE, SPE C. CIF CC CON CT DUC E ANC DND (US/ | C-
FIC
I- T
CT-
CE
(CM) (| EMPER-
ATURE
WATER
DEG C)
00010) | NTS, W | ATER YE | AR OCT | DAT | | TIME | DISCHARGED FEED SECO (0006 | S-
SE,
C.
IC
ET
R | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
08 | | 1205 | 342 | | 620 | 12.3 | | | | 05 | | 1045 | 1240 | | 743 | 9.1 | | NOV
18 | | 1120 | 425 | | 662 | 5.4 | | | MZ | | | 1115 | 3980 | | 356 | 7.0 | | JAN
31 | | 1052 | 483 | | 849 | .0 | | | JU | | | 1020 | 7780 | | | 12.4 | | FEB
28 | | 1250 | 641 | | 850 | 5.0 | | | | 05
20 | | 1655
1214 | 645
283 | | 373
517 | 23.3
26.5 | | | | | | | | | | | SE. | 04 | | 1215 | 216 | | 646 | 18.0 | | | OCT
21
MAR | DATE | TIN
160 | CHAR INS CUE FE IE PE SEC (000 | S-
GE,
ST.
BIC
SET
SR
COND
061) (| SEDI-
MENT,
SUS-
PENDED
(MG/L)
80154) | SED
MEN
DI
CHAR
SU
PEN
(T/D
(801 | I-
T, ;
S-
GE,]
S- % ;
DED AY) .00
55) (7 | OCTOR
SED.
SUSP.
FALL
DIAM.
FINER
THAN
02 MM
0337) | SEI
SUS
FAI
DIA | D. S SP. S LL F AM. D NER * F AN T MM .00 38) (70 | ED.
USP.
ALL
IAM. | SED. SUSF FALL DIAN % FINE THAN .016 N | 2.
1.
ER %
1 | THAN
031 MM
70341) | | | | APR | | 140 | | | 34
182 | | 59
09 | | | | | | | | | | | | | 111 | | | 747 | 80 | | 28 | 44 | | 6 | 59 | | 68 | | | | 03
JUL | | | 20 778 | | 782 | 164 | | 19 | 26 | 3 | 0 | 39 | | 46 | | | | 05 | • • • | 165 | 55 64 | 15 | 1100 | 19 | 20 | | | - | | | | | | | | | Γ | DATE | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.062 MM
(70342) | FAL
DIA
% FIN
THA
.125 | EP. S
L I
M. I
ER % I
N S
MM .2 | THAN
50 MM | FALL
DIAM
% FINE
THAN
.500 M | . S
F
. I
R % F
M 1.0 | FALL
DIAM.
FINER
THAN
00 MM | THAN
.062 MM | SI
SII
DI
* FI
TI | EVE
IAM.
INER %
HAN
OMM 2 | IAHT
1 00.2 | P.
E
M.
ER
N
MM | | | | | OCT
21. | | | | | | | | | | | | | | | | | | MAR
01. | | | | | | | | | 98 | | | | | | | | | APR
05.
19. | | 61
70 | 65
80 | | 70
37 | 89
96 | 1 | 91 | | 9: | 1 | 100 | | | | | | MAY 03. | | 49 | 66 | | 79 | 91 | | 99 | | 99 | | 100 | | | | | | JUL
05. | | 2 | 3 | ; | 19 | 77 | | 98 | | 98 | В | 100 | # 09260050 YAMPA RIVER AT DEERLODGE PARK, CO--Continued # BEDLOAD SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIF
CON
DUC
ANC
(US/ | IC
I-
IT-
IE
ICM) | MEN
DIS
CHAR
BEDL
(TON
DAY | S-
EGE,
NOAD
IS/ | BEDLO | AD BED
E SI
DI
ER % F
N I | ED.
DLOAD
EVE
AM.
TINER
THAN
15 MM | SIEVE
DIAM.
% FINER
THAN
.250 MM | |---|---|---|---|-----------------------------------|--------------------------------------|---|--------------------------------------|---|---|--
--| | APR
05
19
MAY
03
JUL
05 | 1045
1115
1020
1655 | 9.1
7.0
12.4
23.3 | 1240
3980
7780
645 | 74
35
- | i6
 | 51
32
209
35 | 0 | 0
0
0 | | 0
0
1 | 1
1
7
4 | | DATE | SEI
BEDL(
SIE'
DIAI
% FII
THA
.500
(802) | DAD BEDL
VE SIE
M. DIA
NER % FI
AN TH | OAD BED
VE SI
M. DI
NER % F
AN TI
MM 2.0 | EVE
AM.
INER
HAN
0 MM | SIEV
DIAM
% FIN
THA
4.00 | OAD
E
1.
IER
N
MM | SIEV
DIAM
% FIN
THA
8.00 | AD BI
E S
. I
ER %
N
MM 10 | SED.
EDLOAD
SIEVE
DIAM.
FINER
THAN
5.0 MM
80234) | BEDL
SIE
DIA
% FI
TH
32.0 | EVE
M.
NER
IAN
MM | | APR
05
19
MAY
03
JUL
05 | 38
16
42
67 | 80
58
78
94 | 9. | 4 | 98
89
97 | , | 100
92
99
100 | |
96
100 | -
10
- | | #### 09303000 NORTH FORK WHITE RIVER AT BUFORD, CO LOCATION.--Lat $39^{\circ}59^{\circ}15^{\circ}$, long $107^{\circ}36^{\circ}50^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.9, T.1 S., R.91 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank 600 ft east of Buford and 1.2 mi upstream from South Fork White River. DRAINAGE AREA. -- 259 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1910 to December 1915, July 1919 to December 1920, October 1951 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as North Fork White River near Buford prior to 1951 and as White River at Buford 1951-67. Records for July 1903 to December 1906 at site 6.5 mi upstream not equivalent because of inflow between sites. REVISED RECORDS.--WSP 1343: 1912. WDR CO-89-2: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,010 ft above sea level, from topographic map. May 24, 1910 to May 27, 1914, nonrecording gage at site 1.5 mi upstream at different datum. May 28, 1914 to Dec. 7, 1915, and July 1, 1919 to Oct. 9, 1920, nonrecording gage at present site at different datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 900 acres, and 300 acres downstream from station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAP | KGE, CUBI | C FEET PE | | MEAN V | LAR OCTOBER | 1999 10 | PELIFME | SR 2000 | | | |----------|------------|-----------------------|--------------|--------------|------------|------------|-------------|------------------|------------|---------------|------------|--------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 202 | 194 | 180 | e210 | 174 | 162 | 171 | 680 | 1260 | 251 | 178 | 186 | | 2 | 199 | 190 | 182 | e200 | 182 | 161 | 175 | 781 | 1080 | 248 | 176 | 180 | | 3 | 198 | 190 | 183 | e205 | 179 | 161 | 171 | 860 | 967 | 244 | 177 | 173 | | 4 | 198 | 190 | 177 | e210 | 167 | 164 | 177 | 923 | 887 | 240 | 181 | 173 | | 5 | 195 | 190 | 163 | e195 | 165 | 169 | 201 | 984 | 819 | 236 | 177 | 171 | | 6 | 198 | 188 | 198 | e200 | 163 | 166 | 210 | 972
935 | 739 | 232 | 175 | 172 | | 7
8 | 203
200 | 188
189 | 213
221 | e195
e190 | 162
161 | 170
167 | 216
223 | 935
867 | 701
655 | 224
228 | 174
172 | 170
173 | | 9 | 195 | 188 | 215 | e200 | 161 | 166 | 249 | 715 | 621 | 242 | 167 | 175 | | 10 | 195 | 186 | 245 | e210 | 164 | 167 | 273 | 742 | 567 | 229 | 165 | 168 | | 11 | 191 | 186 | 199 | e200 | 170 | 162 | 279 | 864 | 491 | 218 | 171 | 166 | | 12 | 190 | 184 | 192 | e205 | 164 | 170 | 306 | 664 | 476 | 211 | 169 | 166 | | 13 | 190 | 183 | 193 | e190 | 166 | 165 | 341 | 567 | 456 | 210 | 169 | 165 | | 14 | 189 | 183 | 191 | 192 | 165 | 166 | 369 | 559 | 431 | 208 | 169 | 165 | | 15 | 190 | 183 | 192 | 165 | 165 | 171 | 360 | 589 | 416 | 206 | 175 | 164 | | 16 | 189 | 183 | 201 | 170 | 161 | 167 | 307 | 631 | 403 | 206 | 173 | 162 | | 17 | 186 | 186 | 188 | 176 | 165 | 165 | 349 | 673 | 383 | 227 | 174 | 158 | | 18 | 193 | 196 | 212 | 183 | 164 | 166 | 416 | 556 | 368 | 227 | 188 | 168 | | 19 | 190 | 178 | 202 | 188 | 162 | 163 | 349 | 499 | 410 | 203 | 226 | 165 | | 20 | 190 | 185 | 199 | 174 | 162 | 169 | 314 | 565 | 471 | 200 | 196 | 162 | | 21 | 189 | 184 | 194 | 175 | 163 | 165 | 354 | 630 | 387 | 199 | 186 | 195 | | 22 | 190 | 186 | 191 | 171 | 163 | 164 | 393 | 681 | 353 | 196 | 187 | 272 | | 23 | 198 | 171 | 201 | 168 | 161 | 166 | 420 | 792 | 340 | 193 | 194 | 207 | | 24 | 193 | 157 | e195 | 172 | 162 | 172 | 444 | 911 | 334 | 186 | 181 | 201 | | 25 | 191 | 179 | e200 | 171 | 163 | 172 | 406 | 993 | 328 | 183 | 177 | 189 | | 26 | 189 | 200 | e195 | 174 | 163 | 174 | 475 | 1160 | 312 | 181 | 183 | 194 | | 27 | 186 | 184 | e205 | 168 | 162 | 180 | 593 | 1070 | 293 | 179 | 190 | 185 | | 28
29 | 185
199 | 180 | e210 | 147
167 | 164 | 192 | 750 | 1040 | 280 | 173
172 | 187
184 | 182 | | 30 | 189 | 181
177 | e205
e210 | 155 | 163 | 187
183 | 780
682 | 1170
1340 | 271
260 | 172 | 203 | 180
180 | | 31 | 194 | | e215 | 172 | | 175 | | 1410 | | 171 | 199 | | | TOTAL | 5984 | 5539 | 6167 | 5698 | 4786 | 5247 | 10753 | 25823 | 15759 | 6495 | 5623 | 5367 | | MEAN | 193 | 185 | 199 | 184 | 165 | 169 | 358 | 833 | 525 | 210 | 181 | 179 | | MAX | 203 | 200 | 245 | 210 | 182 | 192 | 780 | 1410 | 1260 | 251 | 226 | 272 | | MIN | 185 | 157 | 163 | 147 | 161 | 161 | 171 | 499 | 260 | 171 | 165 | 158 | | AC-FT | 11870 | 10990 | 12230 | 11300 | 9490 | 10410 | 21330 | 51220 | 31260 | 12880 | 11150 | 10650 | | STATIST | CICS OF M | ONTHLY MEA | AN DATA F | OR WATER | YEARS 1910 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 201 | 185 | 170 | 164 | 157 | 161 | 279 | 782 | 849 | 398 | 247 | 209 | | MAX | 348 | 273 | 257 | 234 | 240 | 237 | 584 | 1749 | 1618 | 1131 | 447 | 384 | | (WY) | 1998 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1985 | 1984 | 1957 | 1984 | 1997 | | MIN | 122 | 112 | 122 | 118 | 116 | 125 | 168 | 282 | 217 | 116 | 127 | 114 | | (WY) | 1978 | 1978 | 1964 | 1964 | 1977 | 1973 | 1920 | 1977 | 1977 | 1977 | 1977 | 1977 | | SUMMARY | STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1910 | - 2000 | | ANNUAL | TOTAL | | | 115861 | | | 103241 | | | | | | | ANNUAL | | | | 317 | | | 282 | | | 317 | | | | HIGHEST | ANNUAL | MEAN | | | | | | | | 523 | | 1984 | | | ANNUAL M | | | | | | | | | 157 | | 1977 | | | DAILY M | | | 1230 | May 25 | | 1410 | May 31 | | 3150 | | 30 1912 | | | DAILY ME. | | | 157 | Nov 24 | | 147 | Jan 28 | | 90 | | 21 1955 | | | | Y MINIMUM | | 169 | Mar 7 | | 162 | Feb 19 | | 106 | | 26 1977 | | | | EAK FLOW
EAK STAGE | | | | | 1600 | May 30
May 30 | | 3550
a6.76 | | 24 1984
24 1984 | | | RUNOFF (. | | | 229800 | | | 204800 | nay 30 | | 230000 | ray . | _ I ⊥20¶ | | | CENT EXCE | | | 806 | | | 624 | | | 740 | | | | | CENT EXCE | | | 205 | | | 190 | | | 197 | | | | | CENT EXCE | | | 175 | | | 165 | | | 141 | | | | | | | | | | | | | | | | | e Estimated. a Maximum gage height, 7.22 ft, Jan 9, 1961, backwater from ice. ## 09303000 NORTH FORK WHITE RIVER AT BUFORD, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1976 to December 1978, October 1982 to September 1992. October 1994 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | |-------------------------------------|--|--|--|---|--|---|--|---| | NOV
10 | 0930 | 180 | 344 | 8.3 | 1.0 | 10.9 | .9 | K2 | | APR | 0930 | 180 | 344 | 8.3 | 1.0 | 10.9 | .9 | K2 | | 19
JUN | 1400 | 349 | 289 | 8.3 | 2.0 | 10.9 | .8 | K20 | | 12
JUL | 1630 | 481 | 225 | 8.0 | 13.6 | 8.1 | .6 | 21 | | 25
AUG | 1400 | 185 | 331 | 8.4 | 17.2 | 7.8 | .6 | K20 | | 24 | 1015 | 181 | 338 | 8.4 | 14.0 | 8.1 | .7 | K12 | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA
+
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
10
APR | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
10 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
10
APR
19
JUN
12 | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
10
APR
19
JUN | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613)
<.010 | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P)
(00665) | PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<.010 | MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---|-----------|------|---|--|---| | OCT | | | | | APR | | | | | | 21 | 1333 | 187 | 338 | 4.4 | 20 | 1404 | 308 | 290 | 7.2 | | NOV
30 | 1350 | 178 | 344 | 2.6 | MAY
21 | 1038 | 600 | 220 | 7.2 | | JAN
14 | 1000 | 201 | 320 | .1 | JUL
12 | 0958 | 216 | 317 | 11.7 | | FEB
08 | 1402 | 169 | 342 | 1.3 | SEP
29 | 1343 | 182 | 342 | 11.4 | | MAR
28 | 0934 | 187 | 335 | 3.8 | | | | | | ## 09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO ## WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}58^{\circ}28^{\circ}$, long $107^{\circ}37^{\circ}30^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.17, T.1 S., R.91 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank 30 ft downstream from highway bridge, 0.8 mi upstream from mouth, and 1.0 mi south of Buford. DRAINAGE AREA.--177 mi². PERIOD OF RECORD.--October 1976 to December 1978, October 1984 to September 1992. October 1994 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEI
DIS-
SOLVI
(MG/I | - ICAI
ED 5 DA
L) (MG/ | ND, FOI
FE0
M- 0.'
L, UM-
AY (COI
/L) 100 | CAL, NE
7 TC
-MF (N
LS./ F
ML) CF | ARD-
ESS
OTAL
MG/L
AS
ACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------|--|---|--|--|---|---|--|--|--|--|---| | NOV
10 | 1210 | 125 | 271 | 8.5 | 3.7 | 10.0 | . 6 | 5 . | <1 | | | | APR
19 | 1220 | 182 | 260 | 8.4 | 3.3 | 10.1 | 1.6 | 5 : | 29 | | | | JUN
12 | 1400 | 372 | 230 | 8.3 | 12.7 | 8.2 | . 5 | 5 : | 28 1 | 10 | 32.3 | | JUL
25 | 1245 | 125 | 288 | 8.4 | 15.8 | 7.9 | . 6 | 5 K | 13 | | | | AUG
29 | 1315 | 111 | 316 | 8.5 | 16.2 | 7.7 | | - : | 31 1 | .60 | 46.9 | | DATE | ÀS I | NE- GEN
UM, NITRI
S- DIS
VED SOLV
/L (MG/ | L (MG, | N, GE NO3 AMMO S- DI VED SOL /L (MG N) AS | VED TO
L/L (M
N) AS | ,AM- GI
IA + MG
ANIC OI
FAL I
G/L
N) A | EN,AM-
ONIA +
RGANIC I
DIS.
(MG/L
AS N) | TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | (MG/I
AS P | HO,
ED
L | | NOV
10 | _ | - <.01 | .0 <.0! | 50 <.0 | 20 <. | 10 . | <.10 | .013 | .007 | <.01 | 10 | | APR 19 | _ | | | | | | E.10 | .017 | .009 | .00 | | | JUN
12 | 7. | 75 .00 | 01 .02 | 21 .0 | 06 . | 13 1 | E.10 | .016 | .011 | .00 | 08 | | JUL
25 | _ | 00 | 1 .01 | 10 .0 | 02 . | 25 1 | E.10 | .016 | .010 | .00 | 08 | | AUG
29 | 10. | 3 <.00 | 1 .00 | 06 <.0 | 02 . | 11 1 | E.10 | .020 | .011 | .00 | 07 | | | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | (UG/L | ARSENIC
TOTAL
(UG/L
AS AS) | (UG/L
AS BA) | RECOV-
ERABLE
(UG/L
AS BE) | BOROI
DIS-
SOLVI
(UG/I
AS B | N, WATE
- UNFLI
ED TOTA
L (UG,
) AS (| IUM MIU ER TO: TRD REC AL ER ('L (UC CD) AS | TAL TO
COV- RE
ABLE EF
G/L (U | OTAL
ECOV-
RABLE
IG/L
E CO) | RECOV-
ERABLE
(UG/L
AS CU) | | JUN
12 | <15 | 62 | <3 | 17.4 | <5 | <16 | <.1 | L < | 1 < | :2 | <1 | | AUG
29 | <15 | 57 | <3 | 17.6 | <5 | <16 | <.1 | L E | 1 < | :2 | <1 | | DATE | ÀS : | AL TOTA
OV- RECO
BLE ERAE
/L (UG/ | L TOTA V- RECO BLE ERA L (UG, PB) AS I | AL TOT
DV- REC
BLE ERA
/L (UG
LI) AS | E, DE
AL TO
OV- RE
BLE ER
// (U
MN) AS | TAL TOOM TOOM TOOM TOOM TOOM TOOM TOOM TOO | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | STRON-
TIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS SR)
(01082) | ERAI
(UG,
AS 2 | AL
OV-
BLE
/L
ZN) | | JUN
12
AUG | 80 | <1 | <7.0 |) 4 | < | 1 | <2 | <2.4 | 131 | <32 | 1 | | 29 | 80 | <1 | <7.0 | 0 6 | < | 1 | <2 | <2.4 | 308 | <32 | 1 | ## 09304000 SOUTH FORK WHITE RIVER AT BUFORD, CO--Continued # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | JUN
12 | 1400 | 372 | 12.7 | 170 | 171 | | AUG
29 | 1315 | 111 | 16.2 | 2 | .57 | ## 395650107435600 WHITE RIVER ABOVE DRY CREEK NEAR MEEKER, CO ## WATER-QUALITY RECORDS LOCATION.--Lat $39^{\circ}56^{\circ}50^{\circ}$, long. $107^{\circ}43^{\circ}56^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.21, T.1 S., R.92 W., Rio Blanco County, Hydrologic Unit 14050005, on right bank 100 ft downstream from highway bridge, 1.5 mi upstream from Dry Creek, and 13.0 mi southeast of Meeker, Co. DRAINAGE AREA. -- Not determined. PERIOD OF RECORD. -- December 1997 to current year. REMARKS.—The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | FEET
PER | | ARD
UNITS) | ATURE
WATER
(DEG C) | DIS
SOLV
(MG) | DEN
BI
EN, CH
S- IC
VED 5
/L) (N | MAND,
IO-
HEM-
CAL,
DAY (
MG/L) 1 | FECAL,
0.7
UM-MF
COLS./
00 ML) | (MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------|-----------------------------|--|-------------------------------------
---|--|---|---|--|--|--|---| | NOV
18 | 1130 | 333 | 354 | 8.5 | 3.2 | 10.9 | 9 | .2 | K2 | | | | APR
21 | 1110 | 583 | 320 | 8.5 | 7.1 | 9.8 | 8 1 | L.8 | 23 | | | | JUN
28 | 1200 | 573 | 318 | 8.3 | 17.9 | 7.9 | 9 | .9 | 25 | 150 | 46.0 | | JUL
27
AUG | 1200 | 375 | 362 | 8.3 | 17.7 | 7. | 7 | .5 | 21 | | | | 29 | 1020 | 358 | 371 | 8.3 | 14.4 | 8.2 | 2 1 | L.5 | 36 | 180 | 55.1 | | DATE | DIS
SOLV
(MG,
AS N | NE- GEI
JM, NITR
S- DI:
JED SOL'
L (MG | S- DI
VED SOL
/L (MG
N) AS | N, GH
NO3 AMMO
S- DI
VED SOI
VL (MO
N) AS | EN, GEN ONIA MON IS- ORG LVED TO G/L (N N) AS | JAM- (IA + IIA + IIA + IIA + IIA | GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | DIS
SOLV
(MG,
AS 1 | US ORT
S- DIS
VED SOLV
/L (MG/
P) AS P | US
HO,
-
ED
L
) | | NOV
18 | | - <.0 | 10 <.0 | 50 .(| 010 . | 10 | E.10 | .013 | .012 | 2 .00 | 6 | | APR 21 | | | | | | 25 | E.10 | .031 | .00 | 7 .00 | 3 | | JUN
28 | 9.3 | L4 <.0 | 01 .0 | 08 .0 | 005 . | 17 | .10 | .020 | .009 | 9 .00 | 7 | | JUL
27 | | 0 | 02 <.0 | 05 .0 | 005 . | 14 | E.10 | .018 | .008 | 8 .00 | 3 | | AUG
29 | 10.6 | <.0 | 01 .0 | 12 <.0 | 002 E. | 10 | <.10 | .017 | .012 | 2 .00 | 4 | | DATE | (UG/L
AS AL) | ERABLE
(UG/L | TOTAL
(UG/L
AS AS) | (UG/L
AS BA) | TOTAL
RECOV-
ERABLE
(UG/L
AS BE) | BORG
DIS
SOLY
(UG,
AS I | S- UNE
VED TO
/L (UB) AS | OMIUM
ATER
FLTRD
OTAL
JG/L
S CD) | TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | COBALT,
TOTAL
RECOV-
ERABLE
(UG/L
AS CO)
(01037) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | | JUN
28 | <15 | 43 | <3 | 16.5 | <5 | E | 8 < | <.1 | E1 | <2 | <1 | | AUG
29 | <15 | 35 | 3 | 15.7 | <5 | <10 | 6 < | <.1 | E1 | <2 | <1 | | DATE | ERAI
(UG,
AS I | AL TOTA
DV- RECO
BLE ERAL | BLE ERA
/L (UG
PB) AS | IUM NES
AL TOS
OV- REG
BLE ER
F/L (UC
LI) AS | FAL TO
COV- RE
ABLE EF
G/L (U
MN) AS | NUM, I
TAL
COV-
ABLE
G/L
MO) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | DIS-
SOLVE
(UG/L
AS SE | TOTA
RECO
D ERAI
(UG, | UM, ZIN
AL TOT
OV- REC
BLE ERA | AL
OV-
BLE
/L
ZN) | | JUN
28
AUG | 50 | <1 | <7. | 0 ! | 5 < | 1 | <2 | <2.4 | 393 | 1 <3 | 1 | | 29 | 60 | <1 | <7. | 0 ! | 5 < | 1 | <2 | <2.4 | 510 | 0 <3 | 1 | ## 395650107435600 WHITE RIVER ABOVE DRY CREEK NEAR MEEKER, CO--Continued ## PESTICIDE ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | r | ESTICIDE | ANALISES, | WAIEK IE | AR OCTOBE | IK 1999 10 | SEFIENDE | IK 2000 | | | |------------------|---|---|---|---|---|---|---|---|---|---| | DATE | TIME | ALDI-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49312) | ALDI-
CARB
SULFONE
WAT,FLT
GF 0.7U
REC
(UG/L)
(49313) | ALDICA-
RB SUL-
FOXIDE,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49314) | CAR-
BARYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49310) | CARBO-
FURAN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49309) | CARBO-
FURAN
WAT,FLT | METHIO-
CARB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38501) | METH-
OMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49296) | OXAMYL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38866) | | APR | | | | | | | | | | | | 21
JUN | 1110 | <.21 | <.10 | <.02 | <.07 | <.29 | <.11 | <.03 | <.02 | <.02 | | 28
JUL | 1200 | <.21 | <.10 | <.02 | <.07 | <.29 | <.11 | <.03 | <.02 | <.02 | | 27 | 1200 | <.21 | <.10 | <.02 | <.07 | <.29 | <.11 | <.03 | <.02 | <.02 | | DATE | PRO-
PHAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49236) | PRO-
POXUR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38538) | 2,4-D,
DIS-
SOLVED
(UG/L)
(39732) | DICHLOR
PROP,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49302) | 2,4-DB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38746) | MCPA,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38482) | MCPB,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38487) | 2,4,5-T
DIS-
SOLVED
(UG/L)
(39742) | SILVEX,
DIS-
SOLVED
(UG/L)
(39762) | TRI-
CLOPYR,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49235) | | APR | | | | | | | | | | | | 21 | <.04 | <.08 | <.11 | <.03 | <.10 | <.17 | <.13 | <.04 | <.06 | <.25 | | 28
JUL | <.04 | <.08 | <.11 | <.03 | <.10 | <.17 | <.13 | <.04 | <.06 | <.25 | | 27 | <.04 | <.08 | <.11 | <.03 | <.10 | <.17 | <.13 | <.04 | <.06 | <.25 | | DATE | ORY-
ZALIN,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49292) | CHLORO-
THALO-
NIL,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49306) | DACTHAL
MONO-
ACID,
WAT,FLT
GF 0.7U
REC
(UG/L)
(49304) | DICHLO-
BENIL,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49303) | FEN-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49297) | DIURON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49300) | FLUO-
METURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38811) | LINURON
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38478) | NEB-
URON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49294) | ACIFL-
UORFEN
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49315) | | APR | | | | | | | | | | | | 21
JUN | <.31 | <.48 | <.04 | <.07 | <.07 | <.06 | <.06 | <.09 | <.07 | <.09 | | 28 | <.31 | <.48 | <.04 | <.07 | <.07 | <.06 | <.06 | <.09 | <.07 | <.09 | | 27 | <.31 | <.48 | <.04 | <.07 | <.07 | <.06 | <.06 | <.09 | <.07 | <.09 | | DATE | BENTA-
ZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38711) | BRO-
MOXYNIL
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49311) | CLOPYR-
ALID,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49305) | DICAMBA
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(38442) | DINOSEB
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49301) | NORFLUR
AZON,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49293) | PIC-
LORAM,
WATER,
FLTRD,
GF 0.7U
REC
(UG/L)
(49291) | DNOC
WAT,FLT
GF 0.7U
REC
(UG/L)
(49299) | BRO-
MACIL,
WATER,
DISS,
REC
(UG/L)
(04029) | GLYPHO-
SATE,
WATER,
UNFLTRD
REC
(UG/L)
(39941) | | APR
21
JUN | <.04 | <.04 | <.23 | <.04 | <.06 | <.04 | <.05 | <.42 | <.06 | <10 | | 28 | <.04 | <.04 | <.23 | <.04 | <.06 | <.04 | <.05 | <.42 | <.06 | <5 | | JUL
27 | <.04 | <.04 | <.23 | <.04 | <.06 | <.04 | <.05 | <.42 | <.06 | <5 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | JUN
28 | 1200 | 573 | 17.9 | 4 | 6.3 | | AUG
29 | 1020 | 358 | 14.4 | 1 | .97 | ## 09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO LOCATION.--Lat $40^{\circ}00^{\circ}18^{\circ}$, long $107^{\circ}49^{\circ}29^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.3, T.1 S., R.93 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 15 ft downstream from county road bridge, 2.3 mi upstream from Coal Creek, and 5.0 mi southeast of Meeker. DRAINAGE AREA.--648 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1961 to current year. REVISED RECORDS.--WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,400 ft above sea level, from topographic map. Oct. 1, 1961 to Sept. 30, 1976, at site 76 ft upstream at datum 2.00 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversion upstream from station for irrigation of about 8,000 acres and about 4,000 acres downstream from station. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
MEAN VA | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--|---|------------------------------|--|--|--
---------------------------------|---|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 303 | e335 | 352 | 382 | 384 | 337 | 355 | 1190 | 2570 | 219 | 124 | 172 | | 2 | 352 | e340 | 352 | 388 | 364 | 340 | 360 | 1340 | 2130 | 226 | 113 | 174 | | 3 | 427 | e345 | 356 | 372 | 368 | 335 | 349 | 1520 | 1790 | 217 | 109 | 175 | | 4 | 391 | e350 | 330 | 338 | e310 | 337 | 354 | 1690 | 1580 | 208 | 138 | 173 | | 5 | 379 | e355 | 305 | 383 | e345 | 348 | 402 | 1850 | 1380 | 192 | 178 | 182 | | 6 | 423 | 360 | 328 | 386 | e340 | 345 | 422 | 1820 | 1180 | 187 | 157 | 197 | | 7 | 443 | | 340 | 320 | e335 | 357 | 434 | 1790 | 1050 | 196 | 108 | 198 | | 8 | 436 | | e360 | 413 | e340 | 350 | 438 | 1710 | 918 | 195 | 104 | 202 | | 9 | 420 | | e320 | 375 | e345 | 345 | 469 | 1370 | 848 | 233 | 99 | 212 | | 10 | 413 | | e385 | 373 | e350 | 345 | 520 | 1240 | 772 | 247 | 92 | 193 | | 11 | 407 | 379 | e375 | 370 | e355 | 326 | 525 | 1480 | 666 | 250 | 104 | 178 | | 12 | 401 | 372 | e350 | 376 | e350 | 359 | 556 | 1250 | 612 | 245 | 133 | 164 | | 13 | 408 | 366 | e340 | 364 | e355 | 339 | 604 | 1030 | 578 | 288 | 109 | 164 | | 14 | 374 | 372 | e355 | 361 | e345 | 338 | 653 | 956 | 502 | 271 | 103 | 154 | | 15 | 412 | 375 | e310 | 360 | e355 | 351 | 672 | 918 | 430 | 265 | 110 | 159 | | 16 | e375 | 371 | e370 | 359 | e345 | 341 | 589 | 912 | 391 | 263 | 111 | 157 | | 17 | e370 | 378 | e390 | 361 | e350 | 340 | 600 | 1100 | 371 | 295 | 112 | 158 | | 18 | e360 | 400 | e355 | 379 | e345 | 339 | 717 | 945 | 354 | 305 | 133 | 180 | | 19 | 366 | 373 | e380 | 396 | e340 | 321 | 660 | 798 | 393 | 269 | 181 | 169 | | 20 | 361 | 385 | e365 | 374 | e330 | 355 | 596 | 808 | 551 | 261 | 144 | 162 | | 21 | 358 | 381 | e375 | 376 | e350 | 340 | 629 | 933 | 430 | 265 | 110 | 197 | | 22 | 362 | 393 | e370 | 369 | e355 | 333 | 694 | 1120 | 362 | 233 | 99 | 371 | | 23 | 367 | 367 | e390 | 358 | e340 | 339 | 719 | 1460 | 340 | 207 | 96 | 282 | | 24 | 358 | e330 | e355 | 341 | 346 | 354 | 784 | 2030 | 332 | 189 | 80 | 301 | | 25 | 359 | 327 | e360 | 369 | 345 | 351 | 711 | 2280 | 318 | 177 | 73 | 289 | | 26
27
28
29
30
31 | 360
344
327
318
319
343 | 390
378
359
353
351 | e385
e370
e365
e360
374
366 | 374
359
297
348
320
339 | 340
343
345
340
 | 354
363
389
392
385
369 | 778
911
1160
1360
1230 | 2600
2230
2110
2550
2930
2920 | 321
317
299
289
258 | 174
173
170
178
168
143 | 83
102
116
131
158
179 | 300
292
300
320
326 | | TOTAL | 11636 | 10955 | 11088 | 11280 | 10055 | 10817 | 19251 | 48880 | 22332 | 6909 | 3689 | 6501 | | MEAN | 375 | 365 | 358 | 364 | 347 | 349 | 642 | 1577 | 744 | 223 | 119 | 217 | | MAX | 443 | 400 | 390 | 413 | 384 | 392 | 1360 | 2930 | 2570 | 305 | 181 | 371 | | MIN | 303 | 327 | 305 | 297 | 310 | 321 | 349 | 798 | 258 | 143 | 73 | 154 | | AC-FT | 23080 | 21730 | 21990 | 22370 | 19940 | 21460 | 38180 | 96950 | 44300 | 13700 | 7320 | 12890 | | STATIST | rics of M | ONTHLY MEA | AN DATA F | OR WATER | ZEARS 1962 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 357 | 343 | 307 | 293 | 288 | 308 | 515 | 1530 | 1766 | 592 | 300 | 264 | | MAX | 616 | 488 | 426 | 405 | 387 | 448 | 1034 | 2785 | 3526 | 1924 | 759 | 586 | | (WY) | 1998 | 1987 | 1998 | 1998 | 1986 | 1986 | 1985 | 1985 | 1984 | 1995 | 1984 | 1997 | | MIN | 141 | 229 | 184 | 181 | 208 | 225 | 319 | 397 | 194 | 29.3 | 42.4 | 71.7 | | (WY) | 1978 | 1978 | 1977 | 1977 | 1978 | 1977 | 1991 | 1977 | 1977 | 1977 | 1994 | 1977 | | SUMMARY | STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | F | FOR 2000 WA | TER YEAR | | WATER YEA | RS 1962 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN TANNUAL M TANNUAL M TOAILY ME DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 221384
607
2890
222
234
439100
1430
390
329 | May 31
Sep 16
Sep 13 | | 173393
474
2930
73
92
3280
5.52
343900
937
355
167 | May 30
Aug 25
Aug 21
May 31
May 31 | | 572
966
208
5360
6.5
8.8
5740
7.07
414700
1410
333
218 | Jul
Jul
Jun | 1984
1977
26 1983
19 1977
16 1977
26 1983
26 1983 | e Estimated. #### 09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. --November 1973 to June 1975, July 1978 to September 1984, October 1986 to September 1992, October 1994 to current year. ## PERIOD OF DAILY RECORD. RIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: March 1973 to September 1975, July 1978 to September 1984. WATER TEMPERATURE: March 1973 to September 1975, July 1978 to September 1984. ${\tt INSTRUMENTATION.--Water-quality} \ {\tt monitor} \ {\tt July} \ 1978 \ {\tt to} \ {\tt September} \ 1984.$ REMARKS.--Unpublished daily maximum and minimum specific conductance data available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 511 microsiemens Dec. 24, 1981; minimum 152 microsiemens June 14, 1980. WATER TEMPERATURE: Maximum, 22.0°C July 8, 1981; minimum, 0.0°C on many days during winter months. EXTREME OUTSIDE PERIOD OF DAILY RECORD.--A specific conductance of 544 microsiemens was measured Sept. 5, 1990. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | ATURE
WATER
(DEG C) | | OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310) | FECAL,
0.7
UM-MF
(COLS./
100 ML) | AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------|---|---|--|--|--|--|--|--|--|---| | NOV
18 | 0845 | 418 | 413 | 8.2 | 3.8 | 9.8 | . 2 | K6 | | | | APR 04 | 1210 | 355 | 428 | 8.4 | 7.0 | 10.9 | .7 | 25 | | | | JUN
07 | 1900 | 949 | 237 | 8.4 | 15.0 | 7.9 | . 4 | 55 | 110 | 32.7 | | JUL | | | | | | 7.9 | | | | JZ.7 | | 26
AUG | 1100 | 180 | 453 | 8.3 | 17.9 | | .6 | 39 | | | | 24 | 1330 | 81 | 477 | 8.3 | 21.0 | 7.2 | 1.0 | 61 | 220 | 65.9 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | AS CL) | NITRITE
DIS-
SOLVED
(MG/L
AS N) | GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | AMMONIA
DIS-
SOLVED
(MG/L
AS N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
TOTAL
(MG/L
AS P) | AS P) | (MG/L
AS P) | | NOV
18 | | | <.010 | <.050 | <.020 | E.10 | E.10 | .012 | <.006 | <.010 | | APR
04 | | | <.001 | .014 | .003 | .13 | E.10 | <.050 | .008 | .007 | | JUN
07 | 6.83 | 1.4 | .001 | .043 | .003 | .22 | E.10 | .036 | .014 | .009 | | JUL
26 | | | .002 | .009 | .004 | .21 | .13 | .016 | .020 | .009 | | AUG 24 | 13.1 | 4.5 | <.001 | .015 | .005 | .19 | .14 | .037 | .027 | .018 | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | AS BA) | RECOV-
ERABLE
(UG/L
AS BE) | DIS-
SOLVED
(UG/L
AS B) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | RECOV-
ERABLE
(UG/L
AS CU) | | JUN
07 | <15 | 151 | <3 | 16.4 | <5 | E9 | <.1 | <1 | <2 | E1 | | AUG
24 | <15 | <28 | <3 | 23.3 | <5 | E15 | <.1 | <1 | <2 | E1 | | DAT
JUN | IRO
TOT
REC
ERA | N, LEA AL TOT OV- REC BLE ERA /L (UG FE) AS | D, LITH AL TOT OV- REC BLE ERA I/L (UG PB) AS | MAN IIUM NES PAL TOT POV- REC BLE ERA F/L (UG LI) AS | GA- MOL
E, DEN
AL TOT
OV- REC
BLE ERA
I/L (UG
MN) AS | JYB- JUM, NICK CAL TOT COV- REC JBLE ERA J/L (UG MO) AS | EL, SEL
AL NIU | STR M, TOT S- REC VED ERA J/L (UG SE) AS | ON- CUM, ZIN CAL TOI COV- REC BLE ERA C/L (UG SR) AS | IC,
PAL
OV-
BLE
I/L
ZN) | | 07
AUG | 17 | 0 <1 | <7. | 0 11 | <1 | . <2 | E1. | 2 24 | .7 <3 | 1 | | 24 | 7 | 0 <1 | <7. | 0 22 | <1 | . <2 | <2. | 4 62 | 2 <3 | 1 | ## 09304200 WHITE RIVER ABOVE COAL CREEK NEAR MEEKER, CO--Continued ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|---|---|-----------|------|---
---|---| | OCT | | | | | MAY | | | | | | 18 | 1217 | 350 | 477 | 2.0 | 31 | 1324 | 3040 | 169 | 10.0 | | DEC
16 | 1412 | 353 | 479 | .2 | JUL
19 | 1328 | 261 | 411 | 17.6 | | FEB | 1112 | 333 | 1,7 | | AUG | 1320 | 201 | 111 | 17.0 | | 04 | 1315 | 294 | 426 | 1.2 | 10 | 0916 | 94 | 469 | 14.7 | | MAR | | | | | SEP | | | | | | 22 | 1028 | 327 | 416 | 1.9 | 30 | 0934 | 316 | 423 | 9.2 | | APR | | | | | | | | | | | 20 | 0945 | 584 | 362 | 5.8 | | | | | | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |------------------|------|---|---|---|---| | JUN
07
AUG | 1900 | 949 | 15.0 | 13 | 34 | | 24 | 1330 | 81 | 21.0 | 6 | 1.3 | #### 09304500 WHITE RIVER NEAR MEEKER, CO LOCATION.--Lat $40^{\circ}02^{\circ}01^{\circ}$, long $107^{\circ}51^{\circ}42^{\circ}$, in $NE^{1}/_{4}NE^{1}/_{4}$ sec.30, T.1 N., R.93 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank at downstream abutment of private bridge, 1.0 mi upstream from Curtis Creek and 2.5 mi east of Meeker. DRAINAGE AREA. -- 755 mi². PERIOD OF RECORD.--June 1901 to December 1906, October 1909 to current year. Monthly discharge only for some periods, published in WSP 1313. Published as "at Meeker" 1901-13. REVISED RECORDS.--WDR CO-79-3: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,300 ft above sea level, from topographic map. Prior to Oct. 31, 1906, and May 7 to Aug. 13, 1910, nonrecording gage, and Aug. 14, 1910 to Oct. 19, 1913, water-stage recorder, at site 2.5 mi downstream, at different datum. Oct. 20, 1913 to Sept. 30, 1971, water-stage recorder at present site, at datum 3.00 ft, higher, prior to Oct. 1, 1933, and at datum 2.00 ft, higher, thereafter. REMARKS.--No estimated daily discharges. Records good. Diversions upstream from station for irrigation of about 12,000 acres upstream from station, and about 3,000 acres downstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBI | C FEET PEF | | WATER YI
MEAN V | EAR OCTOBER
ALUES | 1999 TO | SEPTEMBE | ER 2000 | | | |---|--|--|--|---|------------------------------|--|--|--|---------------------------------|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 359 | 412 | 385 | 398 | 389 | 340 | 364 | 1150 | 2650 | 351 | 222 | 312 | | 2 | 379 | 402 | 381 | 402 | 366 | 340 | 363 | 1270 | 2230 | 364 | 223 | 302 | | 3 | 385 | 407 | 384 | 375 | 369 | 336 | 358 | 1430 | 1920 | 349 | 220 | 307 | | 4 | 381 | 405 | 360 | 341 | 359 | 336 | 359 | 1590 | 1720 | 329 | 251 | 310 | | 5 | 377 | 404 | 324 | 403 | 358 | 348 | 401 | 1760 | 1530 | 318 | 312 | 316 | | 6 | 367 | 402 | 352 | 383 | 354 | 345 | 420 | 1890 | 1330 | 304 | 297 | 320 | | 7 | 386 | 403 | 376 | 339 | 349 | 350 | 432 | 1850 | 1190 | 309 | 242 | 325 | | 8 | 386 | 405 | 374 | 419 | 344 | 352 | 435 | 1780 | 1060 | 312 | 231 | 325 | | 9 | 377 | 406 | 337 | 396 | 353 | 345 | 459 | 1450 | 989 | 360 | 224 | 353 | | 10 | 368 | 400 | 394 | 397 | 363 | 345 | 506 | 1300 | 914 | 377 | 212 | 337 | | 11 | 363 | 397 | 388 | 384 | 376 | 330 | 508 | 1540 | 801 | 365 | 219 | 316 | | 12 | 357 | 391 | 366 | 388 | 367 | 363 | 538 | 1320 | 737 | 339 | 266 | 292 | | 13 | 360 | 386 | 348 | 376 | 363 | 346 | 564 | 1090 | 699 | 385 | 231 | 285 | | 14 | 364 | 389 | 365 | 376 | 359 | 344 | 606 | 1010 | 630 | 367 | 223 | 271 | | 15 | 368 | 395 | 321 | 376 | 365 | 352 | 630 | 968 | 549 | 359 | 239 | 271 | | 16 | 381 | 391 | 409 | 377 | 353 | 351 | 558 | 957 | 506 | 355 | 253 | 272 | | 17 | 378 | 391 | 397 | 380 | 357 | 346 | 563 | 1150 | 487 | 385 | 233 | 272 | | 18 | 398 | 413 | 365 | 400 | 361 | 345 | 670 | 1030 | 475 | 406 | 242 | 296 | | 19 | 406 | 375 | 391 | 423 | 347 | 328 | 627 | 886 | 532 | 367 | 306 | 285 | | 20 | 406 | 394 | 379 | 392 | 336 | 361 | 579 | 876 | 702 | 351 | 269 | 271 | | 21 | 403 | 397 | 386 | 383 | 366 | 350 | 598 | 1000 | 579 | 356 | 236 | 317 | | 22 | 397 | 404 | 385 | 379 | 356 | 343 | 663 | 1190 | 505 | 328 | 217 | 496 | | 23 | 404 | 368 | 404 | 367 | 351 | 344 | 696 | 1530 | 478 | 317 | 220 | 389 | | 24 | 399 | 336 | 366 | 349 | 346 | 357 | 772 | 2090 | 467 | 291 | 202 | 408 | | 25 | 396 | 353 | 372 | 379 | 348 | 355 | 701 | 2320 | 460 | 276 | 200 | 390 | | 26
27
28
29
30
31 | 396
394
396
426
402
410 | 417
417
395
385
384 | 396
379
379
379
374
366 | 383
372
302
342
313
330 | 341
346
347
345
 | 356
363
386
401
389
379 | 745
862
1100
1290
1190 | 2560
2280
2130
2510
2920
2980 | 463
463
445
428
389 | 273
287
292
302
286
251 | 214
242
253
275
311
339 | 386
375
369
367
376 | | TOTAL | 11969 | 11824 | 11582 | 11624 | 10334 | 10926 | 18557 | 49807 | 26328 | 10311 | 7624 | 9911 | | MEAN | 386 | 394 | 374 | 375 | 356 | 352 | 619 | 1607 | 878 | 333 | 246 | 330 | | MAX | 426 | 417 | 409 | 423 | 389 | 401 | 1290 | 2980 | 2650 | 406 | 339 | 496 | | MIN | 357 | 336 | 321 | 302 | 336 | 328 | 358 | 876 | 389 | 251 | 200 | 271 | | AC-FT | 23740 | 23450 | 22970 | 23060 | 20500 | 21670 | 36810 | 98790 | 52220 | 20450 | 15120 | 19660 | | STATIST | rics of Mo | ONTHLY MEA | N DATA F | OR WATER Y | YEARS 1910 | - 2000 | , BY WATER | YEAR (WY |) | | | | | MEAN | 393 | 372 | 334 | 315 | 310 | 344 | 551 | 1566 | 1905 | 690 | 391 | 360 | | MAX | 687 | 648 | 472 | 441 | 420 | 522 | 1094 | 2829 | 4091 | 2524 | 866 | 735 | | (WY) | 1998 | 1929 | 1998 | 1998 | 1930 | 1986 | 1962 | 1985 | 1921 | 1957 | 1984 | 1997 | | MIN | 215 | 255 | 233 | 225 | 232 | 261 | 313 | 499 | 264 | 116 | 140 | 156 | | (WY) | 1978 | 1978 | 1978 | 1981 | 1935 | 1935 | 1944 | 1977 | 1934 | 1977 | 1994 | 1977 | | SUMMAR | Y STATISTI | ICS | FOR | 1999 CALEN | IDAR YEAR | 1 | FOR 2000 WA | TER YEAR | | WATER YE | ARS 1910 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERO 50 PERO | MEAN
F ANNUAL M
ANNUAL ME
F DAILY ME
DAILY MEA | EAN EAN AN MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 237685
651
3050
306
310
471400
1500
412
360 | May 31
Sep 16
Sep 22 | | 2980
200
219
3310
5.07
378400
1020
377
286 | May 31
Aug 25
Aug 21
May 31
May 31 | | 628
1044
274
6320
78
86
6950
a6.12
455100
1490
372
270 | May :
Jul :
Jul :
May :
May : | 1984
1977
25 1984
16 1977
13 1977
25 1984
25 1984 | a Maximum gage height, 7.60 ft, Jun 16, 1921, present datum. #### 09304800 WHITE RIVER BELOW MEEKER, CO LOCATION.--Lat $40^{\circ}00'48"$, long $108^{\circ}05'33"$, in $SW^{1}/_{4}NE^{1}/_{4}$ sec.31, T.1 N., R.95 W., Rio Blanco County, Hydrologic Unit 14050005, on left bank 30 ft downstream from county bridge, 4.5 mi downstream from Strawberry Creek, and 10 mi west of Meeker. DRAINAGE AREA. -- 1,024 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1961 to current year. REVISED RECORDS.--WDR CO-79-3: Drainage area. WDR CO-86-2: 1985. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,928 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. Diversions upstream from station for irrigation of about 22,000 acres upstream and a few small hay meadows downstream from station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY NOV DEC JAN FEB SEP 13 1170 718 414 372 364 710 523 384 373 507 TOTAL MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1962 - 2000, BY WATER YEAR (WY) MEAN MAX (WY) MTN (WY) SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1962 - 2000 ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DATLY MEAN May 31 May 31 Jun 26 1983 Dec 15 LOWEST DAILY MEAN Aug 11 Jun 28 1977 Sep 13 ANNUAL SEVEN-DAY MINIMUM Aug Jun 25 1977 INSTANTANEOUS PEAK FLOW May 31 Jun 26 1983 INSTANTANEOUS PEAK STAGE 3.58 May 31 Jun 26 1983 ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS #### 09304800 WHITE RIVER BELOW MEEKER, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--April 1974 to September 1984, December 1985 (revised) to September 1992, October 1994 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 1978 to September 1983. WATER TEMPERATURE: July 1978 to September 1983. INSTRUMENTATION.--Water-quality monitor July 1978 to September 1983. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. Note:
The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. #### EXTREMES FOR PERIOD OF DAILY RECORD .-- EXPECTS FOR PARTY OF DATH RECORD. -SPECIFIC CONDUCTANCE: Maximum, 908 microsiemens Aug. 30, 1981; minimum, 221 microsiemens June 13, 1980. WATER TEMPERATURE: Maximum, 25.0°C Aug. 7, 1978, Aug. 7, 1980; minimum, 0.0°C many days during winter months. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | OXYGEN
DEMAND,
BIO-
CHEM-
ICAL,
5 DAY
(MG/L)
(00310) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |-----------|---|---|--|--|---|--|--|---|--|--| | NOV
18 | 1400 | 425 | 564 | 8.4 | 6.0 | 11.3 | | K5 | | | | APR
06 | 1100 | 436 | 558 | 8.5 | 7.9 | 10.9 | 2.8 | 27 | | | | MAY
26 | 0925 | 2850 | 261 | 8.1 | 9.0 | 8.5 | 3.4 | 480 | 120 | 34.1 | | JUL
26 | 1430 | 266 | 627 | 8.7 | 20.8 | 10.7 | .6 | 42 | | | | AUG
30 | 1800 | 442 | 674 | 8.6 | 19.2 | 8.6 | | 97 | 310 | 82.2 | | DATE | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | DIS-
SOLVED
(MG/L
AS N) | MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHORUS
TOTAL
(MG/L
AS P) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV
18 | | | <.010 | <.050 | <.020 | .14 | .10 | .010 | E.005 | <.010 | | APR
06 | | | <.010 | <.050 | <.020 | .31 | .13 | .036 | E.005 | <.010 | | MAY
26 | 8.63 | 1.8 | <.010 | .074 | .023 | .81 | .22 | .410 | .030 | .022 | | JUL
26 | | | <.001 | <.005 | .007 | .31 | .22 | .034 | .014 | .008 | | AUG
30 | 25.7 | 7.4 | <.010 | <.050 | <.020 | .46 | .26 | .078 | .031 | .016 | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | (UG/L
AS BA) | RECOV-
ERABLE
(UG/L
AS BE) | SOLVED
(UG/L
AS B) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | TOTAL
RECOV-
ERABLE
(UG/L
AS CR) | TOTAL
RECOV-
ERABLE
(UG/L
AS CO) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | | MAY
26 | <15 | 2480 | E1 | 66.9 | <5 | E14 | E.1 | 3 | E2 | 5 | | AUG | | | | | | | | | | | | 30
DAT | <15 IRO TOT REC ERA FE (UG AS (010 | AL TOT
OV- REC
BLE ERA
/L (UG
FE) AS | CAL TOT
COV- REC
BLE ERA
C/L (UG
PB) AS | AL TOT
OV- REC
BLE ERA
LUG
LI) AS | E, DEN
CAL TOT
COV- REC
BLE ERA | COV- REC
ABLE ERA
G/L (UC
MO) AS | AL NIU | E- TI M, TOT S- REC VED ERA L/L (UG SE) AS | BLE ERA
J/L (UG
SR) AS | CAL
COV-
BLE
S/L
ZN) | | 26
AUG | . 331 | 0 3 | E4. | 0 12 | 18 <1 | . 7 | <2. | 4 27 | '7 <3 | 1 | | 30 | . 42 | 0 <1 | 15. | 0 5 | 2 2 | E1 | <2. | 4 80 | 0 <3 | 1 | ## 09304800 WHITE RIVER BELOW MEEKER, CO--Continued # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---|-----------|------|---|--|---| | OCT
04 | 1500 | 429 | 576 | 10.5 | MAR
08 | 1715 | 377 | 540 | 8.2 | | NOV
12 | 1000 | 412 | 543 | 2.3 | MAY
25 | 1630 | 2500 | 315 | 11.3 | | JAN
27 | 1015 | 380 | 562 | 6.1 | JUL
06 | 1210 | 385 | 603 | 16.9 | ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |--------|------|---|---|---|---| | MAY 26 | 0925 | 2850 | 9.0 | 438 | 3370 | | AUG 30 | 1800 | 442 | 19.2 | 23 | 28 | ## 09306200 PICEANCE CREEK BELOW RYAN GULCH NEAR RIO BLANCO, CO LOCATION.--Lat $39^{\circ}55^{\circ}16^{\circ}$, long $108^{\circ}17^{\circ}49^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$, sec.32, T.1 S., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank at downstream side of bridge, 40 ft downstream from Ryan Gulch, and 23 mi northwest of Rio Blanco. DRAINAGE AREA.--506 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1964 to September 1998, August 1999 to current year. REVISED RECORDS.--WDR CO-79-3: 1977 (M). GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,070 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation upstream from station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES | | | | | | | | | | | | |---|---|--|--|--------------------------------------|---------------------------------|----------------------------------|--|--------------------------------------|-----------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 24
21
21
22
23 | 24
24
24
25
24 | 25
24
24
24
25 | e26
e26
e25
e23
e23 | 27
26
25
23
23 | 22
22
22
22
23 | 27
27
27
28
29 | 8.5
9.2
8.9
8.3
8.4 | 7.1
3.8
6.5
7.1
8.7 | 5.3
5.3
6.7
8.8
9.0 | 5.4
4.7
6.8
9.8
8.9 | 4.5
5.3
7.0
6.4
7.0 | | 6
7
8
9
10 | 22
22
21
21
21 | 24
24
24
20
20 | 25
24
27
26
e26 | e23
e24
e25
e26
e27 | 23
23
23
22
23 | 23
24
24
24
23 | 29
27
25
24
24 | 7.6
7.5
10
11
7.1 | 8.1
8.8
8.8
10 | 6.6
6.8
5.4
10 | 7.4
6.8
6.7
6.5
6.4 | 5.5
4.7
5.9
5.7
4.4 | | 11
12
13
14
15 | 23
22
22
23
23 | 21
22
23
23
23 | 26
26
26
26
e23 | e27
e27
e28
e28
e29 | 25
25
23
22
23 | 22
23
23
23
23 | 24
20
19
18
19 | 6.1
3.8
3.3
3.5
3.5 | 9.9
9.4
8.4
7.9
7.3 | 9.9
7.2
7.8
10
7.8 | 6.5
6.5
4.0
10
7.6 | 3.1
4.1
9.9
9.1
7.4 | | 16
17
18
19
20 | 22
22
23
23
23 | 24
23
23
23
23 | e24
e24
24
24
24 | e27
e26
e26
e25
e25 | 22
22
23
22
22 | 24
23
23
23
25 | 19
18
18
17
20 | 5.2
12
10
9.1 | 7.3
7.6
8.0
8.0
7.1 | 6.9
13
8.2
9.2
7.8 | 4.4
3.2
2.9
3.7
2.9 | 7.3
7.0
8.4
7.1
7.3 | | 21
22
23
24
25 | 23
24
24
24
24 | 23
24
24
e24
e23 | 24
27
27
27
27
e29 | e25
e24
e23
e23
e22 | 22
23
23
23
23 | 24
23
25
26
27 | 19
17
16
16
15 | 10
13
11
10
10 | 5.8
6.8
8.6
8.8
8.9 | 8.6
6.7
5.0
4.3
5.1 | 3.0
5.4
4.9
3.8
3.5 | 9.1
9.0
8.2
6.8
7.5 | | 26
27
28
29
30
31 | 23
21
17
20
21
23 | 25
26
25
25
24
 | e30
e32
e31
e30
e28
e26 | 21
21
22
25
27
28 |
22
22
22
22
 | 27
28
29
31
30
29 | 15
12
8.4
8.0
7.7 | 10
10
9.3
9.3
8.8
6.0 | 9.8
8.2
6.8
5.7
5.4 | 5.0
5.5
5.0
4.7
5.6 | 3.6
3.6
4.6
4.0
3.8
4.9 | 7.2
6.9
6.0
5.4
4.8 | | TOTAL
MEAN
MAX
MIN
AC-FT | 688
22.2
24
17
1360 | 704
23.5
26
20
1400 | 808
26.1
32
23
1600 | 777
25.1
29
21
1540 | 669
23.1
27
22
1330 | 760
24.5
31
22
1510 | 593.1
19.8
29
7.7
1180 | 261.4
8.43
13
3.3
518 | 234.6
7.82
10
3.8
465 | 223.2
7.20
13
4.3
443 | 166.2
5.36
10
2.9
330 | 198.0
6.60
9.9
3.1
393 | | | | | N DATA FO
24.5 | OR WATER Y | EARS 1965
25.0 | 34.8 | BY WATER | |)
32.9 | 24.4 | 30.5 | 21.9 | | MEAN
MAX
(WY)
MIN
(WY) | 22.1
69.9
1986
2.75
1965 | 26.4
58.4
1986
7.98
1968 | 24.5
60.9
1984
8.10
1968 | 22.0
55.5
1984
8.90
1979 | 61.0
1986
13.3
1965 | 112
1986
11.5
1972 | 228
1986
2.94
1967 | 68.4
326
1985
3.65
1967 | 166
1983
3.51
1967 | 98.7
1984
3.95
1967 | 95.6
1984
2.69
1994 | 65.2
1984
3.94
1981 | | SUMMARY | STATISTI | CS | | | FOR 20 | 00 WATER | YEAR | | | WATER YE | EARS 1965 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT) | | | e3
b
1206
2 | 2.9 A
3.6 A
34.1 D | ec 27
ug 18
ug 16
ec 27
nknown | | | 31.8
96.5
8.30
534
.1!
.96
c7.99
23030
61
21
6.8 | May
Jun
Apr 2
May | 1985
1967
5 1985
7 1981
27 1966
5 1985
5 1998 | e Estimated. a From discharge measurement, may have been higher during period of no gage-height record Dec 25 to Jan 25. b Maximum gage height, 4.29 ft, Dec 15, backwater from ice. c Maximum gage height, 7.95 ft, May 5, 1998. #### 09306200 PICEANCE CREEK BELOW RYAN GULCH, NEAR RIO BLANCO, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- December 1970 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: December 1979 to September 1982, November 1985 to September 1998. WATER TEMPERATURE: December 1979 to September 1982, November 1985 to September 1998. SUSPENDED-SEDIMENT DISCHARGE: October 1972 to September 1983. INSTRUMENTATION.--Automatic pumping sediment sampler October 1972 to September 1983. Water-quality monitor December 1979 to September 1982 and November 1985 to July 1996 (revised); water-quality monitor with satellite telemetry July 1, 1996 to September 30, 1998. REMARKS.--Prior to October 1995, unpublished maximum and minimum specific conductance data for daily record are available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD .-- SPECIFIC CONDUCTANCE: Maximum 2,920 microsiemens, July 18, 1981; minimum, 398 microsiemens, Mar. 11, 1997. WATER TEMPERATURE: Maximum 28.0°C Sept. 4, 1990, minimum, -0.4°C many days during the fall-winter period Oct. 1997 to March 1998. SEDIMENT CONCENTRATION: Maximum daily, 21,700 mg/L, July 20, 1977; minimum daily, 8 mg/L, Oct. 14, 1979, and several days in September 1981. SEDIMENT LOADS: Maximum daily, 5,390 tons July 23, 1983; minimum daily, 0.05 ton, Sept. 27, 30, 1981. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS- | |------------------|--|---|--|--|--|---|--|---|--|--| | NOV
08 | 1225 | 26 | 1470 | 8.5 | 7.3 | 12.6 | 540 | 82.8 | 79.1 | 155 | | APR
04
MAY | 1325 | 30 | 1410 | 8.6 | 10.2 | 10.6 | 490 | 83.1 | 68.5 | 134 | | 23
AUG | 1320 | 11 | 1640 | 8.5 | 19.3 | 10.7 | 580 | 78.6 | 91.6 | 186 | | 29 | 1235 | 4.0 | 2160 | 8.3 | 18.6 | 9.8 | 610 | 70.2 | 104 | 248 | | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | (MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | NOV
08
APR | 3 | 2.5 | 427 | 395 | 15.5 | .7 | 15.5 | 988 | 1010 | 1.34 | | 04
MAY | 3 | 2.4 | 403 | 351 | 14.9 | .6 | 13.6 | 924 | 916 | 1.26 | | 23
AUG | 3 | 2.7 | 473 | 421 | 18.7 | .8 | 14.0 | 1090 | 1100 | 1.48 | | 29 | 4 | 3.5 | 733 | 514 | 23.4 | 1.2 | 19.3 | 1520 | 1430 | 2.07 | | DAT | DI
SOI
(TC
E PE | ER PEND
AY) (MG | L GE 05 NITR C, DI - SOL ED (MG /L) AS | N, GE ITE NO2+ S- DI VED SOL //L (MG N) AS | N, GE NO3 AMMC S- DI VED SOL (MC N) AS | EN, GEN, DNIA MONI ES- ORGA VED DIS G/L (MO N) AS | NIC DI
S. SOI
G/L (MG
N) AS | RUS ORT
SS- DIS
EVED SOLV
B/L (MG/
P) AS P | US CARE HO, ORGA HO, ORGA ED SOLV L (MG | NIC
-
ED
:/L
C) | | NOV
08 | 69. | 4 1 | 3 <.0 | 10 .6 | 94 <.0 | 120 .2 | 23 <.0 | 150 .03 | 1 4. | 1 | | APR
04 | 73. | 8 16 | 3 <.0 | 10 .6 | 58 .0 | 122 .2 | .9 <.0 | 150 .01 | 5 4. | 4 | | MAY
23 | 33. | 1 1 | 7 <.0 | 10 .0 | 99 <.0 | 120 .3 | 35 <.0 | 50 .01 | 3 5. | 8 | | AUG
29 | 16. | 4 <1 | 0 <.0 | 10 <.0 | 50 <.0 | 120 .4 | 18 .1 | .22 .10 | 7 7. | 9 | ## 09306200 PICEANCE CREEK BELOW RYAN GULCH, NEAR RIO BLANCO, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | |------------------------|--|---|---|--|---|--|---|---|--|---|---|---| | NOV
08
APR | 1 | <1 | E1.4 | 68 | <1 | 162 | <1.0 | <.8 | <1 | 2 | E10 | <1 | | 04 | 1 | <1 | E1.4 | 73 | <1 | 132 | <1.0 | <.8 | <1 | 2 | <10 | <1 | | MAY
23
AUG | 13 | <1 | 3.1 | 70 | <1 | 195 | <1.0 | <.8 | <1 | 2 | <10 | <1 | | 29 | 3 | <1 | 6.0 | 82 | <1 | 272 | <1.0 | <.8 | <1 | 2 | E30 | <1 | | | | | | | | | | | | | | | | DATE | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | THAL-
LIUM,
DIS-
SOLVED
(UG/L
AS TL)
(01057) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | NOV
08 | DIS-
SOLVED
(UG/L
AS LI) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | DIS-
SOLVED
(UG/L
AS HG) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | DIS-
SOLVED
(UG/L
AS AG) | TIUM,
DIS-
SOLVED
(UG/L
AS SR) | LIUM,
DIS-
SOLVED
(UG/L
AS TL) | DIUM,
DIS-
SOLVED
(UG/L
AS V) |
DIS-
SOLVED
(UG/L
AS ZN) | NATURAL
DIS-
SOLVED
(UG/L
AS U) | | NOV
08
APR
04 | DIS-
SOLVED
(UG/L
AS LI)
(01130) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS HG)
(71890) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | LIUM,
DIS-
SOLVED
(UG/L
AS TL)
(01057) | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | NOV
08
APR | DIS-
SOLVED
(UG/L
AS LI)
(01130) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS HG)
(71890) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | LIUM,
DIS-
SOLVED
(UG/L
AS TL)
(01057) | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | ## RADIOCHEMICAL ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALPHA
COUNT,
2 SIGMA
WAT DIS
AS
TH-230
(PCI/L)
(75987) | ALPHA
RADIO.
WATER
DISS
AS
TH-230
(PCI/L)
(04126) | BETA,
2 SIGMA
WATER,
DISS,
AS
CS-137
(PCI/L)
(75989) | GROSS
BETA,
DIS-
SOLVED
(PCI/L
AS
CS-137)
(03515) | |------------------|---|--|---|--| | NOV
08
APR | .92 | <3.00 | 6.7 | <4.00 | | 04
MAY | 1.0 | <3.00 | 8.9 | 7.40 | | 23
AUG | 1.0 | <3.00 | 5.6 | <4.00 | | 29 | .83 | <3.00 | .80 | <4.00 | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|-------|---|--|---|-----------|------|---|--|---| | OCT | 1215 | 0.3 | 1510 | 10 1 | MAR | 1220 | 26 | 1500 | F 0 | | 04
DEC | 1315 | 23 | 1510 | 10.1 | 08
JUL | 1330 | 26 | 1520 | 5.2 | | 27 | 1305 | 34 | 1520 | .1 | 13 | 1050 | 8.5 | 2100 | 19.1 | | JAN | 1.405 | 0.0 | 1500 | 0.0 | | | | | | | 25 | 1435 | 22 | 1530 | 2.8 | | | | | | ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | CHARGE,
INST.
CUBIC | SEDI-
MENT, | MENT,
DIS-
CHARGE, | SED.
SUSP.
SIEVE
DIAM. | |-----------|------|----------------------------------|-------------------------------------|--------------------------|---------------------------------| | DATE | TIME | FEET
PER
SECOND
(00061) | SUS-
PENDED
(MG/L)
(80154) | | | | NOV | | | | | | | 08
APR | 1225 | 26 | 30 | 2.1 | | | 04
MAY | 1325 | 30 | 231 | 18 | 84 | | 23 | 1320 | 11 | 40 | 1.2 | | | AUG
29 | 1235 | 4.0 | 14 | .15 | | #### 09306222 PICEANCE CREEK AT WHITE RIVER, CO LOCATION.--Lat $40^{\circ}04'39"$ (revised), long $108^{\circ}14'07"$ (revised), in $SE^{1}/_{4}SE^{1}/_{4}$ sec.2, T.1 N., R.97 W., Rio Blanco County, Hydrologic Unit 14050006, on downstream side of box culvert on county highway, 1.0 mi southwest of White River City, 1.3 mi upstream from mouth, and 17 mi west of Meeker. DRAINAGE AREA.--652 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1964 to September 1966, October 1970 to current year. REVISED RECORDS.--WDR CO-82-3: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 5,730 ft above sea level, from topographic map. Oct. 1, 1964 to Sept. 30, 1966, Oct. 1, 1970 to July 12, 1974, at several sites 0.1 mi upstream at different datums, and Oct. 1, 1987 to Nov. 18, 1994, at site 1.0 mi downstream at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions for irrigation of about 5,500 acres upstream from station. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|--|---|--------------------------------------|-------------------------------------|--|---|--------------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 30
29
29
30
30 | e28
e29
e30
e31
e31 | e35
e34
e32
e32
e32 | e30
e30
e29
e28
e27 | 37
35
30
30
30 | 28
28
28
28
28 | 36
35
36
35
36 | 13
12
12
11
11 | e3.4
e3.0
e3.3
e3.8
e3.9 | e4.2
e4.1
e4.5
e4.9
e4.6 | e4.7
e4.5
e5.4
e6.6
e7.5 | 7.7
7.6
7.0
6.1
4.5 | | 6
7
8
9
10 | 31
31
30
28
28 | e31
e31
e30
e28
e28 | e32
e31
e33
e33
e31 | e28
e29
e29
e30
e31 | 30
29
29
29
29
30 | 29
31
33
32
31 | 37
35
32
31
29 | 11
10
12
13 | e3.8
e3.8
e4.0
e4.1
e4.2 | e4.4
3.7
3.6
5.0
4.0 | e6.8
e6.5
e6.2
e6.2
e6.0 | 4.3
4.4
4.3
3.8
3.8 | | 11
12
13
14
15 | 28
26
25
26
26 | e28
e29
e30
e30
e30 | e32
e32
e32
e31
e29 | e32
e32
e33
e34
e35 | 36
36
32
31
31 | 30
31
31
30
31 | 30
28
25
24
24 | e9.0
e7.0
e5.4
e4.5
e4.3 | e4.2
e4.1
e4.1
e3.9
e3.6 | 3.3
3.3
e4.3
e4.0
e3.5 | e5.9
e5.6
e6.0
e8.0
e9.4 | 3.7
3.7
3.7
3.7
3.6 | | 16
17
18
19
20 | 26
26
26
27
28 | e31
e31
e30
e30
e30 | e29
e29
e29
e30
e29 | e33
32
35
37
35 | 30
31
31
30
29 | 32
31
31
31
32 | 24
23
23
22
24 | e4.4
e4.4
e4.6
e4.5
e4.3 | e3.6
e3.7
e3.9
e3.8
e3.5 | e4.2
e5.2
e4.7
e5.1
e4.7 | e7.4
e6.6
e6.2
e6.7
e6.2 | 3.5
3.5
4.0
4.3
4.3 | | 21
22
23
24
25 | e29
e29
e29
e28
e27 | e30
e30
e31
e30
e29 | e30
e31
e32
e32
e34 | | | 33
31
32
34
34 | 23
22
21
21
20 | e4.5
e4.1
e3.7
e3.3
e3.4 | | e4.8
e4.6
e4.2
e4.2
e4.3 | | 4.6
7.0
7.0
7.3
7.2 | | 26
27
28
29
30
31 | e26
e24
e23
e24
e25
e27 | e30
e32
e32
e32
e32 | e34
e34
e33
e32
e32
e31 | 34
34
30
28
32
34 | 29
29
29
28
 | 35
35
36
40
39
38 | 19
17
14
13
13 | e3.4
e3.4
e3.3
e3.1
e3.3 | e4.7
e5.0
e4.8
e4.6
e4.3 | e4.6
e4.7
e4.9
e4.6
e4.6
e4.9 | e6.4
e6.8
e7.2
7.4
7.4
7.7 | 7.1
6.9
6.9
6.7
6.7 | | TOTAL
MEAN
MAX
MIN
AC-FT | 851
27.5
31
23
1690 | 904
30.1
32
28
1790 | 982
31.7
35
29
1950 | 989
31.9
37
27
1960 | 890
30.7
37
28
1770 | 993
32.0
40
28
1970 | 772
25.7
37
13
1530 | 207.3
6.69
13
3.1
411 | 118.7
3.96
5.0
3.0
235 | 135.7
4.38
5.2
3.3
269 | 205.5
6.63
9.4
4.5
408 | 158.9
5.30
7.7
3.5
315 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 29.5
86.1
1986
1.60
1965 | | 30.0
72.0
1986
13.5
1991 | 27.3
64.9
1986
11.4
1973 | 31.6
86.6
1986
16.3
1973 | 47.9
123
1986
17.2
1972 | 63.3
284
1998
3.54
1972 | 83.1
369
1998
2.27
1972 | 39.4
247
1983
1.40
1994 | 29.5
125
1984
1.56
1972 | 34.8
109
1984
1.67
1990 | 25.7
75.4
1984
2.03
1966 | | SUMMARY | STATISTI | CS | FOR 1 | 999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YE | ARS 1965 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 14728
40.4
114
14
14
29210
56
35
25 | May 6
Jun 28
Jun 28 | | 7207.1
19.7
40
3.0
3.3
42
2.83
14300
33
26
3.9 | Mar 29
Jun 2
May 28
Feb 2
Feb 2 | |
39.8
110
12.5
539
.50
.84
628
7.04
28810
78
27
4.2 | May
Jul
Jul
Sep | 1985
1990
7 1998
21 1966
30 1971
7 1978
7 1978 | e Estimated. a Also occurred Jul 22, 1966. b On basis of slope-area measurement of peak flow. #### 09306222 PICEANCE CREEK AT WHITE RIVER, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD.--December 1970 to July 1986, March 1987, March 1990 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: January 1971 to June 1974, May 1975 to September 1983. WATER TEMPERATURE: January 1971 to September 1974, May 1975 to September 1983. SUSPENDED-SEDIMENT DISCHARGE: March 1974 to September 1983. INSTRUMENTATION.--Water-quality monitor May 1975 to September 1983. Pumping sediment sampler March 1974 to September 1983. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. The maximum extreme specific conductance value of 10,000 microsiemens represents a value of 10,000 microsiemens or higher due to instrument limitations. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. #### EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum, 10,000 microsiemens, June 18, 1981; minimum, 460 microsiemens, Feb. 28 and Mar. 2, 1983. WATER TEMPERATURE: Maximum, 32.0°C, July 14, 1978; minimum, 0.0°C, many days during winter months. SEDIMENT CONCENTRATION: Maximum daily, 25,000 mg/L(estimated), Sept. 7, 1978; 4 mg/L, Oct. 2, 1977. SEDIMENT LOADS: Maximum daily, 6,095 tons, estimated, May 28, 1983; minimum daily, 0.10 ton, June 22, 1978. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | DIS-
SOLVED
(MG/L
AS NA) | |-----------|---|---|--|--|--|---|--|---|--|--| | NOV
08 | 1445 | e30 | 1890 | 8.6 | 8.4 | 10.7 | 520 | 68.7 | 83.4 | 273 | | APR 04 | 1640 | 36 | 1740 | 8.6 | 15.2 | 9.6 | 470 | 68.2 | 71.6 | 226 | | MAY
24 | 1020 | 3.0 | 3950 | 8.8 | 12.8 | 8.7 | 430 | 32.2 | 84.7 | 882 | | AUG
29 | 1500 | 7.4 | 2800 | 8.7 | 23.3 | 10.0 | 470 | 37.5 | 91.6 | 491 | | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | | NOV 08 | 5 | 2.8 | 591 | 431 | 33.8 | .9 | 13.9 | 1220 | 1270 | 1.78 | | APR
04 | 5 | 2.9 | 520 | 378 | 30.1 | .9 | 13.9 | 1120 | 1110 | 1.52 | | MAY
24 | 19 | 4.2 | 1390 | 396 | 150 | 2.8 | 5.7 | 2580 | 2400 | 3.51 | | AUG
29 | 10 | 4.0 | 1020 | 479 | 63.0 | 1.6 | 12.6 | 1810 | 1790 | 2.46 | | DAT | DI
SOL
(TC | VED DEG.
NS SUS
R PEND
Y) (MG | L GE 05 NITR C, DI - SOL ED (MG | N, GE ITE NO2+ S- DI VED SOL //L (MG N) AS | N, GE
NO3 AMMC
S- DI
VED SOI
J/L (MG | N, GEN, NIA MONI S- ORGA VED DIS LL (MC N) AS | ANIC DI
S. SOL
G/L (MG | RUS ORT
SS- DIS
EVED SOLV
S/L (MG/
P) AS F | US CARE HO, ORGA HO DIS ED SOLV L (MG | NIC
-
ED
}/L
C) | | NOV
08 | . 98 | .8 3 | 5 <.0 | 10 .5 | 19 .0 | 23 .3 | 34 <.0 |)50 .02 | 3 5. | 1 | | APR
04 | 109 | 19 | 3 .0 | 11 .5 | 32 .0 | 26 .3 | 34 <.0 | .01 | .8 5. | 3 | | MAY
24 | . 20 | .7 2 | 1 <.0 | 10 <.0 | 50 <.0 | 20 .6 | 55 E.C | 38 .01 | .6 9. | 5 | | AUG
29 | . 36 | .2 <1 | 0 <.0 | 10 <.0 | 50 <.0 | 20 .5 | 57 E.C |)44 .03 | 4 9. | 1 | ## 09306222 PICEANCE CREEK AT WHITE RIVER, CO--Continued ## WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(UG/L
AS SB)
(01095) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | |------------------------|--|---|---|--|---|--|---|---|--|---|---|---| | NOV
08
APR | 2 | <1 | 2.6 | 88 | <1 | 237 | <1.0 | <.8 | <1 | 2 | E10 | <1 | | 04
MAY | 1 | <1 | 2.4 | 84 | <1 | 187 | <1.0 | <.8 | <1 | 2 | <10 | <1 | | 24 | 14 | <2 | 5.6 | 129 | <2 | 642 | <2.0 | <.8 | <2 | 3 | E20 | <2 | | AUG
29 | 3 | <1 | 5.7 | 121 | <1 | 398 | <1.0 | <.8 | <1 | 3 | <30 | <1 | | | | | | | | | | | | | | | | DATE | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | THAL-
LIUM,
DIS-
SOLVED
(UG/L
AS TL)
(01057) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | URANIUM
NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | NOV
08 | DIS-
SOLVED
(UG/L
AS LI) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | DIS-
SOLVED
(UG/L
AS HG) | DENUM,
DIS-
SOLVED
(UG/L
AS MO) | DIS-
SOLVED
(UG/L
AS NI) | NIUM,
DIS-
SOLVED
(UG/L
AS SE) | DIS-
SOLVED
(UG/L
AS AG) | TIUM,
DIS-
SOLVED
(UG/L
AS SR) | LIUM,
DIS-
SOLVED
(UG/L
AS TL) | DIUM,
DIS-
SOLVED
(UG/L
AS V) | DIS-
SOLVED
(UG/L
AS ZN) | NATURAL
DIS-
SOLVED
(UG/L
AS U) | | NOV
08
APR
04 | DIS-
SOLVED
(UG/L
AS LI)
(01130) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS HG)
(71890) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | LIUM,
DIS-
SOLVED
(UG/L
AS TL)
(01057) | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | | NOV
08
APR | DIS-
SOLVED
(UG/L
AS LI)
(01130) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | DIS-
SOLVED
(UG/L
AS HG)
(71890) | DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | DIS-
SOLVED
(UG/L
AS NI)
(01065) | NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | DIS-
SOLVED
(UG/L
AS AG)
(01075) | TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | LIUM,
DIS-
SOLVED
(UG/L
AS TL)
(01057) | DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | DIS-
SOLVED
(UG/L
AS ZN)
(01090) | NATURAL
DIS-
SOLVED
(UG/L
AS U)
(22703) | ## RADIOCHEMICAL ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALPHA
COUNT,
2 SIGMA
WAT DIS
AS
TH-230 | ALPHA
RADIO.
WATER
DISS
AS
TH-230 | BETA,
2 SIGMA
WATER,
DISS,
AS
CS-137 | GROSS
BETA,
DIS-
SOLVED
(PCI/L
AS | |------------------
---|--|---|--| | | (PCI/L)
(75987) | (PCI/L)
(04126) | (PCI/L)
(75989) | CS-137)
(03515) | | NOV
08
APR | .93 | <3.00 | 8.2 | 8.89 | | 04
MAY | 1.1 | 3.27 | 9.1 | 5.45 | | 24 | 1.2 | 3.68 | 12 | <4.00 | | AUG
29 | 1.0 | 3.76 | .88 | <4.00 | ## MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------------------|------|---|--|---|-----------|------|---|--|---| | OCT 21 | 0931 | 29 | 2060 | 2.4 | MAR
08 | 1525 | 34 | 2020 | 5.4 | | DEC
01
JAN | 1010 | 38 | 1900 | 1.0 | JUL
06 | 1240 | 4.4 | 3130 | 22.5 | | 26 | 1510 | 34 | 1860 | 4.9 | | | | | | ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | SEDI- | |------|------|---------|---------|---------|---------| | | | CHARGE, | | | MENT, | | | | INST. | | SEDI- | DIS- | | | | CUBIC | TEMPER- | MENT, | CHARGE, | | | | FEET | ATURE | SUS- | SUS- | | DATE | TIME | PER | WATER | PENDED | PENDED | | | | SECOND | (DEG C) | (MG/L) | (T/DAY) | | | | (00061) | (00010) | (80154) | (80155) | | NOV | | | | | | | 08 | 1445 | e30 | 8.4 | 50 | 4.1 | | APR | | | | | | | 04 | 1640 | 36 | 15.2 | 296 | 29 | | MAY | | | | | | | 24 | 1020 | 3.0 | 12.8 | 36 | .29 | | AUG | 1500 | - 4 | 00.0 | 1.5 | 2.0 | | 29 | 1500 | 7.4 | 23.3 | 15 | .30 | ## 09306242 CORRAL GULCH NEAR RANGELY, CO LOCATION.--Lat $39^{\circ}55^{\circ}13^{\circ}$, long $108^{\circ}28^{\circ}20^{\circ}$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.35, T.1 S., R.99 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 5 ft downstream from Box Elder Gulch, 3.5 mi upstream from confluence with Stake Springs Draw, and 21 mi southeast of Rangely. DRAINAGE AREA. -- 31.6 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1974 to current year. GAGE.--Water-stage recorder. Concrete V-notch control since July 20, 1974. Elevation of gage is 6,580 ft above sea level, from topographic map. REMARKS.--No estimated daily discharges. Records good. No diversions upstream from station. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE. | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|-------------------------------------|--|------------------------------------|---|------------------------------------|-------------------------------------|---|--|--------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.2
1.2
1.2
1.2
1.1 | | 1.0
1.0
1.1
.82
.79 | .82
.82
.79
.81 | .92
1.0
1.0
1.0 | .85
.87
.87
.87 | .83
.87
.84
.86 | .67
.64
.66
.64 | .51
.52
.51
.51 | .72
.71
.69
.74
.77 | .61
.56
.55
.59 | . 54
. 53
. 53
. 53
. 53 | | 6
7
8
9
10 | 1.1
1.1
1.1
1.0
1.0 | 1.3
1.3
1.3
1.2 | .86
.85
.85
.74
.87 | .79
.76
.77
.80
.77 | .96
.89
.86
.82 | .88
.88
.86
.89 | .85
.81
.78
.80 | .64
.64
.69
.65 | .48
.49
.55
.54 | .76
.76
.78
.80
.75 | .57
.55
.54
.56 | .53
.53
.51
.48 | | 12 | 1.0
1.0
1.0
1.1 | 1.2
1.2
1.1
1.1 | .89
.87
.90
.82
.86 | .71
.71
.72
.73 | .88
.83
.82
.83 | .88
.91
.88
.90 | | .65
.65
.63
.64 | .55
.56
.56
.55 | .77
.77
.84
.84 | .52
.53
.55
.57 | . 48
. 48
. 48
. 48
. 48 | | | | | .87
.87
.87
.87
.86 | | .90
.92
.90
.88
.90 | | | .62
.63
.62 | .62
.62
.65
.78
.68 | | .62
.62
.62
.59
.56 | . 48
. 47
. 48
. 47
. 48 | | 21
22
23
24
25 | 1.2
1.2
1.2
1.3 | 1.1
1.1
.77
.81
.96 | .82
.82
.84
.82
.83 | .83
.77
.69
.76 | .89
.87
.87
.90 | | | .62
.60
.58
.63 | .66
.67
.70
.70 | .80
.77
.73
.70 | .59
.62
.62
.61
1.2 | 1.0
.74
.71
.71
.67 | | 26
27
28
29
30
31 | 1.3
1.3
1.4
1.2 | 1.1
1.1
1.1
1.1
1.0 | .85
.80
.77
.84
.81 | .87
.87
.87
.87
.87 | .88
.82
.82
.82
 | .90
.87
.96
.92
.91 | .74
.74
.72
.70
.69 | .62
.54
.51
.50
.50 | .70
.68
.67
.69
.70 | .65
.63
.65
.69 | .76
.65
.62
.62
.62 | .66
.63
.62
.62
.62 | | TOTAL
MEAN
MAX
MIN
AC-FT | 36.2
1.17
1.4
1.0
72 | 34.54 | 26.56 | 24.88 | 25.73 | | 23.47
.78
.87
.69
47 | 19.15
.62
.69
.50
38 | 18.11
.60
.78
.48
36 | | 18.96
.61
1.2
.52
38 | 16.95
.56
1.0
.47
34 | | STATIST | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.09
2.88
1979
.30
1991 | .90
1.99
1984
.25
1993 | .82
2.07
1979
.27
1992 | .77
2.40
1979
.30
1977 | .83
2.22
1979
.30
1993 | 1.29
4.99
1998
.31
1977 | 2.77
14.9
1998
.22
1992 | 7.63
41.7
1984
.15
1992 | 4.61
33.4
1983
.094
1992 | 1984
.17 | 1.60
5.56
1984
.29
1977 | 1.32
3.39
1978
.32
1991 | | SUMMARY | STATIST | ICS | FOR : | 1999 CALEN | IDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER Y | EARS 1974 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 811.50
2.22
10
.74
.81
1610
5.8
1.3
1.0 | 2 | | 295.54
.81
1.4
.47
.48
16
2.41
586
1.1
.80 | Oct 29
Sep 17
Sep 13
Aug 25
Aug 25 | | 2.1:
7.7:
.2:
207
a.00
b1780
6.1:
1590
4.2
.8: | Jun
Apr
Apr
Aug
Aug | 1984
1992
1 1983
10 1974
10 1974
18 1984
18 1984 | a Also occurred Apr 11-14, 1974. b From rating curve extended above 70 ft³/s, on basis of slope-area measurements at gage heights, 3.89 ft, 4.08 ft, and 6.12 ft. #### 09306242 CORRAL GULCH NEAR RANGELY, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- March 1974 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: April 1975 to September 1989. WATER TEMPERATURE: January 1975 to September 1989. SUSPENDED-SEDIMENT DISCHARGE: October 1974 to September 1985. INSTRUMENTATION.--Water-quality monitor October 1974 to August 1989. Pumping sediment sampler October 1974 to September 1985. REMARKS.--Unpublished maximum and minimum specific conductance data for period of daily record available in district office. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.- SPECIFIC CONDUCTANCE: Maximum, 3,000 microsiemens, July 17, 1976; minimum, 271 microsiemens, Feb. 18, 1980. WATER TEMPERATURE: Maximum, 29.0°C, Aug. 5, 1979; minimum, 0.0°C, on several days during winter months some years. SEDIMENT CONCENTRATIONS: Maximum daily, 35,800 mg/L, Aug. 2, 1982; minimum daily, 2 mg/L, May 24, 1981. SEDIMENT LOADS: Maximum daily, 43,600 tons, Aug. 18, 1984; minimum daily, 0.00 ton, on many days during 1981. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |------------------|--|---|--|--|--|--|--|--|--| | NOV
09
MAY | 1300 | 1.3 | 1410
| 8.0 | 8.9 | 7.8 | 580 | 99.2 | 79.4 | | 26
AUG | 1115 | .61 | 1470 | 7.8 | 10.0 | 6.3 | 590 | 101 | 81.9 | | 31 | 0840 | .63 | 1440 | 7.8 | 10.2 | 6.5 | 550 | 93.4 | 76.0 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
09 | 112 | 2 | 1.2 | 385 | 415 | 15.6 | . 4 | 21.2 | 977 | | MAY
26 | 122 | 2 | .8 | 420 | 398 | 13.2 | .3 | 21.1 | 994 | | AUG | | | | | | | | | | | 31 | 113 | 2 | 1.2 | 372 | 386 | 13.4 | .3 | 20.6 | 932 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
09 | 1.33 | 3.43 | | | | | | | | | MAY
26 | 1.35 | 1.64 | <.010 | .235 | <.020 | .47 | <.050 | <.010 | 6.5 | | AUG
31 | | | | | | | | | | #### MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | | | DIS- | | | |------|------|---------|---------|---------|------|------|---------|---------|---------| | | | CHARGE, | SPE- | | | | CHARGE, | SPE- | | | | | INST. | CIFIC | | | | INST. | CIFIC | | | | | CUBIC | CON- | TEMPER- | | | CUBIC | CON- | TEMPER- | | | | FEET | DUCT- | ATURE | | | FEET | DUCT- | ATURE | | DATE | TIME | PER | ANCE | WATER | DATE | TIME | PER | ANCE | WATER | | | | SECOND | (US/CM) | (DEG C) | | | SECOND | (US/CM) | (DEG C) | | | | (00061) | (00095) | (00010) | | | (00061) | (00095) | (00010) | | OCT | | | | | MAD | | | | | | OCT | 0045 | 1 0 | 1500 | | MAR | 1015 | 0.4 | 1.550 | - 1 | | 05 | 0945 | 1.3 | 1530 | 6.1 | 08 | 1215 | .84 | 1570 | 5.1 | | DEC | | | | | APR | | | | | | 01 | 1159 | 1.1 | 1560 | 3.6 | 06 | 1200 | .84 | 1420 | 11.9 | | JAN | | | | | JUL | | | | | | 25 | 1255 | .85 | 1570 | 2.4 | 12 | 1215 | .82 | 1400 | 16.1 | | | | | | | | | | | | ## 09306242 CORRAL GULCH NEAR RANGELY, CO--Continued # SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | NOV
09 | 1300 | 1.3 | 8.9 | 18 | .06 | | MAY
26 | 1115 | .61 | 10.0 | 2 | .00 | | AUG
31 | 0840 | .63 | 10.2 | 6 | .01 | #### 09306255 YELLOW CREEK NEAR WHITE RIVER, CO LOCATION.--Lat $40^{\circ}10^{\circ}07^{\circ}$, long $108^{\circ}24^{\circ}02^{\circ}$, in $NE^{1}/_{4}SW^{1}/_{4}$ sec.4, T.2 N., R.98 W., Rio Blanco County, Hydrologic Unit 14050006, on left bank 160 ft downstream from bridge on State Highway 64, 0.3 mi upstream from mouth, and 10.0 mi northwest of White River City. DRAINAGE AREA. -- 262 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1972 to September 1982, May 1988 to current year. GAGE.--Water-stage recorder with satellite telemetry, and v-notch concrete control. Elevation of gage is 5,535 ft above sea level, from topographic map. REMARKS.--Record good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 300 acres. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |--|---|--|--|--|-------------------------------------|--|--|--|-------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.9
7.0
7.1
7.1
7.3 | 6.8
6.4
6.5
6.6 | 7.0
7.0
7.5
e6.2
e7.4 | e6.6
e6.6
e5.4
e5.3 | 5.4
5.5
5.8
5.9
5.8 | 6.4
6.4
6.1
6.3
6.4 | 7.1
7.3
7.1
7.4
7.3 | 5.8
5.8
5.7
5.6
5.4 | 4.3
4.3
4.3
4.1
4.0 | 3.4
3.5
3.4
3.4 | 3.0
2.9
3.1
3.2
3.1 | 3.5
3.5
3.4
3.3
3.3 | | 6
7
8
9
10 | 7.3
7.1
6.9
7.0
6.9 | 6.5
6.4
6.6
6.4
6.3 | e7.4
6.6
e5.8
e5.3
e7.0 | e5.0
e5.2
e6.3
e6.0
e6.3 | 6.1
6.1
6.2
6.6
7.6 | 6.4
6.6
6.0
6.1
5.1 | 6.6
6.5
6.6
6.4 | 5.3
5.4
6.5
6.3
5.7 | 3.9
3.8
3.8
3.9
3.9 | 3.3
3.2
3.4
4.3
4.4 | 3.1
3.0
3.0
3.0
3.0 | 3.3
3.3
3.4
3.6
3.4 | | 11
12
13
14
15 | 6.7
6.5
6.3
6.4
6.7 | 6.5
6.2
6.3
5.8
6.0 | e6.3
6.6
e6.5
e6.6
e5.0 | e6.1
e5.8
e5.4
e5.7
e6.0 | 10
8.9
6.7
6.5
6.6 | 5.3
6.2
5.9
6.1
6.4 | 6.7
6.7
6.5
6.5
7.5 | 5.7
5.8
5.8
5.7
5.5 | 3.8
3.7
3.6
3.5
3.6 | 3.6
3.6
3.6
3.4
3.4 | 3.0
3.0
3.0
3.2
3.6 | 3.3
3.4
3.4
3.4 | | | | | | | | | | | | 3.5
3.6
3.7
3.4
3.3 | | | | | | | | | | | | | | 3.2
3.1
3.1
3.1
3.2 | | 4.1
5.2
3.9
4.0
3.7 | | 26
27
28
29
30
31 | 6.3
7.0
6.8
7.8
6.8
6.8 | 6.7
6.8
6.6
6.8 | e5.6
e5.6
e6.8
e7.0
e6.6
e6.5 | e7.3
6.3
6.9
5.9
6.5
9.2 | 5.6
6.1
6.3
6.2 | 7.1
6.9
7.4
7.7
7.2
7.2 | 6.3
6.2
6.0
5.9
5.8 | 5.3
5.3
4.9
4.7
4.5
4.3 | 3.9
3.8
3.7
3.6
3.5 | 3.1
3.1
3.1
3.1
3.1
3.0 | 3.8
3.9
3.8
4.1
3.7 | 3.5
3.5
3.4
3.4
3.3 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | | | | | | | 104.9
3.38
4.4
3.0
208 | | 105.8
3.53
5.2
3.3
210 | | | | | | OR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.69
10.2
1999
.50
1979 | 3.04
12.1
1999
.78
1978 | 2.68
9.77
1999
.15
1979 | 2.54
9.05
1999
.008
1979 | 4.40
12.7
1980
.22
1979 | 4.80
18.1
1997
1.64
1982 | 3.33
8.88
1999
1.37
1978 | 4.55
24.1
1985
1.03
1978 | 3.70
19.9
1985
.68
1977 | 3.29
18.5
1985
.34
1976 | 2.62
9.34
1998
.30
1978 | 3.47
17.1
1978
.80
1976 | | SUMMARY | STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WA | ATER YEAR | | WATER YE | ARS 1973 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN TANNUAL M TANNUAL M TOAILY M DAILY ME SEVEN-DA TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 2873.1
7.87
16
4.6
4.8
5700
10
7.5
6.0 | Jun 16
Jul 4
Jul 2 | | 1979.5
5.41
10
2.9
3.00
20
5.96
3930
7.0
5.8
3.3 | | | 3.15
8.93
1.28
500
a.00
.00
b6800
12.97
2280
6.6
2.3
.93 | Sep
Sep 1
Dec 1
Sep
Sep | 1999
1977
7 1978
11 1978
15 1978
7 1978
7 1978 | a Also occurred Sep 12-16, 1978, and Dec 15, 1978 to Jan 14, 1979. b On basis of contracted-opening, and flow-over-road measurement of peak flow. #### 09306255 YELLOW CREEK NEAR WHITE RIVER, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD.--April 1974 to September 1982, March 1988 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: April 1975 to September 1982. WATER TEMPERATURE: April 1975 to September 1982. SUSPENDED-SEDIMENT DISCHARGE: April 1974 to September 1982. INSTRUMENTATION.--Automatic pumping sediment sampler April 1974 to September 1982. Water-quality monitor April 1975 to September 1982. ${\tt REMARKS.--Unpublished} \ {\tt maximum} \ {\tt and} \ {\tt minimum} \ {\tt specific} \ {\tt conductance} \ {\tt data} \ {\tt for} \ {\tt the} \ {\tt period} \ {\tt of} \ {\tt daily} \ {\tt record} \ {\tt are} \ {\tt available} \ {\tt in} \ {\tt the} \ {\tt district} \ {\tt office}.$ Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum 5,790 microsiemens, Sept. 17, 1978; minimum, 457 microsiemens, July 21, 1979. WATER TEMPERATURE: Maximum 35.0°C, July 25, 1978; minimum, 0.0°C, on many days during
the winter period. SEDIMENT CONCENTRATIONS: Maximum daily, 24,000 mg/L, Sept. 7, 1978; minimum daily, no flow several days during Sept. 1978, many days during 1979. SEDIMENT LOADS: Maximum daily, 290,000 tons, Sept. 7, 1978; minimum daily, no flow several days during Sept. 1978, many days during 1979. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |------------------|--|---|--|--|--|--|--|--|--| | NOV
09 | 1130 | 6.5 | 2960 | 8.6 | 5.2 | 12.9 | 920 | 72.7 | 177 | | APR
05 | 1045 | 6.8 | 3150 | 8.6 | 7.7 | 11.5 | 920 | 74.3 | 177 | | MAY
24
AUG | 1255 | 5.3 | 3200 | 8.6 | 14.2 | 12.2 | 910 | 58.4 | 185 | | 31 | 1100 | 3.9 | 3310 | 8.6 | 16.0 | 12.4 | 810 | 53.3 | 162 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | NOV
09
APR | 420 | 6 | 2.9 | 724 | 989 | 53.2 | 1.0 | 8.6 | 2160 | | 05
MAY | 451 | 6 | 2.7 | 765 | 1030 | 51.6 | .9 | 17.1 | 2260 | | 24
AUG | 481 | 7 | 2.5 | 783 | 982 | 56.2 | 1.0 | 11.1 | 2260 | | 31 | 541 | 8 | 3.1 | 901 | 916 | 69.7 | 1.2 | 13.2 | 2320 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(MG/L
AS N)
(00623) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | NOV
09 | 2.94 | 38.0 | | | | | | | | | APR
05
MAY | 3.08 | 41.3 | | | | | | | | | 24
AUG | 3.08 | 32.5 | .015 | 2.05 | <.020 | .52 | <.050 | <.010 | 9.5 | | 31 | 3.15 | 24.5 | .031 | 2.42 | <.020 | .48 | <.050 | <.010 | 8.7 | ## 09306255 YELLOW CREEK NEAR WHITE RIVER, CO--Continued # WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BORON,
DIS-
SOLVED
(UG/L
AS B)
(01020) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | |------------------|---|---|--|---|---|---|---|--|---|---|---| | MAY
24
AUG | 4.6 | 67 | 448 | <1 | <30 | 66.8 | E6 | 31 | <1 | 4780 | <60 | | 31 | 4.5 | 92 | 547 | E1 | <30 | 85.2 | <7 | 33 | E1 | 4430 | <60 | | DATE | MIS
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TS, WATER | YEAR OCT | OBER 1999
DATE | TO SEPTE | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER -
ATURE
WATER
(DEG C)
(00010) | | OCT | | | | | | MA | | | | | | | 04
NOV | 1202 | 7.9 | 3110 | 6.5 | | JU | 09 | 0950 | 6.9 | 3120 | 8.2 | | 15
JAN | 1149 | 4.6 | 3100 | 2.0 | | | 06 | 1315 | 3.6 | 3230 | 19.1 | | | | | | | | | | | | | | ## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |------------------|------|---|---|---|---| | NOV
09
APR | 1130 | 6.5 | 5.2 | 15 | .26 | | 05
MAY | 1045 | 6.8 | 7.7 | 129 | 2.4 | | 24
AUG | 1255 | 5.3 | 14.2 | 14 | .21 | | 31 | 1100 | 3.9 | 16.0 | 10 | .11 | ## 09306290 WHITE RIVER BELOW BOISE CREEK NEAR RANGELY, CO LOCATION.--Lat $40^{\circ}10^{\circ}47^{\circ}$, long $108^{\circ}33^{\circ}53^{\circ}$, in $SW^{1}/_{4}SE^{1}/_{4}$ sec.36, T.3 N., R.100 W., Rio Blanco County, Hydrologic Unit 14050007, on left bank at bridge on County Road 73, 0.5 mi downstream from Boise Creek, and 16.4 mi east of Rangely. DRAINAGE AREA.--2,530 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1982 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,395 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 31,500 acres. | | | DISCHAF | RGE, CUBI | C FEET PE | | WATER YE
MEAN V | EAR OCTOBER
ALUES | R 1999 TO | SEPTEMBE | ER 2000 | | | |---|---|--|--|--|------------------------------|--|--|---|---------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 454 | 506 | 459 | e430 | e430 | e400 | 427 | 1260 | 3660 | 404 | 206 | 460 | | 2 | 466 | 499 | 460 | e502 | e440 | e400 | 420 | 1260 | 3170 | 423 | 183 | 428 | | 3 | 474 | 487 | 466 | e450 | e445 | e400 | 427 | 1460 | 2740 | 444 | 190 | 413 | | 4 | 469 | 491 | 454 | e395 | e455 | e410 | 410 | 1600 | 2420 | 405 | 191 | 403 | | 5 | 469 | 491 | 422 | e450 | e430 | e420 | 416 | 1770 | 2170 | 384 | 212 | 388 | | 6 | 469 | 489 | 414 | e460 | e420 | e420 | 456 | 1880 | 1950 | 357 | 259 | 378 | | 7 | 481 | 486 | 461 | e350 | e415 | e430 | 470 | 1830 | 1700 | 352 | 240 | 359 | | 8 | 499 | 485 | 474 | e420 | e415 | e440 | 476 | 1830 | 1510 | 355 | 195 | 370 | | 9 | 478 | 481 | 475 | e470 | e410 | e450 | 482 | 1670 | 1370 | 374 | 183 | 381 | | 10 | 464 | 468 | 417 | e470 | e430 | 410 | 518 | 1380 | 1290 | 415 | 179 | 382 | | 11 | 456 | 462 | e450 | e475 | e460 | 400 | 562 | 1390 | 1150 | 393 | 174 | 349 | | 12 | 448 | 458 | e450 | e500 | e490 | 400 | 588 | 1460 | 1000 | 363 | 181 | 310 | | 13 | 446 | 456 | e440 | e490 | e465 | 432 | 600 | 1240 | 918 | 351 | 211 | 293 | | 14 | 445 | 453 | e440 | e490 | e460 | 403 | 646 | 1060 | 857 | 355 | 193 | 278 | | 15 | 449 | 459 | e400 | e505 | e440 | 410 | 725 | 987 | 747 | 327 | 219 | 262 | | 16 | 459 | 457 | e370 | e455 | e420 | 433 | 706 | 933 | 660 | 327 | 224 | 244 | | 17 | 472 | 456 | e450 | e470 | 417 | 417 | 635 | 995 | 601 | 337 | 228 | 239 | | 18 | 462 | 480 | e480 | e505 | 433 | 416 | 673 | 1120 | 557 | 385 | 204 | 276 | | 19 | 497 | 485 | e470 | e525 | 423 | 408 | 764 | 932 | 576 | 377 | 385 | 302 | | 20 | 496 | 441 | e470 | e500 | e420
| 404 | 725 | 819 | 852 | 337 | 333 | 276 | | 21 | 496 | 473 | e470 | e480 | e440 | 429 | 674 | 872 | 765 | 324 | 296 | 280 | | 22 | 493 | 484 | e450 | e470 | e460 | 419 | 713 | 1020 | 603 | 316 | 265 | 579 | | 23 | 493 | 488 | e448 | e440 | e450 | 418 | 757 | 1250 | 543 | 297 | 263 | 615 | | 24 | 495 | 452 | e420 | e430 | e440 | 430 | 794 | 1670 | 510 | 290 | 273 | 514 | | 25 | 495 | 402 | e400 | e450 | e430 | 435 | 803 | 2170 | 513 | 278 | 289 | 516 | | 26
27
28
29
30
31 | 487
480
475
526
539
496 | 481
517
494
469
462 | e420
e425
e415
e422
e430
e425 | e470
e460
e375
e375
e370
e365 | e420
e410
e400
e400 | 425
427
445
490
456
453 | 768
853
1020
1280
1340 | 2500
3180
2780
2930
3380
3720 | 519
514
504
478
439 | 272
255
265
254
247
238 | 278
300
334
371
386
454 | 471
458
456
457
488 | | TOTAL | 14828 | 14212 | 13647 | 13997 | 12568 | 13130 | 20128 | 52348 | 35286 | 10501 | 7899 | 11625 | | MEAN | 478 | 474 | 440 | 452 | 433 | 424 | 671 | 1689 | 1176 | 339 | 255 | 388 | | MAX | 539 | 517 | 480 | 525 | 490 | 490 | 1340 | 3720 | 3660 | 444 | 454 | 615 | | MIN | 445 | 402 | 370 | 350 | 400 | 400 | 410 | 819 | 439 | 238 | 174 | 239 | | AC-FT | 29410 | 28190 | 27070 | 27760 | 24930 | 26040 | 39920 | 103800 | 69990 | 20830 | 15670 | 23060 | | | | | | | | | , BY WATER | | | | | | | MEAN | 555 | 526 | 452 | 412 | 410 | 537 | 792 | 1867 | 2125 | 939 | 528 | 477 | | MAX | 858 | 710 | 663 | 572 | 531 | 752 | 1512 | 3434 | 4572 | 2175 | 1117 | 944 | | (WY) | 1985 | 1986 | 1986 | 1986 | 1986 | 1986 | 1985 | 1984 | 1984 | 1995 | 1984 | 1997 | | MIN | 359 | 362 | 301 | 260 | 268 | 324 | 370 | 566 | 542 | 254 | 202 | 237 | | (WY) | 1993 | 1991 | 1991 | 1991 | 1991 | 1995 | 1995 | 1990 | 1994 | 1994 | 1990 | 1990 | | SUMMARY | Y STATIST | ICS | FOR | 1999 CALE | NDAR YEAR | I | FOR 2000 W | ATER YEAR | | WATER YE | ARS 1983 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERC | MEAN F ANNUAL M ANNUAL M F DAILY ME DAILY ME SEVEN-DA FANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 270147
740
3040
e370
387
535800
1520
517
422 | May 31
Dec 16
Jan 3 | | 220169
602
3720
174
188
4140
a6.96
436700
1080
454
286 | May 31
Aug 11
Aug 8
Jun 1
5 Jun 1 | | 803
1345
428
6170
109
147
6440
8.45
581500
1770
520
322 | Aug
Aug
Jun | 1984
1990
26 1984
6 1994
3 1994
7 1984
7 1984 | e Estimated. a Maximum gage height, 7.13 ft, Dec 17, backwater from ice. ## 09306290 WHITE RIVER BELOW BOISE CREEK, NEAR RANGELY, CO--Continued ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1982 to September 1993. October 1994 to current year. REMARKS.—The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | | | | ATURE
WATER
(DEG C) | | ICAL, | 100 ML) | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------|------------------|---|--|--|--|---|--|--|--|---| | NOV
17 | 1445 | 448 | 736 | 8.5 | 5.0 | | | <1 | | | | APR
05 | 1550 | 439 | 783 | 8.6 | 13.4 | 10.2 | 2.0 | 10 | | | | MAY
25 | 1435 | 2270 | 325 | 8.2 | 13.8 | 8.1 | 1.9 | 24 | 140 | 39.4 | | JUL
27 | 1220 | 260 | 746 | 8.4 | 22.7 | 9.3 | .5 | K610 | | | | AUG
30 | 1425 | 375 | 760 | 8.5 | 21.0 | 7.8 | | >67 | 300 | 73.9 | | DATE | AS | NE- GE
UM, NITR
S- DI
VED SOL'
/L (MG
MG) AS | VED SOL
/L (MG
N) AS | N, GE
NO3 AMMC
S- DI
VED SOL
/L (MC
N) AS | VED TOT
L/L (MC
N) AS | AM- GEN
A + MON
ANIC ORG
CAL DI
G/L (M
N) AS | I,AM-
IIA + PHO
ANIC PHOI
S. TO | FAL SOL
G/L (MG
P) AS | RUS ORT
SS- DIS
EVED SOLV
E/L (MG/
P) AS F | US
HO,
ED
L | | NOV
17 | _ | - <.0 | 10 .0 | 62 <.0 | 20 .1 | .2 . | 11 E.(| 005 <.0 | 006 <.0 | 10 | | APR
05 | _ | - <.0 | 10 <.0 | 50 <.0 | 20 .3 | 37 . | 23 .0 | 053 E.O | 005 <.0 | 10 | | MAY
25 | 11. | 0 <.0 | 10 .0 | 87 .0 | 24 1.1 | | 24 . | 163 .0 | 021 .0 | 30 | | JUL
27 | - | - <.0 | 01 <.0 | 05 .0 | 04 .3 | | 28 .0 | 036 E.O | 005 .0 | 02 | | AUG
30 | 29. | 0 <.0 | 10 <.0 | 50 <.0 | 20 .6 | 59 . | 26 .: | 198 .0 |)11 <.0 | 10 | | DATE | (UG/L
AS AL) | ERABLE
(UG/L
AS AL) | ARSENIC
TOTAL
(UG/L
AS AS) | ERABLE
(UG/L
AS BA) | RECOV-
ERABLE
(UG/L
AS BE) | BORON,
DIS-
SOLVED
(UG/L
AS B) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | RECOV-
ERABLE
(UG/L
AS CR) | RECOV-
ERABLE
(UG/L
AS CO) | RECOV-
ERABLE
(UG/L
AS CU) | | MAY
25 | <15 | 3520 | E2 | 107 | <5 | 21 | .1 | 4 | 2 | 9 | | AUG
30 | <15 | 2400 | 3 | 68.7 | <5 | 61 | .1 | 4 | 2 | 8 | | DATE | ERA
(UG
AS | AL TOT. OV- REC BLE ERA /L (UG FE) AS | AL TOT
OV- REC
BLE ERA
/L (UG
PB) AS | AL TOT
OV- REC
BLE ERA
/L (UG
LI) AS | SE, DEN
CAL TOT
COV- REC
BLE ERA
C/L (UC
MN) AS | CAL TO
COV- RE
ABLE ER
G/L (U
MO) AS | | LE- TI JM, TOI IS- REC LVED ERA G/L (UG SE) AS | CAL TOT
COV- REC
ABLE ERA
S/L (UG
SR) AS | PAL
POV-
BLE
F/L
ZN) | | MAY
25
AUG | 479 | 0 4 | 7. | 8 19 | 4 <1 | - | 8 <2 | .4 39 | 93 E2 | 4 | | 30 | 336 | 0 4 | 18. | 2 11 | .9 <1 | = | 5 <2 | .4 84 | 12 E2 | 0 | # 09306290 WHITE RIVER BELOW BOISE CREEK, NEAR RANGELY, CO--Continued # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | 111 | DCELLLANGOC | O PIEDO P | · MEHICONOCHEII | ID, WAIL | IL IDAK OCI | ODER 1999 | TO DEFIE | MDERC 2000 | | | |-----------|------|---|--|---|----------|-------------|------------|-----------|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | | | | | | JU | IN | | | | | | 04 | 1016 | 460 | 726 | 7.1 | | | 20 | 1600 | 873 | 639 | 18.2 | | NOV | | | | | | | 26 | 0930 | 528 | 665 | 17.0 | | 09 | 1343 | 460 | 739 | 6.8 | | JU | | | | | | | FEB | | | | | | | 06 | 1230 | 326 | 722 | 19.7 | | 16 | 1147 | 451 | 842 | 4.3 | | | 31 | 1015 | 249 | 770 | 21.0 | | APR
17 | 1100 | 614 | 595 | 11.0 | | AU | 03 | 1400 | 188 | 790 | 24.4 | | MAY | 1100 | 014 | 393 | 11.0 | | | 11 | 1017 | 179 | 800 | 20.6 | | 15 | 1500 | 963 | 419 | 15.3 | | | | 1017 | 1/2 | 000 | 20.0 | | 31 | 1000 | 3530 | 268 | 14.1 | SUSPENDED | SEDIMENT | DISCHARGE | , WATER | YEAR OCTOR | BER 1999 T | O SEPTEMB | ER 2000 | | | | | | | DIS- | | SEDI- | SED. | SED. | SED. | SED. | SED. | | | | | | CHARGE, | | MENT, | SUSP. | SUSP. | SUSP. | SUSP. | SUSP. | | | | | | INST. | SEDI- | DIS- | FALL | FALL | FALL | FALL | SIEVE | | | | | | CUBIC | , | CHARGE, | | DIAM. | DIAM. | DIAM. | DIAM. | | | | | | FEET | SUS- | SUS- | % FINER | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.062 MM
(70342) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.125 MM
(70343) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.250 MM
(70344) | SED.
SUSP.
FALL
DIAM.
% FINER
THAN
.500 MM
(70345) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |-----------|--------------|---|---|---|---|---|---|---|--| | NOV | | | | | | | | | | | 17 | 1445 | 448 | 7 | 8.7 | | | | | | | FEB | | | | | | | | | | | 16 | 1147 | 451 | 108 | 131 | | | | | | | APR | | | | | | | | | | | 05 | 1550 | 439 | 64 | 76 | | | | | 91 | | 17 | 1100 | 614 | 322 | 534 | | | | | 54 | | MAY | | | | | | | | | | | 15 | 1500 | 963 | 693 | 1800 | 98 | 100 | 100 | | | | 25 | 1435 | 2270 | 612 | 3750 | 62 | 84 | 95 | 100 | | | 31 | 1000 | 3530 | 410 | 3910 | 78 | 92 | 99 | 100 | | | JUN | 1.000 | 072 | E 4.4 | 1280 | | | | | 98 | | 20
26 | 1600
0930 |
873
528 | 544
14 | 20 | | | | | 98
95 | | ∠o
JUL | 0930 | 528 | 14 | 20 | | | | | 95 | | 06 | 1230 | 326 | 25 | 22 | | | | | 96 | | 27 | 1220 | 260 | 29 | 20 | | | | | | | 31 | 1015 | 249 | 25 | 17 | | | | | 97 | | AUG | 1013 | 243 | 23 | 1/ | | | | | 21 | | 03 | 1400 | 188 | 5 | 2.5 | | | | | | | 11 | 1017 | 179 | 15 | 7.4 | | | | | | | 30 | 1425 | 375 | 254 | 257 | | | | | | | | | | | | | | | | | ## 09306305 WHITE RIVER BELOW TAYLOR DRAW RESERVOIR, ABOVE RANGELY, CO ## WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}06'12"$, long $108^{\circ}42'56"$ in $N\overline{W}^{1}/_{4}N\overline{E}^{1}/_{4}$ sec.34, T.2 N., R.101 W., Rio Blanco County, Hydrologic Unit 14050007, on left bank 0.2 mi downstream from Taylor Draw Dam, and 4.7 mi east of Rangely. DRAINAGE AREA.--2,776 mi². PERIOD OF RECORD. -- October 1994 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | ** | AIBK QUAL | III DAIA, | WAILK II | JAK OCIO | לד אמט | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | OBFIBN | DER ZU | 00 | | | |-----------|------------------------|---------------------------|---|---|---|--|--|---|---|---|--|---|--| | | DATE | TIME | CUBIC
FEET
PER
SECOND | CIFIC
CON- | | TEMPER
ATURE
WATER
(DEG C | SC
) (M | OIS-
OLVED
NG/L) | (MG/L | , FO
FE
0.
UM
(CO
) 100 | CAL,
7
-MF
LS./
ML) | TOTAL
(MG/L
AS
CACO3) | (MG/L
AS CA) | | NOV | , | 1020 | 41.6 | 705 | 0.2 | 4.4 | 0 | | | < | 1 | | | | APR | | 1230 | 416 | 725 | 8.3 | 4.4 | | .7 | | | | | | | 05
MAY | | 1315 | 459 | 812 | 8.5 | 7.6 | 9 | .5 | 1.6 | < | 1 | | | | | i | 1225
1310 | 699
1760 | 424
418 | 8.3
8.5 | 14.7
16.8 | | 3.0 | .4
1.0 | 2 | | 180
180 | 48.3
48.7 | | | 7 | 1100 | 261 | 710 | 8.4 | 22.4 | 6 | 5.5 | .5 | 2 | 5 | | | | | | 1145 | 368 | 813 | 8.2 | 21.3 | 4 | .7 | | > | 2 | 300 | 69.5 | | | DATE | DI
SOL
(MG
AS | NE- GE
UM, NITR
S- DI | ITE NO2+
S- DI
VED SOL
/L (MG
N) AS | N, GI
NO3 AMM
S- DI
VED SOI
L (M
N) AS | EN, GE ONIA MO IS- OR LVED T G/L (N) A | N,AM-
NIA +
GANIC
OTAL
MG/L
S N) | GEN,
MONIA
ORGAL
DIS
(MG)
AS 1 | AM-
A + P:
NIC PH
. T
/L (!
N) A | HOS-
ORUS
OTAL
MG/L
S P) | PHORU
DIS
SOLV
(MG,
AS 1 | S- DIS
VED SOLV
/L (MG/
P) AS F | EUS
THO,
S-
TED
L | | | NOV
17 | _ | - <.0 | 10 .0 | 55 <(| 120 | .12 | E.1 | э О | .005 | <.00 | 06 <.0 | 110 | | | APR 05 | _ | | | | | . 22 | .1 | | .012 | <.00 | | | | | MAY
25 | | | | | | .23 | .2 | | | | | | | | 25 | 14.
14. | | | | | .23 | .2 | | .028
.027 | .00 | | | | | JUL
27 | - | - <.0 | 01 .0 | 07 .0 | 033 | .35 | .2 | 8 | .020 | E.00 | 05 .0 | 02 | | | AUG
30 | 30. | 9 <.0 | 10 <.0 | 50 .0 | 071 | .42 | .3 | 4 | .020 | .00 | 08 <.0 | 10 | | | DATE | SOLVED
(UG/L
AS AL) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | ARSENIC
TOTAL
(UG/L
AS AS) | ERABLE
(UG/L
AS BA) | RECOV
ERABL
(UG/L
AS BE | BC
- D
E SC
(U | OIS-
OLVED
OG/L
OB) | WATER
UNFLTR
TOTAL
(UG/L
AS CD | M MI
TO
D RE
ER
(U | TAL
COV-
ABLE
G/L
CR) | (UG/L
AS CO) | TOTAL
RECOV-
ERABLE
(UG/L
AS CU) | | 25 | 5 | <15
<15 | 178
156 | <3
<3 | 37.4
35.1 | <5
<5 | | !5
!7 | <.1
<.1 | < < | 1
1 | <2
<2 | E1
1 | | AUG
30 |) | <15 | 130 | E2 | 54.7 | <5 | 6 | 52 | <.1 | E | 1 | <2 | E1 | | | DATE | REC
ERA | AL TOT. OV- RECORDE ERA /L (UG FE) AS | AL TOTO OV- RECORD BLE ERA /L (UG PB) AS | IUM NES
CAL TOS
COV- REC
BLE ERS
LL (UC
LI) AS | SE, D
FAL T
COV- R
ABLE E
G/L (
MN) A | OLYB-
ENUM,
OTAL
ECOV-
RABLE
UG/L
S MO)
1062) | | AL N
OV-
BLE S
/L (
NI) A | ELE-
IUM,
DIS-
OLVED
UG/L
S SE)
1145) | STRO
TOTA
RECO
ERAI
(UG,
AS S | UM, ZIN AL TOTO OV- REC BLE ERA /L (UG SR) AS | CAL
COV-
BLE
J/L
ZN) | | | MAY
25
25
AUG | 26
21 | | E6.
E4. | | | 1 | E1
E1 | | 2.4 | 459
436 | | | | | 30 | 16 | 0 <1 | 15. | 3 30 |) | 3 | E1 | < | 2.4 | 836 | 6 <3 | 1 | # 09306305 WHITE RIVER BELOW TAYLOR DRAW RESERVOIR, ABOVE RANGELY, CO--Continued SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |------------------------------|----------------------|---|---|---| | MAY
25
25
AUG
30 | 1225
1310
1145 | 699
1760
368 | 10
8
7 | 18
37
6.8 | #### 09339900 EAST FORK SAN JUAN RIVER ABOVE SAND CREEK, NEAR PAGOSA SPRINGS, CO LOCATION.--Lat $37^{\circ}23^{\circ}23^{\circ}$, long $106^{\circ}50^{\circ}26^{\circ}$, in $NE^{1}/_{4}$ sec.4, T.36 N., R.1 E., Archuleta County, Hydrologic Unit 14080101, on right bank 0.3 mi upstream from Sand Creek, 4.0 mi upstream from West Fork San Juan River, and 13 mi northeast of Pagosa Springs. DRAINAGE AREA.--64.1 mi². PERIOD OF RECORD.--October 1956 to September 1996, October 1998 to current year. Prior to October 1959, published as San Juan River above Sand Creek, near Pagosa Springs. REVISED RECORDS. -- WSP 1713: 1957. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,940 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 500 acres of hay meadows upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD.--Greatest flood since at least 1885 occurred Oct. 5, 1911. | | | DISCHA | RGE, CUBI | C FEET PER | | VATER YE.
MEAN VA | | 1999 TO S | SEPTEMBE | R 2000 | | | |---|-------------------------------------|--------------------------------------|--|--|--------------------------------------|--|---|--|------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 54
51
47
45
42 | 18
17
16
16
16 | 12
12
11
e9.8
e9.2 | e10
e9.8
e9.6
e8.2
e8.8 | e9.4
e8.6
e9.0
e9.4
e9.4 | | e37
e39
e46
e56
e72 | 128
128
165
204
233 | 172
159
144
121
114 | 31
27
25
23
22 | 13
13
14
13 | 16
16
16
15
15 | | 6
7
8
9
10 | 41
47
42
38
35 | 16
16
16
15
15 | e9.2
e9.2
e9.8
e9.2
e10 | e9.8
e9.8
e9.8
e10
e9.4 | e9.4
e9.4
e10
e11
e11 | e14
e14
e13
e12
e11 | e80
e84
e88
e94
e100 | 233
221
234
198
198 | 106
97
90
97
83 | 20
21
20
19
18 | 12
12
12
11
12 | 14
14
16
18
15 | | 11
12
13
14
15 | 33
31
30
29
27 | 15
14
14
14
14 | e11
e8.6
e9.2
e9.4
e6.2 | e9.6
e9.6
e9.0
e8.6
e8.6 | e10
e9.6
e10
e10 | e12
e13
e14
e15
e16 | e90
e100
e110
e110
e100 | 222
196
164
145
141 | 74
67
61
55
50 | 17
18
24
24
30 | 13
11
24
39
24 | 14
13
13
12
12 | | 16
17
18
19
20 | 26
24
24
24
23 | 13
13
13
12
12 | e7.2
e9.0
e11
e10
e9.6 | e8.8
e9.2
e9.6
e9.6
e9.2 | e10
e11
e10
e9.6
e10 | e15
e16
e16
e15
e16 | e92
e100
e110
e94
e105 | 137
122
106
100
98 | 46
42
40
42
35 | 26
33
24
21
20 | 20
21
22
27
22 | 12
11
11
11
11 | | 21
22
23
24
25 | 22
22
21
21
20 | 12
e12
e11
e11
e10 | e9.4
e8.6
e8.4
e8.6
e9.2 | e9.0
e9.2
e8.2
e8.8
e9.4 | e11
e12
e11
e11
e10 | e15
e16
e17
e20
e25 |
e120
e120
e110
e130
e140 | 109
155
220
252
249 | 31
29
28
30
28 | 18
17
17
17
16 | 20
19
18
19 | 11
42
30
31
23 | | 26
27
28
29
30
31 | 20
20
19
20
17
18 | e12
e14
14
13
12 | e10
e9.6
e9.8
e10
e9.4
e9.4 | e9.6
e9.6
e9.0
e7.4
e8.4
e9.0 | e9.0
e10
e11
e12 | e30
e36
e40
e37
e36
e35 | e170
e180
e180
179
157 | 225
203
218
237
225
198 | 25
28
28
37
30 | 19
18
16
15
15 | 20
18
18
15
19 | 21
20
19
19
19 | | TOTAL
MEAN
MAX
MIN
AC-FT | 933
30.1
54
17
1850 | 416
13.9
18
10
825 | 295.0
9.52
12
6.2
585 | 284.6
9.18
10
7.4
565 | 293.8
10.1
12
8.6
583 | 581
18.7
40
11
1150 | 3193
106
180
37
6330 | 5664
183
252
98
11230 | 1989
66.3
172
25
3950 | 645
20.8
33
14
1280 | 549
17.7
39
11
1090 | 510
17.0
42
11
1010 | | STATIST | ICS OF MO | NTHLY ME | AN DATA F | OR WATER Y | EARS 1957 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 34.9
107
1987
8.39
1957 | 22.7
74.9
1987
8.31
1961 | 14.4
30.3
1987
4.68
1959 | 12.0
21.7
1973
5.00
1959 | 13.0
24.6
1995
5.66
1990 | 26.8
62.9
1986
8.86
1977 | 105
248
1985
29.2
1977 | 296
520
1984
70.4
1977 | 334
788
1957
60.2
1977 | 117
395
1957
20.8
2000 | 55.8
177
1999
15.6
1972 | 43.8
207
1970
10.6
1978 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1957 | - 2000 | | ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 39690.0
109
435
e6.2
8.7
78730
318
65
12 | May 23
Dec 15
Dec 11 | | 15353.4
41.9
252
e6.2
8.7
300
3.93
30450
124
17
9.4 | May 24
Dec 15
Dec 11
May 23
May 23 | | 89.8
155
31.5
1180
3.4
3.7
a2260
6.75
65030
272
29
10 | May 2'Dec 20Dec 1:Sep 1:Sep 1: | 1985
1977
7 1993
6 1958
3 1958
4 1970
4 1970 | e Estimated. a From rating curve extended above 460 ft³/s, on basis of slope-area measurement at gage height, 6.13 ft. #### 09342500 SAN JUAN RIVER AT PAGOSA SPRINGS, CO LOCATION.--Lat $37^{\circ}15^{\circ}58$ ", long $107^{\circ}00^{\circ}37$ ", in $NE^{1}/_{4}SW^{1}/_{4}$ sec.13, T.35 N., R.2 W., Archuleta County, Hydrologic Unit 14080101, on right bank at former bridge site in Pagosa Springs, 0.2 mi upstream from McCabe Creek, 0.6 mi downstream from bridge on U.S. Highway 160, and 2.0 mi upstream from Mill Creek. DRAINAGE AREA.--298 mi² PERIOD OF RECORD.--October 1910 to December 1914, May 1935 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1313: 1914(M). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,052.04 ft above sea level. Jan. 29 to Mar. 6, 1911, nonrecording gage at site 0.5 mi upstream, at different datum. Mar. 7 to Oct. 4, 1911, nonrecording gage at present site, at different datum. Nov. 23, 1911 to Nov. 14, 1914, nonrecording gage at site 300 ft upstream, at different datum. REMARKS.--No estimated daily discharges. Record fair. Diversions for irrigation of large areas upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1885, that of Oct. 5, 1911. Flood of June 29, 1927, reached a stage of 13.5 ft, discharge about $16,000 \, \mathrm{ft}^3/\mathrm{s}$, from information by local residents. | | | DISCHAR | GE, CUBIC | C REEL PER | DAILY | MEAN VA | | 1999 10 | SEPTEMBE | SR 2000 | | | |----------|------------------------|-----------|-----------|------------|------------|------------|----------------|-------------|------------|------------------|----------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 239 | 94 | 75 | 51 | 48 | 57 | 166 | 676 | 632 | 71 | 25 | 42 | | 2 | 223 | 90 | 76 | 49 | 42 | 57 | 184 | 664 | 568 | 76 | 25 | 39 | | 3 | 208 | 87 | 72 | 49 | 46 | 57 | 199 | 838 | 522 | 62 | 25 | 39 | | 4 | 194 | 87 | 64 | 40 | 48 | 64 | 237 | 1010 | 422 | 56 | 27 | 35 | | 5 | 183 | 88 | 53 | 45 | 48 | 76 | 323 | 1170 | 383 | 54 | 24 | 34 | | 6 | 184 | 87 | 49 | 50 | 48 | 69 | 381 | 1150 | 369 | 58 | 22 | 34 | | 7 | 204 | 86 | 47 | 49 | 48 | 68 | 392 | 1050 | 322 | 39 | 22 | 34 | | 8
9 | 191
177 | 86
87 | 52
47 | 50
51 | 50
53 | 64
62 | 428
434 | 1120
913 | 284
309 | 44
41 | 23
25 | 34
48 | | 10 | 169 | 87
81 | 4 /
51 | 48 | 53
54 | 62
60 | 504 | 913
890 | 309
269 | 41
37 | 25
26 | 48
39 | | 10 | | | | | | | | | 209 | | | | | 11 | 159 | 80 | 58 | 49 | 52 | 55 | 473 | 994 | 231 | 37 | 26 | 33 | | 12 | 154 | 80 | 46 | 48 | 48 | 65 | 421 | 890 | 203 | 34 | 27 | 30 | | 13
14 | 142 | 78 | 46
50 | 47
44 | 51 | 67
74 | 500 | 751 | 180 | 43
56 | 35 | 26 | | 15 | 136
131 | 76
76 | 31 | 44 | 50
51 | 80 | 560
529 | 655
649 | 159
141 | 56
55 | 58
63 | 25
23 | | 15 | 131 | 76 | 31 | 43 | 21 | 80 | 529 | 049 | 141 | 55 | 0.3 | 23 | | 16 | 128 | 72 | 36 | 45 | 52 | 76 | 441 | 665 | 128 | 68 | 63 | 22 | | 17 | 118 | 73 | 50 | 47 | 53 | 78 | 463 | 590 | 115 | 60 | 49 | 20 | | 18 | 115 | 76 | 55 | 48 | 51 | 80 | 550 | 482 | 108 | 51 | 50 | 19 | | 19
20 | 117
111 | 64
70 | 54
49 | 49
48 | 47
51 | 72
80 | 502
441 | 455
452 | 120
108 | 40
35 | 96
75 | 25
26 | | 20 | 111 | | | 48 | | | | | | | | ∠0 | | 21 | 110 | 71 | 48 | 46 | 55 | 77 | 538 | 500 | 84 | 33 | 71 | 24 | | 22 | 106 | 69 | 44 | 46 | 58 | 76 | 580 | 694 | 79 | 29 | 56 | 47 | | 23 | 102 | 57 | 42 | 40 | 54 | 83 | 515 | 949 | 78 | 29 | 48 | 56 | | 24 | 101 | 58 | 45 | 43 | 56 | 93 | 571 | 1040 | 77 | 30 | 44 | 77 | | 25 | 99 | 50 | 48 | 48 | 52 | 113 | 652 | 985 | 78 | 26 | 52 | 59 | | 26 | 98 | 62 | 51 | 49 | 44 | 138 | 723 | 911 | 65 | 24 | 48 | 53 | | 27 | 97 | 74 | 48 | 49 | 55 | 158 | 865 | 783 | 71 | 28 | 45 | 48 | | 28 | 100 | 75 | 49 | 47 | 63 | 197 | 943 | 839 | 72 | 26 | 42 | 46 | | 29 | 100 | 75 | 51 | 35 | 57 | 185 | 902 | 895 | 79 | 28 | 40 | 44 | | 30
31 | 89
95 | 75
 | 48
47 | 42
46 | | 183
175 | 783 | 850
739 | 75
 | 29
30 | 45
51 | 49 | | 31 | 93 | | 7/ | 40 | | 1/3 | | | | 30 | 31 | | | TOTAL | 4380 | 2284 | 1582 | 1441 | 1485 | 2839 | 15200 | 25249 | 6331 | 1329 | 1328 | 1130 | | MEAN | 141 | 76.1 | 51.0 | 46.5 | 51.2 | 91.6 | 507 | 814 | 211 | 42.9 | 42.8 | 37.7 | | MAX | 239 | 94 | 76 | 51 | 63 | 197 | 943 | 1170 | 632 | 76 | 96 | 77 | | MIN | 89 | 50 | 31 | 35 | 42 | 55 | 166 | 452 | 65 | 24 | 22 | 19 | | AC-FT | 8690 | 4530 | 3140 | 2860 | 2950 | 5630 | 30150 | 50080 | 12560 | 2640 | 2630 | 2240 | | STATIST | ICS OF MC | NTHLY MEA | N DATA FO | OR WATER | YEARS 1936 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 148 | 95.4 | 64.9 | 55.8 | 62.6 | 150 | 561 | 1284 | 1337 | 399 | 185 | 154 | | MAX | 937 | 399 | 160 | 107 | 142 | 442 | 1210 | 2665 | 3066 | 1515 | 740 | 859 | | (WY) | 1942 | 1987 | 1987 | 1986 | 1995 | 1986 | 1985 | 1941 | 1957 | 1941 | 1999 | 1970 | | MIN | 23.3 | 33.6 | 27.5 | 26.8 | 29.2 | 50.3 | 141 | 253 | 163 | 42.9 | 28.9 | 18.8 | | (WY) | 1957 | 1956 | 1990 | 1990 | 1964 | 1964 | 1977 | 1977 | 1977 | 2000 | 1972 | 1956 | | SUMMARY | STATISTI | CS. | FOR 3 | 1999 CALE | NDAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1936 | - 2000 | | ANNUAL ' | TOTAL | | | 161101 | | | 64578 | | | | | | | ANNUAL | | | | 441 | | | 176 | | | 375 | | | | | ANNUAL M | IEAN | | | | | | | | 730 | | 1941 | | | ANNUAL ME | | | | | | | | | 115 | | 1977 | | | DAILY ME | | | 1820 | May 24 | | 1170 | May 5 | | 4640 | | .3 1941 | | | DAILY MEA | | | 31 | Dec 15 | | 19 | Sep 18 | | 9.7 | | 5 1956 | | | | MINIMUM | | 45 | Dec 12 | | 23 | Sep 15 | | 11 | | 4 1956 | | | ANEOUS PE | | | | | | 1440 | May 5 | | 25000 | | 5 1911 | | | ANEOUS PE
RUNOFF (A | | | 319500 | | | 3.82
128100 | May 5 | | a17.80
271800 | UCT | 5 1911 | | | ENT EXCEE | | | 1280 | | | 569 | | | 1160 | | | | | ENT EXCEE | | | 289 | | | 64 | | | 110 | | | | | ENT EXCEE | | | 59 | | | 34 | | | 44 | | | | | | | | | | | | | | | | | a From floodmarks. #### 09346400 SAN JUAN RIVER NEAR CARRACAS, CO LOCATION.--Lat $37^{\circ}00'49"$, long $107^{\circ}18'42"$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec.17, T.32 N., R.4 W., Archuleta County, Hydrologic Unit 14080101, on right bank five feet above the maximum water surface of Navajo Reservoir, 3 mi northwest of Carracas, 7.2 mi upstream from DRAINAGE AREA. -- 1,230 mi², approximately. PERIOD OF RECORD.--Streamflow records, October 1961 to current year. Water-quality data available, July 1969 to August 1973. Sediment data available, August 1973. Statistical summary computed for 1971 to current year. GAGE.--Water-stage recorder with satellite telemetry and crest-stage gage. Elevation of gage is 6,090 ft above sea level, from river-profile map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 11,000 acres upstream from station. Highwater diversions upstream from station into Rio Grande basin through Azotea tunnel (station 08284160) began in March 1971. Several measurements of specific conductance and
water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD. -- Major floods occurred Sept. 5 or 6, 1909; Oct. 5, 1911; June 29, 1927. | | | DISCHAN | GE, CUBI | C FEET FE | | MEAN V | ALUES | 1999 10 | SEFIEMDE | ak 2000 | | | |----------|--------------------------|---------------------|--------------|--------------|--------------|-----------------------------|---------------------|--------------------------|-------------|----------------------|--------------|------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 321 | 148 | 130 | e140 | e140 | 154 | 588 | 884 | 725 | 164 | 59 | 114 | | 2 | 300 | 145 | 129 | e140 | e130 | 152 | 602 | 818 | 620 | 154 | 51 | 96 | | 3 | 290 | 140 | 121 | e130 | e130 | 145 | 580 | 956 | 587 | 144 | 47 | 86 | | 4 | 277 | 138 | 116 | e130 | e140 | 145 | 515 | 1130 | 512 | 124 | 49 | 84 | | 5 | 261 | 137 | 125 | e120 | e150 | 180 | 519 | 1310 | 457 | 111 | 46 | 78 | | 6
7 | 250
257 | 138 | 108 | e130 | e150 | 198 | 596
600 | 1350 | 439
403 | 102
97 | 43
40 | 72
69 | | 8 | 257
268 | 137
135 | e120
e120 | e140
e140 | e150
158 | 182
181 | 639 | 1210
1250 | 403
361 | 97
91 | 40 | 70 | | 9 | 246 | 135 | e130 | e140 | 156 | 154 | 620 | 1130 | 354 | 95 | 43 | 99 | | 10 | 230 | 133 | e130 | e140 | 163 | 142 | 695 | 991 | 374 | 84 | 44 | 119 | | 11 | 219 | 128 | e140 | e140 | 159 | 128 | 673 | 1090 | 321 | 75 | 46 | 87 | | 12 | 212 | 127 | e130 | e140 | 144 | 127 | 592 | 1040 | 288 | 76 | 48 | 63 | | 13 | 208 | 126 | e120 | e140 | 144 | 146 | 615 | 889 | 257 | 77 | 55 | 63 | | 14 | 203 | 123 | e120 | e140 | 139 | 155 | /11 | /50 | 242 | 100 | 105 | 61 | | 15 | 192 | 122 | e130 | e130 | 144 | 174 | 711 | 729 | 221 | 159 | 121 | 59 | | 16 | 194 | 120 | e130 | e130 | 156 | 177 | 616 | 736 | 205 | 152 | 104 | 53 | | 17 | 183 | 118 | e130 | e130 | 159 | 172 | 581 | 669 | 187 | 147 | 106 | 51 | | 18
19 | 174
179 | 121
115 | e140
e140 | e140
e140 | 148
142 | 176
166 | 663
657 | 593
548 | 175
178 | 151
118 | 102
156 | 48
48 | | 20 | 176 | 98 | e140 | e140 | 134 | 174 | 558 | 538 | 190 | 87 | 176 | 53 | | 21 | 175 | 111 | e130 | e140 | 140 | 225 | 605 | 553 | 164 | 70 | 139 | 56 | | 22 | 172 | 122 | e120 | e140 | 157 | 242 | 685 | 673 | 149 | 65 | 130 | 55 | | 23 | 164 | 126 | e120 | e130 | 150 | 318 | 626 | 959 | 144 | 59 | 144 | 80 | | 24 | 160 | 110 | e120 | e130 | 153 | 276 | 633 | 1170 | 140 | 58 | 113 | 100 | | 25 | 157 | 112 | e120 | e130 | 147 | 281 | 731 | 1070 | 141 | 61 | 129 | 119 | | 26 | 155 | 100 | e120 | e140 | 141 | 288 | 789 | 1060 | 137 | 58 | 119 | 100 | | 27 | 156 | 122 | e130 | e140 | 127 | 307 | 935 | 879
896
956
967 | 143 | 55 | 108 | 92 | | 28
29 | 155 | 142 | e130 | e140 | 154
159 | 344 | 1060
1050 | 896 | 166
157 | 70
65 | 97
96 | 86
82 | | 30 | 155
154 | 134
130 | | e130
e110 | 159 | 350
371 | 926 | 950 | 177 | 65 | 101 | 72 | | 31 | 141 | | e140 | e120 | | 479 | | 849 | | 72 | 111 | | | TOTAL | 6384 | 3793 | 3959 | 4170 | 4264 | 6709 | 20371 | 28649 | 8614 | 3006 | 2768 | 2315 | | MEAN | 206 | 126 | 128 | 135 | 147 | 216 | 679 | 924 | 287 | 97.0 | 89.3 | 77.2 | | MAX | 321 | 148 | 140 | 140 | 163 | 479
127 | 1060 | 1350 | 725 | 164 | 176 | 119 | | MIN | 141 | 98 | 108 | 110 | 127 | 127 | 515 | 538 | 137 | 55 | 40 | 48 | | AC-FT | 12660 | 7520 | 7850 | 8270 | 8460 | 13310 | 40410 | 56830 | 17090 | 5960 | 5490 | 4590 | | STATIST | rics of MC | ONTHLY MEA | N DATA F | OR WATER | | - 2000 | , BY WATER | YEAR (WY) | | | | | | MEAN | 313 | 250 | 178 | 161 | 198 | 603 | 1074 | 1735 | 1801 | 656 | 346 | 298 | | MAX | 932 | 983 | 406 | 296 | 481 | 1369 | 2524 | 3195 | 4039 | 2427 | 1004 | 880 | | (WY) | 1987 | 1987 | 1987 | 1987 | 1986 | 1995 | 1979 | 1973 | 1985 | 1995 | 1999 | 1982 | | MIN | 106
1979 | 1987
104
1990 | 72.9 | 74.7
1990 | 85.0
1990 | 1369
1995
134
1977 | 233
1977 | 395
1977 | 251
1977 | 97.0
2000 | 69.0
1972 | 61.2 | | (WY) | | | | | TAAO | 19// | 1977
FOR 2000 WA | | | WATER YEA | | 1978 | | ANNUAL | | LCD | 1010 | 229687 | WDIEC ILIEC | - | 95002 | IDIC IDINC | | WIIIIC III | 110 17/1 | 2000 | | ANNUAL | | | | 629 | | | 260 | | | a635 | | | | | r annual n | /IEAN | | | | | | | | b1191 | | 1985 | | LOWEST | ANNUAL ME | EAN | | | | | | | | b200 | | 1977 | | | r daily me | | | 2230 | Jun 1 | | | May 6 | | b6700 | Mar 1 | .2 1985 | | | DAILY MEA | | | 98
111 | Nov 20 | | 40 | Aug 7 | | C28 | Sep 1 | .4 19/4 | | | SEVEN-DAY | | | TTT | Nov 20 | | 43 | Aug 5 | | 39 | | 4 1978 | | | FANEOUS PE
FANEOUS PE | | | | | | 1560 | May 6 | | 39
d8590
f8.10 | | 6 1995
6 1995 | | ANNITAT. | RINOFF /I | AC-FT) | | 455600 | | | 188400 | riay 0 | | 460200 | rial | 0 1993 | | 10 PERC | CENT EXCE | EDS | | 1600 | | | 677 | | | 1700 | | | | | CENT EXCER | | | 420 | | | 140 | | | 287 | | | | 90 PERC | CENT EXCE | EDS | | 130 | | | 71 | | | 113 | | | | | | | | | | | | | | | | | Estimated. Average discharge for 9 years (water years 1962-70), $632~{\rm ft}^3/{\rm s}$; $457900~{\rm acre-ft/yr}$, prior to completion of Azotea tunnel. b Also the highest (or lowest, as is appropriate) for the period of record. c Also minimum daily discharge for period of record. d Maximum discharge for period of record, 9730 ft³/s, Sep 6, 1970, gage height, 8.34 ft, from rating curve extended above 6000 ft³/s, on basis of slope-area measurement of peak flow. f Maximum gage height for statistical period, and period of record, 9.63 ft, Jan 4, 1994, backwater from ice. #### 09349800 PIEDRA RIVER NEAR ARBOLES, CO LOCATION.--Lat $37^{\circ}05'18"$, long $107^{\circ}23'50"$, in $NE^{1}/_{4}SW^{1}/_{4}$ sec.21, T.33 N., R.5 W., Archuleta County, Hydrologic Unit 14080102, on left bank 2.5 mi upstream from Navajo Reservoir, 3.0 mi downstream from Ignacio Creek, and 4.6 mi northeast of Arboles Post DRAINAGE AREA.--629 mi². PERIOD OF RECORD.--August 1962 to current year. Gage 09350000 (Piedra River at Arboles) operated 1895-99 and 1910-27 at site 7.5 mi downstream at elevation 6,000 ft, published in WSP 1313. Low-flow records probably not equivalent. Water-quality data available, July 1969 to August 1973, December 1988 to May 1989. GAGE.--Water-stage recorder with satellite telemetry, and crest-stage gage. Datum of gage is 6,147.52 ft above sea level, Colorado State Highway Department benchmark. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 2,800 acres upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD.--Major floods occurred Sept. 5 or 6, 1909, and Oct. 5, 1911. | | | DISCHAR | GE, CUBI | C FEET PER | | MEAN VA | ALUES | (1999 10 | SEFIENDI | SK 2000 | | | |-------------|------------|------------|-------------|-------------|-------------|------------|--------------|----------------|--------------|----------------|-------------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 263 | 112 | 90 | e46 | 65 | 74 | 331 | 964 | 582 | 81 | 43 | 91 | | 2 | 250 | 110 | 92 | e48 | 61 | 76 | 433 | 935 | 518 | 79 | 39 | 80 | | 3 | 239 | 107 | 88 | e50 | 61 | 82 | 467 | 1120 | 465 | 75 | 39 | 75 | | 4 | 229 | 106 | 82 | e50 | 62 | 88 | 573 | 1250 | 407 | 70 | 41 | 69 | | 5 | 221 | 106 | e60 | e50 | 62 | 108 | 728 | 1370 | 364 | 64 | 44 | 64 | | 6 | 193 | 104 | e58 | e50 | 62 | 98 | 774 | 1350 | 341 | 59 | 41 | 64 | | 7 | 185 | 103 | e56 | e50 | 60 | 95 | 751 | 1190 | 300 | 55 | 39 | 64 | | 8
9 | 179 | 103 | e54 | e50 | 60
63 | 91 | 817
759 | 1240 | 276 | 58 | 36 | 65 | | 10 | 169
164 | 103
102 | e54
e52 | e50
e50 | 63
67 | 88
83 | 846 | 1090
966 | 267
277 | 62
55 | 31
31 | 69
72 | | 10 | 104 | 102 | e52 | 630 | 07 | 0.3 | 040 | 900 | 211 | | 31 | 12 | | 11 | 158 | 98 | e52 | e49 | 70 | 75 | 796 | 1060 | 230 | 53 | 31 | 61 | | 12 | 150 | 97 | e52 | e49 | 70 | 80 | 692 | 984 | 199 | 49 | 32 | 56 | | 13 | 143 | 96
94 | e56 | e49 | 66 | 84
92 | 778 | 812 | 175 | 49
65 | 39 | 53
49 | | 14
15 | 142
142 | 94
93 | e56
62 | e50
e50 | 65
64 | 92
122 | 884
868 | 692
646 | 161
150 | 115 | 43
47 | 49
47 | | 13 | 142 | 93 | 02 | 630 | 04 | 122 | 000 | 040 | 150 | 115 | 4/ | 4/ | | 16 | 140 | 92 | e58 | e52 | 65 | 121 | 773 | 649 | 135 | 90 | 58 | 46 | | 17 | 139 | 91 | e58 | e52 | 68 | 129 | 750 | 629 | 121 | 99 | 65 | 45 | | 18
19 | 136
136 | 92
87 | e56
e54 | e54
e56 | 68
63 | 147
121 | 855
819 | 541
488 | 114
118 | 93
75 | 78
143 | 42
45 | | 20 | 134 | 77 | e54 | 63 | 62 | 131 | 694 | 466 | 120 | 65 | 129 | 47 | | 20 | 134 | | 632 | 03 | 02 | 131 | | | | | | -1/ | | 21 | 130 | 85 | e52 | 63 | 65 | 137 | 794 | 499 | 107 | 59 | 105 | 44 | | 22 | 127 | 89 | e55 | 62 | 75 | 138 | 859 | 604 | 99 | 54 | 103 | 45 | | 23 | 124 | 81 | e50 | 60
59 | 81
81 | 169
197 | 780 | 791 | 98
96 | 51 | 102
85 | 53
70 | | 24
25 | 123
122 | 61 | e48
e50 | 61 | 81
77 | 273 | 848
943 | 969
882 | 96
92 | 47 | 90 | 70
74 | | 25 | 122 | e60 | e50 | 01 | 11 | 2/3 | 943 | 002 | 92 | 46 | 90 | /4 | | 26 | 120 | 66 | e50 | 67 | 66 | 407 | 1020 | 825 | 85 | 52 | 108 | 69 | | 27 | 118 | 80 | e50 | 68 | 66 | 387 | 1220 | 678 | 85 | 52 | 103 | 53 | | 28 | 117 | 89 | e50 | 65 | 74 | 415 | 1360 | 692 | 81
79 | 54 | 87
79 | 53 | | 29
30 | 116
115 | 90
88 | e52
e50 | 59
55 | 73
 |
316
317 | 1300
1140 | 730
750 | 79
84 | 50
48 | 79
76 | 51
54 | | 31 | 109 | | e50 | 66 | | 347 | 1140 | 669 | | 48 | 97 | | | TOTAL | 4833 | 2762 | 1799 | 1703 | 1942 | 5088 | 24652 | 26531 | 6226 | 1972 | 2084 | 1770 | | MEAN | 156 | 92.1 | 58.0 | 54.9 | 67.0 | 164 | 822 | 856 | 208 | 63.6 | 67.2 | 59.0 | | MAX | 263 | 112 | 92 | 68 | 81 | 415 | 1360 | 1370 | 582 | 115 | 143 | 91 | | MIN | 109 | 60 | 48 | 46 | 60 | 74 | 331 | 466 | 79 | 46 | 31 | 42 | | AC-FT | 9590 | 5480 | 3570 | 3380 | 3850 | 10090 | 48900 | 52620 | 12350 | 3910 | 4130 | 3510 | | STATIST | CICS OF MO | ONTHLY MEA | N DATA FO | OR WATER Y | ZEARS 1963 | - 2000, | , BY WATER | YEAR (WY |) | | | | | | 170 | 120 | 01 0 | 76.1 | 04.2 | 207 | 070 | 1000 | 1040 | 240 | 021 | 010 | | MEAN
MAX | 179
618 | 130
517 | 91.9
257 | 76.1
153 | 94.3
244 | 327
895 | 878
2126 | 1299
2926 | 1049
2526 | 349
1133 | 231
1014 | 219
943 | | (WY) | 1973 | 1987 | 1987 | 1987 | 1986 | 1995 | 1979 | 1979 | 1979 | 1975 | 1999 | 1970 | | MIN | 51.2 | 48.4 | 31.2 | 31.2 | 34.7 | 47.4 | 126 | 168 | 121 | 63.6 | 37.0 | 35.3 | | (WY) | 1979 | 1968 | 1990 | 1990 | 1964 | 1964 | 1977 | 1977 | 1977 | 2000 | 1972 | 1978 | | SUMMARY | STATIST | ICS | FOR I | 1999 CALEN | NDAR YEAR | F | FOR 2000 W | ATER YEAR | | WATER YEA | RS 1963 | - 2000 | | ANNUAL | TOTAL | | | 173887 | | | 81362 | | | | | | | ANNUAL | MEAN | | | 476 | | | 222 | | | 411 | | | | HIGHEST | ANNUAL N | /IEAN | | | | | | | | 822 | | 1979 | | | ANNUAL ME | | | | | | | | | 94.0 | | 1977 | | | DAILY ME | | | 2050 | Aug 6 | | 1370 | May 5 | | 5360 | | 6 1970 | | | DAILY MEA | | | e48 | Dec 24 | | 31 | Aug 9 | | 19 | | 29 1989 | | | SEVEN-DAY | | | 50 | Dec 23 | | 34
1510 | Aug 7
May 5 | | 26
a8370 | | L1 1989
6 1970 | | | CANEOUS PE | | | | | | 3.32 | | | a8370
b6.38 | | 6 1970 | | | RUNOFF (A | | | 344900 | | | 161400 | . nay 5 | | 297700 | Seb | J 17/0 | | | CENT EXCE | | | 1170 | | | 773 | | | 1200 | | | | | CENT EXCE | | | 319 | | | 85 | | | 152 | | | | 90 PERC | CENT EXCE | EDS | | 71 | | | 50 | | | 55 | | | b Gage height, 6.38 ft, recorded, 7.55 ft, from floodmarks. #### 09352900 VALLECITO CREEK NEAR BAYFIELD, CO (Hydrologic Benchmark Station) LOCATION.--Lat $37^{\circ}28'39"$, long $107^{\circ}32'35"$, in $NE^{1}/_{4}NN^{1}/_{4}$ sec.16, T.37 N., R.6 W., La Plata County, Hydrologic Unit 14080101, on right bank 60 ft upstream from Fall Creek, 0.8 mi downstream from Bear Creek, 6.7 mi north of Vallecito Dam, and 18 mi north of Bayfield. DRAINAGE AREA. -- 72.5 mi², (revised). PERIOD OF RECORD. --October 1962 to current year. Water-quality data available, October 1963 to September 1968, and October 1969 to September 1996. GAGE.--Water-stage recorder with satellite telemetry and concrete control. Datum of gage is 7,906.08 ft above sea level. REMARKS.--Records fair except for estimated daily discharges, which are poor. No diversion upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data for Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD. -- Major floods occurred in October 1911 and June 1927. | | | DISCHA | RGE, CUBI | IC FEEL PER | | MEAN VA | | 1999 10 | PEPIEMBE | SR 2000 | | | |---|-------------------------------------|---|--|--|--------------------------------------|--------------------------------------|---|--|-----------------------------------|---|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 96
90
84
77 | 28
26
25
25 | 18
18
16
e15 | e14
e13
e13
e11 | e13
e12
e13
e13 | 14
14
15
16 | 31
29
30
36 | 229
287
419
518 | 494
440
394
360 | 87
86
83
75 | 29
29
29
29 | 74
77
74
66 | | 5 | 74 | 24 | e14 | e13 | 13 | 18 | 53 | 566 | 347 | 68 | 27 | 69 | | 6
7
8
9
10 | 73
72
69
65
62 | 24
24
24
23
22 | e13
e13
e14
e14
e15 | e14
e14
e14
e13 | 13
13
13
14
13 | 17
17
e16
e15
e14 | 66
77
86
94
108 | 511
458
461
344
347 | 324
332
307
364
266 | 65
61
59
59
55 | 26
25
24
23
23 | 96
96
90
88
75 | | 11
12
13
14
15 | 60
58
55
53
51 | 22
21
21
e19
e19 | e16
e13
e13
e14
e9.0 | e13
e13
e13
e12
e12 | 13
13
13
13
13 | e14
e16
e17
18
19 | 102
95
111
123
113 | 408
352
281
242
235 | 228
218
211
205
200 | 53
53
54
54
54 | 22
23
25
26
31 | 67
60
55
51
47 | | 16
17
18
19
20 | 47
43
43
42
41 | e19
e19
e18
17
e18 | e11
e14
e15
e14
e14 | e13
14
12
12
12 | 14
14
e13
e13
e14 | 18
18
17
17
19 | 101
106
125
115
109 | 282
278
215
196
215 | 186
160
144
146
135 | 53
58
54
48
44 | 32
31
55
90
68 | 43
40
45
42
38 | | 21
22
23
24
25 | 39
37
36
34
33 | 18
19
16
e15
e14 | e13
e12
e12
e13
e14 | 13
13
e11
e13
e13 | 14
14
14
e14
e12 | 18
20
19
21
24 | 126
130
128
160
191 | 319
529
847
929
691 | 129
119
137
149
132 | 40
37
35
33
35 | 58
61
58
54
55 | 37
124
99
89
81 | | 26
27
28
29
30
31 | 33
32
31
31
27
29 | e18
e19
20
19
18 | e14
e13
e14
e13
e13
e13 | e13
e13
e13
e10
e12
e13 | e13
e14
15
15 | 27
33
40
35
34
33 | 233
312
353
316
250 | 451
432
612
722
671
566 | 120
115
108
99
92 | 36
40
34
32
31
30 | 59
59
74
66
95
85 | 73
66
62
60
57 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1617
52.2
96
27
3210 | 614
20.5
28
14
1220 | 427.0
13.8
18
9.0
847 | 396
12.8
14
10
785 | 388
13.4
15
12
770 | 633
20.4
40
14
1260 | 3909
130
353
29
7750 | 13613
439
929
196
27000 | 6661
222
494
92
13210 | 1606
51.8
87
30
3190 | 1391
44.9
95
22
2760 | 2041
68.0
124
37
4050 | | | | | | FOR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 79.7
280
1973
22.3
1979 | 44.8
104
1987
16.7
1976 | 27.7
52.0
1986
9.89
1977 | 21.1
42.5
1986
9.51
1977 | 20.2
44.5
1986
8.42
1977 | 34.9
80.8
1989
9.11
1977 | 112
226
1989
40.3
1964 | 400
629
1993
138
1977 | 525
927
1980
152
1977 | 248
596
1995
51.8
2000 | 139
442
1999
44.1
1996 | 117
455
1970
25.1
1978 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | ARS 1963 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
MINIMUM
AK FLOW
AK STAGE
C-FT) | | 67995.0
186
845
e9.0
13
134900
537
76
18 | Aug 11
Dec 15
Dec 12 | | 33296.0
91.0
929
e9.0
12
1660
b2.83
66040
279
34
13 | May 24
Dec 15
Jan 18
May 23
May 23 | | 148
226
63.3
3020
6.7
7.4
47050
c6.51
107200
418
62
18 | Dec 2
Dec 2
Sep | 1973
1977
6 1970
28 1976
23 1976
6 1970
6 1970 | e Estimated. a From rating curve extended above 1400 ft³/s, on basis of slope-area measurement of peak flow. Maximum gage height, 3.69 ft, Jan 24, backwater from ice. c Maximum gage height, 6.51 ft, from water-stage recorder, 6.76 ft, from floodmarks. #### 09353000 VALLECITO RESERVOIR NEAR BAYFIELD, CO LOCATION.--Lat $37^{\circ}23^{\circ}00^{\circ}$, long $107^{\circ}34^{\circ}30^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.18, T.36 N., R.6 W., La Plata County, Hydrologic Unit 14080101, in gatehouse above outlet gates at Vallecito Dam on Los Pinos (Pine) River, 300 ft left of spillway, 0.4 mi upstream from Jack Creek, and 11 mi northeast of Bayfield. DRAINAGE AREA. -- 255 mi², (revised). PERIOD OF RECORD.--April 1941 to current year, monthly acre feet only 1941-1960, published in WSP 1313 and 1733. REVISED RECORDS. -- WSP 959: 1941. WSP 1513: 1956. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 7,580 ft above sea level (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by earth and rockfill dam; dam completed in March 1941. Capacity of reservoir, 125,640 acre-ft between elevations 7,580 ft, sill of outlet gate, and 7,665 ft, top of spillway gates. Dead storage, 4,314 acre-ft. Figures given are usable contents. Reservoir is used to store water for irrigation in Los Pinos (Pine) River basin and provide hydroelectric power. COOPERATION.--Records provided by Pine River Irrigation District. EXTREMES (AT 0900) FOR PERIOD OF RECORD.--Maximum contents, 128,200 acre-ft, July 27, 1957, elevation, 7,665.72 ft; minimum, 1,520 acre-ft, Oct. 24-25, 1944,
elevation, 7,584.10 ft. No usable storage prior to April 1941. EXTREMES (AT 0900) FOR CURRENT YEAR.--Maximum contents, 122,930 acre-ft, June 3, elevation, 7,664.08 ft; minimum, 29,740 acre-ft, Sep. 30, elevation, 7,620.46 ft. #### MONTHEND ELEVATION AND CONTENTS, AT 0900, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation
(feet) | Contents
(acre-feet) | Change in
contents
(acre-feet) | |---|--|--|--| | Sept. 30. Oct. 31. Nov. 30. Dec. 31. | 7,647.44
7,640.14
7,641.62
7,642.44 | 80,900
64,580
67,770
69,560 | -
-16,320
+3,190
+1,790 | | CAL YR 1999 | - | - | -2,880 | | Jan. 31. Feb. 29. Mar 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 7,643.21
7,643.90
7,645.71
7,653.85
7,663.77
7,657.36
7,644.02
7,630.34
7,620.46 | 71,260
72,790
76,900
96,380
122,090
105,260
73,060
45,370
29,740 | +1,700
+1,530
+4,110
+19,480
+25,710
-16,830
-32,200
-27,690
-15,630 | | WTR YR 2000 | - | _ | -51,160 | #### 09353800 LOS PINOS RIVER NEAR IGNACIO, CO LOCATION.--Lat $37^{\circ}09^{\circ}58^{\circ}$, long $107^{\circ}34^{\circ}57^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.26, T.34 N., R.7 W., La Plata County, Hydrologic Unit 14080101, on right bank 1.7 mi downstream from Pine River Canal, 2.2 mi upstream from Beaver Creek, and 5.2 mi northeast of Ignacio. DRAINAGE AREA.--340 mi². PERIOD OF RECORD. -- October 1999 to September 2000. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,630 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by Vallecito Reservoir (station 09353000, capacity 125,640 acre ft.) 14 mi upstream since April 1941. Diversions for irrigation of about 2,040 acres upstream and about 40,040 acres downstream from the station. Some waste water is diverted to adjacent basins. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |-------|------|---------|-----------|----------|------|-----------|--------------------|---------|----------|--------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 199 | 53 | 25 | e31 | 33 | 35 | 79 | 152 | 26 | 11 | 3.1 | 12 | | 2 | 191 | 37 | 25 | e31 | 45 | 36 | 79 | 106 | 24 | 6.2 | 2.9 | 18 | | 3 | 189 | 36 | 25 | e29 | 48 | 35 | 77 | 52 | 23 | 5.3 | 2.8 | 5.7 | | 4 | 183 | 27 | 26 | e27 | 49 | 36 | 78 | 64 | 24 | 3.4 | 2.1 | 3.1 | | 5 | 177 | 20 | e27 | e29 | 49 | 39 | 87 | 45 | 23 | 3.3 | 3.3 | | | 5 | 1// | 20 | e27 | e29 | 49 | 39 | 87 | 45 | 23 | 3.3 | 3.3 | 4.3 | | 6 | 171 | 19 | e27 | e31 | 38 | 41 | 94 | 49 | 26 | 3.0 | 2.6 | 3.8 | | 7 | 144 | 18 | e27 | e31 | 35 | 48 | 97 | 38 | 27 | 4.1 | 2.5 | 3.9 | | 8 | 117 | 17 | e27 | e32 | 35 | 45 | 99 | 44 | 23 | 11 | 3.6 | 4.7 | | 9 | 153 | 17 | e27 | e31 | 35 | 45 | 98 | 40 | 24 | 14 | 5.2 | 4.0 | | 10 | 160 | 15 | 27 | e31 | 35 | 41 | 103 | 27 | 16 | 13 | 8.1 | 2.9 | | 11 | 168 | 15 | 28 | e30 | 34 | 39 | 99 | 23 | 13 | 14 | 4.4 | 3.5 | | 12 | 173 | 14 | e29 | e29 | e34 | 39 | 96 | 27 | 13 | 16 | 2.5 | 6.4 | | 13 | 164 | 14 | e29 | e29 | e34 | 39 | 95 | 21 | 13 | 16 | 5.9 | 15 | | 14 | 142 | 14 | e29 | e29 | 35 | 38 | 95
97 | 15 | 11 | 7.5 | 3.3 | 11 | | | | | | | | | | | | | | | | 15 | 143 | 16 | e29 | e29 | 35 | 39 | 105 | 19 | 13 | 7.8 | 2.9 | 10 | | 16 | 146 | 15 | e30 | e29 | e34 | 37 | 103 | 26 | 14 | 7.3 | 8.6 | 11 | | 17 | 162 | 15 | e31 | e30 | e33 | 37 | 99 | 33 | 11 | 6.3 | 17 | 17 | | 18 | 159 | 13 | e33 | 32 | e33 | 39 | 97 | 32 | 12 | 7.3 | 31 | 17 | | 19 | 73 | 16 | e32 | 31 | e34 | 38 | 97 | 31 | 12 | 9.8 | 42 | 5.2 | | 20 | 37 | 16 | e31 | e32 | e35 | 44 | 88 | 34 | 7.9 | 12 | 18 | 2.6 | | | | | | | | | | | | | | | | 21 | 56 | 16 | e29 | e31 | 36 | 60 | 87 | 32 | 5.5 | 10 | 22 | 2.2 | | 22 | 52 | 18 | e28 | 31 | e36 | 70 | 88 | 31 | 2.6 | 8.3 | 14 | 2.9 | | 23 | 45 | 22 | e27 | 31 | e36 | 80 | 86 | 41 | 5.0 | 7.0 | 5.4 | 6.4 | | 24 | 45 | 26 | e29 | 30 | 38 | 69 | 74 | 37 | 5.9 | 6.8 | 7.0 | 8.9 | | 25 | 107 | 28 | e30 | 31 | 38 | 69 | 27 | 27 | 7.1 | 4.4 | 12 | 8.4 | | | | | | | | | | | | | | | | 26 | 68 | 27 | e29 | 44 | 35 | 76 | 20 | 19 | 7.2 | 4.7 | 2.1 | 9.6 | | 27 | 63 | 25 | e28 | 53 | 36 | 76 | 14 | 20 | 16 | 5.8 | 2.5 | 8.9 | | 28 | 61 | 25 | e27 | 38 | 36 | 78 | 130 | 19 | 16 | 2.5 | 12 | 14 | | 29 | 59 | 25 | e27 | 31 | 35 | 70 | 189 | 20 | 16 | 2.6 | 11 | 15 | | 30 | 58 | 25 | e28 | e30 | | 70 | 169 | 20 | 19 | 4.2 | 21 | 11 | | 31 | 59 | | e30 | e31 | | 76 | | 27 | | 3.4 | 8.4 | | | 31 | 33 | | 630 | COT | | 70 | | 41 | | 3.4 | 0.4 | | | TOTAL | 3724 | 644 | 876 | 984 | 1069 | 1584 | 2751 | 1171 | 456.2 | 238.0 | 289.2 | 248.4 | | MEAN | 120 | 21.5 | 28.3 | 31.7 | 36.9 | 51.1 | 91.7 | 37.8 | 15.2 | 7.68 | 9.33 | 8.28 | | MAX | 199 | 53 | 33 | 53 | 49 | 80 | 189 | 152 | 27 | 16 | 42 | 18 | | MIN | 37 | 13 | 25 | 27 | 33 | 35 | 14 | 15 | 2.6 | 2.5 | 2.1 | 2.2 | | AC-FT | 7390 | 1280 | 1740 | 1950 | 2120 | 3140 | 5460 | 2320 | 905 | 472 | 574 | 493 | | AC FI | 1390 | 1200 | 1/40 | 1/30 | 2120 | 2140 | 2400 | 2020 | 303 | -1/2 | 3/4 | 493 | | SUMMARY | STATISTICS | |---------|------------| | | | ANNUAL TOTAL ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS e Estimated. FOR 2000 WATER YEAR 14034.8 38.3 199 Oct 1 2.1 Aug 4 2.8 Aug 1 310 Oct 7 3.91 Oct 7 27840 95 29 4.9 #### 09354500 LOS PINOS RIVER AT LA BOCA, CO LOCATION.--Lat $37^{\circ}00'34"$, long $107^{\circ}35'56"$, in $NE^{1}/_{4}NW^{1}/_{4}$ sec.22, T.32 N., R.7 W., La Plata County, Hydrologic Unit 14080101, on downstream end of right abutment of the Denver & Rio Grande Western Railroad Co. bridge, at southeast edge of La Boca, 0.5 mi upstream from Spring Creek, and 2 mi upstream from maximum elevation of Navajo Reservoir. DRAINAGE AREA. -- 520 mi², (revised). PERIOD OF RECORD.--October 1950 to current year. Monthly discharge only for some periods, published in WSP 1733. Water-quality data available, July 1969 to August 1973, January 1988 to September 1991. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,127.21 ft above sea level (revised). REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by Vallecito Reservoir (station 09353000, capacity 125,640 acre ft.) 24 mi upstream since April 1941. Diversions for irrigation of about 55,000 acres upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD.--A flood on Oct. 5, 1911 has not yet been exceeded. | DATE | | | DISCHAR | GE, CUBI | C FEET PER | | MEAN VA | LUES | 1999 10 1 | PEPIEMBE | SR 2000 | | | |---|---------|------------|-----------|----------|------------|------------|---------|-------------|-----------|----------|-----------|---------|----------------------------| | 2 303 95 44 e34 50 45 306 152 130 151 137 133 3 30 88 e42 e32 66 44 220 89 133 156 141 111 4 297 76 e37 e30 62 42 164 120 136 137 138 107 138 107 138 107 138 107 138
107 138 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 303 88 e42 e32 66 44 220 89 133 156 141 114 144 4 27 77 630 62 42 164 120 136 137 138 107 5 288 58 634 e34 e34 62 48 657 95 133 135 122 121 177 286 638 58 e34 e34 e35 44 58 157 95 133 135 122 121 177 286 136 137 138 131 112 111 177 286 144 146 e33 e36 e34 e35 44 97 91 172 94 133 131 112 113 113 112 113 113 112 113 113 | 1 | 316 | 117 | 45 | e34 | 45 | 40 | 222 | 196 | 126 | 176 | 136 | 129 | | 4 297 76 637 630 620 42 164 120 136 137 138 107 5 288 58 634 634 620 48 157 95 133 135 122 121 6 285 52 233 255 54 58 166 83 129 124 113 111 7 256 49 234 235 236 44 79 172 94 133 113 112 113 8 250 48 235 236 44 81 175 91 149 152 116 141 10 264 43 238 234 47 68 183 100 136 143 130 111 11 269 42 239 235 243 55 51 89 95 131 132 139 191 12 271 40 234 234 234 45 51 171 91 133 128 139 97 13 269 38 233 232 245 55 166 94 126 139 157 103 14 247 37 233 232 245 55 166 94 126 139 137 98 15 255 38 233 232 245 55 177 99 119 123 122 99 16 266 39 234 | 2 | 303 | 95 | 44 | e34 | 50 | 45 | 306 | 152 | 130 | 151 | 137 | 133 | | 5 | | | | | | | | | | | | | | | 6 285 52 e33 e35 54 58 166 83 128 124 113 1117 7 226 44 64 63 63 635 44 99 177 99 178 94 1133 131 112 113 115 111 110 264 43 e34 e35 44 99 178 94 1135 131 131 112 113 115 111 12 113 115 131 12 113 115 131 12 113 131 132 113 134 134 134 134 134 134 134 134 134 | | | | | | | | | | | | | | | The color of | 5 | 288 | 58 | e34 | e34 | 62 | 48 | 157 | 95 | 133 | 135 | 122 | 121 | | 8 | | | | | | | | | | | | | | | 9 2444 46 e33 e35 e34 447 68 183 175 91 149 152 116 141 110 266 43 e38 e34 447 68 183 100 136 143 130 111 | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | 12 | 10 | 204 | 43 | e38 | e34 | 4 / | 08 | 183 | 100 | 130 | 143 | 130 | 111 | | 13 | | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | 17 | 16 | 266 | 20 | 034 | 033 | 016 | 40 | 177 | 99 | 115 | 124 | 120 | 106 | | 18 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | 162 631 631 631 632 648 141 144 143 113 114 201 112 123 162 633 631 630 648 256 140 143 129 112 167 103 108 24 166 634 633 634 638 648 179 103 130 139 121 162 103 108 125 121 62 103 125 121 62 103 125 121 162 103 125 121 162 103 125 121 162 103 125 121 162 103 125 121 162 103 125 1 | | | | | | | | | | | | | | | 162 631 631 631 632 648 141 144 143 113 114 201 112 123 162 633 631 630 648 256 140 143 129 112 167 103 108 24 166 634 633 634 638 648 179 103 130 139 121 162 103 108 125 121 62 103 125 121 62 103 125 121 162 103 125 121 162 103 125 121 162 103 125 121 162 103 125 121 162 103 125 1 | 21 | 171 | e29 | e33 | e33 | 47 | 95 | 143 | 144 | 117 | 114 | 188 | 94 | | 23 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 26 | 24 | 166 | e34 | e33 | e34 | 49 | 219 | 136 | 135 | 134 | 116 | 173 | 108 | | 27 | 25 | 213 | e34 | e34 | e38 | 48 | 179 | 103 | 130 | 139 | 121 | 162 | 103 | | 28 | 26 | 167 | e38 | e34 | e50 | 42 | 162 | 68 | 124 | 134 | 134 | 126 | 85 | | 121 | | | | | | | | | | | | | | | 30 | 28 | 118 | 44 | e30 | 72 | 44 | 137 | 136 | 126 | 187 | 127 | 140 | 59 | | 117 | 29 | 121 | | e30 | | | | | | | | | | | TOTAL 7008 1416 1078 1186 1373 2811 5013 3658 4033 4105 4607 3099 MEAN 226 47.2 34.8 38.3 47.3 90.7 167 118 134 132 149 103 MAX 316 117 45 92 66 256 306 196 187 176 362 141 MIN 115 29 30 30 30 41 40 56 83 113 112 108 56 AC-FT 13900 2810 2140 2350 2720 5580 9940 7260 8000 8140 9140 6150 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 2000, BY WATER YEAR (WY) MEAN 199 137 104 75.5 97.8 219 344 433 512 305 242 218 MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 339387 ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILY MEAN 629 NOV 21 629 NOV 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNDEF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 50 PERCENT EXCEEDS 1080 | | | | | | | | 224 | | | | | | | MEAN 226 47.2 34.8 38.3 47.3 90.7 167 118 134 132 149 103 MAX 316 117 45 92 66 256 306 196 187 176 362 141 MIN 115 29 30 30 41 40 56 83 113 112 108 56 AC-FT 13900 2810 2140 2350 2720 5580 9940 7260 8000 8140 9140 6150 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 2000, BY WATER YEAR (WY) MEAN 199 137 104 75.5 97.8 219 344 433 512 305 242 218 MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1983 1993 199 | 31 | 117 | | e35 | e43 | | 139 | | 117 | | 149 | 137 | | | MAX 316 117 45 92 66 256 306 196 187 176 362 141 MIN 115 29 30 30 41 40 56 83 113 112 108 56 SCATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS
1951 - 2000, BY WATER YEAR (WY) MEAN 199 137 104 75.5 97.8 219 344 433 512 305 242 218 MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 <td< td=""><td>TOTAL</td><td></td><td></td><td>1078</td><td>1186</td><td>1373</td><td>2811</td><td>5013</td><td>3658</td><td>4033</td><td>4105</td><td>4607</td><td>3099</td></td<> | TOTAL | | | 1078 | 1186 | 1373 | 2811 | 5013 | 3658 | 4033 | 4105 | 4607 | 3099 | | MIN 115 29 30 30 41 40 56 83 113 112 108 56 AC-FT 13900 2810 2140 2350 2720 5580 9940 7260 8000 8140 9140 6150 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 2000, BY WATER YEAR (WY) MEAN 199 137 104 75.5 97.8 219 344 433 512 305 242 218 MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 339387 108 244 HIGHEST ANNUAL MEAN 58.2 1973 108 244 HIGHEST ANNUAL MEAN 58.2 1973 108 108 108 108 108 108 109 109 109 109 109 109 109 109 109 109 | | | | | | 47.3 | | | | | | | | | AC-FT 13900 2810 2140 2350 2720 5580 9940 7260 8000 8140 9140 6150 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 2000, BY WATER YEAR (WY) MEAN 199 137 104 75.5 97.8 219 344 433 512 305 242 218 MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 39387 ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 629 Nov 21 6.1 May 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 628 1090 178 ANNUAL RUNOFF (AC-FT) 268600 78120 178 TO PERCENT EXCEEDS 136 116 112 1544 BEACH THE TOTAL TOTAL 1959 ANNUAL RUNOFF (AC-FT) 268600 78120 178 TO PERCENT EXCEEDS 136 112 112 | | | | | | | | | | | | | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1951 - 2000, BY WATER YEAR (WY) MEAN 199 137 104 75.5 97.8 219 344 433 512 305 242 218 MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 MIN 47.9 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 MY) 1978 1960 1964 1978 1978 1977 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 39387 371 108 244 HIGHEST ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY MEAN 2270 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY MEAN 229 Nov 21 229 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 500 500 Aug 19 58.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 551 50 PERCENT EXCEEDS 136 112 134 | | | | | | | | | | | | | | | MEAN 199 137 104 75.5 97.8 219 344 433 512 305 242 218 MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 39387 ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 77.4 1959 LOWEST ANNUAL MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY MEAN 629 NOV 21 629 NOV 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 629 NOV 21 629 NOV 21 6.1 May 1 1977 INSTANTANEOUS PEAK FLOW 509 Aug 19 6600 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 6600 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 | AC-F-I | 13900 | 2810 | 2140 | 2350 | 2720 | 5580 | 9940 | 7260 | 8000 | 8140 | 9140 | 6150 | | MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILY MEAN 2270 Nov 21 e29 <td< td=""><td>STATIST</td><td>TICS OF MC</td><td>NTHLY MEA</td><td>N DATA F</td><td>OR WATER Y</td><td>YEARS 1951</td><td>- 2000,</td><td>BY WATER Y</td><td>YEAR (WY)</td><td></td><td></td><td></td><td></td></td<> | STATIST | TICS OF MC | NTHLY MEA | N DATA F | OR WATER Y | YEARS 1951 | - 2000, | BY WATER Y | YEAR (WY) | | | | | | MAX 672 709 396 182 362 972 1339 1719 1555 1381 1349 725 (WY) 1987 1987 1983 1985 1993 1993 1979 1958 1979 1957 1999 1997 MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILY MEAN 2270 Nov 21 e29 <td< td=""><td>MEAN</td><td>199</td><td>137</td><td>104</td><td>75.5</td><td>97.8</td><td>219</td><td>344</td><td>433</td><td>512</td><td>305</td><td>242</td><td>218</td></td<> | MEAN | 199 | 137 | 104 | 75.5 | 97.8 | 219 | 344 | 433 | 512 | 305 | 242 | 218 | | MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 39387 108 244 HIGHEST ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 77.4 1959 1973 LOWEST DAILLY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY MEAN e29 Nov 21 e29 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 625 AND 19 46400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 68600 78120 176900 10 PERCENT EXCEEDS 1090 178 551 551 550 PERCENT EXCEEDS 136 112 134 | | | | | | | | | | | | | | | MIN 47.9 32.1 33.8 33.9 38.6 45.1 22.8 44.3 74.5 81.6 80.4 58.3 (WY) 1978 1960 1964 1978 1978 1977 1951 1951 1951 1951 1977 1959 1977 1951 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 39387 108 244 HIGHEST ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 77.4 1959 1973 LOWEST DAILLY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY MEAN e29 Nov 21 e29 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 625 AND 19 46400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 68600 78120 176900 10 PERCENT EXCEEDS 1090 178 551 551 550 PERCENT EXCEEDS 136 112 134 | | | 1987 | | | | | | | | | | | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1951 - 2000 ANNUAL TOTAL 135421 39387 ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 77.4 1959 HIGHEST DAILY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILY MEAN 629 Nov 21 629 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 623 Aug 19 a6400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 50 PERCENT EXCEEDS 136 112 134 | | | | | | 38.6 | | | | 74.5 | | 80.4 | 58.3 | | ANNUAL TOTAL 135421 39387 ANNUAL MEAN 371 108 2444 HIGHEST ANNUAL MEAN 582 1973 LOWEST ANNUAL MEAN 77.4 1959 HIGHEST DAILY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILY MEAN e29 Nov 21 e29 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 50.9 Aug 19 6400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 | (WY) | 1978 | 1960 | 1964 | 1978 | 1978 | 1977 | 1951 | 1951 | 1977 | 1959 | 1977 | 1951 | | ANNUAL MEAN 371 108 244 HIGHEST ANNUAL MEAN 582 1975 LOWEST ANNUAL MEAN 77.4 1959 HIGHEST DAILLY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY MEAN e29 Nov 21 e29 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 623 Aug 19 a6400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 551 50 PERCENT EXCEEDS 136 112 134 | SUMMARY | STATISTI | CS | FOR : | 1999 CALEN | NDAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YEA | RS 1951 | - 2000 | | HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN TO A LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1959 LOWEST DAILY MEAN e29 Nov 21 e29 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 Aug 19 a6400 Jul 27 1957 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 136 112 134 | ANNUAL | TOTAL | | | 135421 | | | 39387 | | | | | | | LOWEST ANNUAL MEAN HIGHEST DAILLY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY MEAN 2070 LOWEST DAILLY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILLY
MEAN 20 21 20 32 20 22 32 38.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 623 Aug 19 64400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 78120 176900 10 PERCENT EXCEEDS 1090 178 551 50 PERCENT EXCEEDS 1136 | ANNUAL | MEAN | | | 371 | | | 108 | | | | | | | HIGHEST DAILY MEAN 2070 Aug 6 362 Aug 19 4560 Jul 27 1957 LOWEST DAILY MEAN e29 Nov 21 e29 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 623 Aug 19 a6400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 1778 551 50 PERCENT EXCEEDS 1090 178 551 551 50 PERCENT EXCEEDS 136 112 134 | HIGHEST | C ANNUAL M | IEAN | | | | | | | | | | | | LOWEST DAILY MEAN e29 Nov 21 e29 Nov 21 6.1 May 1 1977 ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 623 Aug 19 a6400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 551 50 PERCENT EXCEEDS 136 112 134 | | | | | | _ | | | | | | _ | | | ANNUAL SEVEN-DAY MINIMUM 32 Dec 23 32 Dec 23 8.3 Apr 30 1977 INSTANTANEOUS PEAK FLOW 623 Aug 19 a6400 Jul 27 1957 INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 551 50 PERCENT EXCEEDS 136 112 134 | | | | | | | | | | | | | | | INSTANTANEOUS PEAK FLOW 623 Aug 19 a6400 Jul 27 1957 | | | | | | | | | | | | | | | INSTANTANEOUS PEAK STAGE 5.09 Aug 19 b8.95 Jul 27 1957 ANNUAL RUNOFF (AC-FT) 268600 78120 176900 10 PERCENT EXCEEDS 1090 178 551 50 PERCENT EXCEEDS 136 112 134 | | | | | 3∠ | Dec 23 | | | | | | Apr . | 30 19 <i>11</i>
27 1057 | | ANNUAL RUNOFF (AC-FT) 268600 78120 176900
10 PERCENT EXCEEDS 1090 178 551
50 PERCENT EXCEEDS 136 112 134 | | | | | | | | | | | | | | | 10 PERCENT EXCEEDS 1090 178 551 50 PERCENT EXCEEDS 136 112 134 | | | | | 268600 | | | | | | | Jul . | _, _,,, | | 50 PERCENT EXCEEDS 136 112 134 | | | | | | | | | | | | | | | 90 PERCENT EXCEEDS 38 34 50 | 50 PERC | CENT EXCEE | DS | | | | | | | | | | | | | 90 PERC | CENT EXCEE | DS | | 38 | | | 34 | | | 50 | | | e Estimated. From rating curve extended above 5100 ft³/s. The Maximum gage height, 9.00 ft, backwater from ice, sometime during period, Dec 23, 1990 to Jan 17, 1991. #### 09355000 SPRING CREEK AT LA BOCA, CO LOCATION.—Lat $37^{\circ}00^{\circ}40^{\circ}$, long $107^{\circ}35^{\circ}47^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec.15, T.32 N., R.7 W., La Plata County, Hydrologic Unit 14080101, on right bank in an excavated channel, 0.2 mi upstream from mouth, and 0.2 mi east of La Boca. DRAINAGE AREA. -- 58.2 mi², (revised). PERIOD OF RECORD.--October 1950 to current year. Monthly discharge only for some periods, published in WSP 1733. Water-quality data available May 1974, January 1988 to September 1991. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 6,160 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges and those discharges greater than $100~\mathrm{ft}^3/\mathrm{s}$, which are poor. Part of flow is return waste from irrigation. Nearly all irrigation in this basin is water diverted from Los Pinos River which causes a considerable change in the annual pattern and natural flow. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this | | | DISCHAR | GE, CUBI | | SECOND, | | EAR OCTOBER | 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--|--|--------------------------------------|--------------------------------------|---|--|--------------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 46
48
50
54
54 | 8.8
8.4
e8.0
e7.5
e7.0 | e3.2
e3.2
e3.1
e2.9
e2.6 | e2.1
e2.1
e2.1
e2.1 | e2.8
e2.8
e3.0
e2.8
e2.7 | 1.3
1.3
1.2
1.1 | 40
29
18
15 | 31
18
16
16
15 | 38
43
44
46
44 | 54
52
47
46
46 | 56
57
55
57
56 | 32
32
33
35
38 | | 6
7
8
9
10 | 57
54
53
47
55 | e5.8
e6.0
e5.6
e5.3 | e2.4
e2.4
e2.4
e2.3
e2.3 | e2.1
e2.1
e2.2
e2.2
e2.3 | e2.6
e2.5
e2.4
e2.5
e2.6 | 1.3
2.2
5.1
2.0
1.4 | 9.8
7.4
6.4
e6.0
e5.5 | 17
16
20
27
27 | 41
41
42
47
46 | 47
51
49
57
56 | 52
52
54
56
49 | 38
39
42
52
44 | | 11
12
13
14
15 | 57
54
51
51
50 | 5.3
e5.2
e5.0
e5.2
e5.4 | e2.3
e2.2
e2.2
e2.1
e2.1 | e2.5
e2.8
e2.8
e3.0
e3.0 | e2.6
2.4
2.6
2.2
2.5 | 1.3
1.3
1.3
1.3 | 4.9
4.7
4.1
4.5
5.1 | 23
23
24
27
32 | 50
50
38
34
37 | 56
50
56
56
55 | 49
57
61
54
45 | 39
38
38
39
46 | | 16
17
18
19
20 | 51
53
55
54
51 | e5.6
e5.8
6.0
5.7
e5.6 | e2.0
e2.0
e2.0
e2.0
e2.0 | e3.0
e3.3
e3.8
e3.3
e2.9 | 2.3
1.9
1.9
1.5 | 1.3
1.2
1.2
1.2 | 5.0
4.5
4.6
4.5
4.7 | 27
29
32
40
42 | 38
38
37
46
43 | 59
61
56
54
51 | | 50
46
49
49 | | 21
22
23
24
25 | 48
41
42
40
49 | e5.6
e5.2
e4.2
e3.2
e3.5 | e1.9
e2.0
e2.0
e2.0
e2.0 | e2.9
e2.8
e2.7
e2.6
e3.3 | 1.4
1.4
1.3
1.3 | 5.8
25
23
7.4
2.5 | 4.4
4.5
4.2
3.7
3.4 | 39
36
37
39
40 | 36
38
45
49
51 | 48
47
48
49
55 | 126
174
50
48
44 | 50
56
53
55
51 | | 26
27
28
29
30
31 | 28
13
11
10
9.7
9.4 | e3.8
e3.5
e3.3
e3.1
e3.0 | e2.1
e2.3
e2.3
e2.3
e2.3
e2.1 | e5.7
e4.2
e3.2
e2.9
e3.1
e3.1 | 1.5
1.3
1.3
1.2 | 1.6
1.0
.96
.91
.87 | 31
9.5
10
15
12 | 38
39
41
43
40
40 | 50
56
57
56
55 | 63
59
52
56
63
57 | 44
42
48
54
113
46 | 51
53
55
44
34 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1346.1
43.4
57
9.4
2670 | 161.1
5.37
8.8
3.0
320 | 71.0
2.29
3.2
1.9
141 | 88.3
2.85
5.7
2.1
175 | 59.8
2.06
3.0
1.2
119 | 101.74
3.28
25
.87
202 | 294.4
9.81
40
3.4
584 | 934
30.1
43
15
1850 | 1336
44.5
57
34 | | 2047
66.0
217
42
4060 | 1329
44.3
56
32
2640 | | STATIS | | | | | | | , BY WATER Y | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 35.2
87.9
1973
5.25
1978 | 10.7
29.6
1956
3.68
1978 | 5.47
20.4
1985
1.74
1960 | 4.76
19.3
1980
2.04
1973 | 9.84
54.8
1980
2.06
2000 | 18.3
89.7
1979
2.36
1999 | 13.3
41.1
1979
3.77
1978 | 39.1
64.5
1992
15.7
1978 | 57.7
79.3
1986
24.4
1977 | 67.8
111
1996
21.2
1977 | 66.4
132
1996
32.1
1977 | 58.6
92.0
1983
26.5
1951 | | SUMMAR | Y STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | | FOR 2000 WAT | TER YEAR | | WATER YEA | ARS 1951 | - 2000 | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL 10 PER 50 PER | T ANNUAL M ANNUAL M T DAILY ME DAILY ME SEVEN-DA TANEOUS P TANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 10719.0
29.4
255
1.4
1.4
21260
80
10
2.3 | Aug 3
Apr 16
Apr 15 | | 9424.44
25.7
217
.87
1.2
550
3.56
18690
55
16
1.9 | Aug 19
Mar 30
Feb 27
Aug 21
Aug 21 | | 32.7
47.7
15.6
918
.87
1.0
a1980
b4.62
23660
71
23
3.2 | Mar
Mar
Dec
Sep
Sep | 1987
1977
6 1995
30 2000
7 1959
6 1970
6 1970 | e ESCINIALEG. a From rating curve extended above $160 \text{ ft}^3/\text{s}$, on the basis of field estimate of peak flow. b Maximum gage height, 5.98 ft, Mar 9, 1960, backwater from ice. #### 09358000 ANIMAS RIVER AT SILVERTON, CO LOCATION.--Lat $37^{\circ}48'40"$, long $107^{\circ}39'31"$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.17, T.41 N., R.7 W., San Juan County, Hydrologic Unit 14080104, on right bank at southeast end of 14th Street, 800 feet upstream from Cement Creek, in the city of Silverton. DRAINAGE AREA. -- 70.6 mi². PERIOD OF RECORD.--June to October 1903 (staff gage), monthly discharge only, published in WSP 1313. October 1991 to September 1993, October 1994 to current year. REVISED RECORDS.--WDR CO 92-2: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 9,290 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. No diversions upstream for irrigation in Animas River drainage. Natural regulation by many lakes upstream from station. Mineral Point Ditch exports 100 to 400 acre feet of water per year from headwaters of Animas River to Uncompander River drainage. City of Silverton diverts some water from Boulder Creek (tributary) for municipal use. Several measurements of specific
conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1884, was probably that of October 5, 1911. | | | DIBCHIN | on, cobi | o ibbi ibk | | MEAN VA | LUES | 1000 10 | DBI IBIBI | arc 2000 | | | |--------------|-----------------------|-------------------|-------------------|------------|-------------------|---------------------------------|---------------------------------|--------------------------|------------|---|--------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e70 | e18 | e29 | e26 | e18 | e17 | e23 | 193 | 683 | 121 | 47 | 85 | | 2 | e69 | e21 | e29 | e25 | e18 | e17 | e23 | 227 | 586 | 117 | 46 | 94 | | 3 | e69 | e21 | e29 | e24 | e18 | e16 | e24 | 328 | 570 | 111 | 48 | 85 | | 4 | e68 | e21 | e27 | e30 | e17 | e17 | e26 | 428 | 574 | 102 | 51 | 79 | | 5 | e68 | e20 | e25 | e29 | e17 | e17 | e31 | 502 | 524 | 92 | 46 | 80 | | 6
7 | e67 | e20 | e26 | e42 | e17 | e18 | e37 | 493 | 490 | 88 | 42 | 106 | | | 70
69 | e20 | e27 | e36 | e17 | e19 | e45 | 457
474 | 523 | 90
92 | 42
40 | 106 | | 8
9 | 69
67 | e20
e20 | e28
e25 | e29
e25 | e17
e18 | e20
e20 | e54
e63 | 336 | 513
548 | 92
96 | 39 | 110
111 | | 10 | 65 | e19 | e26 | e25 | e17 | e20 | e68 | 301 | 446 | 85 | 41 | 99 | | 11 | 63 | e19 | e28 | e25 | e16 | e20 | e60 | 331 | 416 | 80 | 43 | 92 | | 12 | 62 | 18 | e24 | e26 | e16 | e19 | e62 | 289 | 394 | 85 | 45 | 84 | | 13 | 60 | 17 | e23 | e26 | e17 | e20 | e63 | 236 | 377 | 80 | 52 | 80 | | 14 | 58 | 17 | e24 | e25 | e17 | e20 | 71 | 211 | 371 | 74 | 51 | 75 | | 15 | 56 | e18 | e26 | e23 | e17 | e20 | 72 | 201 | 361 | 74 | 50 | 71 | | 16 | 55 | 18 | e28
e31 | e19 | e17 | e20 | 68 | 225 | 330 | 81 | 50 | 67 | | 17 | 41 | 18 | e31 | e18 | e17 | e20 | 78 | 239 | 277 | 91 | 49 | 64 | | 18 | 41 | 18 | e31 | e18 | e18 | e20 | 92 | 194 | 242 | 78 | 68 | 67 | | 19
20 | 44
38 | 18
24 | e31
e27
e26 | e18
e18 | e16
e16 | e20
e20 | 82
80 | 194
183
200 | 263
242 | 67
61 | 90
79 | 63
57 | | | | | | | | | | | | | | | | 21 | 39 | e27 | e29 | e19 | e17 | e20
e20
e21
e21
e22 | 95 | 295
436
651 | 222 | 56 | 81 | 56 | | 22 | 40 | e30 | e30 | e17 | e18 | e20 | 103 | 436 | 199 | 52 | 97 | 77 | | 23 | 42 | e29 | e29 | e15 | e18 | e21 | | 65I | 192 | 48 | 94 | 67 | | 24
25 | 39
37 | e29
e29 | e30
e31 | e16
e18 | e18
e18
e18 | e21 | 117
132 | 772
650 | 172
166 | 53
62 | 96
91 | 67
62 | | 25 | 37 | 629 | 631 | 610 | | | | | 100 | 02 | | | | 26 | 31 | e31 | e29 | e19 | e16 | e23
e24
e25
e25 | 162
218
263
259
213 | 440 | 167 | 68 | 91 | 60 | | 27 | 25 | e31 | e29 | e18 | e16 | e24 | 218 | 432 | 167 | 65 | 91 | 58 | | 28 | 19 | e30 | e29 | e17 | e17 | e25 | 263 | 640 | 153 | 59 | 91 | 58 | | 29
30 | 1/ | e30 | e30
e37 | e15
e14 | e17
 | e25
e24 | 259
212 | 432
640
824
839 | 140
131 | 55
52 | 83
99 | 65
65 | | 31 | 16 | e30
e30
e30 | e44 | e14 | | e24 | 213 | 762 | 131 | 50 | 90 | | | | | | | | | | | | | | | | | TOTAL | 1514.7
48.9 | 681 | 886 | 691 | 496 | 629 | 2786 | 12789 | 10439 | 2385 | 2023 | 2310 | | | | 22.7 | 28.6 | 22.3 | 17.1 | 20.3 | 92.9 | 413 | 348 | 76.9 | 65.3 | 77.0 | | MAX | 70 | 31
17 | 44
23 | 42
14 | 18 | 25
16 | 263 | 839 | 683
131 | 121 | 99
39 | 111 | | MIN
AC-FT | 9.7
3000 | 1350 | 1760 | 1370 | 16
984 | 1250 | 23
5530 | 183
25370 | 20710 | 48
4730 | 4010 | 56
4580 | | | | | | | | | | | | 1750 | 1010 | 1500 | | STATIS | TICS OF M | ONTHLY MEAI | N DATA F | OR WATER Y | EARS 1992 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 65.3 | 39.5 | 30.2 | 25.7 | 24.6 | 29.3 | 60.4 | 312 | 564 | 310 | 132 | 84.9 | | MAX | 136 | 64.9 | 41.4 | 33.8 | 36.1 | 43.3 | 92.9 | 454 | 794 | 734 | 253 | 131 | | (WY) | 1998 | 1998 | 1998 | 1995 | 1995 | 1995 | 2000 | 1996 | 1997 | 1995 | 1995 | 1999 | | MIN | 33.4 | 22.7 | 18.9 | 13.8 | 15.7 | 18.6 | 39.6 | 147 | 348 | 76.9 | 44.4 | 53.0 | | (WY) | 1993 | 2000 | 1992 | 1992 | 1992 | 1992 | 1993 | 1995 | 2000 | 2000 | 1996 | 1996 | | SUMMAR | Y STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1992 | - 2000 | | ANNUAL | | | | 57171.7 | | | 37629.7 | | | | | | | ANNUAL | | | | 157 | | | 103 | | | 140 | | | | | T ANNUAL | | | | | | | | | 194 | | 1995 | | | 'ANNUAL M | | | 897 | T 15 | | 020 | | | 103 | T | 2000 | | | T DAILY M
DAILY ME | | | 9.7 | Jun 17
Oct 30 | | 839 | May 30 | | 1180 | Jun
Oat 3 | 4 1997 | | | | Y MINIMUM | | 17 | Oct 28 | | 9.7
17 | Tan 27 | | 12 | Jan 1 | 6 1002 | | | TANEOUS P | | | Δ, | 500 20 | | 1110 | May 29 | | 1470 | Jun | 4 1997 | | | | EAK STAGE | | | | | 4.01 | May 29 | | 103
1180
9.7
13
1470
a,b3.99
101500 | Jun | 4 1997 | | | RUNOFF (| | | 113400 | | | 74640 | 4 - | | 101500 | | | | 10 PER | CENT EXCE | EDS | | 468 | | | Z91 | | | 404 | | | | | CENT EXCE | | | 50 | | | 46 | | | 52 | | | | 90 PER | CENT EXCE | EDS | | 20 | | | 17 | | | 20 | | | e Estimated. a Maximum gage height during period Jun to Oct 1903, 4.90 ft, Jun 17, 1903, site and datum then in use. b Maximum gage height during period 1992 to 2000, 4.27 ft, Jun 22, 1997, due to channel change, present site and datum. #### 09358550 CEMENT CREEK AT SILVERTON, CO LOCATION.--Lat $37^{\circ}49^{\circ}11^{\circ}$, long $107^{\circ}39^{\circ}47^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.8, T.41 N., R.7 W., San Juan County, Hydrologic Unit 14080104, on left bank, at abandoned railroad crossing Cement Creek, 0.1 mile north of Silverton, and 0.8 mile upstream from mouth. DRAINAGE AREA.--20.1 mi². PERIOD OF RECORD. -- October 1991 to September 1993, October 1994 to current year. GAGE.--Water-stage recorder. Elevation of gage is 9,380 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Natural regulation by many lakes upstream from station. Diversions for mining operations upstream from station. However, these diversions are returned to the creek upstream of the gage. Mine drainage contributes considerable amounts of water to the creek. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES OUTSIDE PERIOD OF RECORD.--A major flood occurred October 5, 1911. A more recent flood occurred June 6, 1978, when Lake Emma (6.5 mi northeast of Silverton) was undermined by mining operations, and released a large quantity of water into the headwaters of Cement Creek. Discharge not determined. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DISCHAR | GE, CUBI | C PEEI PER | | MEAN VA | LUES | 1999 10 | PERIEMBE | R 2000 | | | |---|--------------------------------------|--|--|--|---|--------------------------------------|---|--|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e22
e21
e20
e19
e19 | 16
16
15
15 | 14
14
14
e13
e12 | | e10
e10 | e10
e11
e11
e10
e11 | 13
13
13
15 | 65
95
126
145
150 | 141
121
117
112
100 | 27
27
26
24
23 | 15
15
16
16
15 | 19
21
18
18
17 | | 6
7
8
9
10 | e19
20
20
20
20
19 | 15
15
15
15
14 | e12
e13
e13
e12
e13 | e12 | e9.6
e9.4
e9.6
e10 | e11
e12
e12
e13
e13 | 22
25
27
34
35 | 136
126
127
103
105 | 96
96
92
96
80 | 23
22
22
23
22 | 15
14
14
15
15 | 21
19
21
20
19 | | 11
12
13
14
15 | 19
18
18
18 | 15
14
14
14
14 | e13
e12
e11
e12
e13 | e14
e14
e14
e14
e13 | e10
e9.4
e10
e10
e10 | e13
e12
e13
e13
e13 | 29
30
39
39
31 | 112
98
85
75
73 | 73
68
65
63
61 | 23
22
20
21
21 | 15
15
16
15
18 | 18
18
17
17
16 | | 16
17
18
19
20 | 18
17
17
17
17 | 14
14
14
14 | e15
e16
e15
e13
e13 | e10
e10 | e10
e10
e11
e11
e9.6 | 13
13
13
12
13 | 27
39
41
31
37 | 84
82
66
59
70 | 58
50
47
45
42 | 26
25
22
20
20 | 16
16
19
20
17 | 16
16
17
16
16 | | 21
22
23
24
25 | | 14
14
14
14 | | e8.4
e9.4 | | | 65 | 95
129
172
202
165 | 39
37
37
35
33 | 19
18
18
18
17 | 18
18
17
17
22 | 16
20
18
18
17 | | 26
27
28
29
30
31 | 16
16
16
16
16
16 | 14
14
14
14
14 | e14
e14
e15
e19
e26
e16 | e10
e10
e10
e8.8
e8.0
e7.6 | e10
e9.6
e9.4
e9.8 | 13
15
15
15
15
14 | 81
105
108
90
66 |
117
119
150
185
192
172 | 33
33
31
29
28 | 20
18
17
16
16 | 24
21
29
21
23
19 | 17
16
16
18
17 | | TOTAL
MEAN
MAX
MIN
MED
AC-FT | | | | 364.4
11.8
21
7.6
10
723 | 291.4
10.0
11
8.8
10
578 | | 1264
42.1
108
13
36
2510 | 3680
119
202
59
117
7300 | 1958
65.3
141
28
60
3880 | 652
21.0
27
16
21
1290 | 546
17.6
29
14
16
1080 | 533
17.8
21
16
18
1060 | | STATIST | CICS OF MO | NTHLY MEA | N DATA F | OR WATER Y | TEARS 1992 | - 2000, | BY WATER Y | TEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 19.5
28.9
1998
14.0
1992 | 16.3
19.8
1999
13.3
1992 | 13.8
15.6
1995
10.6
1992 | 12.7
15.8
1995
8.63
1992 | 13.1
17.8
1995
9.91
1993 | 16.2
22.7
1995
12.7
2000 | 29.3
42.1
2000
22.6
1998 | 104
145
1996
57.2
1995 | 145
263
1995
65.3
2000 | 65.6
149
1995
21.0
2000 | 29.3
50.7
1999
17.6
2000 | 22.9
34.6
1999
17.5
1996 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WAT | ER YEAR | | WATER YEA | ARS 1992 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
INSTANT
ANNUAL
10 PERC
50 PERC | | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 15991.1
43.8
206
e8.2
11
31720
124
20
13 | Jun 17
Jan 25
Jan 23 | | 11109.8
30.4
202
e7.6
9.0
252
2.12
22040
83
16
10 | May 24
Jan 31
Jan 26
May 29
May 29 | | 40.7
56.3
30.4
385
e7.5
8.4
471
2.85
29460
106
19 | Jun 1
Jan
Dec 3
Jun 1
Jun 1 | 1995
2000
6 1995
2 1992
30 1991
4 1995
4 1995 | e Estimated. #### 09359010 MINERAL CREEK AT SILVERTON, CO LOCATION.--Lat $37^{\circ}48^{\circ}10^{\circ}$, long $107^{\circ}40^{\circ}20^{\circ}$, in $NW^{1}/_{4}NE^{1}/_{4}$ sec.19, T.41 N., R.7 W., San Juan County, Hydrologic Unit 14080104, on right bank at southwest end of Greene Street at abandoned bridge crossing Mineral Creek, 300 ft downstream from U. S. Highway 550 crossing Mineral Creek, 1,400 ft upstream from mouth, and 0.5 mi southwest of Silverton. DRAINAGE AREA. -- 52.5 mi². PERIOD OF RECORD. -- October 1991 to September 1993, October 1994 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 9245.98 ft above sea level, from San Juan County bench mark. REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural regulation by many lakes upstream from station. Diversions upstream from Mineral Creek drainage to Uncompander River drainage consists of 100 to 200 acre-feet per year through Red Mountain Ditch and 400 to 500 acre-feet per year through Carbon Lake Ditch. City of Silverton diverts one water from Bear Creek (tributary) for municipal use. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum flood known occurred October 5, 1911. An indirect determination of peak flow for flood of September 5, 1970, was run in very close proximity to present site, discharge, 3070 ft³/s, gage height not determined. | | | DISCHAR | GE, CUBI | C FEET PER | | NATER YE
MEAN VA | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--------------------------------------|--|--|---|--------------------------------------|--|--|--|------------------------------------|--|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 71
68
65
63
62 | 39
38
37
37
36 | e34
e34
e34
e32
e29 | e32
e30
e29
e36
e34 | e21
e21
e21
e21
e20 | e20
e20
e20
e20
e21 | e27
e26
e26
e28
e32 | 132
174
235
287
331 | 456
385
375
363
313 | 95
93
87
81
76 | 33
33
35
33
32 | 57
62
54
48
46 | | 6
7
8
9 | 62
62
61
58
55 | 36
36
35
35
35 | e30
e32
e33
e31
e30 | e48
e45
e36
e29
e30 | e20
e20
e21
e22
e21 | e22
e23
e24
e24
e24 | e37
e44
e53
e60
e68 | 323
289
297
219
208 | 304
325
297
329
251 | 73
69
66
79
75 | 31
30
29
29
30 | 65
65
69
77
62 | | 11
12
13
14
15 | 53
52
50
49
48 | 34
34
34
34
33 | e32
e29
e27
e29
e32 | e30
e31
e32
e30
e28 | e20
e20
e20
e21
e20 | e24
e23
e24
e24
e24 | e76
e67
e72
81
64 | 229
203
169
152
146 | 237
225
217
222
221 | 68
65
60
67
73 | 29
29
30
32
34 | 54
49
45
41
38 | | 16
17
18
19
20 | 47
43
44
44 | 33
33
32
32
33 | e34
e37
e38
e34
e31 | e22
e22
e22
e22
e22 | e20
e21
e22
e20
e20 | e25
e24
e24
e25
e25 | 56
68
79
63
62 | 171
175
140
129
142 | 197
165
147
158
150 | 94
84
70
61
54 | 33
34
47
83
55 | 37
35
38
35
33 | | 21
22
23
24
25 | 43
42
42
41
41 | e34
e36
e37
e38
e38 | e33
e36
e34
e35
e36 | e21
e20
e19
e19
e21 | e21
e22
e22
e22
e22 | e24
e24
e24
e25
e25 | 77
78
75
90
107 | 202
318
499
610
493 | 141
129
129
121
118 | 49
46
44
42
41 | 48
48
42
40
48 | 33
47
41
41
39 | | 26
27
28
29
30
31 | 40
40
39
40
38
39 | e38
e38
e37
e36
e36 | e35
e34
e35
e37
e48
e58 | e22
e22
e21
e18
e17
e19 | e20
e19
e19
e20 | e26
e27
e28
e28
e28
e27 | 133
176
192
170
136 | 322
312
484
653
633
571 | 119
115
109
106
100 | 42
40
38
36
35
34 | 63
54
77
61
75
65 | 37
36
36
41
44 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1546
49.9
71
38
3070 | 1064
35.5
39
32
2110 | 1063
34.3
58
27
2110 | 829
26.7
48
17
1640 | 599
20.7
22
19
1190 | 746
24.1
28
20
1480 | 2323
77.4
192
26
4610 | 9248
298
653
129
18340 | 6524
217
456
100
12940 | 1937
62.5
95
34
3840 | 1342
43.3
83
29
2660 | 1405
46.8
77
33
2790 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 51.8
96.4
1998
28.3
1992 | 34.0
46.9
1998
24.7
1992 | 26.1
34.3
2000
18.3
1992 | 21.6
27.1
1995
13.4
1992 | 20.6
29.5
1995
14.7
1992 | 25.4
36.1
1995
18.4
1992 | 52.5
77.4
2000
35.4
1998 | 238
337
1996
96.5
1995 | 428
635
1997
217
2000 | 255
540
1995
62.5
2000 | 127
260
1999
43.3
2000 | 80.6
147
1999
46.8
2000 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEN | NDAR YEAR | F | OR 2000 WAT | TER YEAR | | WATER YEA | ARS 1992 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | | AN
AN
N
MINIMUM
AK FLOW
AK STAGE
C-FT) | | 54021
148
819
e12
15
107200
408
47
19 | Jun 28
Jan 25
Mar 6 | | 28626
78.2
653
e17
20
979
2.95
56780
198
38
21 | May 29
Jan 30
Jan 28
May 29
May 29 | | 114
147
78.2
964
e12
13
1670
3.41
82400
319
42
20 | Jan
Jan 1
Jun 1 | 1999
2000
4 1997
2 1992
2 1992
5 1995
5 1995 | e Estimated. #### 09359020 ANIMAS RIVER BELOW SILVERTON, CO LOCATION.--Lat $37^{\circ}47^{\circ}25^{\circ}$, long $107^{\circ}40^{\circ}01^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.20, T.41 N., R.7 W., San Juan County, Hydrologic Unit 14080104, on right bank 500 ft upstream from Durango-Silverton Railroad crossing Animas River, 0.7 mi downstream from Mineral Creek, and 1.1 mi south of Silverton. DRAINAGE AREA.--146 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1991 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 9,200 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. Natural regulation by many lakes upstream from station. Diversions from Animas River and Mineral Creek drainages through Red Mountain, Carbon Lake and Mineral Point ditches amount to 600 to 1100 acre-feet per year. City of Silverton diverts some water for municipal use from Bear Creek and Boulder Creek, both tributaries upstream. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum flood known occurred October 5, 1911. | | | DISCHAR | GE, CUBI | C PEET PEI | R SECOND, V
DAILY | MEAN VA | | R 1999 TO | SEPTEMBE | SR 2000 | | | |-------------|------------------------|-----------------------------|------------------------------|-------------------------------|---------------------------------|---------------------------------
---------------------------------|-------------------|--------------|---|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 199 | 110 | 70 | 61 | e45 | e42 | 56 | 390 | 1270 | 272 | 105 | 149 | | 2 | 190 | 107 | 71 | 60 | e45 | e42 | 56 | 481 | 970 | 268 | 105 | 160 | | 3
4 | 183
174 | 104
102 | 70 | e60 | e45 | e40 | 56
59 | 655
735 | 986
1040 | 248
229 | 109
108 | 147
137 | | 5 | 169 | 102 | 70
71
70
e70
e62 | e78 | e45
e45
e45
e44
e42 | e42
e42
e40
e40
e42 | 72 | 806 | 888 | 211 | 108 | 135 | | _ | 1.00 | | - 64 | | | | 90 | 720 | 001 | 201 | 99 | 176 | | 6
7 | 168
166 | 100
99 | e64
e68 | e105
e98 | e42 | e44
48 | 104 | 732
642 | 881
910 | 201
194 | 96 | 176
170 | | 7 | 166 | 99
99
99
99 | e68
e68
70
e65 | 98 | e42
e42
45 | 48 | 104 | 612 | 910 | 194 | 96 | 170 | | 8 | 163 | 99 | 70 | e75
e60 | e42 | 47 | 124 | 692 | 879 | 186 | 95 | 181 | | 9
10 | 156
149 | 99
95 | e65
e64 | e60
e64 | 45
e42 | 48
48 | 169 | 692
549
488 | 936
823 | 209
193 | 95
96 | 187
162 | | 11 | 143 | 94 | 70 | -60 | - 40 | - 40 | 148 | 558 | 795 | 182 | 96 | 150 | | 11
12 | 137 | 94 | e62 | e62
63 | e40
e40 | e48
46 | 155 | 491 | 795
765 | 182 | 98 | 142 | | 13 | 136 | 91 | e57 | e68 | e42 | 47 | 196 | 396 | 717 | 172 | 103 | 134 | | 14 | 142 | 90 | e60 | e65 | 43 | 49 | 212 | 386 | 722 | 175 | 104 | 128 | | 15 | 140 | 89 | e65 | e60 | e42 | 47 | 183 | 362 | 715 | 181 | 108 | 124 | | 16 | 139 | 87 | e74 | 45 | e42 | 50 | 164 | 399 | 659 | 220 | 106 | 119 | | 17
18 | 136
137 | 88
89 | e80
e80 | 45
45 | e42 | 48
49 | 204
233 | 406
356 | 546
484 | 214
181 | 107
134 | 116
121 | | 19 | 139 | 86 | e66 | 44 | e42 | e50 | 190 | 329 | 513 | 158 | 185 | 114 | | 20 | 132 | 86 | e66 | 45
44
45 | 45
e42
e40 | 49 | 191 | 350 | 475 | 149 | 146 | 108 | | 21 | 132 | 85 | e70 | 45
45
e38
e40
e45 | e42
45
e45
45
e46 | e48 | 235 | 458 | 437 | 141 | 140 | 109 | | 22 | 130 | 85
83 | e78 | 45 | 45 | e48
49
49
51
53 | 235
243
240
277
321 | 704 | 392 | 135 | 151 | 142 | | 23 | 128 | e81 | e72 | e38 | e45 | 49 | 240 | 1220 | 387 | 129 | 142 | 127 | | 24
25 | 125
122 | 80
e80 | e74
e78 | e40 | 45
e46 | 51
51 | 277 | 1760
1390 | 357
346 | 126
127 | 142
150 | 126
120 | | | | | | | | | | | | | | | | 26 | 119 | 84 | e74 | 46 | e40
e38
e40
e42 | 54 | 385
493
549
504
422 | 850 | 347 | 133 | 160 | 115 | | 27
28 | 119
117 | 82
77 | e70 | 46 | e38 | 58
61 | 493
540 | 888
1290 | 343
324 | 127
119 | 152
180 | 113
112 | | 29 | 118 | 76 | 71 | e38 | e42 | 59 | 504 | 1850 | 306 | 113 | 152 | 124 | | 30 | 110 | 74 | 106 | e34 | | 59 | 422 | 1810 | 290 | 111 | 177 | 127 | | 31 | 109 | 84
82
77
76
74 | 143 | e38 | | 58 | | 1580 | | 109 | 157 | | | TOTAL | 4427 | 2710
90.3 | 2264 | 1730 | 1235 | 1523 | 6484
216 | 24003 | 19503 | 5395 | 3901 | 4075 | | MEAN | 143 | 90.3 | 73.0 | 55.8 | 42.6 | 49.1 | 216 | 774 | 650 | 174 | 126 | 136 | | MAX
MIN | 199
109 | 110
74 | 143
57 | 105
34 | 46
38 | 61
40 | 549
56 | 1850
329 | 1270
290 | 272
109 | 185
95 | 187
108 | | AC-FT | 8780 | 5380 | 4490 | 3430 | 2450 | 3020 | 12860 | 47610 | 38680 | 10700 | 7740 | 8080 | | CTATT CT | TCC OF MC | איייטדע אביא | אז דאתא בי | י מידיגעו מ | YEARS 1992 | _ 2000 | DV WATED | VEND (MV) | MEAN
MAX | 141
270 | 94.3 | 71.1 | 62.6
79.8 | 59.6
85.6 | 72.5
105 | 160
216 | 673
1002 | 1162
1647 | 583
1393 | 279
520 | 198
336 | | (WY) | 1998 | 1998 | 1998 | 1998 | 1995 | 1995 | 2000 | 1996 | 1997 | 1995 | 1995 | 1999 | | MIN | 82.0 | 136
1998
70.9
1992 | 52.5 | 40.2 | 42.6 | 49.1 | 122 | 301 | 650 | 174 | 116 | 129 | | (WY) | 1992 | 1992 | 1992 | 1992 | 2000 | 2000 | 1993 | 1995 | 2000 | 2000 | 1996 | 1996 | | SUMMARY | STATISTI | CS | FOR | 1999 CALEI | NDAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YEA | RS 1992 | - 2000 | | ANNUAL | TOTAL | | | 124991 | | | 77250 | | | | | | | ANNUAL | | | | 342 | | | 211 | | | 297 | | | | | ANNUAL M | | | | | | | | | 395 | | 1997 | | | ANNUAL ME
DAILY ME | | | 2030 | Jun 27 | | 1850 | Maxr 20 | | 211
2350
e34
39
2970
a4.89
215000 | ,T::1 1 | 2000 | | | DAILY MEA | | | e36 | Jan 25 | | e34 | Jan 30 | | e34 | Jan 3 | 30 2000 | | ANNUAL | SEVEN-DAY | MINIMUM | | 41 | Mar 8 | | 41 | Feb 26 | | 39 | Jan 1 | 8 1992 | | | ANEOUS PE | | | | | | 2710 | May 29 | | 2970 | Jul | 9 1995 | | | ANEOUS PE
RUNOFF (A | CAK STAGE | | 247900 | | | 4.20
153200 | л мау 29 | | a4.89
215000 | Jul | 9 1995 | | | ENT EXCEE | | | 931 | | | 523 | | | 823 | | | | 50 PERC | ENT EXCEE | EDS | | 134 | | | 113 | | | 118 | | | | 90 PERC | ENT EXCEE | EDS | | 54 | | | 45 | | | 57 | | | e Estimated. a Maximum gage height, 4.90 ft, Jun 1, 1997. ### 09359020 ANIMAS RIVER BELOW SILVERTON, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1993 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE NOV 30 | TIME | ENST. C. EUBIC CO FEET DO PER AI BECOND (UI 00061) (0 | PE- WAR PE- WAR PE- WAR PE- WAR PE- WAR PE- | TAND-
ARD
NITS) (| EMPER-
ATURE
WATER
DEG C)
00010) | D
SO
(M | GEN, TC
IS- (P
LVED 2
G/L) C2
300) (00 | MG/L
AS
ACO3)
D900) (| CIDITY
(MG/L
AS
CACO3)
00435) | DIS
SOI
(MC
AS | CIUM
S-
LVED S
S/L
CA) A | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
00925) | |------------------|---|---|---|---|--|--------------------------------------|--|---|---|--------------------------------|--|--| | 13 | 1100 | 166 | 373 | 5.4 | 3.2 | 9 | .9 | 160 | | 58. | .3 : | 3.97 | | MAY
24 | 0800 1 | .570 | 116 ′ | 7.0 | 2.9 | 10 | .0 | 49 | | 17. | .3 | 1.31 | | AUG
09 | 1045 | 94 | 473 | 5.6 | 10.2 | 8 | .2 | 210 | 6.0 | 77. | .7 | 1.82 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS IT
FIELD | LINI WAT TOT FIE S MG/L CAC | TY
DIS
IT
LD
AS | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS-
SOLVE
(MG/L
AS CL | RID
DI
D SOL
(MG
) AS | E,
S-
VED
(/L
F) | SILICA
DIS-
SOLVEI
(MG/L
AS
SIO2)
(00955 | D . | | NOV
30
APR | 3.4 | .1 | .9 | 7 | 6 | | 260 | 1.2 | .8 | l | 15.7 | | | 13 | 2.8 | .1 | .8 | 10 | 8 | | 160 | 1.5 | .5 | | 12.4 | | | MAY
24
AUG | .9 | .1 | .6 | 15 | 12 | | 35.5 | .3 | . 2 | ! | 4.9 | | | 09 | 2.8 | .1 | .8 | 10 | 8 | | 212 | .8 | .7 | , | 13.5 | | | DATE | AT 180 | CONSTI-
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | SOLVED
(TONS
PER
AC-FT) | DIS-
SOLVE
(TONS
PER
DAY) | TOT
D REC
ERA
(UG
AS | M,
AL
OV-
BLE
/L
AL) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | CADMIU
DIS-
SOLVE
(UG/L
AS CD | REC
D ERA
(UG
) AS | AL
OV-
BLE
(/L
CU) | COPPER
DIS-
SOLVEI
(UG/L
AS CU
(01040 |) | | NOV
30 | 412 | 389 | .56 | 83.3 | 259 | 0 | 213 | 1.9 | E1 | .8 | 8 | | | APR
13 | 272 | 249 | .37 | 122 | 178 | 0 | 65 | 3.6 | 4 | :3 | 18 | | | MAY
24 | 78 | 69 | .11 | 331 | 194 | 0 | 31 | .8 | 4 | :5 | 6 | | | AUG
09 | 355 | 320 | .48 | 90.5 | | | 28 | 1.2 | E1 | 4 | 4 | | | DATE | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | IRON, DIS- SOLVED | LEAD,
DIS-
SOLVED
(UG/L
AS PB) | MANGA
NESE,
TOTAL
RECOV
ERABL
(UG/L
AS MN | MAN
NES
- DI
E SOL
(UG | GA-
E,
S-
VED
(/L
MN) | MERCURY
DIS-
SOLVED
(UG/L
AS HG) | SELE-
NIUM,
DIS-
SOLVE
(UG/L
AS SE | SILV
DI
D SOL
(UG | ER,
S-
VED
(/L
AG) | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN |) | | NOV
30 | 3700 | 2310 | <1 | 1330 | 129 | 0 | <.2 | <2.4 | <1 | - | 491 | | | APR
13 | 3750 | 1630 | <1 | 1310 | 131 | 0 | <.2 | <2.4 | <1 | | 690 | | | MAY 24 | 6080 | 100 | <1 | 689 | 20 | | <.2 | <2.4 | <1 | | 188 | | | AUG
09 | 2590 | 1130 | <1 | 1040 | 98 | 5 | <.2 | <2.4 | <1 | | 373 | | ## 09359020 ANIMAS RIVER BELOW SILVERTON, CO--Continued # MISCELLANEOUS FIELD MEASUREMENTS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE T | IME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------|------|---|--|---
--------|-----|---|--|---| | OCT | | | | | JUL | | | | | | 13 | 1115 | 130 | 427 | 4.7 | 19 | 300 | 163 | 360 | 14.6 | | APR | | | | | | | | | | | 24 | 1520 | 271 | 324 | 10.4 | | | | | | #### 09361500 ANIMAS RIVER AT DURANGO, CO LOCATION.--Lat $37^{\circ}16^{\circ}45^{\circ}$, long $107^{\circ}52^{\circ}47^{\circ}$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.20, T.35 N., R.9 W., La Plata County, Hydrologic Unit 14080104, on left bank at abandoned power plant at Durango, 0.8 mi upstream from Lightner Creek. DRAINAGE AREA. -- 692 mi². PERIOD OF RECORD.--June to December 1895, April 1896 to December 1898, April 1899 to December 1900, March to May 1901, April to November 1902, March to April 1903 (gage heights only, erroneously stated as discredited in WSP 1563), May to October 1903, July 1904 to December 1905, January to December 1910 (gage heights only), January to September 1911, January 1912 to current year. Monthly or yearly discharge only for some periods, published in WSP 1313. REVISED RECORDS.--WSP 764: Drainage area. WSP 929: 1927(M). WSP 1243: 1911, 1918(M). WSP 1563: 1911-25 (monthly figures only). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 6,501.57 ft above sea level. See WSP 1713 or 1733 for history of changes prior to Mar. 2, 1921. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 4,000 acres upstream from station. Natural regulation by many lakes and regulation for power upstream from station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1885, that of Oct. 5, 1911. | DATE | | | DISCIM | GE, CODI | C PEET FE | DAILY | MEAN VA | | SK 1999 10 | OBF TEMDI | SIC 2000 | | | |--|-----------|-----------|------------|-----------|------------|------------|---------|-----------|-------------|-----------|-----------------|----------|--------| | 2 514 259 204 181 180 171 341 1670 2220 491 230 363 3 473 253 205 1717 185 169 325 2200 1950 447 224 364 4 457 245 202 229 184 171 369 2500 1860 458 222 336 5 459 242 178 298 162 182 602 3130 1550 409 1988 317 7 455 233 193 278 el65 202 662 3130 1550 489 1988 317 8 453 242 178 298 162 182 602 3130 1550 409 1988 317 8 453 229 197 193 el75 177 767 2880 1540 374 193 403 10 404 238 193 278 el65 202 662 2730 1580 385 185 411 8 453 229 197 193 el75 177 767 2880 1540 374 193 403 11 99 2 230 188 199 el65 202 662 2730 1580 385 185 411 12 396 224 179 172 el77 2017 2017 2017 2017 2017 2017 2017 20 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 | 1 | 536 | 250 | 201 | 197 | 183 | 169 | 384 | 1550 | 2560 | 531 | 230 | 378 | | 4 | | | | | | | | | | | | | | | The color of | | | | | | | | | | | | | | | 6 453 242 178 298 162 182 602 3130 1550 409 198 331 7 455 233 197 278 e165 202 687 2730 150 369 381 183 411 8 9 443 223 197 172 e175 214 789 260 1400 371 188 395 10 406 234 179 172 e175 214 789 260 1400 371 188 395 11 392 230 198 199 e165 202 919 260 1400 371 188 395 11 392 230 198 199 e165 202 919 260 1200 364 183 343 13 366 231 175 193 e170 181 81 81 150 1200 364 183 343 13 366 221 175 193 e170 181 81 81 150 1200 364 183 343 13 366 221 175 193 e170 181 81 81 150 1200 364 188 343 14 302 216 177 197 187 e175 201 1040 1400 1120 345 181 343 15 352 208 169 183 e175 221 1994 1300 1050 66 226 288 16 346 215 206 187 e183 e175 221 994 1300 1050 66 226 288 16 346 215 206 187 e185 229 777 1520 292 383 247 227 17 335 222 201 175 190 155 218 834 1010 791 331 408 272 18 338 222 201 175 190 155 218 834 1010 791 331 408 272 21 318 199 187 189 157 258 918 1150 788 314 340 272 21 318 129 187 188 166 251 288 834 1010 791 331 408 272 21 318 290 120 175 190 155 218 834 1010 791 331 408 272 21 318 290 120 175 183 166 251 288 834 1010 791 331 408 272 22 23 318 200 21 175 190 155 218 834 1010 791 331 408 272 21 318 290 120 146 168 251 997 1500 661 225 333 278 22 318 200 21 175 189 157 258 918 1150 788 314 344 262 277 24 25 294 193 207 187 186 251 188 186 251 997 1500 661 225 333 278 24 287 297 295 191 154 183 249 997 1500 661 225 231 228 25 294 193 207 187 186 266 1170 3420 669 277 312 287 26 287 203 184 200 175 268 1320 2370 620 270 317 288 27 278 219 186 187 187 188 190 187 188 189 200 884 180 180 180 180 180 180 180 180 180 180 | | | | | | | | | | | | | | | The color of | | | | | | | | | | | | | | | 8 453 229 197 193 e175 197 767 2880 1540 374 193 403 90 4443 238 190 176 e180 211 789 2520 1660 364 189 431 10 406 234 179 172 e175 214 928 2080 1490 371 188 395 11 393 220 198 199 e165 2024 928 2080 1490 371 188 395 11 393 220 198 199 e165 202 1919 2080 1490 371 188 395 11 393 220 198 199 e165 202 1919 2080 1490 371 188 395 11 395 208 189 211 170 193 41 81 810 2150 1210 354 188 343 343 341 322 11 370 193 4170 1181 88 31710 1120 344 188 343 343 341 352 208 169 183 e175 221 994 1300 1050 366 226 288 169 187 e180 229 811 1350 1030 350 234 277 177 325 212 208 169 e185 229 779 1520 902 383 247 251 193 313 319 217 218 193 6180 228 795 1110 794 363 388 290 228 203 212 189 189 189 228 795 1110 794 363 388 290 223 212 189 189 189 228 395 1110 794 363 388 290 223 212 189 189 189 278 895 110 794 363 388 290 223 315 200 122 162 189 250 907 2510 653 267 333 278 22 22 318 200 210 188 186 251 983 1650 681 295 333 278 22 22 279 187 186 226 1983 460 202 270 317 288 212 287 297 195 191 154 183 249 994 3400 791 328 321 292 25 294 193 207 187 186 266 1170 3420 649 271 312 287 286 287 293 184 200 175 186 192 189 250 907 2510 653 267 335 321 292 25 294 193 207 187 186 266 1170 3420 649 271 312 287 286 287 203 204 166 173 392 2130 2960 584 260 353 277 288 219 186 192 154 189 296 192 150 653 267 335 321 292 25 294 193 207 187 186 192 154 189 329 210 170 622 281 319 276 287 277 28 219 186 192 154 189 296 192 170 120 622 281 319 276 28 277 208 204 187 188 370 2160 2170 623 274 327 274 29 274 203 204 166 173 392 2130 2960 584 260 353 277 328 221 192 190 175 268 130 2370 620 270 317 288 321 292 28 274 203 204 166 173 392 2130 2960 584 260 353 277 318 MIN 253 193 155 134 154 169 325 190 1970 1970 1920 622 281 319 276 282 277 288 219 186 192 190 195 236 988 2169 1155 383 193 195 190 394 260 246 246 271 312 287 288 219 193 195 199 193 319 319 190 394 2160 2460 250 351 4413 441 233 287 288 289 289 289 289 289 289 289 289 289 | | | | | | | | | | | | | | | 9 443 238 190 176 e180 211 789 2520 1660 364 189 431 10 406 234 179 172 e175 214 928 2080 1490 371 188 395 11 392 230 198 199 e165 202 919 2260 1280 366 187 358 12 396 231 170 193 e170 181 810 2150 1210 354 188 343 13 381 221 155 197 e170 181 880 1710 1210 354 188 343 14 362 216 171 187 e175 221 188 11 180 110 110 344 211 308 15 352 208 169 163 e175 221 994 1300 1050 366 226 288 16 346 215 206 187 e180 229 811 1350 1030 350 234 277 17 335 212 208 169 1869 e185 229 779 1520 938 324 277 18 319 2217 218 194 e190 228 997 1290 785 402 285 253 18 319 2217 218 194 e190 228 997 1290 785 402 285 253 18 319 2217 18 194 e190 228 997 1290 785 402 285 253 18 319 323 212 180 198 180 207 975 1110 794 363 388 290 20 322 201 175 190 155 218 834 1010 791 331 408 272 21 318 199 187 189 157 258 918 1150 738 314 344 263 22 318 200 210 188 186 251 983 1650 681 295 333 278 23 315 200 192 162 189 250 907 2510 653 227 335 221 24 297 195 191 154 183 249 994 3460 703 258 321 292 25 294 193 207 187 186 266 1170 3420 649 771 312 287 26 287 203 184 200 175 268 1320 2370 620 270 317 288 27 278 219 186 192 154 183 249 994 3460 703 258 321 292 28 279 195 191 154 183 249 994 3460 703 258 321 292 295 294 193 207 187 186 266 1170 3420 649 271 312 287 26 287
203 184 200 175 268 1320 2370 622 281 319 276 27 278 219 186 192 154 183 249 994 3460 703 258 321 292 28 294 193 207 187 186 266 1170 3420 649 271 312 287 31 252 394 194 186 192 154 183 249 994 3460 703 258 321 292 295 294 193 207 187 186 266 1170 3420 649 271 312 287 26 287 203 184 200 175 268 1320 2370 622 281 319 276 31 253 192 137 376 170 970 970 970 970 970 970 970 970 970 9 | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 12 396 231 170 193 e170 181 810 2150 1210 354 188 343 133 381 227 155 192 e170 181 883 1710 1120 348 200 324 14 362 216 171 187 e175 201 1040 1460 1120 348 200 324 227 208 169 183 e175 221 994 1300 1050 366 226 288 288 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 | 10 | 406 | | 179 | 172 | | 214 | 928 | | | | 188 | 395 | | 12 396 231 170 193 e170 181 810 2150 1210 354 188 343 133 381 227 155 192 e170 181 883 1710 1120 348 200 324 14 362 216 171 187 e175 201 1040 1460 1120 348 200 324 227 208 169 183 e175 221 994 1300 1050 366 226 288 288 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 288 289 | 11 | 392 | 230 | 198 | 199 | e165 | 202 | 919 | 2260 | 1280 | 366 | 187 | 358 | | 13 381 227 155 192 e170 181 883 1710 1120 348 200 324 14 14 362 216 171 187 e175 221 1040 1460 1120 345 221 301 15 352 208 169 183 e175 221 994 1300 1050 366 226 288 16 326 288 16 328 215 208 169 183 e175 221 994 1300 1050 366 226 288 16 328 215 208 169 183 e175 221 994 1300 1050 366 226 288 16 328 215 22 209 1679 e180 229 811 1350 1030 350 234 227 221 18 318 199 187 48 e180 229 875 1100 795 4303 247 251 18 233 217 180 198 e180 229 875 1100 795 4303 247 251 18 233 217 180 198 e180 229 875 1100 795 4303 287 251 251 251 251 251 251 251 251 251 251 | | | | | | | | | | | | | | | 16 346 215 208 169 183 e175 221 994 1300 1050 366 226 288 16 346 215 206 187 e180 229 811 1350 1030 350 234 277 251 17 335 212 208 169 e185 229 779 1520 992 383 247 251 18 319 217 218 194 e190 228 997 1290 785 402 285 253 19 323 212 180 198 180 207 975 1110 794 363 388 290 20 322 201 175 190 155 218 834 1010 791 331 408 272 21 318 199 187 199 157 258 918 1150 738 314 344 263 22 318 290 210 188 186 251 983 1650 681 295 333 273 23 315 200 210 188 186 251 983 1650 681 295 333 273 24 213 18 290 191 182 189 250 907 2510 653 267 333 273 25 294 193 207 187 186 266 1170 3420 649 271 311 287 26 287 203 184 200 175 268 1320 2370 620 270 317 288 27 278 219 186 192 154 291 1720 1920 622 281 319 276 28 277 288 219 186 192 154 291 1720 1920 622 281 319 276 28 277 208 204 166 173 392 2130 2960 584 260 353 272 29 274 203 204 166 173 392 2130 2960 584 260 353 272 29 274 203 204 166 173 392 2130 2960 584 260 353 272 30 272 203 203 134 376 1740 3120 558 238 361 286 31 253 192 137 394 2920 5 228 413 TOTAL 11360 6617 5943 5876 5081 7317 28730 67240 34653 10837 8388 9331 MAN 356 259 218 298 190 394 2160 3460 3460 531 413 431 MAN 186 251 192 190 1175 236 988 2169 1155 350 271 318 MAN 186 253 193 155 134 154 169 325 100 558 238 361 286 31 253 192 137 394 2920 5 228 413 TOTAL 11360 6617 5943 5876 5081 7317 28730 67240 34653 10837 8388 9353 MAN 253 193 155 134 154 169 325 100 558 228 185 251 AC-FT 22530 13120 11790 11660 1080 14510 5699 1340 0 6873 2879 1155 350 271 318 MAN 253 193 155 134 154 169 325 100 558 228 185 251 AC-FT 22530 13120 11790 11660 1080 14510 5699 1340 1971 1995 1999 1990 MIN 162 158 129 103 110 133 246 474 395 211 179 197 197 197 197 197 197 197 197 1 | 13 | | | 155 | 192 | | 181 | 883 | | | | | | | 16 | 14 | 362 | 216 | 171 | 187 | e175 | 201 | 1040 | 1460 | 1120 | 345 | 211 | 301 | | 17 | 15 | 352 | 208 | 169 | 183 | e175 | 221 | 994 | 1300 | 1050 | 366 | 226 | 288 | | 18 | 16 | 346 | 215 | 206 | 187 | e180 | 229 | 811 | 1350 | 1030 | 350 | 234 | 277 | | 19 | 17 | 335 | 212 | 208 | 169 | e185 | 229 | 779 | 1520 | 902 | 383 | 247 | 251 | | 20 | 18 | 319 | 217 | 218 | 194 | e190 | 228 | 997 | 1290 | 785 | 402 | 285 | 253 | | 21 318 199 187 189 157 258 918 1150 738 314 344 263 22 318 200 210 188 186 251 983 1650 681 295 333 278 233 235 200 192 162 189 250 997 2510 653 267 335 321 292 24 297 195 191 154 183 249 994 3460 703 258 321 292 252 294 193 207 187 186 266 1170 3420 649 271 312 287 287 278 299 274 203 184 200 175 268 1320 2370 620 270 317 288 27 278 219 186 192 154 291 1720 1920 662 281 319 276 287 278 279 274 203 204 187 158 370 2160 2170 623 274 327 274 299 274 203 204 166 173 392 2130 2960 584 260 353 272 274 275 | 19 | 323 | 212 | 180 | 198 | 180 | 207 | 975 | 1110 | | 363 | 388 | 290 | | 22 318 200 210 188 186 251 983 1650 661 295 333 278 | 20 | 322 | 201 | 175 | 190 | 155 | 218 | 834 | 1010 | 791 | 331 | 408 | 272 | | 23 315 200 192 162 189 250 907 2510 653 267 335 321 292 | 21 | 318 | 199 | 187 | 189 | 157 | 258 | 918 | 1150 | 738 | 314 | 344 | 263 | | 24 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 26 287 203 184 200 175 268 1320 2370 620 270 317 288 27 278 219 186 192 154 291 1720 1920 622 281 319 276 28 277 208 204 187 158 370 2160 2170 623 274 327 274 29 274 203 204 166 173 392 2130 2960 584 260 353 272 30 272 203 203 134 376 1740 3120 558 238 361 286 31 253 192 137 394 2920 228 413 TOTAL 11360 6617 5943 5876 5081 7317 28730 67240 34653 10837 8388 9533 MEAN 366 221 192 190 175 236 958 2169 1155 350 271 318 MAX 536 259 218 298 190 394 2160 3460 2560 531 413 431 MIN 253 193 155 134 154 169 325 1010 558 228 185 251 AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 259 218 298 190 394 2160 325 1010 558 228 185 251 AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 298 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 1616 (WY) 1957 1935 1990 1933 1933 1990 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 38287 201575 ANNUAL MEAN 1047 551 826 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 38287 201575 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1047 502 13 134 Jan 30 94 Mar 2 1913 ANNUAL SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WAY 10700 Jun 19 1974 LOWEST ANNUAL MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SUMMARY WATER MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SUMMARY WATER MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SUMMARY WATER MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SUMMARY WATER MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SUMMARY WATER MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SUMMARY WATER MEAN 155 Dec 13 134 Jan 30 9 | | | | | | | | | | | | | | | 277 278 219 186 192 154 291 1720 1920 622 281 319 276 282 277 208 204 187 158 370 2160 2170 623 274 327 274 293 274 203
204 166 173 392 2130 2960 584 260 353 272 203 272 203 203 134 376 1740 3120 558 238 361 286 31 253 192 137 376 1740 3120 558 238 361 286 2 | 25 | 294 | 193 | 207 | 187 | 186 | 266 | 1170 | 3420 | 649 | 271 | 312 | 287 | | 28 277 208 204 187 158 370 2160 2170 623 274 327 274 29 274 203 204 166 173 392 2130 2960 584 260 353 272 30 272 203 203 134 376 1740 3120 558 238 361 286 31 253 192 137 394 2920 228 413 TOTAL 11360 6617 5943 5876 5081 7317 28730 67240 34653 10837 8388 9533 MEAN 366 221 192 190 175 236 958 2169 1155 350 271 318 MAX 536 259 218 298 190 394 2160 3460 2560 531 413 431 MIN 253 193 155 134 154 169 325 1010 558 228 185 251 AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1933 1930 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR (WATER YEAR STATISTICS FOR 1999 CALENDAR 1 | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | 30 | | | | | | | | | | | | | | | 31 253 192 137 394 2920 228 413 TOTAL 11360 6617 5943 5876 5081 7317 28730 67240 34653 10837 8388 9533 MEAN 366 221 192 190 175 236 958 2169 1155 350 271 318 MAX 536 259 218 298 190 394 2160 3460 2560 531 413 431 MIN 253 193 155 134 154 169 325 1010 558 228 185 251 AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1933 1990 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 382287 201575 826 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1047 551 826 HIGHEST DAILY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK STAGE 5.57 May 24 285000 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 2900 1530 2240 50 PERCENT EXCEEDS 2900 1530 2240 | | | | | | | | | | | | | | | TOTAL 11360 6617 5943 5876 5081 7317 28730 67240 34653 10837 8388 9533 MBAN 366 221 192 190 175 236 958 2169 1155 350 271 318 MAX 536 259 218 298 190 394 2160 3460 2560 531 413 431 MIN 253 193 155 134 154 169 325 1010 558 228 28 185 251 AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 (WY) 1957 1935 1990 1933 1933 1930 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR YEAR 1898 - 2000 ANNUAL MEAN 1047 551 826 1940 1947 1956 1956 1957 HIGHEST ANNUAL MEAN 1047 551 826 1940 1947 1949 1949 1949 1940 1941 1945 1949 1940 1945 1940 1945 1940 1945 1940 1945 1940 1947 1945 1940 1945 1940 1945 1940 1945 1940 1945 1940 1945 1940 1940 1957 1957 1935 1990 1933 1933 1930 1977 1977 1934 1934 1900 1956 1956 1956 1956 1956 1956 1956 1956 | | | | | | | | | | | | | | | MEAN 366 221 192 190 175 236 958 2169 1155 350 271 318 MAX 536 259 218 298 190 394 2160 3460 2560 531 413 431 MIN 253 193 155 134 154 169 325 1010 558 228 185 251 AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 18 | | | | | | | | | | | | | | | MAX 536 259 218 298 190 394 2160 3460 2560 531 413 431 MIN 253 193 155 134 154 169 325 1010 558 228 185 251 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | | | | | | | | MIN 253 193 155 134 154 169 325 1010 558 228 185 251 AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 1110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1933 1990 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL | | | | | | | | | | | | | | | AC-FT 22530 13120 11790 11660 10080 14510 56990 133400 68730 21500 16640 18910 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1898 - 2000, BY WATER YEAR (WY) MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1933 1990 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 382287 201575 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 302 1977 HIGHEST ANNUAL MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 59870 1978 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 457 278 344 | | | | | | | | | | | | | | | MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1933 1990 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 382287 201575 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1047 551 826 HIGHEST DAILLY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILLY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 39800 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 557 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 2900 1530 2240 50 PERCENT EXCEEDS 2900 1530 344 | | | | | | | | | | | | | | | MEAN 413 287 223 203 206 298 840 2303 2878 1216 595 467 MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1933 1990 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 382287 201575 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1047 551 826 HIGHEST DAILLY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILLY MEAN 155 Dec
13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 39800 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 557 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 2900 1530 2240 50 PERCENT EXCEEDS 2900 1530 344 | OMP MT OF | | | | OD 143 MMD | mana 1000 | 2000 | DIL HAMPE | (| | | | | | MAX 1866 814 412 326 352 844 1818 4791 5846 3057 1806 1709 (WY) 1942 1942 1973 1920 1916 1985 1920 1917 1995 1999 1970 MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1930 1990 1977 1977 1934 1934 1900 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1366 1917 LOWEST ANNUAL MEAN 155 Dec 13 3460 May 24 10700 Jun 19 1949 LOWEST DAILY MEAN 155 Dec 13 134 Jan 30 94 | SIAIISI | IICS OF M | JNIHLY MEA | AN DAIA F | OR WAIER | ILAKS 1898 | - 2000, | BY WAIER | K YEAR (WY) | | | | | | MY | | | | | | | | | | | | | | | MIN 162 158 129 103 110 133 246 474 395 211 179 161 (WY) 1957 1935 1990 1933 1933 1990 1977 1977 1934 1934 1930 1956 SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 382287 201575 826 1047 551 826 1917 1917 1917 1918 1919 1919 1919 1919 | | | | | | | | | | | | | | | MY | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1898 - 2000 ANNUAL TOTAL 382287 201575 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1366 1917 LOWEST ANNUAL MEAN 302 1977 HIGHEST DAILY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 3960 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 5.57 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 2900 1530 2240 50 PERCENT EXCEEDS 457 278 344 | | | | | | | | | | | | | | | ANNUAL TOTAL 382287 201575 ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1366 1917 LOWEST ANNUAL MEAN 302 1977 LOWEST ANNUAL MEAN 302 1977 LOWEST DAILY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 3960 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 5.57 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 2900 1530 2240 50 PERCENT EXCEEDS 457 278 344 | (WY) | 1957 | 1935 | 1990 | 1933 | 1933 | 1990 | 1977 | 1977 | 1934 | 1934 | 1900 | 1956 | | ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1366 1977 HIGHEST DAILLY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILLY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 3960 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 5.57 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 290 1530 2240 50 PERCENT EXCEEDS 457 278 344 | SUMMARY | STATIST: | ICS | FOR | 1999 CALE | NDAR YEAR | F | OR 2000 W | VATER YEAR | | WATER YE | ARS 1898 | - 2000 | | ANNUAL MEAN 1047 551 826 HIGHEST ANNUAL MEAN 1366 1977 HIGHEST DAILLY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILLY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 3960 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 5.57 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 290 1530 2240 50 PERCENT EXCEEDS 457 278 344 | ANNUAL | TOTAL | | | 382287 | | | 201575 | | | | | | | LOWEST ANNUAL MEAN HIGHEST DAILLY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILLY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 3960 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 5.57 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 99800 10 10 PERCENT EXCEEDS 2900 1530 598700 2240 50 PERCENT EXCEEDS 457 278 344 | | | | | | | | | | | 826 | | | | HIGHEST DAILY MEAN 4210 Jun 18 3460 May 24 10700 Jun 19 1949 LOWEST DAILY MEAN 155 Dec 13 134 Jan 30 94 Mar 2 1913 ANNUAL SEVEN-DAY MINIMUM 176 Dec 9 166 Feb 27 100 Dec 19 1917 INSTANTANEOUS PEAK FLOW 3960 May 24 a25000 Oct 5 1911 INSTANTANEOUS PEAK STAGE 5.57 May 24 11.00 Oct 5 1911 ANNUAL RUNOFF (AC-FT) 758300 399800 598700 10 PERCENT EXCEEDS 2900 1530 2240 50 PERCENT EXCEEDS 457 278 344 | HIGHEST | ANNUAL 1 | MEAN | | | | | | | | 1366 | | 1917 | | 11.00 OCL 5 1911 | | | | | | | | | | | 302 | | | | 11.00 OCL 5 1911 | | | | | | | | | May 24 | | 10700 | Jun : | | | 11.00 OCL 5 1911 | | | | | | | | | Jan 30 | | 94 | Mar | 2 1913 | | 11.00 OCL 5 1911 | | | | | T./. | Dec 9 | | | Feb 27 | | T00 | Dec 1 | | | ANNUAL RUNOFF (AC-FT) 758300 399800 598700
10 PERCENT EXCEEDS 2900 1530 2240
50 PERCENT EXCEEDS 457 278 344 | | | | | | | | | May 24 | | a⊿5000
11 ∩∩ | OCT | | | 10 PERCENT EXCEEDS 2900 1530 2240 50 PERCENT EXCEEDS 457 278 344 | | | | | 758300 | | | | or may 24 | | 11.00 | OCL | 2 1311 | | 50 PERCENT EXCEEDS 457 278 344 | e Estimated. a Present site and datum, from rating extended above 13000 ft³/s. #### 09362550 WILSON GULCH NEAR DURANGO, CO LOCATION.--Lat $37^{\circ}14'36"$, long $107^{\circ}50'33"$, in $NE^{1}/_{4}NW^{1}/_{4}$ sec.10, T.34 N., R.9 W., La Plata County, Hydrologic Unit 14080104, on right bank 0.4 mi upstream from intersection of U.S. Highways 160 and 550, 0.9 mi upstream from mouth, and 4.5 mi southeast of Durango. DRAINAGE AREA.--6.5 mi². PERIOD OF RECORD. -- June 1995 to current year. GAGE.--Water-stage recorder. Elevation of gage is 6,580 ft above sea level, from topographic map. REMARKS.--Records poor. Florida Farmers Ditch diverts some project water from Florida River drainage to headwaters of Wilson Gulch for irrigation of several acres upstream in Artesian Valley. No diversions upstream from gage for irrigation downstream. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE. | AR OCTOBER
LUES | 1999 TO | SEPTEMBE | R 2000 | | | |---|--|--|------------------------------------|--|------------------------------------|-------------------------------------|------------------------------------|---|--------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | .77
.82
.82
.93
.84 | .64
.67
.66
.60 | e.71
e.69
e.69
.69 | .72
.71
.69
.69 | 1.9
2.2
1.7
.89 | | | 1.2
1.2
1.2
1.2 | | .76
.70
.65 | | 6
7
8
9
10 | 1.4
1.4
1.3
1.3 | e.76
e.76
e.73
e.70
e.71 | .77
.81
.85
.76 | .46
.46
.47
.50 | .71
.71
.71
.73
.72 | .78
.99
.82
.85 | .65
.67
.70
.67 | .48
.44
.48
.46 | 1.4
1.2
1.2
1.3
1.4 | 1.0
.95
1.2
1.2 | .76
e.75
e.75
e.75
e.75 | .53
.53
.41
.31
e.25 | | 11
12
13
14
15 | | e.72
e.73
e.74
e.74 | .70
.67
.67
.67 | .50
.50
.51
.55 | .72
.75
.72
.73 | .80
.81
.81
.81 | .65
.63
.62
.61 | .51
.55
.70
.74 | 1.4
1.1
1.2
1.3 | 1.2
1.0
1.2
1.3
1.6 | e.75
e.75
e.75
e.75
e.75 | e.24
e.23
e.22
e.23
e.25 | | 16
17
18
19
20 | 1.3
.87
.87
.83 | e.74
e.74
e.74
e.76
e.76 | .65
.66
.67
.67 | .63
.63
.66
.64 | .74
.76
.74
.73 | .78
.77
.77
.77 | | | 1.2
1.2
1.1
1.0 | 1.7
1.6
1.3
1.2 | e.74
e.75
e.77
e.92
e.77 | e.27
e.30
e2.0
.83
.38 | | 21
22
23
24
25 | | | | .63
.61
.63 | | | | | | .82
.70
.61
.68 | | | | 26
27
28
29
30
31 | e.86
e.86
e.82
e.80
e.80 | .77
.77
.76
.76
.74 | .63
.63
.63
.63
.63 | .76
.82
e.76
e.71
e.73 | .69
.69
.72
.70
 | .73
.76
.76
.70
.75 | .55
.60
.54
.46
.50 | .88
.97
.92
.88
1.0 | 1.1
1.8
1.5
1.3
1.4 | 1.2
1.4
1.2
.89
.76 | 1.1
.89
.98
.92
1.5 | .11
e.10
e.10
e.10
e.09 | | TOTAL
MEAN
MAX
MIN
AC-FT | 34.78
1.12
1.6
.80
69 | 22.63
.75
.80
.70
45 | | 18.93
.61
.82
.46
38 | | | | 22.86
.74
1.4
.44
.45 | 35.90
1.20
1.8
.86
71 | 34.47
1.11
1.7
.61
68 | .86
1.5 | .41 | | | | | | | | | BY WATER | - | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.40
1.85
1998
.77
1997 | 1.09
1.53
1996
.75
2000 | .90
1.45
1996
.54
1999 | .83
1.38
1996
.56
1999 | .90
1.30
1996
.72
2000 | 1.20
2.43
1997
.69
1999 | .76
1.03
1997
.35
1999 | 1.04
1.92
1997
.56
1999 | 1.56
2.98
1997
1.00
1996 | 1.65
3.23
1997
.84
1996 | 1.57
2.82
1999
.81
1996 | 1.24
2.40
1997
.41
2000 | | SUMMARY | Y STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER Y | EARS 1995 | - 2000 | | LOWEST HIGHEST
LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERO 50 PERO | MEAN F ANNUAL M ANNUAL M F DAILY M DAILY ME SEVEN-DA FANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 371.92
1.02
11
.07
.12
738
1.5
.77
.52 | Aug 6
Apr 12
Apr 7 | | .11
4.4 | Apr 2
Sep 30
Sep 24
Dec 2
Dec 2 | | 1.1'
1.6'
.8'
14
.0'
.1:
34
3.8'
849
1.9
.9: | Sep Sep Apr Apr Aug Aug | 1997
2000
21 1997
12 1999
24 2000
6 1999
6 1999 | e Estimated. #### 09362800 LEMON RESERVOIR NEAR DURANGO, CO LOCATION.--Lat $37^{\circ}22^{\circ}57^{\circ}$, long $107^{\circ}39^{\circ}44^{\circ}$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec.17, T.36 N., R.7 W., LaPlata County, Hydrologic Unit 14080104, in gatehouse at Lemon Dam on Florida River, 2.3 mi upstream from True Creek, and 15 mi northeast of Durango. DRAINAGE AREA. -- 68.3 mi². PERIOD OF RECORD. -- October 1989 to current year. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 7,948.00 ft above sea level, (levels by U.S. Bureau of Reclamation); gage readings have been reduced to elevations above sea level. REMARKS.--Reservoir is formed by an earthfill dam. Dam was completed in 1963. Capacity, 40,100 acre-ft, between elevations 7,948.00 ft, sill of outlet gate, and 8,148.00 ft, normal reservoir water surface elevation. Dead storage below elevation 8,005.00 ft, 354 acre-ft. Figures given are total contents. EXTREMES FOR PERIOD OF RECORD.--Maximum daily mean contents, 40,180 acre-ft, July 3-4, 1997, elevation, 8,148.06 ft; minimum daily mean contents, 5,320 acre-ft, Sept. 13, 1996, elevation, 8,057.55 ft. EXTREMES FOR CURRENT YEAR.--Maximum daily mean contents, 39,910 acre-ft, May 29, daily mean elevation, 8,147.63 ft; minimum daily mean contents, 8,080 acre-ft, Sept. 30, daily mean elevation, 8,071.95 ft. #### MONTHEND ELEVATION AND CONTENTS, AT 2400, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | Date | Elevation
(feet) | Contents
(acre-feet) | Change in
contents
(acre-feet) | |--|--|---|---| | Sept. 30. | 8,136.76
8,132.70
8,132.93
8,131.65 | 33,460
31,180
31,310
30,600 | -
-2,280
+130
-710 | | CAL YR 1999 | - | - | +13,590 | | Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30. | 8,131.50
8,131.60
8,132.39
8,140.29
8,147.51
8,133.13
8,108.78
8,085.45
8,071.73 | 30,520
30,580
31,010
35,500
39,840
31,420
19,510
11,430
8,040 | -80
+60
+430
+4,490
+4,340
-8,420
-11,910
-8,080
-3,390 | | WTR YR 2000 | _ | _ | -25.420 | #### 09365500 LA PLATA RIVER AT HESPERUS, CO LOCATION.--Lat 37°17'23", long $108^{\circ}02'24$ ", in $\mathrm{NE}^{1}/_{4}\mathrm{SW}^{1}/_{4}$ sec.14, T.35 N., R.11 W., La Plata County, Hydrologic Unit 14080105, on right bank at Hesperus, 700 ft downstream from U.S. Highway 160. DRAINAGE AREA. -- 37 mi², approximately. PERIOD OF RECORD.--June to August 1904, May 1905 to September 1906, August to November 1910, June 1917 to current year. Monthly discharge only for some periods, published in WSP 1313. Records for Nov. 11 to Dec. 31, 1910, published in WSP 289, have been found to be unreliable and should not be used. REVISED RECORDS.--WSP 1243: 1906(M). WSP 1563: 1923 (monthly figures only). See also PERIOD OF RECORD. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 8,104.71 ft above sea level. Prior to May 1, 1920, nonrecording gage, and May 1, 1920 to May 24, 1927, water-stage recorder, at several sites about 600 ft downstream at different datums. May 25, 1927 to Sept. 30, 1938, water-stage recorder at site 60 ft downstream and Oct. 1, 1938 to Sept. 30, 1941, at present site at datum 1.00 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Cherry Creek ditch exports water upstream from station for irrigation of about 2,000 acres in Cherry Creek drainage. The Pine Ridge ditch diverts water upstream from station for irrigation of about 300 acres downstream, and also for irrigation of about 300 acres in each of the Lightner and Basin Creek drainages. The Pine River ditch also diverts up to 1,000 acre-ft for storage in the Lightner Creek drainage. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 COOPERATION.--Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum flood observed occurred Oct. 5, 1911. | | | DISCHAP | KGE, CUBI | C FEET PER | | MEAN VA | LUES | 1999 10 1 | DEPIEMBE | R 2000 | | | |--|--|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|---|------------------------------------|--|--------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 18
17
17
16
15 | 7.8
7.6
7.6
7.6
7.6 | 6.7
7.2
7.2
e6.5
e6.0 | e5.5
e5.5
e5.0
e4.0
e5.0 | e4.5
e5.0
e5.5
e5.0
e5.0 | 5.2
5.3
e5.0
5.9
6.2 | 21
20
21
24
32 | 133
152
179
186
201 | 106
93
87
74
57 | 20
18
17
15
14 | 6.8
6.7
6.5
6.2 | 12
12
12
11
12 | | 6
7
8
9
10 | 15
15
15
14
14 | 7.6
7.6
7.6
7.6
7.6 | e6.0
e6.0
e5.5
e5.5 | e4.5
e4.5
e5.0
e5.0 | e5.0
e5.0
e5.0
5.2
5.2 | 6.1
6.4
e6.0
e6.0
e6.0 | 47
65
88
103
126 | 182
161
172
138
131 | 53
45
33
39
30 | 14
13
13
13
12 | 5.9
5.9
5.6
5.4
5.7 | 12
11
11
11
11 | | 11
12
13
14
15 | 13
12
12
12
12 | 7.6
7.6
7.6
7.6
7.6 | e6.0
e6.0
e6.0
e5.5
e6.0 | e5.0
e5.0
e4.5
e4.5
e4.4 | 5.2
e5.0
e5.0
5.2
e5.0 | e5.5
6.4
e7.0
e7.0
7.2 | | | 24
21
19
22
26 | 11
10
10
11
11 | 5.7
5.7
6.5
6.1
5.7 | 10
10
9.7
8.8
8.4 | | 16
17
18
19
20 | 11
11
10
10
9.6 | 7.6
7.5
7.6
7.3
7.2 | e6.0
e6.5
e6.0
e6.0 | 4.4
4.4
4.9
4.3
3.8 | e5.0
e5.5
5.4
e5.0
e5.0 | e7.0
7.4
e7.0
e7.0
8.2 | 80
73
85
79
70 | 87
94
74
59
47 | 26
33
29
30
26 | 11
11
11
10
10 | 6.2
6.9
8.7
17 | 8.0
7.3
7.2
6.9
6.5 | | 21
22
23
24
25 | | | | 4.4
4.5
e4.5
4.7
4.6 | | | | 61
100
146
179
171 | 25
23
22
22
22 | 9.4
8.8
8.3
8.1
8.0 | 18
17
18
17
16 | 6.4
6.3
6.3
6.4
6.2 | | 26
27
28
29
30
31 | 9.3
8.9
9.0
8.9
8.3 | 6.8
6.8
6.8
6.8 | 5.6
e5.5
e5.5
e6.0
e6.0 | 5.0
e4.5
e4.0
e4.0
e4.0
e4.5 | e5.0
e5.0
5.2
e5.0 | 15
17
20
21
22
21 | 131
160
192
177
152 | 123 | 20
20
19
18
19 | 7.8
7.3
7.0
6.7
6.9
7.3 | 14
14
14
13
14 | 5.7
5.8
5.6
5.7
5.6 | |
MEAN
MAX
MIN
AC-FT | 731 | 438 | 365 | 142.9
4.61
5.5
3.8
283 | 292 | 296.2
9.55
22
5.0
588 | 20 | 4024
130
201
47
7980
YEAR (WY) | 1083
36.1
106
18
2150 | 340.6
11.0
20
6.7
676 | 19 | 8.59 | | MEAN
MAX
(WY)
MIN
(WY) | 15.3
148
1942
3.27
1957 | 10.7
54.3
1942
3.11
1938 | 8.25
20.4
1987
2.94
1938 | 6.99
15.0
1926
2.65
1938 | 7.41
18.0
1971
3.06
1990 | 15.7
54.2
1997
3.83
1977 | 82.0
203
1924
8.40
1977 | 171
384
1941
19.8
1977 | 133
421
1980
15.6
1934 | 38.2
154
1957
8.80
1939 | 24.1
79.1
1999
6.58
1939 | 20.4
124
1927
3.73
1956 | | ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT ANNUAL 10 PERC 50 PERC | TOTAL MEAN TANNUAL MANUAL MANU | MEAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 15657.0
42.9 | | | OR 2000 WA: 10062.8 27.5 201 3.8 4.4 224 b3.37 1996 8.3 5.0 | | | WATER YI
44.5
90.5
9.9
934
1.0
1.9
a1880
c4.3
32240
127
13
5.2 | | 1041 | Present datum, from rating curve extended above 620 ft^3/s , on basis of slope-area measurement of peak flow. Maximum gage height, 3.46 ft, Jan 9, backwater from ice. Maximum gage height, for period of record, 5.13 ft, Sep 6, 1970. #### 09366500 LA PLATA RIVER AT COLORADO-NEW MEXICO STATE LINE LOCATION.--Lat $36^{\circ}59^{\circ}59^{\circ}$, long $108^{\circ}11^{\circ}17^{\circ}$, in $NW^{1}/_{4}SE^{1}/_{4}$ sec.10, T.32 N., R.13 W., La Plata County, CO, Hydrologic Unit 14080105, on right bank at Colorado-New Mexico State line, 0.5 mi downstream from Johnny Pond Arroyo, and 4.9 mi north of La Plata, NM. DRAINAGE AREA. -- 331 mi². PERIOD OF RECORD. -- January 1920 to current year. Monthly discharge only for some periods, published in WSP 1313. REVISED RECORDS. -- WSP 1313: 1934 (M), 1936 (M). GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,972.03 ft above sea level. See WSP 1713 or 1733 for history of changes prior to Mar. 17, 1934. Mar. 17, 1934 to July 1, 1996, water-stage recorder at same site, and at datum 3.12 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions upstream from station for irrigation of about 15,000 acres, mostly upstream from station. COOPERATION. -- Records collected and computed by Colorado Division of Water Resources and reviewed by Geological Survey. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY AUG SEP 9.1 7.8 e12 15 69 76 4.0 11 16 39 4.0 5.1 2 8.7 7.7 11 e10 15 62 6.3 3.9 5.0 16 45 3 8 6 11 e10 14 16 69 60 63 4.4 3 4 7.8 3.2 8.2 e10 e8.0 16 83 74 62 3.7 5.1 14 e9.0 5 8.2 19 56 43 3.4 3.0 4.5 7.8 e9.0 14 6 8.2 7.8 e10 e10 14 19 101 48 37 3.4 4.5 2.6 8.2 7.7 e10 e10 13 24 23 117 62 31 3.2 2.4 4.5 8.5 7.3 3.5 8 e10 e10 13 141 109 24 3.0 4.5 8.6 7.2 e9.0 e10 22 96 32 4.4 3.1 4.6 e10 10 8.6 7.3 e10 15 20 179 60 32 3.8 3.3 4.0 11 8.1 e10 e12 15 19 140 68 22 3.5 3.0 3.8 12 13 7.9 7.3 7.3 e9.0 e12 e13 19 19 17 12 2.8 3.1 3.5 16 107 60 16 98 56 7.3 e10 e13 21 100 11 3.4 e8.0 15 8.5 7.2 e14 15 28 89 54 10 4 5 3.9 3.3 8.9 10 4.0 16 e10 14 15 26 36 3.8 3.3 9.0 7.8 7.5 9.4 11 3.8 3.7 3.5 3.2 17 e12 15 16 25 53 33 e11 15 24 18 16 54 36 7.0 9.9 e12 e12 20 9.6 7.0 15 15 25 48 42 10 1.9 4.4 4.1 21 9.5 15 15 33 1.9 4.0 22 9.1 8.7 7.7 e11 15 15 34 47 39 $7.4 \\ 7.1$ 1.7 4.1 4.1 3.9 23 e9.0 e12 15 40 43 4.4 16 57 8.5 24 e10 e12 15 40 84 2.9 25 7.7 e10 e12 15 15 58 40 83 8.7 4 8 3 7 4 7 e10 26 7.5 18 15 53 52 4.0 3.9 4.7 e14 7.5 7.3 7.5 27 e10 e12 17 15 51 77 86 6 8 3.0 3 8 4 6 28 11 e12 15 61 79 3.6 3.9 4.5 16 8.6 8.2 29 11 e12 e14 16 57 69 73 3.4 4.0 4.5 30 7.3 11 e12 e14 56 48 70 6.4 3.6 6.8 4.5 4.4 TOTAL 259.6 337.0 403.0 434 987 2447 1890 661.8 108.8 126.8 246.4 119.6 MEAN 8.37 8.21 10.9 13.0 15.0 31.8 81.6 61.0 22.1 3.51 3.86 4.23 MAY 9.6 7.3 11 14 18 16 69 179 109 76 6.3 6.8 5.1 3.2 6.4 7.0 8.0 8.0 13 16 40 MIN 33 2.4 1960 1310 216 515 799 4850 3750 237 861 252 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 2000, BY WATER YEAR (WY) 13.7 MEAN 12.1 12.3 12.0 17.1 37.5 106 109 67.0 20.2 12.3 11.4 260 99.2 53.9 53.9 139 506 306 99.4 126 MAX 38.3 364 65.1 (WY) 1942 1942 1987 1942 1924 1997 1980 1941 1957 1957 1957 1927 MTN .097 .98 1.24 .80 2.96 . 63 3.06 5.32 1.94 .019 .006 .000 1935 1940 1978 1930 1977 1977 1977 1977 1924 1922 1922 1956 (WY) FOR 1999 CALENDAR YEAR FOR 2000 WATER YEAR WATER YEARS 1921 - 2000 SUMMARY STATISTICS ANNUAL TOTAL 9578 1 8021 0 ANNUAL MEAN 35.8 26.2 21.9 HIGHEST ANNUAL MEAN 109 1973 LOWEST ANNUAL MEAN 4.44 1977 179 HIGHEST DATLY MEAN 123 1120 Mav 4 1941 Aug Apr 10 7.0 Jul 3 1922 LOWEST DAILY MEAN Nov 19 1.7 Jul 22 a.00 ANNUAL SEVEN-DAY MINIMUM 7.3 Nov 2.2 Jul 18 .00 Jul 3 1922 b4750 INSTANTANEOUS PEAK FLOW 203 Aug 24 1927 Apr 10 INSTANTANEOUS PEAK STAGE c4.40 Apr 10 11.36 Aug 24 1927 ANNUAL RUNOFF (AC-FT) 19000 15910 25970 10 PERCENT EXCEEDS 69 62 85 50 PERCENT EXCEEDS 14 13 3 7 1 8 90 PERCENT EXCEEDS 8 1 e Estimated a No flow at times in many years. b From rating curve extended above 750 ft^3/s , on basis of slope-area measurement of peak flow, at datum then in use. c Maximum gage height, 6.35 ft, Jan 5, backwater from ice. #### 09371000 MANCOS RIVER NEAR TOWAOC, CO LOCATION.--Lat 37°01'39", long 108°44'27", Ute Indian Reservation, Montezuma County, Hydrologic Unit 14080107, on left bank 700 ft upstream from bridge on U.S. Highway 666, 2.0 mi north of Colorado-New Mexico State line, 6.0 mi upstream from Aztec Creek, and 12 mi south of Towaoc. DRAINAGE AREA.--526 mi². PERIOD OF RECORD.--October 1920 to September 1943, February 1951 to current year. Monthly discharge only for some periods, published in WSP 1313. Water-quality data available, August 1969 to June 1972, October 1983 to September 1986. Sediment data available, April to December 1961. REVISED RECORDS. -- WSP 1733: 1924 (monthly figures only). WDR CO-83-3: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Datum of gage is 5,055.98 ft above sea level. See WSP 1713 or 1733 for history of changes prior to Mar. 11, 1954. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 10,000 acres upstream from station. One diversion upstream from station for irrigation of about 100 acres downstream from station. Flow regulated by Jackson Gulch Reservoir, capacity, 10,000 acre-ft since March 1949. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of | | | DISCHA | RGE, CUBI | C FEET PER | | VATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |---|---|--|--|---|--------------------------------------|-------------------------------------|-----------------------------------|---|-------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 43
43
45
43
44 | 12
14
11
12
12 | | e6.2
e6.2
e6.2
e6.2 | e12
12
e12
e13
e12 | 16
16
e15
17
19 | 68
63
50
39
39 | 180
182
185
207
206 | 7.2
4.6
2.4
1.2 | .00
.00
.00
.00 | .00
.00
.00
.00 | 5.1
4.9
4.7
4.4
3.8 | | 6
7
8
9
10 | | 12
12
12
12
12 | 5.3
e5.6
e5.6
e5.6
e5.6 | e6.2
e6.3
e6.6
e6.6
e7.0 | e11
e11
e12
e12
e13 | 22
24
43
34
30 | | 197
168
150
173
123 | .22
.11
.00
.00 | .00
.00
.00
.00 | .00 | 5.0
5.3
5.0
20
11 | | 11
12
13
14
15 | 60
57
56
54
55 | 9.6
9.3
9.0
8.7
8.7 | e5.6
e5.7
e5.7
e5.7 | e7.4
e8.5
e8.2
e8.8
e9.0 | e13
e14
e14
e14
14 | 26
22
25
26
28 | 128
107
99
122
117 | 118
127
108
92
81 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.00
.00
.00 | 7.4
4.8
3.7
4.3
3.2 | | 16
17
18
19
20 | 45
24
19
21
21 | 8.8
8.6
7.3
e7.6 | e5.5
e5.6
e5.6 | | 15
e17
e18
17
16 | 26
22
20
17
17 | 97
78
85
93
80 | 59
37
34
28
28 | .00
.00
.00
.00 | .00
.00
.00
.00 | .23
.00
.00
9.9
7.5 | 2.0
.13
.09
.00 | | 21
22
23
24
25 | 20
19
18
18 | e7.6
e6.6
5.5
4.4
4.0 | e5.4
e5.6
6.2
5.9
e5.9 | e16
e14
11
e11
e15 | e16
e16
e15
e15
e14 | 25
35
43
45
40 | 75
94
94
94
112 | 21
15
9.1
6.3
18 | .00
.00
.00
.00 | .00
.00
.00
.00 | 2.7
4.3
4.0
1.9 | .00
.00
.00
.00 | | 26
27
28
29
30
31 | 18
16
15
15
14
13 | e8.2
e7.8
e7.2
e6.6
e6.6 | e6.2
e6.8
e6.6
e6.6
e6.5
e6.3 | e19
e24
20
15
13 | 13
11
e14
e15
 | 33
31
37
47
43
49 | 169 | 39
18
9.3
5.9
8.9
9.2 | .00
.00
.00
.00 | .00
.00
.00
.00
.00 | 4.7
2.7
1.7
2.3
3.6
9.5 | .00
.00
.00
.00 | | TOTAL
MEAN
MAX
MIN
AC-FT | 1087
35.1
60
13
2160 |
269.9
9.00
14
4.0
535 | 184.5
5.95
6.8
5.3
366 | 352.6
11.4
24
6.2
699 | 401
13.8
18
11
795 | 893
28.8
49
15
1770 | 3038
101
202
39
6030 | 2642.7
85.2
207
5.9
5240 | 16.30
.54
7.2
.00
32 | 0.00
.000
.00
.00 | 59.63
1.92
9.9
.00
118 | 94.82
3.16
20
.00
188 | | STATIST | ICS OF M | ONTHLY ME | AN DATA F | OR WATER Y | EARS 1921 | - 2000, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 27.4
459
1942
.11
1978 | 113 | 45.5
1942 | 13.6
45.6
1942
.31
1960 | 25.5
92.1
1993
7.24
1977 | 58.6
198
1993
5.26
1977 | 125
330
1980
.15
1977 | 178
642
1922
.000
1959 | 85.1
395
1957
.000
1951 | 29.6
185
1921
.000
1939 | 28.9
364
1921
.000
1922 | 26.6
137
1970
.000
1922 | | SUMMARY | STATIST | ics | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YE | ARS 1921 | - 2000 | | LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ANNUAL M DAILY M DAILY ME SEVEN-DA ANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 17054.5
46.7
451
3.6
4.1
33830
134
16
6.2 | Jul 23
Mar 18
Mar 17 | | .0
244 | May 4
0 Jun 8
0 Jun 8
Apr 28
8 Apr 28 | | 52.0
138
4.28
3050
a.00
.00
b5300
c7.30
37640
146
16 | Oct
Jul
Jul
Oct
Oct | 1973
1959
14 1941
12 1922
12 1922
14 1941
14 1941 | e Estimated. No flow at times in most years. Present site and datum, from rating curve extended above 200 ft³/s, on basis of slope-area measurement of peak flow. c Maximum gage height, 8.50 ft, Sep 6, 1970. #### 09371492 MUD CREEK AT HIGHWAY 32, NEAR CORTEZ, CO LOCATION.--Lat $37^{\circ}18'46"$, long $108^{\circ}39'38"$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec.6, T.35 N., R.16 W., Montezuma County, Hydrologic Unit 14080202, on left bank 1 mi upstream from mouth and 4.5 mi southwest of Cortez. DRAINAGE AREA.--33.6 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1981 to September 1986, August 1993 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,765 ft above sea level, from topographic map. Prior to Aug. 25, 1993, gage at present site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. Some small diversions upstream from station for irrigation. Most of flow is from diversion of water from Dolores River through Dolores Project and Montezuma Valley Irrigation Company. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YE
MEAN VA | | R 1999 TO | SEPTEMBE | R 2000 | | | |--|--|--|--|--|--------------------------------------|--------------------------------------|---|--|--------------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | | | | e.49
e.48
e.47
e.47 | | | | | 14
14
14
15
13 | 13
10
11
9.2
9.1 | 17
14
13
13 | 14
17
14
13
12 | | 6
7
8
9
10 | | 1.1
1.1
1.2
.67
.51 | | | | | 1.3
1.2
1.1
1.1 | | | 12
13
13
20
15 | | 13
14
13
18
15 | | 11
12
13
14
15 | 12
11
11
12
12 | .51
.64
.63
.67 | e.44
e.43
e.43
e.43
e.42 | e.60
e.60
e.62
.62 | | | | 11
13
17
19
14 | 16
16
15
14
12 | 11
8.6
8.5
9.5
9.7 | 12
11
16
18
16 | 13
11
11
12
11 | | 16
17
18
19
20 | 12
10
10
11
11 | .49
.52
.54
.45 | e.42
e.42
e.41
e.41
e.40 | .82
1.0
1.3
1.1 | 1.0
1.5
2.0
1.8
1.3 | 1.2
1.1
1.1
1.0
1.4 | 1.1
1.0
.98
.92
.90 | 14
13
18
19 | 13
12
13
17
16 | 13
16
15
11 | | 11
11
12
13
11 | | 21
22
23
24
25 | 10
9.5
9.8
9.0
1.9 | .54
.58
.70
.59 | e.41
e.42
e.42
e.42
e.43 | .85
.82
.68
.67 | 1.1
1.1
1.0
1.2 | 1.6
1.6
1.6
1.3 | .96
1.0
1.1
1.1
.97 | 15
14
14
14
14 | 13
15
16
17
16 | 12
13
13
13
14 | 18
18
18
16
16 | 10
11
10
11
12 | | 26
27
28
29
30
31 | 1.5
1.3
1.4
1.7
1.5 | .68
.63
.60
.57
.60 | e.45
e.48
e.49
e.49
e.49
e.49 | 3.0
2.6
1.1
e1.0
.91
.77 | .97
.99
1.0
1.0 | 1.1
1.7
2.1
1.7 | 1.2
1.1
1.1
1.2
1.2 | 19
19
18
19
18 | 16
17
17
16
20 | 15
15
16
15
16
17 | 18
13
13
9.7
16
18 | 12
12
11
11
13 | | TOTAL
MEAN
MAX
MIN
AC-FT | | | | 26.33
.85
3.0
.47
52 | 32.37
1.12
2.1
.70
64 | 45.0
1.45
2.9
1.0
89 | 37.33
1.24
3.9
.90
74 | 388.6
12.5
19
1.5
771 | 458
15.3
20
12
908 | 396.6
12.8
20
8.5
787 | 464.7
15.0
19
9.7
922 | 372
12.4
18
10
738 | | | | | | OR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 8.62
17.5
1994
5.02
1996 | 3.31
5.94
1994
.78
2000 | 2.73
6.00
1985
.47
2000 | 2.33
3.86
1997
.85
2000 | 2.89
7.99
1983
1.12
2000 | 3.43
10.3
1983
1.11
1998 | 3.12
5.60
1994
1.06
1998 | 10.1
13.1
1982
7.48
1986 | 14.3
18.1
1985
10.5
1994 | 15.0
18.0
1986
12.3
1994 | 15.6
21.5
1983
11.8
1995 | 13.1
17.6
1986
9.53
1995 | | SUMMARY | Y STATIST | ICS | FOR | 1999 CALEN | DAR YEAR | F | OR 2000 W | ATER YEAR | | WATER YE | EARS 1982 | - 2000 | | LOWEST
HIGHEST
LOWEST
ANNUAL
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN F ANNUAL M F DAILY ME DAILY ME SEVEN-DA FANEOUS P | EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) EDS EDS | | 2417.44
6.62
25
e.40
.41
4790
16
1.8
.55 | Sep 3
Dec 20
Dec 15 | | 2566.7' 7.03 20 e.44 b2.11 5090 16 2.0 .49 | Jun 30
Dec 20
Dec 15
May 14
May 14 | | 7.94
9.47
6.63
75
.41
a598
8.53
5750
17
5.6
1.4 | 7 | 1985
1996
6 1995
20 1999
55 1999
24 1982
24 1982 | a From rating curve extended above 26 ${\rm ft}^3/{\rm s}$, on basis of slope-area measurement of peak flow. b Maximum gage height, 2.19 ft, Aug 30, backwater from bank vegetation. #### 09371492 MUD CREEK AT HIGHWAY 32, NEAR CORTEZ, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- August 1993 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: September 1993 to current year. WATER TEMPERATURE: September 1993 to current year. INSTRUMENTATION. -- Water-quality monitor since September 1993. REMARKS.--Daily records of specific conductance are good except Oct. 22 to Dec. 4, Apr. 21 to July 14, Aug. 29 to Sep. 30 which are fair and Oct. 1-21, Jan. 19, and July 15 to Aug. 28 which are poor. Daily records of water temperature are good. Daily data that are not published are due to probes being isolated by ice. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 12,000 microsiemens, Apr. 25, 1999; minimum, 981 microsiemens, June 8 and 9, 1998. WATER TEMPERATURE: Maximum, 25.6°C, July 6, 1996; minimum, -0.5°C, Dec. 2, 1995. #### EXTREMES FOR CURRENT YEAR . -- SPECIFIC CONDUCTANCE: Maximum, 10,100 microsiemens, Jan. 27; minimum, 1,330 microsiemens, July 30. WATER TEMPERATURE: Maximum, 24.7°C, July 13, 14; minimum, -.3°C, Jan. 28, Feb. 3, 4. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | |-----------|--------|---|--|--|---|--|---|---|---|---| | OCT | | | | | | | | | | | | 21 | 1515 | 9.5 | 2000 | 8.4 | 8.3 | 990 | 213 | 111 | 111 | 2 | | JAN | 1 41 5 | | 5000 | | _ | 0700 | 405 | 204 | 600 | _ | | 10
MAR | 1415 | .90 | 5930 | 8.2 | 5 | 2700 | 437 | 394 | 679 | 6 | | 14 | 1000 | 1.2 | 5590 | 8.3 | 2.7 | 2800 | 409 | 437 | 598 | 5 | | APR | | | | | | | | | |
| | 20 | 1530 | .92 | 5760 | 8.2 | 14.0 | 2700 | 412 | 399 | 632 | 5 | | MAY | 1 41 5 | 15 | 0040 | 8.2 | 14.7 | 1000 | 222 | 110 | 110 | 2 | | 09
JUN | 1415 | 15 | 2040 | 8.2 | 14.7 | 1000 | 222 | 110 | 112 | 2 | | 13 | 1330 | 15 | 1550 | 8.3 | 18.1 | 720 | 171 | 70.9 | 67.3 | 1 | | 27 | 1415 | 16 | 1510 | 8.3 | 20.1 | 720 | 173 | 68.6 | 64.0 | 1 | | JUL | | | | | | | | | | | | 14 | 1445 | 10 | 1840 | 8.3 | 24.0 | 870 | 201 | 88.6 | 92.6 | 1 | | AUG | | | | | | | | | | _ | | 28 | 1400 | 13 | 1630 | 8.3 | 21.0 | 820 | 198 | 78.6 | 74.8 | 1 | | | PO'l | ALK
FAS- LINI | | CHL | .O- FLU | O- SILI | SOLI | | DS, SOLI | DS, | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |-----------|--|---|--|--|---|--|---|--|--| | OCT | | | | | | | | | | | 21 | 3.7 | 260 | 968 | 21.1 | .3 | 8.8 | 1590 | 2.17 | 40.9 | | JAN | | | | | | | | | | | 10 | 10.2 | 471 | 3490 | 109 | .5 | 13.1 | 5420 | 7.37 | 13.2 | | MAR | 8.2 | 400 | 3310 | 97.9 | .5 | 7.6 | 5110 | 6.95 | 16.6 | | 14
APR | 8.2 | 400 | 3310 | 97.9 | . 5 | 7.0 | 2110 | 0.95 | 16.6 | | 20 | 7.1 | 342 | 3490 | 101 | . 5 | 7.6 | 5250 | 7.15 | 13.1 | | MAY | | | | | | | | | | | 09 | 5.4 | 226 | 962 | 24.0 | .3 | 9.7 | 1580 | 2.15 | 64.9 | | JUN | | | | | | | | | | | 13 | 3.5 | 231 | 647 | 13.5 | . 4 | 9.2 | 1120 | 1.53 | 46.0 | | 27 | 3.5 | 225 | 621 | 13.7 | . 4 | 10.5 | 1090 | 1.48 | 48.5 | | JUL | | | | | | | | | | | 14 | 4.0 | 238 | 804 | 17.6 | .3 | 12.0 | 1360 | 1.85 | 36.8 | | AUG | | | | | | | | | | | 28 | 4.2 | 232 | 696 | 15.9 | .3 | 11.8 | 1220 | 1.66 | 43.4 | SAN JUAN RIVER BASIN 405 09371492 MUD CREEK AT HIGHWAY 32, NEAR CORTEZ, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | 51 | FECTIVE | CONDUCTI | TOD (1711) | ERODIEI EIO | CII AI 23 | DEG. C/, | WAIDK ID | AR OCTOD | LIC IDDD | TO DEFIEME | EIC 2000 | | |----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | , | | | | OCTOBER | | IN | OVEMBER | | Д | ECEMBER | | | JANUARI | | | 1 | 1810 | 1770 | 1800 | 2730 | 2670 | 2700 | 4390 | 4320 | 4340 | | | | | 2
3 | 1790
1790 | 1770
1770 | 1780
1780 | 2720
2920 | 2630
2670 | 2680
2830 | 4410
4410 | 4340
4380 | 4380
4400 | | | | | 4 | 1800 | 1780 | 1800 | 2820 | 2730 | 2780 | 4540 | 4340 | 4400 | | | | | 5 | 1850 | 1780 | 1820 | 2980 | 2820 | 2940 | | | | | | | | 6 | 1870 | 1850 | 1860 | 3040 | 2980 | 3010 | | | | | | | | 7 | 1880 | 1820 | 1860 | 3060 | 3010 | 3040 | | | | | | | | 8 | 1820 | 1750 | 1780 | 3080 | 3020 | 3060 | | | | | | | | 9 | 1750 | 1730 | 1740 | 3540 | 3050 | 3320 | | | | | | | | 10 | 1820 | 1740 | 1780 | 3770 | 3540 | 3680 | | | | | | | | 11 | 1850 | 1820 | 1840 | 3920 | 3770 | 3840 | | | | | | | | 12 | 1860 | 1840 | 1860 | 4020 | 3610 | 3860 | | | | | | | | 13
14 | 1870
1920 | 1860
1870 | 1870
1890 | 3830
4590 | 3560
3830 | 3630
4010 | | | | | | | | 15 | 1900 | 1880 | 1890 | 4250 | 4020 | 4190 | 16
17 | 1920
1960 | 1890
1890 | 1900
1910 | 4290
4290 | 4180
4250 | 4230
4270 | | | | | | | | 18 | 1990 | 1960 | 1980 | 4320 | 4270 | 4300 | | | | | | | | 19 | 1980 | 1960 | 1970 | 4400 | 4320 | 4350 | | | | 7470 | 5920 | 6880 | | 20 | 1980 | 1960 | 1980 | 4460 | 4340 | 4390 | | | | 7290 | 5860 | 6320 | | 21 | 2060 | 1970 | 2010 | 4490 | 4360 | 4410 | | | | 6900 | 6000 | 6380 | | 22 | 2040 | 1820 | 1940 | 4450 | 4400 | 4420 | | | | 7040 | 5800 | 6320 | | 23 | 1860 | 1730 | 1810 | 4580 | 3900 | 4310 | | | | 6530 | 5750 | 6090 | | 24
25 | 1860
2240 | 1650
1860 | 1700
2120 | 4140
4170 | 3890
3750 | 4000
4010 | | | | 6320
6240 | 5810
6020 | 5970
6130 | | 25 | 2240 | 1000 | 2120 | 4170 | 3/30 | 4010 | | | | 6240 | 0020 | 0130 | | 26 | 2400 | 2240 | 2330 | 3970 | 3840 | 3920 | | | | 9140 | 5950 | 7840 | | 27 | 2590 | 2400 | 2530 | 4100 | 3970 | 4080 | | | | 10100 | 6930 | 8150 | | 28
29 | 2660
2670 | 2580
2620 | 2630
2640 | 4250
4360 | 4100
4200 | 4170
4260 | | | | 6930
6710 | 5870
5800 | 6240
6170 | | 30 | 2660 | 2610 | 2630 | 4390 | 4250 | 4310 | | | | 6410 | 5680 | 6000 | | 31 | 2710 | 2640 | 2670 | | | | | | | 5870 | 5500 | 5640 | | MONTH | 2710 | 1650 | 2000 | 4590 | 2630 | 3770 | | | | | | | | MONTH | 2/10 | 1030 | 2000 | 4390 | 2030 | 3110 | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | 5900 | 5440 | 5620 | 5550 | 5430 | 5490 | 9360 | 6020 | 7830 | 5000 | 4660 | 4830 | | 2 | 6320 | 5760 | 6070 | 5560 | 5410 | 5470 | 7450 | 5900 | 6340 | 4720 | 3950 | 4830 | | 3 | 6650 | 5700 | 6120 | 6280 | 5380 | 5560 | 5900 | 5680 | 5770 | 4610 | 4070 | 4390 | | 4 | 6190 | 5640 | 5910 | 5570 | 5370 | 5480 | 5780 | 5570 | 5670 | 5820 | 3390 | 4420 | | 5 | 6050 | 5740 | 5860 | 5610 | 5260 | 5450 | 5780 | 5560 | 5660 | 3390 | 2820 | 3020 | | 6 | 5990 | 5720 | 5860 | 6780 | 5480 | 6190 | 5750 | 5530 | 5630 | 3800 | 2940 | 3350 | | 7 | 6000 | 5650 | 5820 | 8390 | 5770 | 7300 | 5710 | 5500 | 5590 | 3300 | 2300 | 3050 | | 8 | 5870 | 5620 | 5740 | 8380 | 6160 | 7160 | 5710 | 5480 | 5570 | 2320 | 2200 | 2230 | | 9
10 | 5820
5890 | 5640
5710 | 5710
5800 | 7820
7800 | 5920
6010 | 6340
6560 | 5730
5660 | 5490
5410 | 5590
5530 | 2350
1970 | 1970
1910 | 2160
1950 | | | | | | | | | | | | | | | | 11 | 5980 | 5850 | 5900 | 6010 | 5660 | 5810 | 5650 | 5450 | 5540 | 2090 | 1850 | 2000 | | 12
13 | 5890
8870 | 5350
5680 | 5720
7870 | 5800
5700 | 5590
5480 | 5680
5580 | 5660
5740 | 5450
5460 | 5560
5580 | 1880
1820 | 1770
1580 | 1850
1730 | | 14 | 6950 | 6250 | 6640 | 5810 | 5490 | 5660 | 5740 | 5490 | 5610 | 1900 | 1570 | 1670 | | 15 | 6350 | 5900 | 6100 | 5850 | 5670 | 5760 | 5710 | 5510 | 5600 | 1750 | 1680 | 1710 | | 16 | 5980 | 5850 | 5910 | 5820 | 5620 | 5720 | 5720 | 5560 | 5630 | 1770 | 1720 | 1740 | | 17 | 8510 | 5540 | 5930 | 5830 | 5600 | 5720 | 5780 | 5520 | 5630 | 2000 | 1700 | 1810 | | 18 | 8710 | 6670 | 7450 | 5830 | 5620 | 5720 | 5810 | 5610 | 5730 | 1740 | 1640 | 1680 | | 19 | 6690 | 5600 | 6150 | 5820 | 5630 | 5740 | 5780 | 5580 | 5670 | 1750 | 1640 | 1700 | | 20 | 5750 | 5450 | 5580 | 5870 | 5660 | 5740 | 5770 | 5450 | 5650 | 1850 | 1640 | 1770 | | 21 | 5750 | 5650 | 5700 | 5940 | 5670 | 5760 | 5890 | 5660 | 5750 | 1780 | 1630 | 1710 | | 22 | 5720 | 5620 | 5670 | 6290 | 5930 | 6130 | 5890 | 5720 | 5790 | 1720 | 1600 | 1670 | | 23
24 | 5710
5710 | 5570
5600 | 5660
5650 | 7390
6190 | 6010 | 6620 | 5840
6710 | 5540
5600 | 5690
5810 | 1720
1860 | 1660 | 1700
1730 | | 25 | 5670 | 5540 | 5650
5600 | 5890 | 5870
5670 | 5970
5770 | 5890 | 5690 | 5770 | 1800 | 1650
1640 | 1720 | | | | | | | | | | | | | | | | 26 | 5920 | 5510 | 5650 | 5830
5760 | 5570 | 5690 | 6000 | 5300 | 5500 | 1730
1560 | 1530 | 1640 | | 27
28 | 5840
5600 | 5490
5480 | 5590
5540 | 5760
7500 | 5550
5320 | 5640
5710 | 5690
5770 | 5390
5330 | 5540
5530 | 1610 | 1460
1450 | 1510
1530 | | 29 | 5570 | 5410 | 5480 | 8330 | 6060 | 7290 | 5700 | 4660 | 5210 | 1640 | 1450 | 1570 | | 30 | | | | 6730 | 5670 | 6060 | 5390 | 4730 | 4980 | 1510 | 1440 | 1470 | | 31 | | | | 6920 | 6000 | 6410 | | | | 1760 | 1480 | 1620 | | MONTH | 8870 | 5350 | 5940 | 8390 | 5260 | 5970 | 9360 | 4660 | 5700 | 5820 | 1440 | 2230 | 09371492 MUD CREEK AT HIGHWAY 32, NEAR CORTEZ, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | S | PECIFIC | CONDUCTA | NCE (MI | CROSIEMENS | CM AT 2 | 5 DEG. C) | , WATER Y | EAR OCTO | BER 1999 | TO SEPTEM | BER 2000 | | |---|--|---|---|--|--|---|--
--|--|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | 1
2
3
4
5 | 1740
1720
1680
1530
1560 | 1540
1540
1530
1490
1450 | 1690
1640
1590
1510
1530 | 1590
1720
1750
1700
1710 | 1430
1550
1510
1510
1540 | 1490
1660
1640
1630
1660 | 1440
1540
1560
1580
1560 | 1360
1410
1450
1450
1420 | 1400
1480
1520
1510
1510 | 1780
1720
1720
1720
1720 | 1690
1610
1660
1670
1690 | 1730
1670
1700
1700
1740 | | 6
7
8
9
10 | 1600
1530
1510
1550
1640 | 1450
1450
1430
1470
1510 | 1500
1490
1470
1520
1590 | 1590
1630
1780
1800
1640 | 1540
1560
1530
1550
1540 | 1560
1590
1600
1660
1610 | 1580
1660
1610
1620
1610 | 1440
1530
1560
1480
1480 | 1520
1600
1590
1560
1560 | 1850
1960
2360
2630
1820 | 1730
1720
1770
1740
1750 | 1790
1820
1860
1950
1780 | | 11
12
13
14
15 | 1660
1650
1590
3220
1720 | 1500
1480
1520
1580
1580 | 1570
1570
1550
1690
1670 | 1810
1890
1860
1930
1900 | 1600
1750
1770
1760
1760 | 1730
1840
1810
1830
1840 | 1590
1650
1650
1670
1800 | 1510
1550
1490
1570
1630 | 1550
1600
1590
1620
1770 | 1830
1950
1970
1950
2030 | 1760
1800
1870
1870
1920 | 1790
1890
1910
1910
1980 | | 16
17
18
19
20 | 1690
1690
1760
1800
1670 | 1590
1600
1620
1590
1590 | 1640
1660
1680
1700
1640 | 2420
2380
1570
1650
1700 | 1640
1510
1510
1530
1560 | 1810
1770
1530
1600
1610 | 1920
1750
1600
1600
1570 | 1630
1540
1520
1540
1540 | 1770
1620
1560
1560
1560 | 2020
2040
1940
2010
2100 | 1920
1840
1830
1930
1940 | 1970
1940
1860
1970
2030 | | 21
22
23
24
25 | 1860
1780
1730
1660
1680 | 1670
1600
1600
1600 | 1770
1710
1680
1640
1640 | 1700
1620
1560
1600
1570 | 1560
1520
1470
1470
1460 | 1620
1570
1520
1520
1540 | 1570
1620
1640
1620
1600 | 1530
1520
1560
1580
1560 | 1550
1560
1590
1600
1580 | 2090
2050
2040
2040
2000 | 2000
1950
1950
1930
1890 | 2060
2010
2010
1980
1940 | | 26
27
28
29
30
31 | 1660
1570
1520
1600
1730 | 1570
1500
1480
1480
1360 | 1620
1540
1500
1550
1460 | 1460
1510
1460
1410
1430
1460 | 1410
1400
1380
1360
1330
1360 | 1430
1440
1420
1380
1380
1420 | 1590
1690
1750
1860
1990
1740 | 1540
1540
1640
1720
1680
1630 | 1570
1630
1680
1780
1810
1690 | 2010
2070
2020
2060
2030 | 1940
1970
1940
1960
1910 | 1980
2030
1980
2030
1970 | | MONTH | 3220 | 1360 | 1600 | 2420 | 1330 | 1600 | 1990 | 1360 | 1600 | 2630 | 1610 | 1900 | | | | | | | | | | | | | | | | | | TEMPE | RATURE, | WATER (DE | G. C), W. | ATER YEAR | OCTOBER | 1999 TO | SEPTEMBEI | R 2000 | | | | DAY | MAX | TEMPE
MIN | RATURE,
MEAN | WATER (DEC | G. C), W | ATER YEAR
MEAN | OCTOBER
MAX | 1999 TO
MIN | SEPTEMBEI
MEAN | R 2000
MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | | MIN
JANUARY | | | 1 | 12.9 | MIN
OCTOBER
8.3 | MEAN | MAX
1
7.4 | MIN
NOVEMBER
2.1 | MEAN | MAX
3.1 | MIN
DECEMBER | MEAN | | JANUARY | | | 1
2
3 | 12.9
13.1
13.3 | MIN
OCTOBER | MEAN | MAX
I | MIN
NOVEMBER | MEAN 4.7 4.5 3.7 | MAX
3.1
3.2
2.2 | MIN
DECEMBER | MEAN | MAX | JANUAR! | Z | | 1
2 | 12.9
13.1 | MIN OCTOBER 8.3 8.9 | MEAN
10.7
11.2 | MAX
1
7.4
6.8 | MIN
NOVEMBER
2.1
2.0 | MEAN
4.7
4.5 | MAX
3.1
3.2 | MIN DECEMBER | MEAN 1.8 2.5 | MAX | JANUARY |
 | | 1
2
3
4
5 | 12.9
13.1
13.3
12.6
13.0 | MIN
OCTOBER
8.3
8.9
9.4
8.3
8.4 | MEAN 10.7 11.2 11.4 10.6 10.9 | MAX 1 7.4 6.8 5.8 6.3 5.3 | MIN
NOVEMBER
2.1
2.0
1.4
1.1
1.1 | 4.7
4.5
3.7
3.5
3.7 | 3.1
3.2
2.2
1.5 | MIN DECEMBER .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUAR! |

 | | 1
2
3
4
5
6
7
8 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7 | MIN
OCTOBER
8.3
8.9
9.4
8.3
8.4
10.9
10.1
9.1 | MEAN 10.7 11.2 11.4 10.6 10.9 12.0 11.1 10.9 | MAX
1
7.4
6.8
5.8
6.3
5.3
5.5
6.5
7.9 | MIN
NOVEMBER
2.1
2.0
1.4
1.1
1.1
1.4
2.0
4.7 | 4.7
4.5
3.7
3.5
3.7
4.3
6.4 | 3.1
3.2
2.2
1.5 | MIN DECEMBER .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUARY | | | 1
2
3
4
5 | 12.9
13.1
13.3
12.6
13.0 | MIN
OCTOBER
8.3
8.9
9.4
8.3
8.4 | MEAN 10.7 11.2 11.4 10.6 10.9 | 7.4
6.8
5.8
6.3
5.3 | MIN
NOVEMBER
2.1
2.0
1.4
1.1
1.1 | MEAN 4.7 4.5 3.7 3.7 3.5 | 3.1
3.2
2.2
1.5 | MIN DECEMBER .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1 | MIN
OCTOBER
8.3
8.9
9.4
8.3
8.4
10.9
10.1
9.1
9.3
8.9 | MEAN 10.7 11.2 11.4 10.6 10.9 12.0 11.1 10.9 | MAX 7.4 6.8 5.8 6.3 5.3 5.5 6.5 7.9 6.9 4.9 | MIN
NOVEMBER
2.1
2.0
1.4
1.1
1.1
1.4
2.0
4.7
3.6
1.6 | 4.7
4.5
3.7
3.5
3.7
4.3
6.4
5.1
3.4 | 3.1
3.2
2.2
1.5
 | MIN DECEMBEF .3 1.8 1.111 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUAR! | | | 1
2
3
4
5
6
7
8
9
10 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.1 9.3 8.9 8.7 8.5 8.4 | MEAN 10.7 11.2 11.4 10.6 10.9 12.0 11.1 10.9 11.3 11.1 10.9 10.7 10.6 | 7.4
6.8
5.8
6.3
5.3
5.5
6.5
7.9
6.9
4.5
4.0
3.5 | MIN
NOVEMBER
2.1
2.0
1.4
1.1
1.1
1.1
1.4
2.0
4.7
3.6
1.6 | 4.7
4.5
3.7
3.5
3.7
4.3
6.4
5.1
3.4
2.8
2.3
1.8 | 3.1
3.2
2.2
1.5
 | MIN DECEMBEF .3 1.8 1.111 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUAR! | | | 1
2
3
4
5
6
7
8
9
10 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.1 9.1 9.3 8.9 8.7 8.5 | MEAN 10.7 11.2 11.4 10.6 10.9 12.0 11.1 10.9 11.3 11.1 | 7.4
6.8
5.8
6.3
5.3
5.5
6.5
7.9
6.9
4.9 | MIN
NOVEMBER
2.1
2.0
1.4
1.1
1.1
1.4
2.0
4.7
3.6
1.6 | 4.7
4.5
3.7
3.5
3.7
3.5
3.7
4.3
6.4
5.1
3.4 | 3.1
3.2
2.2
1.5 | MIN DECEMBEF .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUAR! | | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1
12.9
12.7
12.3
12.0 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.1 9.3 8.9 8.7 8.5 8.4 8.1 7.9 7.6 | MEAN 10.7 11.2 11.4 10.6 10.9 11.1 10.9 11.3 11.1 10.9 10.6 10.2 10.0 8.9 | MAX 7.4 6.8 5.8 6.3 5.3 5.5 6.5 7.9 6.9 4.9 4.5 4.0 3.5 3.5 3.3 | MIN NOVEMBER 2.1 2.0 1.4 1.1 1.1 1.1 1.1 1.1 1.6 1.6 1.6 1.6 1.0 .5 .0 0.111 | 4.7
4.5
3.7
3.5
3.7
3.5
3.7
4.3
6.4
5.1
3.4
2.8
2.3
1.8
1.8 | 3.1
3.2
2.2
1.5
 | MIN DECEMBEF .3 1.8 1.111 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1
13.1
12.9
12.7
12.3
12.3
12.3
12.3 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.1 9.3 8.9 8.7 8.5 8.4 8.1 7.9 | MEAN 10.7 11.2 11.4 10.6 10.9 11.1 10.9 11.3 11.1 10.9 10.7 10.6 10.2 10.0 8.9 7.2 6.6 | 7.4
6.8
5.8
6.3
5.3
5.5
6.5
7.9
6.9
4.5
4.0
3.5
3.5
3.3 | MIN NOVEMBER 2.1 2.0 1.4 1.1 1.1 1.4 2.0 4.7 3.6 1.6 1.0 .5 .0 -1111111111 | 4.7
4.5
3.7
3.5
3.7
3.5
3.7
4.3
6.4
5.1
3.4
2.8
2.3
1.8
1.8
1.8 | 3.1
3.2
2.2
1.5
 | MIN DECEMBEF .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUARS | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1
13.1
12.9
12.7
12.3
12.0 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.1 9.3 8.9 8.7 8.5 8.4 8.1 7.9 7.6 5.2 | 10.7
11.2
11.4
10.6
10.9
12.0
11.1
10.9
11.3
11.1
10.9
10.7
10.6
10.2
10.0 | 7.4
6.8
5.8
6.3
5.5
6.5
7.9
4.9
4.5
4.0
3.5
3.5
3.3 | MIN NOVEMBER 2.1 2.0 1.4 1.1 1.1 1.4 2.0 4.7 3.6 1.6 1.0 .5 .011 | 4.7
4.5
3.7
3.5
3.7
4.3
6.4
5.1
3.4
2.8
2.3
1.8
1.8
1.8 | 3.1
3.2
2.2
1.5 | MIN DECEMBEF . 3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUAR! | | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1
12.9
12.7
12.3
12.0
10.3
8.9
8.5
8.8
8.9 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.3 8.9 8.7 8.5 8.4 8.1 7.9 7.6 5.2 4.8 4.5 4.6 4.5 | MEAN 10.7 11.2 11.4 10.6 10.9
12.0 11.1 10.9 11.3 11.1 10.9 10.7 10.6 10.2 10.0 8.9 7.2 6.6 6.7 6.8 | MAX 7.4 6.8 5.8 6.3 5.3 5.5 6.5 7.9 6.9 4.5 4.0 3.5 3.5 3.3 3.4 4.5 4.8 2.2 2.5 | MIN NOVEMBER 2.1 2.0 1.4 1.1 1.1 1.4 2.0 4.7 3.6 1.6 1.0 .5 .011111 | MEAN 4.7 4.5 3.7 3.7 3.5 3.7 4.3 6.4 5.1 3.4 2.8 2.8 2.3 1.8 1.8 1.7 2.7 3.8 1.0 1.0 | 3.1 3.2 2.2 1.5 | MIN DECEMBEF .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX 1.5 2.0 1.7 | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1
13.1
12.9
12.7
12.3
12.0
10.3
8.9
8.5
8.8
8.9
9.1
9.2
9.1 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.1 9.3 8.9 8.7 8.5 8.4 8.1 7.9 7.6 5.2 4.8 4.5 4.6 | 10.7
11.2
11.4
10.6
10.9
12.0
11.1
10.9
11.3
11.1
10.9
10.7
10.6
10.2
10.0
8.9
7.2
6.6
6.7
6.8
6.9
6.7 | MAX 7.4 6.8 5.8 6.3 5.3 5.5 7.9 6.9 4.0 3.5 3.5 3.3 3.4 4.5 4.8 2.2 2.5 2.7 2.5 | MIN NOVEMBER 2.1 2.0 1.4 1.1 1.1 1.4 2.0 4.7 3.6 6 1.6 1.01111111111 | MEAN 4.7 4.5 3.7 3.5 3.7 4.3 6.4 5.1 3.4 2.8 2.3 1.8 1.8 1.7 2.7 3.8 1.0 1.0 | 3.1
3.2
2.2
1.5 | MIN DECEMBEF .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX 1.5 2.0 1.7 2.0 2.1 1.3 | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 12.9
13.1
13.3
12.6
13.0
13.5
12.0
12.7
12.8
13.1
12.9
12.7
12.3
12.0
10.3
8.9
8.5
8.9
9.1
9.2 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.1 9.3 8.9 8.7 8.5 8.4 8.1 7.9 7.6 5.2 4.8 4.5 4.6 4.5 4.5 | 10.7
11.2
11.4
10.6
10.9
12.0
11.1
10.9
11.3
11.1
10.9
10.7
10.6
10.2
10.0
8.9
7.2
6.6
6.7
6.8 | MAX 7.4 6.8 5.8 6.3 5.5 6.5 7.9 6.9 4.0 3.5 3.5 3.3 3.4 4.5 4.8 2.2 2.5 | MIN NOVEMBER 2.1 2.0 1.4 1.1 1.1 1.4 2.0 4.7 3.6 6 1.6 1.0 .5 .0111 .7 2.211 .9 | 4.7
4.5
3.7
3.5
3.7
4.3
6.4
5.1
3.4
2.8
2.3
1.8
1.8
1.8
1.7
2.7
3.8
1.0
1.0 | 3.1
3.2
2.2
1.5 | MIN DECEMBEF .3 1.8 1.1111111111 | MEAN 1.8 2.5 1.6 .7 | MAX 1.5 2.0 1.7 2.0 2.1 | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 12.9
13.1
13.3
12.6
13.0
13.5
12.7
12.8
13.1
13.1
12.7
12.3
12.0
10.3
8.9
8.5
8.8
8.9
9.1
9.2
9.1
9.2
9.1
8.8 | MIN OCTOBER 8.3 8.9 9.4 8.3 8.4 10.9 10.1 9.3 8.9 8.7 8.5 8.4 8.1 7.9 7.6 5.2 4.8 4.5 4.6 4.5 4.4 | MEAN 10.7 11.2 11.4 10.6 10.9 12.0 11.1 10.9 11.3 11.1 10.9 10.7 10.6 10.2 10.0 8.9 7.2 6.6 6.7 6.8 6.8 6.9 6.7 6.6 | MAX 7.4 6.8 5.8 6.3 5.3 5.5 6.5 7.9 6.9 4.5 4.0 3.5 3.5 3.3 3.4 4.5 4.8 2.2 2.5 2.7 2.5 | MIN NOVEMBER 2.1 2.0 1.4 1.1 1.1 1.1 1.4 2.0 4.7 3.6 1.6 1.6 1.0111 1.911 1.91 1.91 1.91 1 1 | MEAN 4.7 4.5 3.7 3.5 3.7 3.5 3.7 4.3 6.4 5.1 3.4 2.8 2.8 1.8 1.8 1.7 2.7 3.8 1.0 1.0 1.3 1.71 | 3.1 3.2 2.2 1.5 | MIN DECEMBEF .3 1.8 1.11 | MEAN 1.8 2.5 1.6 .7 | MAX | JANUARY | | MONTH 13.5 1.9 8.6 7.9 -.1 2.3 --- --- --- 09371492 MUD CREEK AT HIGHWAY 32, NEAR CORTEZ, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | 111111111111111111111111111111111111111 | MIONE, | WAIER (DE | J. C/, W | JIEK IEAK | OCTOBER | 1999 10 | SEP LEMBER | 2000 | | | |---|--|--|--|--|---|---|--|--|--|--|--|---| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | | | | APRIL | | | MAY | | | 1
2
3
4
5 | .7
.7
1.6
2.0
2.9 | 2
2
3
3 | .1
.0
.4
.7 | 5.4
7.0
6.9
7.8
5.1 | 3.2
2.8
1.0
1.2
3.7 | 4.1
4.6
3.9
4.4
4.5 | 9.1
10.2
11.9
13.4
14.3 | 3.8
3.4
5.4
4.7
5.8 | 6.3
7.0
8.6
8.9
9.9 | 16.3
17.3
18.6
19.4
19.5 | 7.7
7.7
8.5
8.8
10.2 | 11.8
12.4
13.3
14.1
14.7 | | 6
7
8 | | .3
2
2
2.0
2.3 | | 4.7
5.0
4.5
6.1
6.8 | | | | | | | 10.8 | 14.5
14.4
14.5
13.9
15.8 | | 11
12
13
14
15 | | | 3.0
1.7
1.8
3.0
2.9 | 7.1
8.2
8.3
8.5
6.3 | .8
2.3
2.4 | 3.9
5.1
5.3 | 12.5
15.1
15.5 | | 10.3
10.1
10.7
10.0
9.5 | | 12.7
10.1
9.6
10.0
10.7 | 15.1
12.7
12.0
12.2
13.3 | | 18 | 3.8
3.6
4.3
3.7
4.2 | 1.1
2.1
1.7
.0 | 2.8
2.8
2.9
2.1
2.6 | 8.4
7.6
7.3
7.6
5.5 | 2.0
1.6
1.9
.1
3.6 | | 12.7
15.4
13.0
12.6
14.6 | | 8.9
10.1
10.0
9.2
9.3 | | 12.6
10.9
9.7
10.9
11.7 | 15.0
12.7
12.4
13.3
14.5 | | 21
22
23
24
25 | 5.2
5.3
5.1
4.7
3.2 | 2.5
3.0
.5
2.7 | 3.9
4.3
3.0
4.1
1.9 | 4.6
6.4
10.6
9.6
11.3 | 3.0
3.0
4.9
4.2
4.4 | 4.5
7.3
7.1
7.8 | 11.7
16.4
16.4
16.0 | 7.6
7.5
7.1
7.3
5.5 |
10.1
9.5
11.2
11.4
10.6 | 18.4
19.8
21.1
21.8
19.2 | 12.1
13.2
14.6
16.4
15.4 | 19.0 | | 26
27
28
29
30
31 | 3.9
5.3
5.6
6.9 | 2
2
3.1
2.0 | 1.4
2.4
4.2
4.2 | 11.3
11.6
8.6
11.1
9.5
7.4 | 4.3
4.2
6.8
4.5
7.2
5.5 | 7.8
8.0
7.5
7.9
8.4
6.4 | 17.3
18.4
17.8
16.3
17.0 | 6.7
8.0
8.9
10.2
9.1 | 11.8
13.0
13.1
13.0
12.7 | 18.1
19.5
20.7
21.3
21.3 | 13.4
14.8
16.0
15.9 | 18.0
18.8
18.8 | | | 6.9 | 3 | 2.4 | 11.6 | .1 | 5.3 | 18.4 | 3.4 | 10.2 | 21.8 | 7.7 | 15.0 | | MONTH | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | MAX | MIN | | MAX | | | MAX | MIN | MEAN | | | | | | MAX | MIN
JULY | | MAX | | | | MIN
SEPTEMBE | | | | | MIN
JUNE
14.8
16.0
15.4 | | MAX 23.1 23.1 23.5 22.8 22.9 | JULY | MEAN | MAX | MIN
AUGUST | MEAN | | 16.3
14.7
14.9 | | | DAY 1 2 3 4 5 | MAX 21.2 20.9 21.3 21.6 | MIN JUNE 14.8 16.0 15.4 15.2 17.0 | MEAN 18.3 18.5 18.4 | 23.1
23.1
23.5
22.8
22.9 | JULY
17.2
17.7
18.0
16.2
14.9 | MEAN 20.1 20.3 20.6 19.5 18.7 | MAX
22.7
22.9
22.4
23.2
23.0 | MIN AUGUST 18.2 18.5 18.2 18.9 18.4 17.5 17.3 17.4 18.0 19.0 | MEAN 20.6 20.7 20.5 21.1 20.8 20.2 19.8 19.9 20.1 21.1 | 18.8
18.7
18.6
19.7
19.3
17.8
19.6
18.5
18.3 | SEPTEMBE 16.3 14.7 14.9 14.1 16.5 16.3 15.3 16.1 | 17.2
16.7
16.7
16.8
17.9 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 | MAX 21.2 20.9 21.3 21.6 22.4 22.5 22.3 20.8 20.8 19.8 20.4 19.5 | MIN JUNE 14.8 16.0 15.4 15.2 17.0 17.2 16.3 17.4 16.4 14.2 | MEAN 18.3 18.5 18.4 19.6 19.9 19.6 19.3 18.3 17.2 17.6 17.3 | 23.1
23.1
23.5
22.8
22.9 | JULY 17.2 17.7 18.0 16.2 14.9 15.5 17.2 18.7 18.3 18.0 17.9 18.7 | MEAN 20.1 20.3 20.6 19.5 18.7 18.9 19.7 20.3 20.4 20.7 20.8 21.2 | MAX 22.7 22.9 22.4 23.2 23.0 22.7 22.6 22.7 21.7 23.8 24.1 23.4 | MIN AUGUST 18.2 18.5 18.2 18.9 18.4 17.5 17.3 17.4 18.0 19.0 18.9 19.1 | MEAN 20.6 20.7 20.5 21.1 20.8 20.2 19.8 19.9 20.1 21.1 21.3 21.0 | 18.8
18.7
18.6
19.7
19.3
17.8
19.6
18.5
18.3
18.2 | SEPTEMBE 16.3 14.7 14.9 14.1 16.5 16.3 15.3 16.1 14.0 13.8 13.4 13.2 | 17.2
16.7
16.7
16.8
17.9
17.1
17.5
17.1
16.1
16.1
15.9
15.9 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | MAX 21.2 20.9 21.3 21.6 22.4 22.5 22.3 20.8 20.0 19.8 20.4 19.5 20.8 20.9 | MIN JUNE 14.8 16.0 15.4 15.2 17.0 17.2 16.3 17.4 16.4 14.2 14.4 14.4 15.0 | MEAN 18.3 18.5 18.4 19.6 19.9 19.6 19.3 17.2 17.6 17.3 17.6 18.0 | 23.1
23.1
23.5
22.8
22.9
22.2
22.6
21.9
22.6
23.1
23.6
24.3
24.7 | JULY 17.2 17.7 18.0 16.2 14.9 15.5 17.2 18.3 18.0 17.9 18.7 19.2 18.8 | MEAN 20.1 20.3 20.6 19.5 18.7 18.9 19.7 20.3 20.4 20.7 20.8 21.2 21.5 21.5 | MAX 22.7 22.9 22.4 23.2 23.0 22.7 21.7 23.8 24.1 23.4 23.4 22.9 | MIN AUGUST 18.2 18.5 18.2 18.9 18.4 17.5 17.3 17.4 18.0 19.0 18.9 19.1 19.2 | MEAN 20.6 20.7 20.5 21.1 20.8 20.2 19.8 19.9 20.1 21.1 21.3 21.0 21.1 21.1 | 18.8
18.7
18.6
19.7
19.3
17.8
19.6
18.5
18.3
18.2
18.4
18.6
18.5 | SEPTEMBE 16.3 14.7 14.9 14.1 16.5 16.3 15.3 15.3 16.1 14.0 13.8 13.4 13.2 12.8 13.6 | 17.2
16.7
16.8
17.9
17.1
17.5
17.1
16.1
16.1
15.9
15.9
15.9 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | MAX 21.2 20.9 21.3 21.6 22.4 22.5 22.3 20.8 20.0 19.8 20.4 19.5 20.8 20.9 21.7 22.0 21.2 20.1 20.7 | MIN JUNE 14.8 16.0 15.4 15.2 17.0 17.2 16.3 17.4 16.4 14.2 14.4 14.5.0 15.3 15.8 15.3 16.6 16.2 | MEAN 18.3 18.5 18.4 19.6 19.9 19.3 17.6 17.3 17.6 18.0 18.6 18.9 18.3 18.7 18.6 | 23.1
23.5
22.8
22.9
22.2
22.6
21.9
22.6
23.1
23.6
24.3
24.7
24.7
23.2
23.2
23.2
23.2 | JULY 17.2 17.7 18.0 16.2 14.9 15.5 17.2 18.3 18.0 17.9 18.7 19.2 18.8 19.3 18.9 19.5 18.2 16.6 | MEAN 20.1 20.3 20.6 19.5 18.7 18.9 19.7 20.3 20.4 20.7 20.8 21.2 21.5 21.5 21.2 21.1 21.3 20.9 19.9 | MAX 22.7 22.9 22.4 23.2 23.0 22.7 21.7 23.8 24.1 23.4 23.9 23.6 23.1 23.2 22.5 21.7 | MIN AUGUST 18.2 18.5 18.2 18.9 18.4 17.5 17.3 17.4 18.0 19.0 18.9 19.1 19.2 19.0 19.8 19.7 19.6 19.5 18.3 | MEAN 20.6 20.7 20.5 21.1 20.8 20.2 19.8 19.9 20.1 21.1 21.3 21.0 21.1 21.8 21.4 21.4 20.8 20.0 | 18.8
18.7
18.6
19.7
19.3
17.8
19.6
18.5
18.3
18.2
18.4
18.6
18.5
18.9
19.3 | SEPTEMBE 16.3 14.7 14.9 14.1 16.5 16.3 15.3 16.1 14.0 13.8 13.4 13.2 12.8 13.6 14.1 13.8 14.4 15.9 13.3 | 17. 2
16. 7
16. 8
17. 9
17. 1
17. 5
17. 1
16. 1
15. 9
15. 7
16. 2
16. 5
16. 4
16. 5
17. 7 | | DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | MAX 21.2 20.9 21.3 21.6 22.4 22.5 22.3 20.0 19.8 20.4 19.5 20.9 21.7 22.0 21.2 20.1 20.7 21.6 21.6 21.3 21.7 22.0 | MIN JUNE 14.8 16.0 15.4 15.2 17.0 17.2 16.3 17.4 16.4 14.2 14.4 14.4 15.0 15.3 15.8 15.8 16.6 16.2 16.1 17.7 17.7 | MEAN 18.3 18.5 18.4 19.6 19.9 19.3 17.6 17.3 17.6 18.0 18.6 18.9 18.3 18.7 18.6 18.9 | 23.1
23.5
22.8
22.9
22.2
22.6
21.9
22.6
23.1
23.6
24.3
24.7
24.7
23.2
23.2
23.2
23.2
23.3
20.6
21.4 | JULY 17.2 17.7 18.0 16.2 14.9 15.5 17.2 18.3 18.0 17.9 18.7 19.2 18.8 19.3 18.9 19.5 16.6 16.6 16.6 16.6 16.6 19.0 19.2 17.4 19.2 18.6 | MEAN 20.1 20.3 20.6 19.5 18.7 18.9 19.7 20.3 20.4 20.7 20.8 21.2 21.5 21.5 21.5 21.2 21.1 21.3 20.9 19.8 19.9 19.7 19.1 19.2 21.3 21.7 21.2 20.4 21.3 20.5 | 22.7
22.9
22.4
23.2
23.0
22.7
21.7
23.8
24.1
23.4
23.4
22.9
23.6
21.7
20.9
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6 | MIN AUGUST 18.2 18.9 18.4 17.5 17.3 17.4 18.0 19.0 18.9 19.1 19.2 19.0 19.8 19.7 19.6 19.5 18.3 18.4 17.5 18.1 18.7 17.8 17.7 17.8 17.2 18.0 | MEAN 20.6 20.7 20.5 21.1 20.8 20.2 19.8 19.9 20.1 21.1 21.3 21.0 21.1 21.8 21.4 20.8 20.0 19.8 19.0 19.7 20.1 | 18.8
18.7
18.6
19.7
19.3
17.8
19.6
18.5
18.3
18.2
18.4
18.6
18.5
18.9
19.3
18.9
19.0
18.6
17.8
18.2 | SEPTEMBE 16.3 14.7 14.9 14.1 16.5 16.3 15.3 16.1 14.0 13.8 13.4 13.2 12.8 13.6 14.1 13.8 14.4 15.9 13.3 13.7 13.6 14.3 13.3 10.3 | 17. 2
16. 7
16. 8
17. 9
17. 1
17. 5
17. 5
16. 1
15. 9
15. 7
16. 2
16. 5
16. 4
16. 5
17. 1
15. 7
15. 7
15. 7
15. 9 | | DAY 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 21.2
20.9
21.3
21.6
22.4
22.5
22.3
20.8
20.0
19.8
20.4
19.5
20.9
21.7
22.0
21.2
20.1
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21 | MIN JUNE 14.8 16.0 15.4 15.2 17.0 17.2 16.3 17.4 16.4 14.2 14.4 14.4 15.0 15.3 15.8 15.3 16.6 16.2 16.2 17.7 17.7 17.7 17.7 17.7 17.7 17.7 17 | MEAN 18.3 18.5 18.4 19.6 19.9 19.6 17.3 17.6 17.3 17.6 18.0 18.6 18.9 18.8 19.6 20.0 20.2 20.1 20.0 19.7 19.8 | 23.1
23.1
23.5
22.8
22.9
22.2
22.6
23.1
23.6
24.3
24.7
23.2
23.2
23.2
23.3
23.0
22.9
23.0
22.8
20.6
21.4
24.2 | JULY 17.2 17.7 18.0 16.2 14.9 15.5 17.2 18.3 18.0 17.9 18.7 19.2 18.8 19.3 18.9 19.5 16.6 16.6 16.5 16.6 19.0 19.2 19.2 17.4 19.2 | MEAN 20.1 20.3 20.6 19.5 18.7 18.9 19.7 20.3 20.4 20.7 20.8 21.2 21.5 21.5 21.2 21.1 21.3 20.9 19.9 19.9 19.7 19.1 19.2 21.3 21.7 21.2 20.4 21.3 | MAX 22.7 22.9 22.4 23.2 23.0 22.7 21.7 23.8 24.1 23.4 22.9 23.6 23.1 23.2 22.5 21.7 20.9 20.6 21.6 21.6 21.6 22.2 22.0 21.6 22.4 22.4 22.4 | MIN AUGUST 18.2 18.5 18.2 18.9 18.4 17.5 17.3 17.4 18.0 19.0 18.9 19.1 19.2 19.0 19.8 19.7 19.6 19.5 18.3 18.4 17.5 17.9 18.1 18.7 17.8 17.7 17.8 | MEAN 20.6 20.7 20.5 21.1 20.8 20.2 19.8 19.9 20.1 21.1 21.3 21.0 21.1 21.3 21.0 21.1 21.1 21.8 21.4 20.8 20.0 19.8 19.0 19.7 20.1 20.3 20.3 19.7 19.9 20.0 19.3 19.4 | 18.8
18.7
18.6
19.7
19.3
17.8
19.6
18.5
18.3
18.2
18.4
18.6
18.5
18.9
19.3
18.9
19.0
18.6
17.8
18.2
17.6
15.8
13.2 | SEPTEMBE 16.3 14.7 14.9 14.1 16.5 16.3 15.3 16.1 14.0 13.8 13.4 13.2 12.8 13.6 14.1 13.8 14.4 15.9 13.3 13.7 13.6 14.3 13.3 10.3 8.6 8.6 11.5 12.5 14.1 13.6 | 17. 2
16. 7
16. 8
17. 9
17. 1
17. 5
17. 1
16. 1
16. 1
15. 9
15. 9
15. 7
16. 2
16. 5
17. 1
15. 9
15. 7
16. 2
16. 5
17. 1
15. 9
15. 9
15. 9
15. 9
15. 9
15. 9
16. 5
17. 1
18. 1
19. 1 | #### 09371520 McELMO CREEK ABOVE TRAIL CANYON, NEAR CORTEZ, CO LOCATION.--Lat $37^{\circ}19'36"$, long $108^{\circ}42'00"$, in $NE^{1}/_{4}NE^{1}/_{4}$ sec.3, T.35 N., R.17 W., Montezuma County, Hydrologic Unit 14080202, on left bank adjacent to abandoned gravel pit 1.5 mi downstream from Mud Creek, 1.9 mi upstream from Trail Canyon, and 5.5 mi south of Cortez. DRAINAGE AREA.--234 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1993 to current year. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 5,690 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. A few small diversions upstream from station. Most of flow comes from diversions through the Dolores Project and Montezuma Valley Irrigation Company (water imported from Dolores River Basin). EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 9, 1927 at location 1.5 mi upstream was determined to be 5,560 ft³/s, gage height, 5.72 ft, site and datum then in use. Feb. 20, 1993, 890 ft³/s, gage height, 7.57 ft, present datum, on basis of slope-area measurement at site 1 mi upstream. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | 2100111 | .02, 0021 | J 1221 121 | DAILY | MEAN VA | LUES | . 1999 10 . | 021 121 122 | 1000 | | |
--|--|--|--|--|--------------------------------------|----------------------------------|--|---|-------------------------------------|---|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 106
106
109
109
112 | 79
76
73
76
74 | 35
34
34
31
28 | e26
e26
e26
e26
e26 | 47
50
43
40
37 | 35
29
27
28
36 | 53
54
35
24
21 | 35
35
35
33
37 | 70
75
76
78
78 | 93
82
77
66
63 | 97
84
75
71
72 | 120
135
122
122
112 | | 6
7
8
9
10 | 113
113
125
114
111 | 69
73
79
75
74 | e27
e27
e27
e27
e26 | e27
e28
e29
e30
e33 | 35
32
32
34
37 | 39
58
55
40
41 | 19
18
17
17
15 | 53
54
63
74
78 | 79
80
84
94
97 | 63
64
65
97
93 | 70
71
75
77
74 | 122
127
123
147
126 | | 11
12
13
14
15 | 98
93
96
102
101 | 70
67
66
66
68 | e26
e26
e26
e25
e25 | e35
e37
e38
e40
e42 | 39
39
45
42
50 | 31
27
24
23
21 | 14
16
15
15 | 66
60
73
80
76 | 94
100
99
86
77 | 78
71
70
72
72 | 78
81
102
97
94 | 119
102
87
76
71 | | 16
17
18
19
20 | 108
100
104
89
80 | 68
68
66
62 | e24
e24
e23
e24
e24 | e45
e50
e45
e41
e40 | 53
51
56
60
57 | 20
19
18
19
23 | 16
18
16
14
15 | 73
69
85
84
85 | 78
68
68
82
76 | 79
90
80
73
67 | 104
101
108
119
110 | 71
75
81
84
78 | | 21
22
23
24
25 | 81
76
76
76
76 | 64
63
50
42
44 | e24
e24
e24
e25
e25 | e38
40
37
35
36 | 54
50
45
43
41 | 25
31
36
30
23 | 17
18
21
19
34 | 83
86
82
76
84 | 62
59
58
59
58 | 65
67
73
77
71 | 110
101
100
97
96 | 74
74
71
77
79 | | 26
27
28
29
30
31 | 76
74
77
80
75
79 | 52
39
37
37
35 | e27
e28
e28
e28
e27
e26 | 75
81
58
43
42
57 | 35
37
36
34
 | 22
20
23
39
29
32 | 24
23
33
39
38 | 93
91
89
92
78
70 | 57
59
66
69
87 | 72
68
70
73
78
90 | 107
103
103
93
141
135 | 82
78
72
74
89 | | TOTAL
MEAN
MAX
MIN
AC-FT | 2935
94.7
125
74
5820 | 1880
62.7
79
35
3730 | 829
26.7
35
23
1640 | 1232
39.7
81
26
2440 | 1254
43.2
60
32
2490 | 923
29.8
58
18
1830 | 694
23.1
54
14
1380 | 2172
70.1
93
33
4310 | 2273
75.8
100
57
4510 | 2319
74.8
97
63
4600 | 2946
95.0
141
70
5840 | 2870
95.7
147
71
5690 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | OR WATER Y | EARS 1993 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 90.1
125
1994
68.1
1995 | 57.3
89.1
1999
37.1
1997 | 35.9
42.9
1999
26.7
2000 | 37.1
58.8
1997
23.4
1996 | 41.5
62.5
1994
26.7
1996 | 44.3
87.4
1995
19.9 | 36.3
82.8
1997
22.6
1996 | 65.4
83.0
1998
50.7
1996 | 83.4
100
1997
59.0
1994 | 94.8
108
1997
74.8
2000 | 108
125
1995
94.2
1996 | 106
126
1997
80.4
1996 | | SUMMARY | STATISTI | CS | FOR 3 | 1999 CALEN | IDAR YEAR | F | OR 2000 WA | ATER YEAR | | WATER YEA | ARS 1993 | - 2000 | | LOWEST ANIONAL STANDAL | MEAN
ANNUAL M
ANNUAL ME
DAILY ME
DAILY MEA | AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS DS | | 22999
63.0
197
11
15
45620
115
62
22 | Sep 3
Apr 20
Apr 15 | | 22327
61.0
147
14
15
168
a3.47
44290
101
66
24 | Sep 9
Apr 11
Apr 10
Aug 30
Aug 30 | | 66.7
78.8
54.2
757
11
13
1080
8.42
48350
115
59
26 | Mar
Apr
Apr
Mar
Mar | 1997
1996
6 1995
9 1996
6 1996
6 1995
6 1995 | e Estimated. a Maximum gage height, 7.56 ft, Jan 4, backwater from ice. #### 09371520 McELMO CREEK ABOVE TRAIL CANYON, NEAR CORTEZ, CO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- October 1990 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: October 1990 to current year. WATER TEMPERATURES: October 1990 to current year. INSTRUMENTATION.--Water-quality monitor since October 1990. REMARKS.--Daily water temperature data are good. Daily specific conductance data are good except Oct. 1-21, Jan. 20 to Mar. 14 which are fair and June 28 to July 14, Aug. 29 to Sep. 30 which are poor. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. EXTREMES FOR PERIOD OF DAILY RECORD.- JUL 14... AUG 28... 3.9 3.8 222 230 497 499 SPECIFIC CONDUCTANCE: Maximum, 3,820 microsiemens, Jan. 22, 1999; minimum, 947 microsiemens, June 20, 2000. WATER TEMPERATURE: Maximum, 26.3°C, July 5-6, 1996; minimum, -0.4°C during winter months most years. PH EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 3,430 microsiemens, Apr. 1; minimum, 947 microsiemens, June 20. WATER TEMPERATURE: Maximum, 25.1°C, July 13, 25, 26; minimum, -.1°C, on many days. DTS- WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | (MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |------------------|------------------------------|---|--|--|---|---|---|---|---|--| | OCT 21 | 1400 | 80 | 1620 | 8.4 | 8.0 | 840 | 197 | 85.4 | 66.4 | 1 | | JAN
10 | 1315 | 31 | 2760 | 8.3 | .0 | 1500 | 317 | 166 | 157 | 2 | | MAR | 1313 | 31 | 2760 | 0.3 | .0 | 1300 | 317 | 100 | 137 | 4 | | 14
APR | 1215 | 22 | 2870 | 8.4 | 7.9 | 1500 | 297 | 189 | 189 | 2 | | 20
MAY | 1245 | 15 | 2910 | 8.4 | 12.5 | 1500 | 287 | 188 | 198 | 2 | | 09
JUN | 1300 | 73 | 1790 | 8.3 | 15.0 | 830 | 183 | 89.7 | 96.4 | 1 | | 13
27 | 1145
1230 | 102
61 | 1140
1320 | 8.4
8.4 | 16.8
20.3 | 520
630 | 128
153 | 49.5
59.8 | 42.1
51.5 | .8 | | JUL
14
AUG | 1300 | 74 | 1310 | 8.4 | 22.8 | 620 | 152 | 58.5 | 50.4 | .9 | | 28 | 1230 | 106
| 1300 | 8.4 | 20.2 | 670 | 167 | 61.7 | 48.1 | .8 | | DATE | SI
DI
SOL
(MG
AS | VED LA | TY DIS SULF T DIS B SOL 03 (MG L) AS S | - DIS
VED SOI
/L (MO
O4) AS | DE, RII
B- D:
LVED SO:
B/L (MC
CL) AS | DE, DI
IS- SO
LVED (M
G/L A
F) SI | S- CONS
LVED TUEN
G/L DI
S SOL | OF SOLI TI- DI TS, SOL S- (TC VED PE F/L) AC- | NS (TC
R PE
FT) DA | SS-
LVED
DNS
CR
LY) | | OCT
21
JAN | 3. | 7 22 | 6 73 | 2 16. | 2 .: | 3 9 | .2 125 | 0 1.6 | 9 26 | 57 | | 10 | 4. | 5 32 | 9 146 | 0 33. | 0 .: | 3 12 | .5 235 | 0 3.2 | 10 19 | 8 | | MAR
14 | 5. | 1 23 | 5 157 | 0 37. | 5 .: | 3 5 | .2 244 | 0 3.3 | 1 14 | 17 | | APR
20 | 4. | 4 21 | 0 159 | 0 37. | 4 . | 3 4 | .7 243 | 0 3.3 | 1 10 | 0 | | MAY
09 | 5. | 4 19 | 5 81 | 5 20. | 9 . | 4 8 | .9 134 | 0 1.8 | 2 26 | 12 | | JUN
13
27 | 3.
3. | | | | | | .6 78
.2 92 | | | | 11.7 11.7 12.5 .3 13.3 .3 926 937 1.26 1.27 185 268 09371520 McELMO CREEK ABOVE TRAIL CANYON, NEAR CORTEZ, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | | | • | | | | | | |---|--|---|---|--|--|---|--|---|--|--|--|---| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | | NOVEMBER | | D | ECEMBER | | | JANUARY | | | 1 | 1580 | 1550 | 1570 | 1660 | 1620 | 1640 | 2200 | 2220 | 2360 | 2490 | 2360 | 2410 | | 2 | 1580 | 1550 | 1560 | 1700 | 1650 | 1670 | 2450 | 2320 | 2430 | 2380 | 2340 | 2360 | | 3 | 1560 | 1480 | 1560
1520
1450 | 1720 | 1650
1670
1660 | 1670
1690
1700 | 2480 | 2430 | 2430
2450
2450 | 2540 | 2380 | 2460 | | 4 | 1480 | 1440 | 1450 | 1710 | 1660 | 1700 | 2530 | 2370 | 2450 | 2620 | 2430 | 2550 | | 5 | 1500 | 1450 | 1460 | 1730 | 1670 | 1710 | 2390
2450
2480
2530
2680 | 2310 | 2430 | 2480
2380
2540
2620
2620 | 2530 | 2570 | | 6 | 1540 | | 1510 | 1780 | 1720 | 1760 | 2660 | | 2480 | 2540 | 2510 | 2520 | | 7 | 1540 | 1420 | 1480 | 1770 | 1670 | 1710 | 2620 | 2320 | 2500 | 2800 | 2530 | 2640 | | 8
9 | 1420
1490 | 1380
1420 | 1400
1460 | 1690 | 1640
1660 | 1710
1670
1690 | 2580 | 2340
2340 | 2500
2450
2460 | 2760 | 2710
2670 | 2740 | | 10 | 1500 | 1440 | 1460 | 1780
1770
1690
1710
1720 | 1640 | 1680 | 2660
2620
2580
2620
2580 | 2340 | 2470 | 2540
2800
2760
2750
2700 | 2560 | 2720
2640 | | 11 | 1530 | 1500 | | | 1680 | | | 2280 | | | 2490 | 2570 | | 12 | 1640 | 1520 | 1550 | 1740
1810
1790
1740
1860 | 1730 | 1770 | 2520
2570
2620
2670
2710 | 2330 | 2480 | 2640
2570
2590
2620
2640 | 2410 | 2520 | | 13 | 1640 | 1590 | 1550
1620
1570 | 1790 | 1730 | 1770
1770
1720 | 2620 | 2330 | 2480
2510
2520 | 2590 | 2450 | 2510 | | 14 | 1640 | 1510 | 1570 | 1740 | 1700 | 1720 | 2670 | 2370 | 2520 | 2620 | 2540 | 2580 | | 15 | 1540 | 1470 | | | 1690 | | | 2390 | | | 2550 | 2590 | | 16 | 1480 | 1410 | 1450 | 1740
1780
1840
1810
1780 | 1690 | 1720 | 2650
2520
2410
2430
2440 | 2420 | 2570 | 2760
2910
2850
2930
2940 | 2560 | 2650 | | 17
18 | 1460 | 1410
1450 | 1430
1470 | 1780 | 1690
1730 | 1720
1780
1760 | 2520 | 2310
2310 | 2440
2380 | 2910 | 2620
2650 | 2740
2760 | | 19 | 1490
1630 | 1470 | 1570 | 1810 | 1740 | 1760 | 2430 | 2330 | 2390 | 2930 | 2730 | 2820 | | 20 | 1690 | 1630 | 1670 | 1780 | 1690 | 1740 | 2440 | 2320 | 2400 | 2940 | 2780 | 2850 | | 21 | 1700 | 1620 | 1650 | 1850
1850
2030
2150
2270 | 1760 | 1790 | 2450
2470
2500
2430
2450 | 2360 | 2410 | 2930
2920
2930
2930
2890 | 2790 | 2850 | | 22 | 1730 | 1700 | 1710
1690
1670 | 1850 | 1810 | 1830
1890
2000 | 2470 | 2340 | 2400 | 2920 | 2800 | 2860 | | 23 | 1700 | 1680 | 1690 | 2030 | 1830 | 1890 | 2500 | 2360 | 2400
2430
2400 | 2930 | 2830 | 2870 | | 24 | 1690
1680 | 1650 | 1670 | 2150
2270 | 1880
1900 | 2000 | 2430 | 2360 | 2400 | 2930
2890 | 2760
2720 | 2820
2820 | | 25 | | 1620 | 1660 | | | | | | | | | | | 26 | 1690 | 1640 | 1660 | 2320
2300
2360
2370
2390 | 2030 | 2150 | 2360
2380
2470
2460
2510
2570 | 2290 | 2320 | 3160
3290
3180
3110
2950
2770 | 2630 | 2860 | | 27
28 | 1710
1690 | 1680
1640 | 1660 | 2300 | 2160
2200 | 2210
2260 | 2380 | 2290
2270 | 2330
2410 | 3290
3180 | 3110
2810 | 3150
2980 | | 29 | 1680 | 1620 | 1690
1660
1660 | 2370 | 2240 | 2300 | 2460 | 2310 | 2410 | 3110 | 2630 | 2860 | | 30 | 1720 | 1660 | 1690 | 2390 | 2260 | 2320 | 2510 | 2330 | 2440 | 2950 | 2500 | 2770 | | 31 | 1670 | 1620 | 1640 | | | | 2510
2570 | 2330 | 2490 | 2770 | 2460 | 2560 | | MONTH | 1730 | 1380 | 1570 | 2390 | 1620 | 1840 | 2710 | 2270 | 2440 | 3290 | 2340 | 2700 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | 2580 | FEBRUARY
2360 | | | MARCH | | | APRIL | | | MAY | 1780 | | 1
2
3 | 2580
2930
3090 | FEBRUARY
2360
2370 | | | MARCH | | | APRIL | | | MAY | 1780
1910
1870 | | 1
2
3
4 | 2580
2930
3090
2920 | FEBRUARY
2360
2370
2430
2590 | | | MARCH | | | APRIL | | | MAY | 1780
1910
1870
1820 | | 1
2
3 | 2580
2930
3090 | FEBRUARY
2360
2370 | | 3120
3190
3110
3080
3230 | MARCH
3020
2920
2940
2990
2680 | 3070
3030
2980
3030
2870 | 3430
3110
2890
2740
2800 | APRIL | | MAX
1830
1960
1900
1910
1990 | MAY | 1780
1910
1870 | | 1
2
3
4
5 | 2580
2930
3090
2920
2860 | FEBRUARY 2360 2370 2430 2590 2640 | 2470
2570
2630
2700
2780 | 3120
3190
3110
3080
3230 | MARCH
3020
2920
2940
2990
2680 | 3070
3030
2980
3030
2870 | 3430
3110
2890
2740
2800 | APRIL
2940
2840
2620
2550
2550 | 3170
2930
2760
2680
2710 | 1830
1960
1900
1910
1990 | MAY
1730
1830
1830
1710
1730 | 1780
1910
1870
1820
1840 | | 1
2
3
4
5 | 2580
2930
3090
2920
2860
2870
3000 | 2360
2370
2430
2590
2640
2780
2820 | 2470
2570
2630
2700
2780
2830
2890 | 3120
3190
3110
3080
3230 | MARCH
3020
2920
2940
2990
2680 | 3070
3030
2980
3030
2870 | 3430
3110
2890
2740
2800 | APRIL 2940 2840 2620 2550 2550 2650 2570 | 3170
2930
2760
2680
2710
2750
2710 | 1830
1960
1900
1910
1990
1920
1750 | MAY
1730
1830
1830
1710
1730
1610
1530 |
1780
1910
1870
1820
1840
1710
1590 | | 1
2
3
4
5 | 2580
2930
3090
2920
2860
2870
3000
3010 | 2360
2370
2430
2590
2640
2780
2820
2830 | 2470
2570
2630
2700
2780
2830
2890
2940 | 3120
3190
3110
3080
3230 | MARCH
3020
2920
2940
2990
2680 | 3070
3030
2980
3030
2870 | 3430
3110
2890
2740
2800 | APRIL 2940 2840 2620 2550 2550 2650 2650 2600 | 3170
2930
2760
2680
2710
2750
2710
2670 | 1830
1960
1900
1910
1990
1920
1750
1660 | MAY
1730
1830
1830
1710
1730
1610
1530
1470 | 1780
1910
1870
1820
1840
1710
1590
1550 | | 1
2
3
4
5 | 2580
2930
3090
2920
2860
2870
3000 | 2360
2370
2430
2590
2640
2780
2820 | 2470
2570
2630
2700
2780
2830
2890 | 3120
3190
3110
3080
3230 | MARCH
3020
2920
2940
2990
2680 | 3070
3030
2980
3030
2870 | | APRIL 2940 2840 2620 2550 2550 2650 2670 2600 2580 | 3170
2930
2760
2680
2710
2750
2710 | 1830
1960
1900
1910
1990
1920
1750 | MAY
1730
1830
1830
1710
1730
1610
1530 | 1780
1910
1870
1820
1840
1710
1590
1550
1670 | | 1
2
3
4
5
6
7
8
9 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3080 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 | 2470
2570
2630
2700
2780
2830
2890
2940
2980
3000 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2960 2940 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990 | 3430
3110
2890
2740
2800
2830
2840
2770
2730
2760 | APRIL 2940 2840 2620 2550 2550 2650 2570 2600 2580 2630 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670 | 1830
1960
1900
1910
1990
1920
1750
1660
1790
1580 | MAY
1730
1830
1830
1710
1730
1610
1530
1470
1540
1410 | 1780
1910
1870
1820
1840
1710
1590
1550
1670 | | 1
2
3
4
5
6
7
8
9
10 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3080
3050 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 | 2470
2570
2630
2700
2780
2830
2890
2940
2980
3000 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2960 2940 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990 | 3430
3110
2890
2740
2800
2830
2840
2770
2730
2760 | APRIL 2940 2840 2620 2550 2550 2650 2570 2600 2580 2630 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670 | 1830
1960
1900
1910
1990
1920
1750
1660
1790
1580 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 | 1780
1910
1870
1820
1840
1710
1590
1550
1670
1480 | | 1
2
3
4
5
6
7
8
9
10 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3050
3050
3040
3360 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 | 2470
2570
2630
2700
2780
2830
2890
2940
2980
3000
2980
2960
3140 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2880 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2960 2940 2850 2660 2640 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2960
2760
2700 | 3430
3110
2890
2740
2800
2830
2840
2770
2730
2760
2850
3230
3170 | 2940
2840
2650
2550
2550
2670
2600
2580
2630
2680
2760
2980 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670
2750
2960
3040 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1400
1360 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 2580
2930
30990
2920
2860
2870
3000
3010
3060
3080
3050
3040
3360
3310 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 | 2470
2570
2630
2700
2780
2830
2890
2940
2980
3000
2980
3140
3150 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2880
2960 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2860 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2960
2760
2700
2900 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130 | 2940
2840
2620
2550
2550
2570
2670
2680
2580
2630
2680
2760
2980
2980
2970 | 3170
2930
2760
2680
2710
2750
2710
2670
2670
2670
2750
2960
3040
3030 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360 | | 1
2
3
4
5
6
7
8
9
10 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3050
3050
3040
3360 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 | 2470
2570
2630
2700
2780
2830
2890
2940
2980
3000
2980
2960
3140 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2880 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2960 2940 2850 2660 2640 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2960
2760
2700 | 3430
3110
2890
2740
2800
2830
2840
2770
2730
2760
2850
3230
3170 | 2940
2840
2650
2550
2550
2670
2600
2580
2630
2680
2760
2980 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670
2750
2960
3040 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1400
1360 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3050
3040
3360
3360
33160
3060 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 | 2470
2570
2630
2700
2780
2830
2890
2980
3000
2980
3140
3150
3070
2980 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2880
2960
2960 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2960 2940 2850 2660 2640 2880 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2940 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030 | 2940
2840
2620
2550
2550
2570
2670
2680
2580
2630
2680
2760
2980
2970
2870 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670
2750
2960
3040
3030
2940 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1400 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1330 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360
1350
1420 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3040
3360
3210
3160
3060
3150 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 | 2470
2570
2630
2700
2780
2830
2890
2940
3000
2980
3140
3150
3070
2980
2970 | 3120
3190
3110
3080
3230
3030
3260
3140
3020
3040
2870
2880
2960
2960 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2880 2890 2990 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2940
3000 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920 | 2940
2840
2620
2550
2550
2570
2670
2680
2760
2980
2970
2870
2890
2670 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2750
2960
3040
3030
2940
2930
2840 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1400 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1400
1360
1350
1420
1470 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3080
3050
3040
3360
3210
3060
3150
3240 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2980 2910 3080 3010 2910 2880 2900 |
2470
2570
2630
2700
2780
2830
2890
2940
3000
2980
2960
3140
3150
3070
2980
2970
3040 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2880
2960
2960 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2640 2880 2880 2890 2990 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2960
2760
2700
2900
2910
2940
3000
3050 | 3430
3110
2890
2740
2800
2830
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670 | 2940
2840
2650
2550
2550
2570
2670
2680
2580
2680
2760
2980
2970
2870
2890
2670
2510 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2750
2960
3040
3030
2940
2930
2840
2590 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1450
1500
1410 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1330 1330 1330 1400 1410 1330 | 1780
1910
1870
1820
1840
1710
1590
1550
1670
1480
1410
1360
1360
1350
1420
1470 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3080
3050
3340
3360
3150
3150
3240
3150 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2910 2880 2910 3080 3010 | 2470
2570
2630
2700
2780
2830
2890
2980
3000
2980
3140
3150
3070
2980
2970
3040
3080 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2880
2960
2960
3010
3070
3130
3060 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2880 2890 2920 2990 2980 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2940
3000
3050
3010 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2900 | 2940
2840
2620
2550
2550
2570
2670
2680
2630
2680
2760
2980
2970
2870
2890
2670
2670 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2750
2960
3040
3030
2940
2930
2840 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1400 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1330 1400 1410 1330 1330 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360
1350
1420
1470
1470
1370 | | 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3080
3050
3040
3160
3150
3150
3140 | 2360
2370
2430
2590
2640
2780
2820
2830
2890
2950
2930
2930
2910
3080
3010
2910
2880
2900
3010
3020 | 2470
2570
2630
2700
2780
2890
2940
3000
2980
3000
2980
3140
3150
3070
2980
2970
3040
3080
3080 | 3120
3190
3110
3080
3230
3030
3260
3140
3020
3040
2870
2880
2960
3010
3070
3130
3060
3000 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2860 2880 2890 2990 2990 2980 2610 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2960
2760
2700
2910
2910
2940
3050
3050
3010
2790 | 3430
3110
2890
2740
2800
2830
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2940 | 2940
2840
2650
2550
2550
2570
2670
2680
2760
2980
2970
2870
2890
2670
2510
2670
2770 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2750
2960
3040
3030
2940
2930
2840
2590
2780
2870 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1400
1450
1500
1410
1470
1490 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1330 1330 1400 1410 1330 1370 1440 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1360
1360
1350
1420
1470
1370
1430 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3050
3360
33160
3150
3140
3140 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2910 2800 | 2470
2570
2630
2700
2780
2830
2940
2980
3000
2980
3140
3150
3070
2980
2970
3040
3080
3080 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2960
2960
3010
3070
3130
3060
3000 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2880 2890 2920 2990 2980 2610 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2940
3000
3050
3010
2790
2670 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2900
2940 | 2940
2840
2620
2550
2550
2550
2650
2570
2680
2630
2680
2760
2980
2970
2870
2870
2670
2510
2670
2770 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2650
3040
3030
2940
2930
2840
2590
2780
2870
2810 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1400
1450
1470
1470
1470 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1330 1400 1410 1370 1440 1400 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360
1360
1350
1420
1470
1370
1430
1460 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 2580
2930
3090
2920
2860
2870
3000
3060
3080
3050
3040
3360
3150
3150
3140
3140
3140
3120 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2950 | 2470
2570
2630
2700
2780
2830
2940
2980
3000
2980
3150
3070
2980
2970
3040
3080
3080
3040
3020 | 3120
3190
31110
3080
3230
3030
3140
3120
3020
3040
2870
2980
2960
2960
3010
3070
3130
3060
3000
2720
2930 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2880 2890 2990 2980 2910 2590 2710 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2700
2900
2910
2940
3000
3050
3010
2790
2670
2790 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2990
2940
2880
2820 | 2940
2840
2620
2550
2550
2550
2650
2670
2680
2630
2680
2760
2970
2870
2870
2890
2670
2770
2730
2600 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670
2960
3030
2940
2930
2840
2590
2780
2870
2810
2680 | 1830
1960
1990
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1400
1450
1470
1470
1470
1450 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 1330 1370 1440 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1360
1350
1420
1470
1370
1470
1370
1480 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3050
3360
33160
3150
3140
3140 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2910 2800 | 2470
2570
2630
2700
2780
2830
2940
2980
3000
2980
3140
3150
3070
2980
2970
3040
3080
3080 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2960
2960
3010
3070
3130
3060
3000 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2880 2890 2920 2990 2980 2610 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2940
3000
3050
3010
2790
2670 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2900
2940 | 2940
2840
2620
2550
2550
2550
2650
2570
2680
2630
2680
2760
2980
2970
2870
2870
2670
2510
2670
2770 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2650
3040
3030
2940
2930
2840
2590
2780
2870
2810 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1400
1450
1470
1470
1470 | MAY 1730
1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1330 1400 1410 1370 1440 1400 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360
1360
1350
1420
1470
1370
1430
1460 | | 1 2 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 2580
2930
2920
2860
2870
3000
3010
3060
3080
3050
3040
3150
3150
3150
3140
3140
3120
3120
3100 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2980 | 2470
2570
2630
2700
2780
2830
2890
2940
3000
2980
3070
2980
3070
2980
3070
3040
3080
3040
3040
3020
3010 | 3120
3190
3110
3080
3230
3030
3260
3140
3020
3040
2870
2880
2960
2960
3010
3070
3130
3060
3000
2720
2930
3110 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2860 2880 2890 2990 2980 2610 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2960
2760
2700
2910
2940
3000
3050
3010
2790
2670
2670
2670
2670
2670
2670
2670
267 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2990
2940
2880
2880
2820
27700 | 2940
2840
2650
2550
2550
2570
2670
2680
2760
2980
2970
2870
2870
2890
2670
2770
2770
2730
2600
2560 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670
2750
2960
3040
3030
2940
2930
2840
2590
2780
2870
2810
2680
2680
2620 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1450
1470
1470
1470
1450
1450 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 1330 1370 1440 1400 1400 1410 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1360
1360
1350
1420
1470
1370
1430
1460 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3360
33210
3160
3150
3140
3140
3120
3130
3130
3130 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2950 2980 3020 2890 2790 | 2470
2570
2630
2700
2780
2830
2940
2980
3000
2980
3140
3150
3070
2980
2970
3040
3080
3080
3040
3020
3010
3060
2970 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2960
2960
2960
3010
3070
3130
3060
3000
2720
2930
3110
3220
3030 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2880 2890 2990 2910 2880 2890 2910 2880 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2910
2940
3000
3050
3010
2790
2670
2840
2970
3060
2960
3060
2960 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2940
2880
2820
2770
2850 | 2940
2840
2620
2550
2550
2550
2570
2680
2580
2630
2680
2970
2870
2870
2870
2770
2770
2730
2600
2560
2680
1640 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2650
3040
3030
2940
2930
2840
2590
2780
2870
2810
2620
2730
2170 | 1830
1960
1990
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1450
1470
1490
1450
1450
1510
1460 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 1400 1410 1400 1410 1430 1450 1350 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360
1350
1470
1370
1470
1370
1470
1370
1420
1420
1420
1420
1430
1460
1390 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3080
3050
3160
3150
3150
3140
3140
3120
3100
3130
3130 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2950 2980 3020 2890 2790 2820 | 2470
2570
2630
2700
2780
2830
2940
2980
3000
2980
3150
3150
3070
2980
2970
3040
3080
3080
3080
3090
2970
2930
2930 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2960
2960
2960
2960
2960
2970
3070
3130
3060
3000
2720
2930
3110
3220
3030 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2880 2890 2990 2980 2710 2800 2910 2880 2890 2910 2880 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2700
2910
2940
3000
3050
3050
3050
3050
3050
3050
30 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2940
2880
2820
2770
2770
2780
2940 | 2940
2840
2850
2550
2550
2550
2670
2680
2630
2680
2760
2970
2870
2870
2870
2670
2770
2730
2600
2560
2760
2770 | 3170
2930
2760
2680
2710
2750
2710
2670
2650
2670
2960
3030
2940
2930
2840
2590
2780
2870
2810
2680
2620
2730
2170 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1440
1440
1440
1470
1470
1450
1450
1450
1510
1460 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 1410 1400 1410 1400 1410 1410 1420 1430 1350 1320 1320 1280 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360
1350
1420
1470
1370
1470
1370
1480
1490
1490
1490
1490
1490
1490
1490
149 | | 1 2 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3040
3360
3210
3150
3240
3150
3140
3140
3120
3100
3130
3120
3100
3130 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2950 2980 3020 2890 2790 2820 2820 | 2470
2570
2630
2700
2780
2830
2890
2940
3000
2980
3070
2980
3140
3150
3070
2970
3040
3080
3040
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3070
3070
3070
3070
3070
3070
3070
3 | 3120
3190
3190
3110
3080
3230
3030
3260
3140
2870
2880
2960
2960
3010
3070
3130
3060
3000
2720
2930
3110
3220
3030
3170
29900
2820 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2860 2880 2890 2990 2980 2610 2590 2710 2800 2910 2880 2890 2910 2880 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2940
3000
3050
3010
2790
2670
2790
2670
2790
2960
2760
2790
3060
2790
3060
2790
3060
2790
3060
2790
3060
2790
3060
2790
3070
3070
3070
3070
3070
3070
3070
3 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2920
2670
2900
2940
2880
2820
2770
2770
2850 | 2940
2840
2620
2550
2550
2550
2570
2600
2580
2630
2680
2760
2970
2870
2870
2770
2770
2730
2600
2560
2680
1640
1890
2260
1780 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2750
2960
3040
2940
2930
2840
2590
2780
2870
2810
2620
2730
2170
2170
2330
1980 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1470
1470
1470
1470
1450
1510
1460
1510
1460 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 1330 1370 1440 1410 1450 1450 1450 1450 1450 145 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1360
1350
1420
1470
1370
1430
1460
1390 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3360
33210
3160
3150
3140
3150
3140
3120
3100
3130
3130
3130 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2950 2980 3020 2890 2790 2820 2820 2920 | 2470
2570
2630
2700
2780
2830
2940
2980
3000
2980
3140
3150
3070
2980
2970
3040
3080
3080
3020
3010
2970
2930
2930
2930
2930
2930
2930 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2960
2960
2960
3010
3070
3130
3060
3000
2720
2930
3110
3220
3030
3170
2990
2920
2820
2820
2820
2820 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2880 2890 2990 2990 2990 2990 2990 29 |
3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2900
2910
2940
3000
3050
3010
2790
2670
2840
2970
3060
2960
3020
2840
2960
2960
2960
2760
2770
2840
2970
2970
2970
2970
2970
2970
2970
297 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2990
2940
2880
2820
2770
2770
2850 | 2940
2840
2620
2550
2550
2550
2570
2680
2580
2630
2680
2970
2870
2870
2870
2670
2770
2730
2600
2560
2630
2640
2760
2770
2730
2640
2760
2770
2730
2640
2760
2760
2760
2770
2770
2780
2780
2780
2780
2780
278 | 3170
2930
2760
2680
2710
2750
2670
2650
2670
2960
3040
3030
2940
2930
2840
2590
2780
2870
2810
2620
2730
2170
2190
2330
1980
1980
1980
1980 | 1830
1960
1990
1910
1990
1750
1660
1790
1580
1440
1440
1450
1470
1490
1450
1440
1450
1510
1460
1510
1460 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 1430 1440 1400 1410 1430 1450 1280 1280 | 1780
1910
1870
1820
1840
1710
1550
1670
1480
1410
1360
1350
1420
1470
1370
1460
1420
1420
1430
1460
1390 | | 1 2 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3040
3360
3210
3150
3240
3150
3140
3140
3120
3100
3130
3120
3100
3130 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2950 2980 3020 2890 2790 2820 2820 | 2470
2570
2630
2700
2780
2830
2890
2940
3000
2980
3070
2980
3140
3150
3070
2970
3040
3080
3040
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3060
2970
3070
3070
3070
3070
3070
3070
3070
3 | 3120
3190
3190
3110
3080
3230
3030
3260
3140
2870
2880
2960
2960
3010
3070
3130
3060
3000
2720
2930
3110
3220
3030
3170
29900
2820 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2640 2860 2880 2890 2990 2980 2610 2590 2710 2800 2910 2880 2890 2910 2880 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2760
2700
2910
2940
3000
3050
3010
2790
2670
2790
2670
2790
2960
2760
2790
3060
2790
3060
2790
3060
2790
3060
2790
3060
2790
3060
2790
3070
3070
3070
3070
3070
3070
3070
3 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2920
2670
2900
2940
2880
2820
2770
2770
2850 | 2940
2840
2620
2550
2550
2550
2570
2600
2580
2630
2680
2760
2970
2870
2870
2770
2770
2730
2600
2560
2680
1640
1890
2260
1780 | 3170
2930
2760
2680
2710
2750
2710
2650
2670
2750
2960
3040
2940
2930
2840
2590
2780
2870
2810
2620
2730
2170
2170
2330
1980 | 1830
1960
1900
1910
1990
1750
1660
1790
1580
1460
1420
1390
1440
1470
1470
1470
1470
1450
1510
1460
1510
1460 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1400 1410 1330 1370 1440 1410 1450 1450 1450 1450 1450 145 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1360
1350
1420
1470
1370
1430
1460
1390 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 2580
2930
3090
2920
2860
2870
3000
3010
3060
3080
3050
3160
3150
3140
3150
3140
3120
3100
3130
3130
3130 | FEBRUARY 2360 2370 2430 2590 2640 2780 2820 2830 2890 2950 2930 2880 2910 3080 3010 2910 2880 2900 3010 3020 2960 2950 2980 3020 2890 2790 2820 2820 2820 2920 | 2470
2570
2630
2700
2780
2830
2940
2980
3000
2980
3150
3150
3070
2980
2970
3040
3080
3080
3010
2970
2930
2930
2930
2930 | 3120
3190
3110
3080
3230
3030
3260
3140
3120
3020
3040
2870
2960
2960
2960
2960
2960
3010
3070
3130
3060
3000
2720
2930
3110
3220
3030
3170
2900
2820
2820
2820
2920 | MARCH 3020 2920 2940 2990 2680 2700 2960 3020 2940 2850 2660 2880 2890 2920 2990 2980 2610 2590 2710 2800 2910 2880 2890 2910 2880 | 3070
3030
2980
3030
2870
2830
3110
3090
3030
2990
2760
2700
2910
2940
3000
3050
3050
3050
3050
3050
3050
30 | 3430
3110
2890
2740
2800
2840
2770
2730
2760
2850
3230
3170
3130
3030
3020
2920
2670
2990
2940
2880
2820
2770
2770
2780
2850
2920
2770
2900
2940
2850
2850
2920
2920
2920
2920
2920
2920
2920
29 | 2940
2840
2850
2550
2550
2550
2660
2580
2630
2680
2760
2970
2870
2870
2670
2770
2730
2600
2670
2770
2730
2600
2580
2610
2670
2770 | 3170
2930
2760
2710
2750
2710
2670
2650
2670
2960
3030
2940
2930
2840
2590
2780
2780
2780
2790
2790
2790
2790
2790
2790
2790
279 | 1830
1960
1990
1910
1990
1750
1660
1790
1580
1440
1440
1440
1470
1470
1450
1510
1460
1350
1350
1350
1350
1310
1340 | MAY 1730 1830 1830 1710 1730 1610 1530 1470 1540 1410 1350 1370 1330 1330 1330 1400 1410 1430 1440 1400 1410 1430 143 | 1780
1910
1870
1820
1840
1710
1590
1670
1480
1410
1360
1350
1470
1370
1470
1370
1470
1370
1430
1460
1420
1430
1430
1450
1430
1430
1430
1430
1430
1430
1430
143 | 411 09371520 McELMO CREEK ABOVE TRAIL CANYON, NEAR CORTEZ, CO--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | JUNE JULY AUGUST SEPT | EMBER 1300 1260 1260 1270 1280 1250 1270 1280 1270 1290 1900 1130 1250 170 1280 1250 170 1280 1250 170 1280 1250 170 1280 1250 1270 1280 1250 1270 1280 1250 1270 1280 1280 1280 1280 1280 1280 1280 128 | |---
--| | 1 1370 1330 1350 1230 1080 1120 1250 1170 1190 1310 12 2 1340 1300 1320 1160 1090 1110 1200 1170 1180 1300 12 3 1320 1280 1300 1240 1060 1140 1280 1170 1210 1270 12 4 1310 1280 1300 1180 1140 1150 1250 1260 1270 120 1250 1260 1270 120 120 1240 1280 1260 1270 120 120 1240 1280 1290 1270 1200 1240 1240 | 1300
1200
1210
1260
1270
1000
1230
1260
1270
1260
1270
1280
1700
1280
1100
1250
1270
1290
1900
1130
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300
1300 | | 2 1340 1300 1320 1160 1090 1110 1200 1170 1180 1300 12 3 1320 1280 1300 1180 1140 1150 1270 1210 1270 12 4 1310 1280 1300 1180 1140 1150 1320 1250 1270 1260 12 5 1290 1260 1270 1190 1090 1120 1320 1240 1280 1280 12 6 1290 1250 1260 1220 1160 1190 1290 1210 1240 1300 1270 1200 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1220 120 1280 12 120 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 | 1260 | | 7 1300 1250 1290 1270 1200 1240 1240 1210 1220 1290 12 8 1250 1230 1240 1240 1240 1250 1210 1220 1280 12 9 1270 1220 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1240 1260 120 1210 1270 120 1240 1200 1200 1210 1170 120 1200 120 120 1200 120 120 1200 120 | 1280 1280 1250 1290 1290 1130 1290 1130 1130 1170 1230 170 1360 1460 1450 1450 1450 1450 1450 1250 1450 1250 1450 1250 1450 1250 1 | | 12 1260 1190 1210 1440 1340 1360 1260 1170 1230 1150 10 13 1200 1150 1170 1340 1240 1301 1370 1230 1310 1200 13 14 1230 1180 1210 1350 1240 1310 1360 1330 1340 1270 13 15 1210 1160 1180 1340 1310 1320 1360 1260 1330 1430 12 16 1200 1140 1170 1420 1320 1340 1350 1280 1300 1500 14 17 1170 1120 1140 1440 1330 1370 1350 1300 1320 1490 14 18 1150 1030 1080 1360 1310 1340 1330 1250 1280 1440 14 19 1040 993 1010 1360 1280 1300 1310 1340 1330 1250 1280 1440 14 20 1230 947 1040 1340 1300 1320 1340 1390 1290 1 | 190 1130
150 1170
100 1230
170 1360
130 1460
120 1450 | | 17 1170 1120 1140 1440 1330 1370 1350 1300 1320 1490 14 18 1150 1030 1080 1360 1310 1340 1330 1250 1280 1440 14 19 1040 993 1010 1360 1280 1300 1410 1240 1290 1500 14 20 1230 947 1040 1340 1300 1320 1390 1290 1300 1450 13 21 1260 1230 1250 1370 1300 1340 1290 1230 1240 1380 13 22 1290 1230 1270 1370 1300 1340 1320 1250 1280 1380 13 23 1240 1160 1200 1310 1230 1250 1330 1280 1300 1370 13 | 20 1450 | | 22 1290 1230 1270 1370 1300 1340 1320 1250 1280 1380 1; 23 1240 1160 1200 1310 1230 1250 1330 1280 1300 1370 1; | 10 1420
30 1460
70 1390 | | | 160 1370
150 1370
140 1350
110 1320
100 1320 | | 27 1380 1310 1340 1280 1230 1260 1320 1300 1300 1360 1: 28 1840 1330 1420 1280 1210 1240 1350 1300 1370 1: 29 1460 1280 1350 1290 1190 1230 1360 1310 1330 1380 1: 30 1420 1230 1300 1240 1180 1210 1440 1300 1360 1360 1360 | 100 1320
110 1320
120 1340
130 1350
100 1330 | | MONTH 1840 947 1240 1440 1060 1260 1440 1120 1270 1500 1 | 60 1300 | | YEAR 3430 947 1970 | | | TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX M | IIN MEAN | | OCTOBER NOVEMBER DECEMBER JAI | TUARY | | 2 13.8 9.4 11.7 7.5 4.2 5.9 4.7
2.5 3.7 .0 | .0 .0
.0 .0
.1 .0
.0 .0 | | 6 13.8 11.2 12.5 7.6 3.8 5.7 .11 .0 .0 7 12.4 10.4 11.5 7.9 4.3 6.1 .01 .0 .0 8 13.5 9.4 11.4 9.5 6.1 7.7 .01 .0 .0 .0 9 13.5 9.6 11.7 8.4 5.5 7.0 .0 .0 .0 .0 .0 .0 10 13.5 9.4 11.5 7.2 4.1 5.8 .0 .0 .0 .0 .0 | .0 .0
.0 .0
.0 .0
.0 .0 | | 11 13.4 9.1 11.3 7.0 3.6 5.3 .0 .0 .0 .0 .0 12 13.2 9.0 11.2 6.6 3.2 4.9 .0 .0 .0 .0 .0 13 13.0 8.8 11.0 6.0 2.6 4.4 .01 .0 .0 | .0 .0
.0 .0
.0 .0
.0 .0 | | 14 12.6 8.6 10.7 5.8 2.4 4.1 .01 .0 .0 .0 .15 12.3 8.4 10.4 5.8 2.4 4.1 .0 .0 .0 .0 .0 | .0 .0
.0 .0 | | 14 12.6 8.6 10.7 5.8 2.4 4.1 .01 .0 .0 | .0 .0 | | 14 12.6 8.6 10.7 5.8 2.4 4.1 .0 1 .0 .0 15 12.3 8.4 10.4 5.8 2.4 4.1 .0 1 .0 .0 16 10.6 7.9 9.3 6.0 2.6 4.3 .0 1 .0 .0 17 9.1 5.6 7.5 6.8 3.4 5.2 .0 .0 .0 .0 18 9.0 5.3 7.2 6.6 4.0 5.6 .0 .0 .0 .0 .1 19 9.1 5.3 7.3 4.0 1.5 3.0 .0 .0 .0 .0 .1 20 9.1 5.2 7.2 4.4 1.4 2.9 .0 .0 .0 .0 .2 21 9.2 5.1 7.3 3.8 1.9 2.9 .0 .0 .0 .0 2.5 22 9.4 5.3 7.4 3.8 1.8 2.8 .0 | .0 .0 | MONTH 13.9 4.0 9.3 9.5 -.1 4.0 4.8 -.1 .3 3.9 -.1 .5 09371520 McELMO CREEK ABOVE TRAIL CANYON, NEAR CORTEZ, CO--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | IEMPER | MIUKE, | WAIER (DE | J. C), W | ALEK LEAK | OCTOBER | 1999 10 | SEF LEMBER | 2000 | | | |---|--|---|--|--|---|--|--|---|--|--|---|---| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | 1.5
1.9 | 1
.0
1
1 | .3 | 6.0
9.5
9.3
10.3
7.1 | 3.8
3.4 | 4.9
6.1 | 10.1
11.7 | 4.6
4.8 | 7.0
8.1 | 18.4
19.5
20.4
21.0
20.7 | 9.9
10.0 | 13.9
14.7 | | 3
4 | 3.0
3.3 | 1
1 | .9
1.4 | 9.3
10.3 | 2.4
2.8 | 5.8
6.5 | 13.5
15.4 | 6.4
6.2 | 9.8
10.7 | 20.4
21.0 | 10.9
11.4 | 15.7
16.2 | | | | | | | | | | | | | | | | 7 | 4.9
5.2 | .9
.3
.4
2.9
3.6 | 2.9
2.7 | 5.4
5.8
5.2
6.4
7.1 | 3.3
3.5 | 4.3
4.5 | 16.7
17.2 | 8.4
8.4 | 12.5
12.7 | 18.5
18.8 | 12.8
12.4
13.4
10.6
12.9 | 15.5
15.4 | | a | 5.2
5.9 | .4
2.9 | 2.8
4.3 | 5.2
6.4 | 2.1
2.5 | 3.7
4.6 | 16.5
17.7 | 8.0
8.5 | 12.2
12.9 | 16.4
17.9 | 13.4
10.6 | 14.9
14.3 | | | | | | | | | | | | | | | | 11
12 | 5.6
3.7 | 2.8
1.9
1.2 | 4.0
2.6
2.3
3.6
4.2 | 8.5
9.8
10.6
10.8
7.7 | 1.8
3.3 | 5.1
6.6 | 14.4
17.7 | 9.9
7.9 | 12.2
12.6 | 18.3
15.9 | 13.0
9.4
8.9
9.7
10.4 | 15.3
12.5 | | 13
14 | E 0 | 1.2
2.6 | 2.3 | 10.6
10.8 | 3.7
3.4 | 7.1
7.2 | 18.4
14.7 | 8.8
9.4 | 13.5
12.3 | 15.5
14.0 | 8.9
9.7 | 12.1
12.1 | | 15 | 6.8 | | | | | | | | | | 10.4 | 13.6 | | 16
17 | 5.1
4.3 | 2.3
2.1 | 3.9
3.2
4.1
3.2
3.5 | 10.3
9.8
9.3
9.9
7.1 | 2.3
3.1 | 6.1
6.3 | 15.2
17.9 | 7.2
7.6 | 11.3
12.4 | 18.6
14.1 | 12.6
11.0
9.8
10.8
11.5 | 15.3
12.6 | | 10 | 6 1 | 2.5
1.2 | 4.1 | 9.3
9.9 | 2.6
1.5 | 5.8
5.8 | 15.1
14.5 | 9.6
7.7 | 12.1
11.0 | 14.4
16.4 | 9.8
10.8 | 12.3
13.5 | | | | | | | | | | | | | | | | 21
22 | 6.6
7.2 | 3.3
4.3 | 4.9
5.6
4.6
4.8
2.7 | 5.7
7.3
12.3
12.7
14.1 | 3.3 | 4.4 | 14.2
13.2 | 9.8
9.1 | 12.2
10.8
12.9
13.6
12.6 | 18.9
20.4
21.8
21.7
19.1 | 12.0
13.2
14.7 | 15.5
16.8 | | 23 | h X | 2.0 | 4.6 | 12.3 | 5.4 | 8.4 | 18.2 | 8.5 | 12.9 | 21.8 | 14.7 | 18.2
19.2 | | 25 | 5.6
4.7 | 3.0
1.2 | 2.7 | | | | | | | | | 17.1 | | 26
27 | 5.8
7.1 | .0
.0
3.6
2.4 | 2.3
3.6
5.0
4.9 | 14.3
13.7
10.2
12.8
11.1
8.1 | 6.4 | 10.2 | 19.6
20.6
19.9
18.1
18.4 | 9.3 | 14.3
15.8
15.7
14.9
14.2 | 18.4
20.5
21.8
22.2
22.5
22.2 | 13.5
13.3 | 15.9
16.9 | | 28
29 | 6.7
7.3 | 3.6 | 5.0 | 10.2 | 7.6 | 8.7 | 19.9 | 11.7 | 15.7 | 21.8 | 14.7
16.0 | 18.3
19.1 | | 30 | 7.3 | | | 11.1 | 8.0 | 9.4 | 18.4 | 10.4 | 14.2 | 22.5 | 16.0 | 19.2 | | 31
MONTH | 7.3 | 1 | 3.3 | 14.3 | | 6.6 | | 4.6 | 12.3 | | 15.4
8.9 | 18.8
15.5 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | | MEAN | MAX | | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1
2 | 22.2
21.7 | JUNE
15.0
16.0 | 18.7
18.9 | | JULY | | | AUGUST | | | SEPTEMBE | 17.2 | | 1
2
3
4 | 22.2 | JUNE
15.0
16.0
15.5 | 18.7
18.9
18.8 | | JULY | | | AUGUST | | | SEPTEMBE | 17.2
16.9
16.8
17.2 | | 1
2
3
4
5 | 22.2
21.7
22.3
22.4
23.0 | JUNE 15.0 16.0 15.5 15.2 16.7 |
18.7
18.9
18.8
18.9
19.7 | 23.8
22.7
23.9
23.3
23.3 | JULY
17.4
18.3
18.2
16.8
15.9 | 20.5
20.7
20.9
20.0
19.5 | 23.4
23.5
22.6
24.4
24.0 | AUGUST
18.1
18.7
18.4
19.1
18.5 | 20.8
21.1
20.8
21.7
21.3 | 18.8
19.1
18.6
20.0
19.9 | 16.4
14.8
14.9
14.5
16.8 | 17.2
16.9
16.8
17.2
18.4 | | 1
2
3
4 | 22.2
21.7
22.3
22.4 | JUNE 15.0 16.0 15.5 15.2 16.7 | 18.7
18.9
18.8
18.9
19.7 | 23.8
22.7
23.9
23.3
23.3 | JULY
17.4
18.3
18.2
16.8
15.9 | 20.5
20.7
20.9
20.0
19.5 | 23.4
23.5
22.6
24.4
24.0 | AUGUST
18.1
18.7
18.4
19.1
18.5 | 20.8
21.1
20.8
21.7
21.3 | 18.8
19.1
18.6
20.0
19.9 | 16.4
14.8
14.9
14.5
16.8 | 17.2
16.9
16.8
17.2
18.4 | | 1
2
3
4
5 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7 | JUNE 15.0 16.0 15.5 15.2 16.7 | 18.7
18.9
18.8
18.9
19.7 | 23.8
22.7
23.9
23.3
23.3 | JULY
17.4
18.3
18.2
16.8
15.9 | 20.5
20.7
20.9
20.0
19.5 | 23.4
23.5
22.6
24.4
24.0 | AUGUST
18.1
18.7
18.4
19.1
18.5 | 20.8
21.1
20.8
21.7
21.3 | 18.8
19.1
18.6
20.0
19.9 | 16.4
14.8
14.9
14.5
16.8 | 17.2
16.9
16.8
17.2
18.4 | | 1
2
3
4
5
6
7
8
9 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4 | 23.8
22.7
23.9
23.3
23.3
23.3
22.9
22.9
23.5 | JULY 17.4 18.3 18.2 16.8 15.9 15.9 17.2 18.6 18.4 18.4 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.3
20.6
21.7 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.5
16.4 | | 1
2
3
4
5
6
7
8
9 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4 | 23.8
22.7
23.9
23.3
23.3
23.3
22.9
22.9
22.9 | JULY 17.4 18.3 18.2 16.8 15.9 15.9 17.2 18.6 18.4 18.4 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.3
20.6
21.7 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.5
16.4 | | 1
2
3
4
5
6
7
8
9
10 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.8
17.5
17.7 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1 | JULY 17.4 18.3 18.2 16.8 15.9 15.9 17.2 18.6 18.4 18.7 19.3 19.4 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7 | 23.4
23.5
22.6
24.4
24.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 13.9 13.9 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.5
16.4
16.4 | | 1
2
3
4
5
6
7
8
9 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4 | 23.8
22.7
23.9
23.3
23.3
23.3
22.9
22.9
22.9 | JULY 17.4 18.3 18.2 16.8 15.9 15.9 17.2 18.6 18.4 18.4 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.3
20.6
21.7 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.5
16.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
21.4
22.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.5 15.0 15.5 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.5
17.7
18.2
18.9 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.7 19.3 19.4 19.2 19.5 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.4
21.8 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 13.9 13.9 13.7 14.1 14.4 | 17.2
16.9
16.8
17.2
18.4
17.6
17.5
16.4
16.4
16.4
16.5
16.8
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
21.4
22.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.4 15.0 15.5 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.5
17.7
18.2
18.9
18.9 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.4 19.3 19.4 19.2 19.5 19.4 19.5 19.4 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 19.8 19.8 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.7
21.8
21.8
21.8
20.8 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.3
19.3
19.6
20.0 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 13.9 13.7 14.1 14.4 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.5
16.4
16.4
16.5
16.8
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
21.4
22.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.5 14.4 15.0 15.5 | 18.7
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.8
17.5
17.7
18.2
18.9 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
23.5
24.2
25.0
25.1
24.3
23.1 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.4 18.4 18.7 19.3 19.4 19.5 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.1 19.8 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.8
21.8 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 15.7 16.4 14.2 14.1 13.9 13.9 13.7 14.1 14.4 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.5
16.4
16.4
16.4
16.5
16.8
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
21.4
22.3
22.1
21.1
20.0
21.3
22.2 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.6 15.0 15.5 | 18.7
18.9
18.8
18.9
19.7
20.1
19.3
18.2
17.4
17.8
17.5
18.2
18.9
18.2
18.9
18.2 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1
23.8
24.2
24.1
23.8
24.2 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.7 19.3 19.4 19.2 19.5 19.4 19.5 16.6 |
20.5
20.7
20.9
20.0
19.5
19.5
19.5
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.6
21.2
20.2 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6
24.2
24.4
22.5
21.4 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 19.8 19.7 19.8 19.8 19.7 19.8 17.3 18.4 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.4
21.8
21.8
21.8
20.3
19.9 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3
19.6
20.0 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 13.9 14.0 | 17.2
16.8
17.2
18.4
17.6
17.5
16.4
16.4
16.4
16.5
17.1
17.0
17.0
17.0
17.0
17.0
17.0
17.6
16.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
22.1
22.3
22.1
21.1
20.0
21.3
22.1
21.1 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.4 15.0 15.5 15.8 14.9 16.2 15.9 15.7 | 18.7
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.8
17.5
17.7
18.2
18.9
18.9
18.9
18.9
18.9 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
23.5
24.2
25.0
25.1
24.3
23.1
23.8
24.2
24.1
23.6
24.0 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.4 19.3 19.4 19.5 19.5 19.4 19.5 16.6 16.6 16.6 16.3 16.9 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.6
21.2
20.2
20.4 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.6
24.2
24.4
22.5
21.4 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 19.8 19.7 19.6 18.3 18.4 17.3 17.3 17.3 18.4 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.7
21.4
21.8
21.8
20.8
20.3
19.9 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
19.3
19.3
19.1
18.4
19.3
19.6
20.0 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 16.1 13.7 14.0 14.6 13.6 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.5
16.4
16.4
16.5
16.4
16.5
16.8
17.1
17.0
17.0
17.4
16.1
16.3
14.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
22.3
22.1
21.1
20.3
22.1
21.1
20.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.5 14.5 14.6 15.5 | 18.7
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.8
17.5
17.7
18.2
18.9
18.9
18.9
18.9 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1
23.8
24.2
24.1
23.6
24.0 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.7 19.3 19.4 19.5 18.3 16.7 16.9 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.6
21.2
20.2
20.4 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6
24.2
24.4
22.4
22.4
22.4
22.4
22.4 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 19.8 19.8 19.7 19.6 18.3 18.4 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.4
21.8
21.8
20.8
20.3
319.9 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3
19.1
18.4
18.7 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 15.7 16.4 14.2 14.1 13.9 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 13.9 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.6
16.4
16.4
16.4
16.5
17.1
17.0
17.0
17.0
17.0
17.1
16.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
22.3
22.1
21.1
20.0
21.3
22.2
22.1
21.9
22.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.6 15.0 15.5 15.8 14.9 16.2 15.9 15.7 14.6 15.5 17.7 17.0 18.1 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.8
17.5
18.2
18.9
18.2
18.9
18.2
18.9
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1
23.8
24.2
24.1
23.6
24.0
23.9
23.6
24.0 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.7 19.3 19.4 19.2 19.5 19.4 19.5 16.6 16.3 16.7 16.9 16.6 19.1 | 20.5
20.7
20.9
20.0
19.5
19.5
19.5
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.6
21.2
20.2
20.4
20.3
20.8 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6
24.2
24.4
22.5
21.4
22.5
21.4 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.8 19.8 19.7 19.6 18.3 18.4 17.3 17.9 18.2 18.5 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.4
21.8
21.8
21.8
20.3
19.9
19.1
20.0
20.4
20.4
20.2 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3
19.1
18.4
18.7 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 13.9 14.0 14.6 10.5 8.7 | 17.2
16.8
17.2
18.4
17.6
17.5
16.4
16.4
16.4
16.5
16.8
17.1
17.0
17.0
17.0
17.4
16.1
16.3
14.8
12.4
11.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
22.1
21.1
20.0
21.3
22.1
21.1
20.0
21.3
22.4
22.3
22.1
21.1
20.6
21.3
22.4
22.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.5 14.6 15.5 17.7 17.0 18.1 17.5 | 18.7
18.8
18.9
19.7
20.1
19.8
19.3
18.2
17.4
17.8
17.5
17.7
18.9
18.9
18.9
18.3
18.7
19.4
20.2
20.5
20.1
20.1
19.6 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
23.5
24.2
25.0
25.1
24.3
23.8
24.2
24.1
23.6
24.0
23.9
23.6
21.6
23.0
25.1 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.4 18.7 19.3 19.4 19.5 19.5 19.6 16.6 16.6 19.1 19.4 19.2 17.4 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.2
20.2
20.2
20.1
20.3
20.8 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6
24.2
24.4
22.5
21.4
22.5
21.4 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 19.8 19.7 19.6 18.3 17.9 18.1 17.3 17.3 17.9 18.1 18.2 18.5 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.8
21.8
20.8
20.3
19.9
19.1
20.0
20.4
20.2 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3
19.1
18.4
18.7
17.0
18.7
16.1
14.2
13.9 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 15.7 16.4 14.2 14.1 13.9 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 16.1 13.7 16.1 13.7 16.1 13.7 18.9 14.0 14.6 10.5 8.7 | 17.2
16.9
16.8
17.2
18.4
17.6
17.8
17.6
16.4
16.4
16.4
16.5
16.5
16.8
17.1
17.0
17.0
17.4
16.3
15.6
16.3
14.8
12.4
11.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
22.3
22.1
21.1
20.0
21.3
22.2
22.1
21.9
21.6
23.1
24.3
22.2 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.5 14.5 14.7 15.0 15.5 15.8 14.9 16.2 15.9 16.7 17.7 17.0 18.1 17.3 17.5 16.7 17.5 | 18.7
18.8
18.9
19.7
20.1
19.3
18.2
17.4
17.8
17.5
17.7
18.2
18.9
18.9
18.2
18.4
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | 23.8
22.7
23.9
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1
23.6
24.0
23.9
23.6
24.0
23.6
24.0 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.7 19.3 19.4 19.2 19.5 19.4 19.5 16.6 16.7 16.9 16.6 16.3 16.9 17.2 19.4 19.2 19.5 |
20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.6
21.2
20.2
20.4
20.3
20.0
19.4
19.8
21.8
21.8
21.4
20.9 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6
24.2
24.4
22.4
22.5
21.4
22.6
21.7
21.7 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 19.8 19.7 19.6 18.3 18.4 17.3 17.9 18.1 18.2 18.5 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.4
21.8
21.8
20.8
20.3
19.9
19.1
20.0
20.4
20.2 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3
19.1
18.4
18.7
17.0
18.7
14.2
13.9 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 15.7 16.4 14.2 14.1 13.9 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 13.7 13.9 14.0 14.6 10.5 8.7 8.9 11.8 12.7 14.2 13.8 | 17. 2
16. 8
17. 2
18. 4
17. 6
17. 8
17. 5
16. 4
16. 4
16. 4
16. 5
16. 8
17. 1
17. 0
17. 0
17. 0
17. 0
17. 1
16. 3
14. 8
12. 4
11. 3
11. 7
14. 0
14. 8
16. 2
15. 8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
22.3
22.1
21.1
20.0
21.3
22.2
22.1
21.9
22.3
22.4
22.3 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.4 15.0 15.5 15.8 14.9 16.2 15.9 15.7 14.6 15.5 17.7 17.0 18.1 17.3 17.5 16.7 17.5 | 18.7
18.9
18.8
18.9
19.7
20.1
19.8
17.5
17.7
18.2
18.9
18.9
18.4
18.5
18.9
18.3
18.7
19.4
20.2
20.5
20.1
19.8 | 23.8
22.7
23.9
23.3
23.3
23.1
22.9
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1
23.8
24.2
24.1
23.6
24.0
23.9
23.6
24.0
23.9
23.6
24.2
24.1
23.6
24.0 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.7 19.3 19.4 19.2 19.5 19.4 19.5 16.6 16.3 16.7 16.9 16.6 19.1 19.4 19.2 17.7 | 20.5
20.7
20.9
20.0
19.5
19.5
19.5
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.6
21.2
20.2
20.4
20.3
20.9
21.4
20.3
20.6
21.5
21.6
21.6
21.7
21.8
21.6
21.7
21.8
21.6
21.2
20.3
20.6
20.3
20.6
20.3
20.6
20.3
20.6
21.7
21.8
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6
21.6 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6
24.2
24.4
22.5
21.4
22.5
21.7
21.0
22.3
23.0
21.7
20.9
21.7
20.9
20.4 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.8 19.8 19.7 19.6 18.3 18.4 17.3 17.9 18.1 18.2 18.5 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.7
21.4
21.8
21.8
21.8
20.3
19.9
19.1
20.0
20.4
20.2
19.5
20.0
20.4
20.2 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3
19.1
18.4
18.7
17.0
18.7
17.0
18.7
14.2
13.9 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 16.8 15.7 16.4 14.2 14.1 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 13.9 14.0 14.6 10.5 8.7 8.9 11.8 12.7 14.2 13.8 | 17.2
16.8
17.2
18.4
17.6
17.5
16.4
16.4
16.4
16.5
16.8
17.1
17.0
17.0
17.0
17.4
16.1
16.3
14.8
12.4
11.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.2
21.7
22.3
22.4
23.0
23.1
23.2
20.7
20.6
20.7
21.3
20.1
21.3
22.3
22.1
21.1
20.0
21.3
22.2
22.1
21.9
21.6
23.1
24.3
22.2 | JUNE 15.0 16.0 15.5 15.2 16.7 17.1 16.4 17.5 16.3 14.0 14.5 14.5 14.5 14.5 14.7 15.0 15.5 15.8 14.9 16.2 15.9 16.7 17.7 17.0 18.1 17.3 17.5 16.7 17.5 | 18.7
18.8
18.9
19.7
20.1
19.3
18.2
17.4
17.8
17.5
17.7
18.2
18.9
18.9
18.2
18.4
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
18.2
19.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3 | 23.8
22.7
23.9
23.3
23.1
22.9
22.9
23.5
24.2
25.0
25.1
24.3
23.1
23.6
24.0
23.9
23.6
24.0
23.6
24.0 | JULY 17.4 18.3 18.2 16.8 15.9 17.2 18.6 18.4 18.7 19.3 19.4 19.2 19.5 19.4 19.5 16.6 16.7 16.9 16.6 16.3 16.9 17.2 19.4 19.2 19.5 | 20.5
20.7
20.9
20.0
19.5
19.5
19.9
20.6
20.3
20.8
21.5
21.8
21.7
21.8
21.4
21.5
21.6
21.2
20.2
20.4
20.3
20.0
19.4
19.8
21.8
21.8
21.4
20.9 | 23.4
23.5
22.6
24.4
24.0
23.0
23.6
23.2
23.1
24.8
25.0
24.4
24.7
23.5
23.6
24.2
24.4
22.4
22.5
21.4
22.6
21.7
21.7 | AUGUST 18.1 18.7 18.4 19.1 18.5 17.5 17.3 17.4 18.2 19.2 18.9 19.4 19.1 19.1 19.8 19.8 19.7 19.6 18.3 18.4 17.3 17.9 18.1 18.2 18.5 | 20.8
21.1
20.8
21.7
21.3
20.5
20.3
20.6
21.7
21.6
21.6
21.7
21.4
21.8
21.8
20.8
20.3
19.9
19.1
20.0
20.4
20.2 | 18.8
19.1
18.6
20.0
19.9
18.4
20.0
18.6
18.6
18.6
20.0
19.9
19.3
19.1
18.4
18.7
17.0
18.7
14.2
13.9 | SEPTEMBE 16.4 14.8 14.9 14.5 16.8 15.7 16.4 14.2 14.1 13.9 13.9 13.7 14.1 14.4 14.3 14.7 16.1 13.7 13.7 13.9 14.0 14.6 10.5 8.7 8.9 11.8 12.7 14.2 13.8 | 17. 2
16. 8
17. 2
18. 4
17. 6
17. 8
17. 5
16. 4
16. 4
16. 4
16. 5
16. 8
17. 1
17. 0
17. 0
17. 0
17. 0
17. 1
16. 3
14. 8
12. 4
11. 3
11. 7
14. 0
14. 8
16. 2
15. 8 | #### 09372000 McELMO CREEK NEAR COLORADO-UTAH STATE LINE LOCATION.--Lat 37°19'27", long 109°00'54", in NE¹/₄ sec.2, T.35 N., R.20 W., Montezuma County, Hydrologic Unit 14080202, on right bank 1.5 mi upstream from Colorado-Utah State line, 2.0 mi upstream from Yellowjacket Creek, and 2.0 mi west of former town of McElmo. DRAINAGE AREA. -- 346 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1951 to current year. REVISED RECORDS.--WSP 1925: 1951-52 (M), 1957 (M). WRD CO-1972: Drainage area. GAGE.--Water-stage recorder with satellite telemetry. Elevation of gage is 4,890 ft above sea level, from topographic map. REMARKS.--Records good except for estimated daily discharges, which are poor. Diversions for irrigation of about 1,780 acres upstream from station. One diversion upstream from station for irrigation of about 60 acres downstream from station. Part of flow is return water from irrigated lands of Montezuma Irrigation District (water imported from Dolores River basin). | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YE
MEAN VA | | 1999 TO | SEPTEMBE | R 2000 | | | |----------|------------------|-----------|------------|------------|-----------|---------------------|------------|-----------|----------|--------------|----------|-----------| | DAY | OCT | NOV | DEC
| JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 115 | 90 | 45 | e32 | 35 | 26 | 56 | 32 | 47 | 70 | 72 | 103 | | 2 | 113 | 86 | 47 | e32 | 31 | 27 | 60 | 29 | 49 | 68 | 72 | 105 | | 3 | 110 | 84 | 46 | e26 | 33 | 26 | 48 | 30 | 60 | 65 | 69 | 102 | | 4 | 107 | 84 | 44 | 24 | 34 | 25 | 35 | 29 | 60 | 48 | 59 | 96 | | 5 | 109 | 84 | 40 | e24 | 31 | 30 | 29 | 25 | 53 | 45 | 50 | 103 | | 6
7 | 111
113 | 80
75 | 36
e34 | e24
e22 | 30
28 | 34
40 | 26
24 | 28
35 | 56
58 | 40
37 | 46
48 | 95
103 | | 8 | 113 | 82 | e34 | e24 | 27 | 54 | 22 | 36 | 63 | e44 | 52 | 103 | | 9 | 122 | 83 | e34 | e26 | 27 | 50 | 21 | 48 | 67 | e68 | 53 | 123 | | 10 | 118 | 75 | e32 | e26 | 29 | 42 | 20 | 49 | 73 | e66 | 52 | 129 | | 11 | 110 | 76 | e32 | e28 | 30 | 39 | 20 | 42 | 72 | e60 | 51 | 111 | | 12 | 105 | 72 | e31 | e32 | 30 | 34 | 19 | 35 | 71 | e52 | 82 | 96 | | 13 | 100 | 69 | e31 | 33 | 34 | 31 | 19 | 41 | 71 | e50 | 69 | 77 | | 14 | 97 | 69 | e31 | 33 | 32 | 29 | 19 | 56 | 67 | e56 | 75 | 67 | | 15 | 103 | 71 | 31 | 35 | 34 | 28 | 20 | 51 | 53 | 57 | 68 | 58 | | 16 | 105 | 74 | e30 | 35 | 37 | 27 | 20 | 50 | 52 | 59 | 67
74 | 53 | | 17
18 | 109
106 | 76
77 | e28
e27 | 36
41 | 37
39 | 24
23 | 21
20 | 43
45 | 44
45 | 66
64 | 74
73 | 56
58 | | 19 | 106 | 75 | e27 | 41 | 40 | 23 | 20
19 | 45 | 52 | 56 | 73
82 | 63 | | 20 | 98 | 76 | e27 | 39 | 39 | 25 | 18 | 49 | 56 | 52 | 81 | 64 | | 21 | 93 | 75 | e26 | 35 | 38 | 32 | 18 | 45 | 46 | 47 | 80 | 60 | | 22 | 93 | 76 | e27 | 34 | 37 | 33 | 22 | 48 | 41 | 43 | 81 | 60 | | 23 | 95 | 68 | e27 | 32 | 36 | 39 | 19 | 45 | 43 | 48 | 76 | 61 | | 24 | 94 | e50 | e27 | 30 | 33 | 36 | 22 | 37 | 46 | 48 | 73 | 61 | | 25 | 95 | e44 | e27 | 30 | 33 | 31 | 21 | 37 | 38 | 50 | 72 | 67 | | 26 | 98 | 52 | e29 | 44 | 30 | 28 | 28 | 51 | 36 | 49 | 77 | 69 | | 27
28 | 95
96 | 54
49 | 31
33 | 70 | 28
28 | 26
28 | 18
19 | 57
55 | 37
39 | 40
46 | 86
85 | 69
64 | | 28
29 | 96
99 | 49
47 | e32 | e46
e34 | 28
27 | 28
38 | 19
25 | 55
58 | 39
44 | 46
46 | 85
80 | 63 | | 30 | 94 | 46 | e32 | 33 | | 40 | 33 | 47 | 60 | 56 | 102 | 71 | | 31 | 94 | | 32 | 35 | | 36 | | 43 | | 60 | 134 | | | TOTAL | 3221 | 2119 | 1010 | 1040 | 947 | 1003 | 761 | 1325 | 1599 | 1656 | 2241 | 2409 | | MEAN | 104 | 70.6 | 32.6 | 33.5 | 32.7 | 32.4 | 25.4 | 42.7 | 53.3 | 53.4 | 72.3 | 80.3 | | MAX | 122 | 90 | 47 | 70 | 40 | 54 | 60 | 58 | 73 | 70 | 134 | 129 | | MIN | 93 | 44 | 26 | 22 | 27 | 22 | 18 | 25 | 36 | 37 | 46 | 53 | | AC-FT | 6390 | 4200 | 2000 | 2060 | 1880 | 1990 | 1510 | 2630 | 3170 | 3280 | 4450 | 4780 | | STATISTI | ICS OF MC | NTHLY MEA | N DATA F | OR WATER Y | EARS 1951 | - 2000, | BY WATER | YEAR (WY) | | | | | | MEAN | 60.7 | 51.6 | 39.7 | 33.9 | 48.7 | 58.6 | 41.2 | 47.8 | 56.0 | 54.1 | 65.8 | 62.1 | | MAX | 161 | 122 | 95.4 | 68.4 | 192 | 197 | 148 | 108 | 105 | 132 | 160 | 226 | | (WY) | 1973 | 1988 | 1966 | 1969 | 1993 | 1973 | 1973 | 1992 | 1969 | 1957 | 1967 | 1986 | | MIN | 1.84 | 14.0 | 13.5 | 16.1 | 17.9 | 15.7 | 2.23 | 6.79 | 2.60 | 1.19 | 2.69 | .43 | | (WY) | 1957 | 1957 | 1978 | 1978 | 1964 | 1951 | 1977 | 1977 | 1977 | 1951 | 1972 | 1956 | | SUMMARY | STATISTI | CS | FOR : | 1999 CALEN | DAR YEAR | F | OR 2000 WA | TER YEAR | | WATER YEA | RS 1951 | - 2000 | | ANNUAL T | | | | 21831.0 | | | 19331 | | | 50.1 | | | | ANNUAL N | 1EAN
ANNUAL M | TE A AT | | 59.8 | | | 52.8 | | | 52.1
94.6 | | 1973 | | | ANNUAL ME | | | | | | | | | 16.2 | | 1977 | | | DAILY ME | | | 188 | Sep 3 | | 134 | Aug 31 | | 1200 | Aug | 7 1967 | | | DAILY MEA | | | 3.9 | May 19 | | 18 | Apr 20 | | .08 | | 9 1977 | | ANNUAL S | SEVEN-DAY | MINIMUM | | 6.1 | May 14 | | 19 | Apr 15 | | .14 | Sep 2 | 21 1956 | | | ANEOUS PE | | | | | | 248 | Aug 11 | | a3040 | | 7 1967 | | | | AK STAGE | | 40000 | | | | Aug 11 | | b,c7.58 | Aug | 7 1967 | | | RUNOFF (A | | | 43300 | | | 38340 | | | 37760 | | | | | ENT EXCEE | | | 116
45 | | | 95
46 | | | 99
39 | | | | | ENT EXCEE | | | 19 | | | 26 | | | 14 | | | | JO FERCE | uncht | | | 1.7 | | | 20 | | | T-T | | | e Estimated. ^{a From rating curve extended above 2100 ft³/s. b From floodmark in gage well. c Maximum gage height, 8.21 ft, Sep 21, 1997.} ### 09372000 McELMO CREEK NEAR COLORADO-UTAH STATE LINE, CO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1977 to September 1981, August 1987 to current year. REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | ANCE
(US/CM) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | |------------------|--------------|---|--|--|---|--|---|---|---|---| | OCT 21 | 1130 | 94 | 1730 | 8.4 | 7.6 | 860 | 192 | 91.5 | 76.9 | 1 | | JAN
10 | 1045 | 26 | 2870 | 8.4 | .0 | 1500 | 315 | 174 | 173 | 2 | | MAR
14 | 1430 | 29 | 2890 | 8.5 | 12.5 | 1500 | 279 | 188 | 195 | 2 | | APR 20 | 1430 | 18 | 2750 | 8.3 | 18.2 | 1300 | 254 | 170 | 191 | 2 | | MAY
09 | 1100 | 56 | 1690 | 8.3 | 14.5 | 780 | 176 | 83.8 | 88.5 | 1 | | JUN
13
27 | 0945
1015 | 76
40 | 1380
1710 | 8.3
8.3 | 16.4
19.9 | 640
800 | 149
181 | 64.5
84.5 | 59.5
81.8 | 1
1 | | JUL
14 | 1015 | 61 | 1540 | 8.4 | 21.6 | 720 | 166 | 74.3 | 71.4 | 1 | | AUG
28 | 1045 | 87 | 1460 | 8.4 | 20.0 | 740 | 176 | 73.0 | 64.1 | 1 | | DATE | | VED LAE
/L CACC
K) (MG/L | PY PIS SULFA DIS- SOLV G (MG/ A) AS SO | DIS
ED SOI
L (MG
4) AS | DE, RI
B- D
LVED SO
B/L (M
CL) AS | DE, DI IS- SO LVED (M G/L A F) SI | S SOI | OF SOLI
STI- DI
STS, SOI
SS- (TO
VED PE
S/L) AC- | VED SOL
ONS (TC
CR PE
·FT) DA | S-
VED
NS
R
(Y) | | OCT
21
JAN | 3. | | | 18. | | | .5 133 | | | | | 10
MAR | 4. | | | 36. | | 4 14 | | | | | | 14
APR | 5. | | 1570 | 39. | | | .7 242 | 10 3.2 | .9 19 | 0 | | 20
MAY | 5. | 6 214 | 1440 | 37. | 4 . | 3 3 | .8 223 | 3.0 | 11 | 1 | | 09
JUN | 4. | 8 206 | 738 | 19. | 5 . | 4 9 | .5 124 | 1.6 | 59 18 | 9 | | 13
27
JUL | 4.
4. | | | 13.
17. | | 4 11
4 13 | | | | | | 14 | 4. | 6 232 | 620 | 14. | 8 . | 3 13 | .0 110 | 0 1.5 | 50 18 | 3 | | 28 | 4. | 1 228 | 576 | 13. | 6 . | 4 13 | .6 106 | 50 1.4 | 4 24 | 8 | Following is a list of Transmountain Diversions no longer being published in this report. Diversions, in acre-feet, for these sites are available from the State of Colorado, Division of Water Resources. | TO PLATTE | RIVER BASIN | TO ARKANS | EAS RIVER BASIN | TO RIO GR | ANDE RIVER BASIN | |--|--|----------------------|---|--|------------------------------------| | 09010000
09012000
09013000
09021500 | Grand River Ditch
Eureka Ditch
Alva B. Adams Tunnel
Berthoud Pass Ditch | 09061500
09062500 | Hoosier Pass Tunnel
Columbine Ditch
Wurtz Ditch
Homestake Tunnel | 09118200
09121000
09341000
09347000 | Tabor Ditch
Treasure Pass Ditch | | 09022500 | Moffat Water Tunnel
Boreas Pass Ditch | 09073000 | Twin Lakes Tunnel
Charles H. Boustead Tunnel | 09348000 | Williams Creek Squaw Pass
Ditch | | 09047300 | Vidler Tunnel | 09077500 | Busk-Ivanhoe Tunnel | 09351000 | Pine River-Weminuche Pass | | 09050590 | Harold D. Roberts Tunnel | 09115000 | Larkspur Ditch | 09351500 | Ditch
Weminuche Pass | As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at partial-record stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. #### LOW-FLOW PARTIAL-RECORD STATIONS Measurements of streamflow in the area covered by this report made at low-flow,
partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site. DISCHARGE MEASUREMENTS MADE AT LOW-FLOW PARTIAL-RECORD STATIONS DURING WATER YEAR 2000 #### PINEY RIVER BASIN | Station no | Station name | Location | Drainage
area
(mi ²) | Period of
record | Date | Discharge
(ft ³ /s) | |------------|-----------------------------------|---|--|---------------------|---|-----------------------------------| | *09058900 | Moniger Creek near
Minturn, CO | Lat 39°43'37", long 106°28'50",
in Eagle County, on left bank
1.5 mi upstream from mouth,
7.5 mi north of Minturn. | 0.76 | 1965-2000 | 10-14-99
6-15-00
7-19-00
8-21-00 | 0.05
0.84
0.09
0.02 | ^{*-}Also a crest-stage partial-record station. Several measurements of specific conductance and water temperature were obtained and are published in the "Supplemental Water-Quality Data For Gaging Stations" section of this report. As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at low-flow partial-record sites and at miscellaneous sites and for special studies are given in separate tables. #### CREST-STAGE PARTIAL-RECORD STATIONS The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. #### MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS | | | | Water | year 2000 |) maximum | Period of record maxim | | | |--|--|------------------------|-----------|------------------------|--|------------------------|------------------------|--| | Station name
and
number | Location
and
drainage area | Period
of
record | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | Date | Gage
height
(ft) | Dis-
charge
(ft ³ /s) | | | | PINEY RI | VER BASIN | | | | | | | *Moniger Creek
near Minturn,
CO (09058900) | Lat 39°43'37", long 106°28'50", in Eagle County, on left bank 1.5 mi upstream from mouth, 7.5 mi north of Minturn. Drainage area is 0.76 mi ² . | 1965-2000 | 5-26-00 | 1.64 | 6.43 | 5-21-89 | 2.05 | 29 | ^{*-}Also a low-flow partial-record station. #### 375546107412000 IRONTON METEOROLOGICAL STATION NEAR OURAY, CO LOCATION.--Lat $37^{\circ}55'46"$, long $107^{\circ}41'20"$, Ouray County, Hydrologic Unit 14020006, 0.8 mi southwest of Ironton, and 1.2 mi north of Red Mountain No. 2. PERIOD OF RECORD.--July 1992 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 10,020 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and rainfall data for water years 1992 and 1993 are available in district office. Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD.-AIR TEMPERATURE: Maximum, 29.7°C, Oct. 9, 1997; minimum, -32.4°C, Dec. 17, 18, 1996. PRECIPITATION: Maximum daily, 2.3 inches, Oct. 3, 1996. EXTREMES FOR CURRENT YEAR.--AIR TEMPERATURE: Maximum, 23.8°C, Aug. 2; minimum, -23.6°C, Jan. 6. PRECIPITATION: Maximum daily, 0.9 inches, Feb. 29. TEMPERATURE, AIR, DEGREES CELSIUS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|--------------------------------------|--|---|--|---|--|--|---|---| | | | OCTOBER | | 1 | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 14.6
13.1
13.1
14.6
15.0 | .0
-1.4
-1.7
-3.1
-1.4 | 7.0
6.1
5.5
4.3
7.7 | 11.3
9.5
10.6
12.1
13.5 | -4.6
-4.9
-6.0
-4.6
-3.5 | 1.0
.2
.0
1.3
2.6 | 4.9
.7
-6.8
-7.1
1.4 | -6.0
-7.9
-11.3
-17.0
-16.6 | 1
-5.0
-9.1
-12.5
-9.2 | -4.2
-6.0
-13.7
3
-4.2 | -10.1
-14.9
-22.6
-22.6
-17.9 | -6.9
-10.1
-17.1
-10.5
-10.6 | | 6
7
8
9
10 | 10.2
5.7
11.0
15.4
16.5 | 2.1
-1.7
-3.1
-1.4
-1.0 | 6.7
.2
2.4
5.3
6.2 | 13.9
11.7
11.0
8.8
14.6 | -3.5
-2.8
-2.8
-4.2
-2.8 | 2.8
2.8
3.1
.8
4.3 | -1.0
3
-5.3
2.5
-3.5 | -14.1
-10.9
-17.0
-17.4
-8.6 | -9.1
-5.4
-9.7
-8.6
-6.6 | -6.4
-1.4
-1.4
-8.3
-1.7 | -23.6
-15.7
-17.9
-12.1
-9.4 | -16.8
-10.2
-9.4
-9.8
-4.5 | | 11
12
13
14
15 | 16.5
16.1
18.1
15.0
12.1 | -1.0
7
-1.4
-1.0
-1.7 | 6.5
6.1
6.2
5.8
4.8 | 12.4
13.9
13.1
15.4
13.1 | -2.4
-2.4
-2.8
-1.7
-2.8 | 2.8
3.3
2.3
4.2
2.5 | -5.3
-2.1
7
-12.1
-4.2 | -17.0
-17.4
-14.1
-22.1
-22.1 | -11.9
-10.2
-7.1
-17.4
-14.3 | 4.9
.7
4.9
8.8
8.1 | -8.6
-7.1
-9.8
-6.4
-6.8 | -1.2
-1.7
-3.0
8
1 | | 16
17
18
19
20 | 1.8
2.8
6.7
7.8
9.9 | -8.6
-11.7
-7.1
-7.5
-5.7 | -2.8
-5.2
9
-1.0 | 13.5
11.3
3.2
7.1
5.7 | -3.1
-2.1
-9.4
-9.4
-4.9 | 2.9
4.0
-3.7
-1.9 | 1.1
-3.1
.7
-7.5
-9.4 | -14.5
-14.1
-11.3
-19.3
-19.3 | -7.7
-7.8
-5.6
-12.8
-12.8 | 8.5
2.5
3.2
5.3
5.3 | -1.4
-2.1
-1.7
-8.3
-8.6 | 3.2
2
.8
1
-2.2 | | 21
22
23
24
25 | 12.1
13.9
14.3
12.4
12.8 | -4.6
-2.8
-2.8
-2.8
-4.6 | 1.8
3.5
3.5
3.7
2.3 | .0
-7.1
-2.8
-5.7 | -9.0
-14.9
-19.7
-18.3
-17.4 | -4.9
-10.3
-13.0
-14.0
-8.8 | -8.6
-7.5
6.0
6.7
5.7 | -19.7
-21.1
-14.9
-11.7
-10.5 | -14.5
-15.5
-9.3
-6.8
-3.5 | 1.8
-2.4
-1.0
7 | -6.8
-7.9
-17.0
-7.5
-4.6 | -2.6
-5.8
-8.9
-3.8
-2.3 | | 26
27
28
29
30
31 | 14.6
11.7
12.4
3.9
7.4
13.1 | -2.4
-2.1
-2.1
-10.5
-11.3
-2.8 | 4.1
3.1
5.2
-3.5
-3.2
2.8 | 6.7
6.7
8.8
10.2
10.6 | -8.3
-6.4
-5.7
-4.2
-2.8 | -2.1
6
.1
.9
2.6 | 4.6
5.7
8.1
4.2
4.9
2.8 | -10.5
-11.7
-8.3
-10.9
-12.5
-11.3 | -4.5
-6.3
-3.2
-3.6
-6.6
-4.8 | .4
-5.7
-8.3
-7.1
-3.5
-4.2 | -5.7
-14.9
-21.1
-22.6
-18.8
-12.5 | -3.2
-8.8
-15.4
-16.2
-12.0
-8.2 | | MONTH | 18.1 | -11.7 | 3.1 | 15.4 | -19.7 | 5 | 8.1 | -22.1 | -8.4 | 8.8 | -23.6 | -6.4 | 419 ## 375546107412000 IRONTON METEOROLOGICAL STATION NEAR OURAY, CO--Continued TEMPERATURE, AIR, DEGREES CELSIUS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | | MAX | MIN | MEAN | MAX | | MEAN | MAX | MIN | MEAN | |---|--
---|--|--|--|--|--|--|--|---|---|---| | 2111 | 1 | FEBRUARY | | 1 | MARCH | | | APRIL | 1 | 1111 | MAY | | | 1
2
3
4
5 | 6.4
9.2 | -15.3
-12.9
-9.0
-7.9
-10.1 | -9.9
-4.1
-2.0
-2.3
-4.1 | .4
-1.0
6.0
8.8
-1.7 | -7.9
-12.9
-13.7
-6.8
-7.5 | -3.8
-6.0
-4.6
.4
-4.4 | -1.4
.4
1.8
12.1
10.2 | -13.7
-10.5
-8.6 | -6.7
-6.2
-4.0
1.5
2.7 | 11.7
15.8
16.5
17.7
16.5 | -4.9
-2.1
7
.7 | 2.9
6.5
8.0
9.0
9.1 | | 7
8 | 2.8
3.9
9.5
1.1
3 | 2 - | -5.3
-5.3
6
-1.3 | -2.1
-1.0
.0
-4.9
-4.2 | -7.1
-8.6
-13.7
-10.9
-17.0 | -4.5
-4.4
-6.5
-7.4
-10.3 | 9.9
7.4
11.3
10.2
8.8 | -2.8
-4.6
-6.0
-3.1
-4.2 | 4.1
2.0
2.6
4.3
2.5 | 14.3
13.1
3.9
11.3
14.6 | .7 | 7.2
6.7
.9
4.1
9.2 | | | .4
-3.8
-4.2
5.3
2.5 | _9 8 | -5.2
-5.9
-6.8
-1.2 | 3.2
1.1
3.5
4.9
2.1 | -17.9
-11.3
-12.9
-12.1
-10.1 | -7.0
-4.2
-5.2
-3.3
-3.1 | 6.4
9.5
11.0
7.1
7 | -4.9
-6.8
-2.8
-2.8
-6.0 | 3
1.3
4.2
2.1
-3.3 | 11.3
1.4
8.5
12.4
15.0 | -7.9
-7.1
-2.1 | 6.4
-3.4
2.1
4.9
8.8 | | 18
19
20 | 2.5
5.3 | -9.8
-11.3
-15.7
-16.2
-9.4 | -4.0
-6.2
-8.0
-7.2
-1.7 | .7
3.5
-7.1
6.4
-1.4 | -15.3
-13.7
-17.4
-17.0
-9.0 | -6.3
-4.9
-12.0
-3.8
-4.3 | 8.5
12.1
7.1
-1.0
11.0 | -8.3
-2.1
-4.6
-8.3
-8.6 | 1.2
5.2
1.6
-4.7
1.3 | 12.1
4.6
6.4
8.1
12.4 | 3.5
-5.3
-4.6
-3.5
-1.4 | 8.5
.0
.6
2.7
5.4 | | 23
24
25 | -3.8
-10.9 | -14.5
-13.7
-13.7 | .5
-4.8
-4.4
-6.6
-12.6 | 2.5
4.2
3.9
6.0
7.4 | | | | -1.7
-1.7
-1.4
-3.8
-4.9 | 4.4
.9
2.4
2.7
3.7 | 14.3
17.7
19.3
16.9
13.9 | . 0 | 7.1
9.7
11.8
9.7
7.1 | | 26
27
28
29
30
31 | 7
7.1
3
2.8
 | -9.8
-9.8
-9.8 | -9.3
-1.6
-4.0
-4.3 | 6.0
8.8
3.5
3.2
3.9 | -4.6
-7.9
-3.8
-7.5
-8.3
-8.6 | .6
.7
8
-2.4
-3.5
-6.0 | 6.0 | -1.0
-1.0
.7
7
-2.4 | 6.3
7.2
6.9
4.0
.4 | 10.2
16.1
20.5
21.3
21.3
19.7 | 4.9
3.9
1.1
.4
.4
3.2
5.7
6.0
5.3 | 5.1
8.0
12.1
14.1
14.5
13.6 | | MONTH | 9.5 | -20.7 | -4.6 | 8.8 | -17.9 | -4.1 | 15.8 | -13.7 | 1.7 | 21.3 | -7.9 | 6.9 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | | | JULY | | | AUGUST | | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
20.1
18.5
18.9
19.7
18.1 | JUNE 2.1 4.2 2.8 2.5 3.9 | | 19.7
19.3
18.9
19.7
20.5 | JULY 5.7 5.3 5.7 7.1 3.5 | 12.0
12.1
13.2
13.1
13.0 | 23.3
23.8
22.1
20.9
19.7 | 7.1
7.8
8.5
8.1
6.0 | 15.4
14.5
14.1
14.2
12.9 | 13.9
14.3
16.9
18.9
17.3 | 3.9
2.8
3.9 | 8.5
7.7
9.4 | | 1
2
3
4 | 20.1
18.5
18.9
19.7 | JUNE 2.1 4.2 2.8 2.5 3.9 2.8 3.9 5.3 | 11.6
11.2
11.4
11.6
10.1
12.3
13.0
12.3
8.0
8.0 | 19.7
19.3
18.9
19.7
20.5
22.5
19.3
19.3
15.8
18.5 | JULY 5.7 5.3 5.7 7.1 3.5 4.9 6.7 5.7 6.0 4.2 | 12.0
12.1
13.2
13.1
13.0
14.4
11.9
12.2
10.3
11.9 | 23.3
23.8
22.1
20.9
19.7
20.9
21.7
22.1
23.3
20.9 | 7.1
7.8
8.5
8.1
6.0 | 15.4
14.5
14.1
14.2
12.9 | 13.9
14.3
16.9
18.9
17.3 | 3.9
2.8
3.9 | 8.5
7.7
9.4
11.9
9.9 | | 1
2
3
4
5
6
7
8
9
10 | 20.1
18.5
18.9
19.7
18.1
20.5
21.7
18.5
13.5
15.8 | JUNE 2.1 4.2 2.8 2.5 3.9 2.8 3.9 5.3 1.83 | 11.6
11.2
11.4
11.6
10.1
12.3
13.0
12.3
8.0
8.0
9.8
11.4 | 19.7
19.3
18.9
19.7
20.5
22.5
19.3
15.8
18.5
20.5 | JULY 5.7 5.3 5.7 7.1 3.5 4.9 6.7 5.7 6.0 4.2 6.0 5.7 | 12.0
12.1
13.2
13.1
13.0
14.4
11.9
12.2
10.3
11.9 | 23.3
23.8
22.1
20.9
19.7
20.9
21.7
22.1
23.3
20.9 | 7.1
7.8
8.5
8.1
6.0
5.3
5.7
6.4
8.5
7.1 | 15.4
14.5
14.1
14.2
12.9
13.2
13.4
14.6
15.1
13.3 | 13.9
14.3
16.9
18.9
17.3
14.6
17.3
12.4
16.1
18.1 | 3.9
2.8
3.9
6.4
4.6
4.9
4.2
4.2
1.4
.4 | 8.5
7.7
9.4
11.9
9.9
8.4
9.6
7.6
7.6
8.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.1
18.5
18.9
19.7
18.1
20.5
21.7
18.5
13.5
15.8
17.7
19.3
16.5
17.7 | JUNE 2.1 4.2 2.8 2.5 3.9 2.8 3.9 5.3 1.83 1.8 2.5 3.9 -1.0 | 11.6
11.2
11.4
11.6
10.1
12.3
13.0
12.3
8.0
8.0
9.8
11.4
11.5
8.9 | 19.7
19.3
18.9
19.7
20.5
22.5
19.3
15.8
18.5
20.5
18.9
20.9 | JULY 5.7 5.3 5.7 7.1 3.5 4.9 6.7 5.7 6.0 4.2 6.0 5.7 6.7 7.8 | 12.0
12.1
13.2
13.1
13.0
14.4
11.9
12.2
10.3
11.9
11.8
12.5
14.5
12.8 | 23.3
23.8
22.1
20.9
19.7
20.9
21.7
22.1
23.3
20.9
20.5
18.5
20.1
18.9 | 7.1
7.8
8.5
8.1
6.0
5.3
5.7
6.4
8.5
7.1 | 15.4
14.5
14.1
14.2
12.9
13.2
13.4
14.6
15.1
13.3
13.0
12.2
11.0
12.1 | 13.9
14.3
16.9
18.9
17.3
14.6
17.3
12.4
16.1
18.1 | 3.9
2.8
3.9
6.4
4.6
4.9
4.2
1.4
.4 | 8.5
7.7
11.9
9.9
8.4
9.6
7.6
7.6
8.6
7.9
8.7 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19 | 20.1
18.5
18.9
19.7
18.1
20.5
21.7
18.5
13.5
15.8
17.7
19.3
16.5
17.7
20.5 | JUNE 2.1 4.2 2.8 2.5 3.9 2.8 3.9 5.3 1.83 1.8 2.5 3.9 -1.0 2.5 3.2 -2.1 3.5 4.2 | 11.6
11.2
11.4
11.6
10.1
12.3
13.0
12.3
8.0
8.0
9.8
11.4
11.5
8.9
12.2 | 19.7
19.3
18.9
19.7
20.5
22.5
19.3
15.8
18.5
20.5
18.9
20.1
21.3
20.1
21.3 | JULY 5.7 5.3 5.7 7.1 3.5 4.9 6.7 5.7 6.0 4.2 6.0 5.7 6.7 7.8 5.7 6.0 7.1 4.6 3.9 | 12.0
12.1
13.2
13.1
13.0
14.4
11.9
12.2
10.3
11.9
11.8
12.5
14.5
12.8
12.2
12.2
11.4
13.3 | 23.3
23.8
22.1
20.9
19.7
20.9
21.7
22.1
23.3
20.9
20.5
18.5
20.1
18.9
20.9 | 7.1
7.8
8.5
8.1
6.0
5.3
5.7
6.4
8.5
7.1
6.4
7.4
5.7
6.4
6.4
6.4 | 15.4
14.5
14.1
14.2
12.9
13.2
13.4
14.6
15.1
13.3
13.0
12.2
11.0
12.1
11.4 | 13.9 14.3 16.9 18.9 17.3 14.6 17.3 12.4 16.1 18.1 16.9 18.5 20.1 22.1 20.1 20.9 19.3 13.9 16.9 | 3.9
2.8
3.9
6.4
4.6
4.9
4.2
1.4
.4
.7
.7
2.5
3.9
3.9
4.2
4.9 | 8.5
7.7
9.4
11.9
9.9
8.4
9.6
7.6
7.6
8.6
7.9
8.7
10.3
12.4
11.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 20.1
18.5
18.9
19.7
18.1
20.5
21.7
18.5
15.8
17.7
19.3
16.5
17.7
20.5
17.3
16.5
13.5
16.1
16.1 | JUNE 2.1 4.2 2.8 2.5 3.9 2.8 3.9 5.3 1.83 1.8 2.5 3.9 -1.0 2.5 3.2 -2.1 3.5 4.2 2.57 2.8 4.2 3.2 | 11.6
11.2
11.4
11.6
10.1
12.3
13.0
12.3
8.0
8.0
9.8
11.4
11.5
8.9
12.2
10.8
7.6
8.8
9.6
9.6 | 19.7
19.3
18.9
19.7
20.5
22.5
19.3
15.8
18.5
20.5
18.9
20.1
21.3
20.1
21.3
22.5
21.3 | JULY 5.7 5.3 5.7 7.1 3.5 4.9 6.7 5.7 6.0 4.2 6.0 5.7 6.7 7.8 5.7 6.0 7.1 4.6 3.9 6.4 6.0 5.3 6.4 8.1 | 12.0
12.1
13.2
13.1
13.0
14.4
11.9
12.2
10.3
11.9
11.8
12.5
12.8
12.2
12.2
11.4
13.2
13.8
13.9
14.3
14.2
14.4 |
23.3
23.8
22.1
20.9
19.7
20.9
21.7
22.1
23.3
20.9
20.5
18.5
20.1
18.9
20.9
18.1
15.0
16.5
16.5
18.1
17.3
18.5
18.5
18.5
18.5
18.5
18.5 | 7.1
7.8
8.5
8.1
6.0
5.3
5.7
6.4
8.5
7.1
6.4
7.4
5.7
6.4
6.4
5.7
5.7
6.0
4.2
4.6
4.2
4.6 | 15.4
14.5
14.1
14.2
12.9
13.2
13.4
14.6
15.1
13.3
13.0
12.2
11.0
12.1
11.4
11.8
10.6
9.0
10.7
9.8
10.8
10.8
10.2
10.5 | 13.9 14.3 16.9 18.9 17.3 14.6 17.3 12.4 16.1 18.1 16.9 18.5 20.1 22.1 20.1 20.9 19.3 13.9 16.9 15.0 14.6 15.4 8.1 3.2 | 3.9
2.8
3.9
6.4
4.6
4.9
4.2
1.4
.4
.7
.7
2.5
3.9
3.9
4.2
4.9
1.1
.7
1.1 | 8.5
7.7
9.4
11.9
9.9
8.4
9.6
7.6
7.6
8.6
7.9
8.7
10.3
12.4
11.6
11.8
10.8
7.0
8.1
7.3
9.2
9.5
3.3
6.2,9 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 20.1
18.5
18.9
19.7
18.1
20.5
21.7
13.5
15.8
17.7
19.3
16.5
17.7
20.5
17.3
16.5
13.5
17.7
20.5 | JUNE 2.1 4.2 2.8 2.5 3.9 2.8 3.9 5.3 1.83 1.8 2.5 3.9 -1.0 2.5 3.2 -2.1 3.5 4.2 2.57 2.8 4.2 3.2 3.2 4.2 3.2 6.0 3.9 | 11.6
11.2
11.4
11.6
10.1
12.3
13.0
12.3
8.0
8.0
9.8
11.4
11.5
8.9
12.2
10.8
7.6
8.8
9.6
9.6
9.6
9.6 | 19.7
19.3
18.9
19.7
20.5
22.5
19.3
15.8
18.5
20.5
18.9
20.1
21.3
20.1
18.5
22.1
21.3
22.5
21.3
22.5
21.3
21.7
21.7
21.7
21.7
22.5
21.7 | JULY 5.7 5.3 5.7 7.1 3.5 4.9 6.7 6.0 4.2 6.0 5.7 6.7 7.8 5.7 6.0 7.1 4.6 3.9 6.4 6.0 5.3 6.4 8.1 5.7 6.4 8.1 6.7 7.8 6.7 | 12.0
12.1
13.2
13.1
13.0
14.4
11.9
12.2
10.3
11.9
11.8
12.5
14.5
12.8
12.2
12.2
11.4
13.2
13.8
13.9
14.3
14.2
14.6
15.6
14.6
15.5
13.6 | 23.3 23.8 22.1 20.9 19.7 20.9 21.7 22.1 23.3 20.9 20.5 18.5 20.1 18.9 20.9 18.9 18.1 15.0 16.5 16.5 18.1 17.3 18.5 18.5 18.5 18.1 14.6 18.5 20.5 18.1 | AUGUST 7.1 7.8 8.5 8.1 6.0 5.3 5.7 6.4 7.4 6.4 7.4 5.7 6.7 6.4 6.4 5.7 5.7 6.0 4.2 4.6 4.2 4.9 7.1 6.0 | 15.4
14.5
14.1
14.2
12.9
13.2
13.4
14.6
15.1
13.3
13.0
12.2
11.0
12.1
11.4
11.8
10.6
9.0
10.0
10.7
9.8
10.8
10.2
10.5
11.2 | 13.9 14.3 16.9 17.3 14.6 17.3 12.4 16.1 18.1 16.9 18.5 20.1 22.1 20.1 20.1 21.1 21.1 21.1 21.1 | 3.9 2.8 3.9 6.4 4.6 4.9 4.2 1.4 .4 .7 .7 2.5 3.9 3.9 4.2 4.9 1.1 4.2 3.9 -3.1 -6.4 -5.7 -2.4 -3 2.1 2.5 2.1 | 8.5
7.7
11.9
9.9
8.4
9.6
7.6
8.6
7.9
8.7
10.3
12.4
11.6
11.8
7.0
8.1
7.3
9.5
3.6
9.5
3.6
9.5
6.4
8.1
6.7
7.3 | # 375546107412000 IRONTON METEOROLOGICAL STATION NEAR OURAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | | | | | | DAILLI | SUM VALO | EO | | | | | | |----------------------------------|----------------------------|----------------------|----------------------|----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | . 0
. 0
. 0
. 0 | .0
.0
.0 | .0
.4
.3
.0 | .2
.3
.1
.0 | .0
.0
.0 | .1
.0
.0
.0 | .0
.1
.1
.0 | .0.0.0.0 | .0.0.0.0 | .0
.1
.0
.0 | .0
.1
.0
.0 | .1
.2
.0
.0 | | 6
7
8
9
10 | .1
.2
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0
.0
.0
.0 | .4
.7
.3
.3 | .0
.0
.1
.0 | .0
.0
.3
.1 | .0
.0
.0
.0 | .0
.0
.1
.2 | .0
.0
.0
.0 | .3
.0
.4
.0 | | 11
12
13
14
15 | . 0
. 0
. 0
. 0 | .0
.0
.0 | .0
.0
.2
.1 | .0
.0
.0
.0 | .1
.3
.2
.0 | .0
.2
.0
.0 | .0.0.0.0 | .1
.0
.0
.0 | .0
.0
.0
.0 | .2
.0
.0
.0 | .0
.6
.1
.0 | .0.0.0 | | 16
17
18
19
20 | .0.0.0 | .0
.0
.0 | .0
.2
.1
.1 | .0
.0
.3
.0 | .0
.4
.0
.0 | .0
.0
.3
.0 | .0
.0
.8
.0 | .0.0.0.0 | .0
.0
.2
.0 | .0
.1
.0
.0 | .1
.2
.8
.0 | .0
.0
.3
.0 | | 21
22
23
24
25 | .0.0.0 | .3
.1
.0
.0 | .2
.0
.0
.0 | .3
.2
.0
.4
.6 | .0
.1
.0
.3 | .2
.1
.7
.0 | .0.0.0.0 | .0.0.0.0 | .0
.1
.0
.0 | .0
.0
.0 | .1
.1
.1
.1 | .3
.1
.1
.3 | | 26
27
28
29
30
31 | .0
.0
.0
.2
.0 | .0
.0
.0
.0 | .0.0.0.0.0 | .3
.2
.0
.0 | .0
.0
.1
.9 | .0.0.0.0.0 | .0 .0 .0 .0 .0 .0 | .0.0.0.0.0 | .0
.1
.0
.0 | .0
.0
.0
.0 | .2
.1
.4
.1
.2 | .0
.0
.0
.3
.1 | | TOTAL | 0.5 | 0.4 | 1.8 | 3.0 | 2.8 | 4.5 | 1.1 | 0.5 | 0.4 | 1.1 | 3.9 | 2.6 | CAL YR 1999 TOTAL 24.9 WTR YR 2000 TOTAL 22.6 #### 375852107455200 GOVERNOR BASIN METEOROLOGICAL STATION NEAR TELLURIDE, CO $\label{location.--Lat 37°58'52", long 107°45'52", Ouray County, Hydrologic Unit 14020006, 0.4 mi east of Stony Mountain, and 4.5 mi north of Telluride.$ PERIOD OF RECORD. -- October 1992 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 11,150 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and rainfall data for water year 1993 are available in district office. Daily record for air temperature is good. Daily record for accumulated rainfall is good. EXTREMES FOR PERIOD OF RECORD.-AIR TEMPERATURE: Maximum recorded, 21.3°C, June 26, 1994, June 29, 1998; minimum recorded, -31.7°C, Dec. 17, 18, 1996. PRECIPITATION: Maximum daily, 2.7 inches, Oct. 3, 1996. EXTREMES FOR CURRENT YEAR.--AIR TEMPERATURE: Maximum recorded, 20.1°C, July 22; minimum, -23.1°C, Jan. 3. PRECIPITATION: Maximum daily, 2.0 inches, May 8. TEMPERATURE, AIR, DEGREES CELSIUS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|-------------------------------------|--|---|--|--|--|---|---|--| | | | OCTOBER | ! | I | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 12.1
10.2
9.9
11.3
12.1 | 2.5
.4
.0
7
1.8 | 6.8
5.6
5.2
4.6
7.3 | 7.4
7.1
7.4
8.8
9.5 | -3.5
-3.5
-4.2
-2.4
-1.7 | 1.0
.8
3
1.7
2.4 | 2.5
-4.2
-8.6
-9.4
-2.8 | -7.5
-11.7
-12.5
-19.3
-12.1 | -1.2
-7.6
-11.0
-14.4
-7.7 | -3.5
-8.3
-16.6
-4.2
-6.0 | -11.7
-16.6
-23.1
-20.7
-20.7 | -8.4
-11.9
-19.2
-9.3
-12.6 | | 6
7
8
9
10 | 8.1
3.5
8.1
13.1
15.0 | 2.5
-2.4
-3.8
.7
1.8 | 5.5
5
2.4
5.9
6.8 | 9.5
9.2
7.1
5.3
11.3 | 7
3
7
-3.8 | 2.8
3.3
3.0
3
3.8 | -2.4
-5.3
-7.5
-1.0
-5.3 | -13.3
-10.9
-17.0
-16.6
-9.4 | -7.5
-6.9
-11.8
-7.8
-7.7 | -11.3
-4.6
-6.8
-10.5
-4.6 | -21.1
-13.3
-17.4
-14.5
-10.5 | -16.6
-10.3
-11.7
-12.5
-7.0 | | 11
12
13
14
15 | 13.1
13.1
13.9
12.1
8.5 | 2.5
2.1
2.1
1.8 | 6.6
6.8
6.7
6.1
4.5 | 10.2
12.4
9.5
11.0
10.6 | .4
1.1
1.1
1.8
.0 | 3.8
4.3
3.4
4.4
3.0 | -9.4
-6.0
-4.9
-16.6
-8.6 | -17.0
-15.7
-16.6
-21.1
-21.1 | -14.2
-10.4
-8.3
-19.4
-14.5 | .4
-3.1
1.4
2.5
3.5 | -7.5
-9.0
-9.8
-4.2
-3.1 | -2.8
-4.4
-4.8
-1.6 | | 16
17
18
19
20 | 1.1
3
3.5
5.3
7.4 | -10.5
-12.1
-6.0
-7.9
-4.6 | -3.9
-6.2
-1.7
-1.6 | 10.6
6.7
.4
5.3
1.8 | 7
7
-9.0
-7.5
-6.0 | 3.1
2.5
-4.8
-1.2
-1.5 | -1.7
-4.2
-1.7
-11.7
-10.9 | -13.7
-12.9
-11.7
-17.4
-17.9 | -7.2
-8.3
-5.9
-14.0
-13.8 | 2.8
.0
.4
.0
2.5 | -3.1
-3.5
-2.1
-6.0
-5.3 | .6
-1.8
-1.0
-1.9
-2.0 | | 21
22
23
24
25 | 8.1
11.3
11.7
10.6
9.2 | -1.0
.0
3
-1.0
-2.4 | 2.6
4.1
3.7
3.5
2.4 | -3.8
-9.0
-7.9
-9.0
7 | -9.0
-15.7
-19.3
-17.4
-17.0 | -5.8
-11.6
-14.5
-15.0
-7.6 | -10.9
-10.5
-4.2
-2.8
1.1 | -18.8
-19.7
-13.7
-8.6
-7.9 | -15.2
-15.3
-9.3
-6.8
-4.0 | -2.1
-6.0
-6.4
-2.1
-1.0 | -7.5
-11.3
-13.7
-6.8
-4.9 | -4.5
-8.1
-9.3
-4.5
-3.3 | | 26
27
28
29
30
31 | 11.7
9.2
8.5
1.8
4.6
10.6 | .4
3
1.1
-11.7
-12.1
3 | 4.2
3.2
4.9
-5.6
-2.9
3.5 | 3.2
2.8
4.2
5.7
6.7 | -7.9
-4.2
-4.2
-2.4
-1.7 | -2.3
-1.3
-1.0
.2
1.6 | 7
-1.7
1.8
.4
-2.8
3 | -9.0
-10.1
-4.6
-7.9
-10.9
-7.1 | -6.2
-6.3
-1.9
-4.1
-7.1
-4.3 | -2.4
-7.1
-11.3
-9.8
-7.9
-5.7 | -7.1
-18.3
-20.7
-20.7
-17.0
-12.9 |
-4.8
-11.7
-17.1
-15.9
-12.2
-9.3 | | MONTH | 15.0 | -12.1 | 2.9 | 12.4 | -19.3 | 7 | 2.5 | -21.1 | -9.0 | 3.5 | -23.1 | -7.7 | ## 375852107455200 GOVERNOR BASIN METEOROLOGICAL STATION NEAR TELLURIDE, CO--Continued TEMPERATURE, AIR, DEGREES CELSIUS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DAN | MAX | MIN | | | | | MAY | | | | MIN | MEAN | |---|--|---|---|--|--|--|--|---|---|--|---|--| | DAY | | FEBRUARY | | MAX | MARCH | MEAN | MAX | APRIL | MEAN | MAX | MAY | MEAN | | 1 | | -17.0 | | 2.4 | -7.9 | -5.3 | 1 6 | -13.3 | 0 0 | 8.5 | | 1.8 | | 2 | 3.5
3.5 | -8.3
-4.9 | -12.0
-2.5
-1.7 | -3.8
2.5 | -12.1
-12.5 | -7.9
-4.9 | -1.0 | -13.3 | -8.9
-6.6
-4.8
1.8
2.5 | 11.3
12.1 | .4 | 5.9
7.4 | | 4 | 2.5 | -6.8
-7.1 | -3.1 | 6.4 | | _ | .4
9.2
7.4 | | 1.8 | 14.3
13.1 | 3.9 | 8.1 | | 5 | .7 | | -3.5 | | | | | -2.1 | | | | 8.3 | | 6
7 | 1.1 | -10.1
-10.5 | -5.8
-5.2
4
-3.4
-4.8 | -3.5
-3.5 | -10.1 | -6.0
-5.7 | 6.4
5.7
8.8
7.8
5.3 | -1.4
-5.3 | 2.5
.9
1.4
3.1
.6 | 9.5 | 1.1 | 6.6
5.4 | | 8 | | -4.2
-4.9 | 4 | -4.2
-7.5 | -11.7 | -8.4
-9.4 | 7.8 | -5.3
-1.4 | 3.1 | 1.1
8.1 | -1.7
-6.8 | 3
2.6 | | 10 | | | | | -16.2 | -11.9 | 5.3 | -4.2 | | | | 7.8 | | 11
12 | -4.9 | -10.1
-9.8 | -6.7
-7.5
-9.0
-2.5
-4.4 | -2.8 | -17.0
-10.5 | -7.7
-6.0 | 3.9
6.0
8.1
3.2 | -4.9
-6.0 | . 4 | 7.1
3 | -9.4 | 3.5
-5.4 | | 13
14 | | -11.7
-6.8
-8.3 | -9.0
-2.5 | $\frac{1.1}{2.1}$ | -10.9
-7.5 | -5.4
-2.5 | 8.1
3.2 | -1.4
-3.1 | 3.4
.8
-4.8 | 5.7
9.2 | -7.1
-1.4 | .2
3.4 | | 15 | -1.0 | -8.3 | -4.4 | 7 | -12.9 | -2.5
-5.1 | | -8.3 | | | 1.8 | 8.2 | | 16
17 | | -9.0
-11.3 | -4.5
-8.1 | 1.8
2.1 | -14.5
-12.9 | -6.8
-5.1 | 5.7
9.2
3.2
-2.8
7.8 | -6.8
.7 | .1
5.0 | 8.8
2.5
4.6 | 2.5
-7.1 | 7.3
-2.5 | | 18
19 | | -14.9
-14.9 | -9.4
-6.8 | -9.4
2.5 | -16.2
-15.3 | -12.7
-4.0 | 3.2
-2.8 | -7.9
-9.8 | 3
-6.5 | 4.6
6.0 | | -1.0
1.4 | | 20 | | -6.8 | -9.0
-2.5
-4.4
-4.5
-8.1
-9.4
-6.8
-1.9 | -3.1 | -9.8 | -5.8 | 7.8 | -7.5 | .6 | 11.0 | 3 | 4.5 | | 21
22 | | -4.2
-13.3 | -1.5
-7.0 | -2.1
1.1
.7 | -10.1
-8.3 | -6.1
-3.7 | 7.4
3.9
4.9 | .4
-3.5 | 3.8
5 | 12.1
14.3
16.1
14.6
12.4 | .0
2.1 | 6.1
8.4 | | 23
24 | .7
-4.9 | -14.5
-14.5 | -5.0
-8.3
-14.6 | .7 | -9.4 | -4.1 | 4.9
4.6 | -1.7 | .6
.9 | 16.1 | 8.1
5.3 | 11.6 | | | | -15.3 | -14.6 | 4.2 | -5.7 | -2.7
-1.0 | 8.1 | | 2.7 | 12.4 | 1.8 | 6.4 | | 26
27 | | | -10.2
-1.6 | 2.8
7.1
1.8
1.4
-1.0 | -3.8
-5.7 | 6 | 10.6
12.1
9.9
6.7 | 1.8 | 5.9
6.8 | 7.1
12.4 | 1.8 | 4.9
6.9 | | 28 | 7 | -11.3
-11.3 | -6.0
-6.9 | 1.8 | -5.3 | .1
-2.4
-5.0 | 9.9 | 1.8 | 6.3 | 17.3 | | 11.4 | | 29
30 | .4 | -11.3 | -6.9 | -1.0 | -10.9 | -5.6 | 2.5 | -4.2 | -1.3 | 17.7
17.3 | 5.7 | 12.2
11.9 | | 31 | | 20. 2 | | | | -7.8 | 10.1 | 12.2 | | 16.5 | | 11.4 | | MONTH | 5.3 | -20.2 | -5.7 | 7.1 | -17.0 | -5.3 | 12.1 | -13.3 | .5 | 17.7 | -9.4 | 5.6 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | | JUNE | 10.9 | | JULY | 11.0 | | AUGUST | | 10.2 | SEPTEMBE | R 7.7 | | 1
2
3 | 16.5
15.0
14.6 | JUNE
4.6
5.3
6.0 | 10.9
10.3
10.4 | 15.8
15.8
15.8 | JULY 6.7 6.7 5.3 | 11.0
11.1
11.3 | | AUGUST |
 | 10.2
11.3
12.4 | \$EPTEMBE 4.6 2.5 4.2 | 7.7
7.3
8.4 | | 1
2 | 16.5
15.0
14.6 | JUNE
4.6
5.3 | 10.9
10.3 | 15.8
15.8
15.8 | JULY | 11.0
11.1 | | AUGUST | | 10.2
11.3 | SEPTEMBE
4.6
2.5 | 7.7
7.3 | | 1
2
3
4
5 | 16.5
15.0
14.6
16.5
16.5 | JUNE 4.6 5.3 6.0 4.9 5.3 | 10.9
10.3
10.4
11.0
9.4 | 15.8
15.8
15.8
15.4
17.7 | JULY 6.7 6.7 5.3 3.5 4.6 | 11.0
11.1
11.3
10.4
11.9 |

 | AUGUST |

 | 10.2
11.3
12.4
15.8
13.9 | SEPTEMBE
4.6
2.5
4.2
7.1
6.0
4.2 | 7.7
7.3
8.4
11.5
9.7 | | 1
2
3
4
5
6
7
8 | 16.5
15.0
14.6
16.5
16.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 | 11.0
11.1
11.3
10.4
11.9 |

 | AUGUST | | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2 | \$EPTEMBE 4.6 2.5 4.2 7.1 6.0 4.2 4.2 2.5 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3 | | 1
2
3
4
5 | 16.5
15.0
14.6
16.5
16.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 | 11.0
11.1
11.3
10.4
11.9 |

 | AUGUST |

 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2 | \$EPTEMBE 4.6 2.5 4.2 7.1 6.0 4.2 4.2 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6 | | 1
2
3
4
5
6
7
8
9
10 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5 |

19.7
17.3 | AUGUST 8.8 8.1 7.1 |

13.7
11.5 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4 | |
1
2
3
4
5
6
7
8
9
10 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.7 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.4 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5 |

19.7
17.3
15.8
16.8 | AUGUST 8.8 8.1 7.1 6.4 6.4 |

13.7
11.5
11.2
10.9 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8 | | 1
2
3
4
5
6
7
8
9
10 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0 | 15.8
15.8
15.4
17.7
18.1
16.5
15.4
17.7 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5 |

19.7
17.3
15.8
15.8 | AUGUST 8.8 8.1 7.1 6.4 |

13.7
11.5
11.2 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.77 4.2 3.9 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9 | 15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.1 6.4 6.4 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5
11.1
11.8
12.8
11.4
11.1 |

19.7
17.3
15.8
15.8
16.5 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.2
4.9
7.1
6.4 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
12.8
14.6
16.9 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.77 4.2 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.1 6.4 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5
11.1
11.8
12.8
11.4 |

19.7
17.3
15.8
16.5
15.8
16.9 | AUGUST 8.8 8.1 7.1 6.4 7.1 7.8 |

13.7
11.5
11.2
10.9
10.7
11.2 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.5
4.9
7.1
6.4 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
14.6
16.9
13.9
14.3
11.7
12.8 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.77 4.2 3.9 -1.7 4.2 3.5 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1
17.7 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.4 7.1 6.4 6.7 6.4 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.5
11.1
11.8
12.8
11.4
11.1 | 19.7
17.3
15.8
15.8
16.5
15.8
16.9 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.7 5.3 4.2 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
16.9 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.2
4.9
7.1
6.4 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5 | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
12.8
14.6
16.9
13.9
14.3
11.7
12.8
13.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.7 4.2 3.9 -1.7 4.2 3.5 3.5 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5
8.8 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.8
18.1
16.1
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.1 6.4 6.7 6.4 7.1 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5
11.1
11.8
12.8
11.4
11.1
10.6
9.9
12.7
13.0
13.2 |

19.7
17.3
15.8
16.5
15.8
16.5
15.8
16.1 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.7 5.7 5.7 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
9.0
10.2 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
15.0
9.2
15.0
12.4 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.5
4.9
7.1
6.4
6.7
4.9
1.1 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
12.8
14.6
16.9
13.9
14.3
11.7
12.8
13.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.7 4.2 3.9 -1.7 4.2 3.5 3.5 1.4 4.9 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5
8.8
9.2
10.1 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.7
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.1 6.4 6.7 6.7 6.7 7.1 7.1 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.5
10.1
11.8
12.8
12.8
11.4
11.1
10.6
9.9
12.7
13.7
13.0
13.2 | 15.8
15.8
15.8
16.5
15.8
16.1
12.1
14.3 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.7 5.3 4.2 7.1 5.3 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
9.0
10.2 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
16.9
18.1
15.0
9.2
15.0
12.4 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.5
4.9
7.1
6.4
6.7
4.9
1.1
1.4
.7 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5
11.8
10.6
5.0
7.2 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
14.6
16.9
13.9
14.3
11.7
12.8
13.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.77 4.2 3.9 -1.7 4.2 3.5 3.5 1.4 4.9 4.6 3.9 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5
8.8
9.2
10.1
7.4
6.7 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.1 6.4 6.7 6.4 7.1 7.1 7.8 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5
11.1
11.8
12.8
11.4
11.1 | 19.7
17.3
15.8
15.8
16.5
16.1
16.1
12.1
13.1
14.3
13.5
14.3
14.3 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.7 5.7 5.7 4.2 7.1 5.3 4.6 5.3 6.0 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
9.0
10.2
8.0
8.8
8.7
9.0 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
15.0
9.2
15.0
12.4 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.5
4.9
7.1
6.4
6.7
4.9
1.1
1.4
.7 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5
11.8
10.6
5.0
7.2
8.1
8.3
1.4
6.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 |
16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
12.8
14.6
16.9
13.9
14.3
11.7
12.8
13.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.77 4.2 3.5 5.7 4.2 3.5 1.4 4.6 3.9 4.6 3.9 4.6 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5
8.8
9.2
10.1
7.4
6.7
9.3 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.7 7.4 7.1 6.4 6.7 6.7 6.4 7.1 7.1 7.1 7.1 7.1 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.5
10.5
11.1
11.8
12.8
11.4
11.1
10.6
9.9
12.7
13.0
13.6
13.6
13.6 | 15.8
15.8
16.5
16.1
12.1
13.1
14.3
13.5
14.3
14.3 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.3 4.2 7.1 5.3 4.6 5.3 6.0 6.4 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
9.0
10.2
8.0
8.7
9.0
9.7 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
15.4
16.5
18.1
16.9
18.1
15.0
9.2
15.0
9.2
15.0
10.6
13.1
17.4
2.1 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
3.5
3.5
3.5
4.9
7.1
6.4
6.7
4.9
1.1
1.4
7 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5
11.8
10.6
5.0
7.8
7.2
8.1
8.3
1.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
12.8
14.6
16.9
13.9
14.3
11.7
12.8
13.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.7 4.2 3.9 -1.7 4.2 3.9 -1.7 4.2 3.9 4.6 3.9 4.6 6.4 4.2 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5
8.8
9.2
10.1
7.4
6.7
9.3
8.5
7.6 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.1 6.4 6.7 6.7 6.7 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.5
10.5
11.1
11.8
12.8
11.4
11.1 | 10.1 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.7 5.3 4.2 7.1 5.3 6.0 6.4 4.9 5.3 | 13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
9.0
10.2
8.0
8.8
8.7
9.0
9.7 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
16.9
18.1
15.0
9.2
15.0
12.4
10.6
13.1
7.4
2.1
12.4 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.2
4.9
7.1
6.4
6.7
4.9
1.1
1.4
.7
5.3
5.7
-4.9
-7.9
-3.8 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5
11.8
10.6
5.0
7.2
8.1
8.3
1.5
9.7 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 17 18 19 20 21 22 23 24 25 26 27 28 29 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
14.6
16.9
13.9
14.3
11.7
12.8
13.5
16.5
15.8
11.0
12.8
13.9 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.77 4.2 3.9 -1.7 4.2 3.5 3.5 1.4 4.9 4.6 6.4 4.2 4.2 7.1 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5
8.8
9.2
10.1
7.4
6.7
9.3 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.1 6.4 6.7 6.4 7.1 7.1 7.8 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.1
9.0
10.5
11.1
11.8
12.8
11.4
11.1
10.6
9.9
12.7
13.0
13.2
13.6
13.9 | 15.8
15.8
15.8
16.5
15.8
16.1
12.1
13.1
14.3
13.5
14.3
15.8
14.3
15.8
14.3 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.7 5.3 4.6 5.3 4.6 6.3 6.0 6.4 4.9 5.3 6.4 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
9.0
10.2
8.0
8.8
8.7
9.0
9.7 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
16.9
18.1
15.0
12.4
10.6
13.1
7.4
2.1
12.4 | \$\text{4.6} \\ \frac{4.6}{2.5} \\ \frac{4.2}{4.2} \\ \frac{2.5}{2.8} \\ \frac{3.5}{3.5} \\ \frac{3.5}{3.2} \\ \frac{4.9}{1.1} \\ \frac{6.4}{1.4} \\ \frac{7}{7} \\ \frac{4.9}{3.8} \\ \frac{7.7}{3.8} \\ \frac{5.7}{3.8} \\ \frac{7.7}{3.8} \f | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
12.2
11.5
11.8
10.6
5.0
7.8
7.2
8.1
8.3
1.5
5.7
7.2
8.3 | | 1 2 3 3 4 5 5 6 7 8 8 9 10 11 12 13 13 14 15 15 16 17 18 19 220 22 23 24 25 26 27 28 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
14.3
10.2
11.7
13.1
15.4
12.8
16.9
13.9
14.3
11.7
12.8
13.5
16.5
15.8
11.0
12.8
13.9 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 7 2.8 3.5 5.7 4.2 3.9 7.1 4.2 3.5 5.7 4.2 4.6 6.4 4.6 6.4 4.2 4.2 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.5
8.8
9.2
10.1
7.4
6.7
9.3 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.1 6.4 6.7 6.7 6.7 7.1 7.1 7.1 7.1 7.1 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.5
10.5
11.1
11.8
12.8
11.4
11.1
10.6
9.9
12.7
13.0
13.2
13.6
13.9 | 15.8
15.8
16.5
16.1
12.1
13.1
14.3
13.5
14.3
14.3
14.3
15.8
14.3 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.11 7.8 5.7 5.3 4.2 7.1 5.3 4.6 6.4 4.9 5.3 6.0 6.4 4.9 5.3 5.3 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
9.0
10.2
8.0
8.8
8.7
9.0
9.7 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
16.9
18.1
15.0
9.2
15.0
9.2
15.0
12.4
10.6
13.1
12.4 | ### SEPTEMBE # .6 2.5 4.2 7.1 6.0 # .2 4.2 2.5 8.3.5 3.5 3.5 3.5 3.5 3.5 3.7 4.9 7.1 6.4 6.7 4.9 1.1 1.4 7 5.3 5.7 -4.9 -7.9 -3.8 .7 1.8 3.9 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.4
112.5
11.5
11.8
10.6
5.0
7.2
8.1
8.3
1.5
-4.6
3.4
5.7
5.7 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 16.5
15.0
14.6
16.5
16.5
17.3
18.1
10.2
11.7
13.1
15.4
12.8
14.6
16.9
13.9
14.3
11.7
12.8
13.5
16.5
15.8
11.0
12.8
13.9
14.6
15.8
11.0
16.5 | JUNE 4.6 5.3 6.0 4.9 5.3 4.9 7.1 4.2 2.8 .7 2.8 3.5 5.7 4.2 3.9 -1.7 4.2 3.9 -1.7 4.6 3.9 4.6 4.2 4.2 7.1 5.3 | 10.9
10.3
10.4
11.0
9.4
11.5
12.3
10.0
6.9
7.0
8.4
10.0
9.8
7.9
11.9
9.5
7.1
7.7
8.8
9.2
10.1
7.4
6.7
9.3
8.5
7.6
9.3
10.0 | 15.8
15.8
15.8
15.4
17.7
18.1
16.5
15.4
13.9
16.1
16.5
15.8
18.1
16.1
17.7
15.0
14.6
18.5
19.7
18.9 | JULY 6.7 6.7 5.3 3.5 4.6 5.7 7.8 6.4 5.3 5.7 7.4 7.8 7.1 6.4 6.7 6.7 6.7 7.1 7.1 7.1 7.8 | 11.0
11.1
11.3
10.4
11.9
12.9
10.5
10.5
10.5
11.1
11.8
12.8
11.4
11.1
10.6
9.9
12.7
13.0
13.2 | 19.7
17.3
15.8
15.8
16.5
15.8
16.9
16.1
12.1
12.1
13.1
14.3
13.5
14.3
14.3
14.3
14.3
15.8
14.3 | AUGUST 8.8 8.1 7.1 6.4 6.4 7.1 7.8 5.7 5.7 5.3 4.2 7.1 5.3 6.0 6.4 4.9 5.3 5.4 3.5 |

13.7
11.5
11.2
10.9
10.7
11.2
10.6
9.9
9.7
7.8
8.0
8.8
8.7
9.0
9.7 | 10.2
11.3
12.4
15.8
13.9
9.9
12.8
10.2
13.1
14.6
13.1
15.4
16.5
18.1
16.9
18.1
15.0
9.2
15.0
12.4
10.6
13.1
7.4
2.1
12.4
11.3
11.3
12.1
10.6
11.0 | 4.6
2.5
4.2
7.1
6.0
4.2
4.2
2.5
2.8
3.5
3.5
3.2
4.9
7.1
6.4
6.7
4.9
1.1
1.4
.7
5.3
5.7
-4.9
-7.9
-3.8 | 7.7
7.3
8.4
11.5
9.7
7.4
8.6
6.3
7.2
8.4
7.7
8.8
10.6
5.0
7.2
11.5
11.8
10.6
5.0
7.2
8.1
8.3
1.5
9.7 | ### 375852107455200 GOVERNOR BASIN METEOROLOGICAL STATION NEAR TELLURIDE, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------| | 1
2
3
4
5 | .0
.0
.0 | .0 | .0
.5
.4
.0 | .6
.6
.2
.0 | .0
.0
.0 | .1
.2
.0
.0 | .2
.4
.1
.0 | .0.0.0.0 | .0 | .0
.1
.0
.0 |

 | .0
.1
.0
.0 | |
6
7
8
9
10 | .1
.4
.0
.0 | .0 .0 .0 .0 | .0
.0
.2
.0 | .0
.0
.0
.1 | .0
.0
.0
.2 | .3
.6
.0
.3 | .0 .0 .0 .0 | .0
.1
2.0
.1
.0 | .0
.0
.1
.0 | .0
.0
.3
.2 |

.0
.3 | .5
.1
.5
.0 | | 11
12
13
14
15 | .0
.0
.0 | .0
.0
.0 | .0
.0
.4
.1 | .0
.0
.0 | .5
.3
.4
.0 | .0
.2
.0
.0 | .2
.0
.0
.0 | .0
.0
.0 | .0.0.0 | .0
.0
.0
.1 | .0
.3
.0
.0 | .0.0.0 | | 16
17
18
19
20 | .0
.0
.0 | .0
.0
.0 | .0
.2
.1
.0 | .0
.3
.8
.0 | .0
.3
.1
.0 | .1
.0
.2
.0 | .0
.0
.0
.1 | .0
.1
.2
.0 | .0
.0
.3
.0 | .0
.1
.0
.0 | .5
.1
.9
.0 | .0
.0
.5
.0 | | 21
22
23
24
25 | .0
.0
.0 | .3
.1
.0
.0 | .2
.0
.0
.0 | .3
.2
.0
.4 | .0
.3
.0
.3 | .2
.0
.3
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.3
.3 | .0
.0
 | .4
.3
.2
.5 | .1
.0
.1
.3 | | 26
27
28
29
30
31 | .0
.0
.0
.2
.0 | .0 | .0 .0 .0 .0 .0 | .5
.2
.0
.0 | .0
.0
.3
.0 | .0
.0
.4
.0
.5 | .0
.0
.0
.0 | .0.0.0.0.0 | .0
.2
.0
.0 |

 | .1
.2
.1
.3 | .0
.0
.0
.5 | | TOTAL | 0.7 | 0.4 | 2.6 | 5.9 | 3.7 | 5.1 | 1.8 | 2.5 | 1.2 | 1.2 | 4.9 | 3.1 | CAL YR 1999 TOTAL 31.7 WTR YR 2000 TOTAL 33.1 ### 380102107402200 OURAY METEOROLOGICAL STATION AT OURAY, CO LOCATION.--Lat $38^{\circ}01^{\circ}02^{\circ}$, long $107^{\circ}40^{\circ}22^{\circ}$, in $SW^{1}/_{4}$ sec.31,T.43 N, R.7 W., Ouray County, Hydrologic Unit 14020006, 0.4 mi southwest of post office in Ouray. PERIOD OF RECORD. -- December 1992 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 7,960 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and rainfall data for water year 1993 are available in district office. Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD.-AIR TEMPERATURE: Maximum recorded, 31.1°C, June 29, 1998; minimum recorded, -24.1°C, Dec. 17, 18, 1996. PRECIPITATION: Maximum daily, 2.2 inches, Oct. 3, 1996. EXTREMES FOR CURRENT YEAR.-- AIR TEMPERATURE: Maximum, 29.7°C, July 6, Aug. 1, 2; minimum, -16.6°C, Dec. 14. PRECIPITATION: Maximum daily, 1.3 inches, May 8. | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|--------------------------------------|--|-----------------------------------|--|--|--|-------------------------------------|--|--| | | | OCTOBER | | 1 | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 20.9
19.3
18.1
19.7
21.7 | 7.4
5.3
5.3
5.3
7.8 | 13.0
12.0
10.9
11.1
14.7 | 13.1
14.3
14.3
16.1
16.9 | 1.8
.7
1.1
1.8
2.1 | 5.9
5.8
5.9
7.5
8.4 | 10.2
1.1
-2.1
-2.8
1.1 | -2.4
-3.8
-6.8
-11.3
-12.5 | 6.1
-2.0
-5.2
-7.9
-6.4 | 1.8
-1.4
-9.4
-2.4
-3.8 | -7.1
-10.5
-16.2
-15.7
-12.1 | -2.5
-6.1
-12.4
-8.1
-6.9 | | 6
7
8
9
10 | 16.5
7.8
15.0
19.7
21.3 | 7.8
3.2
1.1
3.2
6.4 | 12.5
5.0
6.9
10.9
12.4 | 17.3
16.9
16.9
12.4
15.8 | 4.2
6.4
7.4
1.4 | 9.4
11.5
10.8
6.1
6.4 | 2.1
2.1
-3.5
-1.0
.4 | -9.0
-6.0
-10.1
-13.7
-6.8 | -4.8
-2.0
-5.8
-6.9
-3.7 | -6.4
3
-1.0
-2.4
3.9 | -15.3
-13.3
-12.5
-6.8
-2.4 | -12.2
-7.4
-6.1
-4.8 | | 11
12
13
14
15 | 22.1
20.9
22.1
20.1
17.7 | 7.8
9.2
7.4
7.1
7.4 | 13.5
13.8
13.0
12.0
11.5 | 16.5
17.3
15.4
17.7
16.5 | 3.5
4.6
3.2
.4
5.3 | 8.2
9.2
7.5
8.2
9.3 | -5.7
-2.1
3.2
-7.9
7 | -11.7
-11.7
-10.1
-16.6
-14.9 | -8.1
-7.3
-4.5
-12.4
-8.8 | 10.2
5.7
7.1
8.8
11.3 | .4
-1.7
-1.4
.7
3 | 4.8
1.7
1.8
5.0
5.4 | | 16
17
18
19
20 | 9.2
6.0
9.9
11.7
14.3 | -3.1
-7.1
-2.4
-2.1 | 2.1
-1.1
3.0
3.7
5.9 | 18.1
16.1
9.5
9.9
10.2 | 4.2
5.7
-4.6
-6.0
-1.4 | 9.6
10.5
.8
.8
4.4 | .4
1.8
3.5
-3.1
-5.3 | -9.8
-8.6
-5.7
-10.5
-10.9 | -4.5
-2.9
-1.3
-6.6
-7.4 | 11.7
7.1
5.7
8.1
7.4 | 1.4
1.4
1.8
-1.4
7 | 7.5
4.5
3.5
3.4
2.3 | | 21
22
23
24
25 | 15.4
17.3
17.7
16.5
16.1 | .7
2.1
4.6
2.8
2.5 | 7.0
8.4
9.5
8.3
8.1 | 3.9
-2.8
-2.4
-3.5
1.4 | -2.8
-8.6
-12.5
-12.1
-9.4 | 7
-5.8
-8.2
-8.8
-4.0 | -6.4
-3.8
.7
3.2
3.9 | -11.7
-14.1
-11.7
-9.0
-7.9 | -9.0
-9.5
-6.1
-3.9
-2.8 | 6.7
1.4
.7
2.5
2.1 | -2.4
-6.4
-9.0
-4.2
-1.0 | 2.5
-2.7
-4.8
2 | | 26
27
28
29
30
31 | 18.1
16.1
18.5
6.4
9.2
16.5 | 4.2
4.2
3.2
-3.5
-4.2
7 | 9.4
9.2
10.2
.9
1.3
6.4 | 10.6
9.9
11.7
13.1
13.5 | -3.8
3
3
1.1
3.9 | 2.5
4.7
4.0
5.9
9.6 | 3.9
3.5
6.4
7.1
3.9
4.9 | -6.4
-6.8
-6.8
-3.8
-5.7
-6.4 | -2.5
-2.8
-1.0
.0
-2.3
-1.6 | 1.4
-2.4
-6.0
-3.5
1.1 | -2.4
-10.5
-12.5
-14.9
-12.9
-9.8 | 5
-5.0
-9.7
-10.0
-7.7
-4.6 | | MONTH | 22.1 | -7.1 | 8.6 | 18.1 | -12.5 | 4.8 | 10.2 | -16.6 | -4.6 | 11.7 | -16.2 | -2.2 | 425 ### 380102107402200 OURAY METEOROLOGICAL STATION AT OURAY, CO--Continued | | | TEMPERATU | JRE, AIR, | DEGREES | CELSIUS, | WATER | YEAR OCTOBE | R 1999 : | IO SEPTEME | 3ER 2000 | | | |---|--|---|--|--|---|--|--|---|--|---|---|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | .4
8.5 | -9.4
-7.9 | -5.6
.1 | 4.9
.7
6.7 | -5.7 | 1.8
-2.0 | 2.1
4.6 | -5 7 | -2.3
9
.4 | 16.5
22.5 | .4
4.9 | 8.3
12.9 | | 3
4 | 11.3
9.2 | -1.4
-2.1 | .1
3.1
2.5
1.2 | 6.7
12.1 | -7.9
-2.8 | $^{-1.4}$ | 6.4 | -4.9
-1.4 | 9
.4
 | 22.9
23.8 | 6.7
10.2 | 14.8
16.7 | | 5 | 6.7 | | | 7.1 | -1.0 | 4.6
1.8 | 16.5 | 3.5 | 9.1 | 22.9 | 10.6 | 16.9 | | 6
7 | 6.7
7.4 | -3.8
-4.2 | .3
.3
3.3 | 3.2
1.1 | | .6
-1.4 | 12 / | | 9.8 | 20.5
20.1 | 10.2 | 15.5
14.2 | | 8 | 10.2 | -1.4 | 3.3 | 2.1 | -7.1 | -2.7 | 15.0 | 3 | 7.5
7.6 | 6.7 | | 4.5 | | 10 | 6.4
5.7 | .0
7 | 2.7 | 1.4 | -4.9
-7.9 | | 16.9
13.5 | | 10.7
7.0 | 17.7
21.3 | .7
9.9 | 9.2
15.9 | | 11 | 5.7 | -2.4 | .5 | 6.0 | -9.4 | -1.6 | 10.6 | 1.8 | 5.7 | 17.7 | . 4 | 11.9 | | 12
13 | 2.5 | -2.8
-3.8 | .0
-2.5 | 6.0
3.5
7.1
8.5 | -3.5
-4.9 | .2
.6 | 14.3
16.9
12.8 | .4
3.9 |
5.7
7.1
10.4 | 7.4
14.3 | -2.4
-1.0 | 2.0
6.9 | | 14
15 | 7.8
6.4 | -1.4
-1.7 | .5
.0
-2.5
3.4
3.1 | 8.5
7.8 | -3.5
-4.9 | .2
.6
2.3
1.1 | 12.8
2.8 | 1.8 | 8.5 | 18.1
21.7 | 4.2
7.4 | 10.7
15.5 | | 16 | 7.8 | 7 | | 4.2 | -7.1 | -2.1 | | | 6.5 | 18.1 | 12.1 | 15.6 | | 17
18 | 2.1 | -5.7 | -1.6
-2.6 | 6.7
-1.4 | | 2
-5.5 | 10 1 | 4.9 | 11.7 | | .0 | 5.6
4.6 | | 19 | 4.2 | -9.4 | -3.3 | 10.6 | -9.0 | 1.6 | 4.6 | -2.1 | 8.5
1.2
6.6 | 13.9 | 1.4 | 7.1 | | 20 | 9.5 | -2.1 | 5.2 | 4.6 | -5.7 | -1.4 | | | | 17.3 | 5.3 | 10.7 | | 21
22 | 8.8
2.1 | -3 5 | _ 3 | 3.5
6.4 | -6.8
-3.1 | -2.7
.2 | 17.7
11.0
13.1
12.1 | 7.4
3.2
3.2 | 11.7
6.4 | 20.9
23.3
25.5 | 4.9
7.4 | 12.9
15.4 | | 23
24 | 6.4
2.8 | -6.4
-7.1 | .4 | 8.1
10.2 | -3.1
-1.4 | .2
2.2
3.8
5.6 | 13.1
12.1 | 3.2
2.8 | 6.4
7.3
7.5 | 25.5
22.1
19.3 | 12.1
11.7 | 18.2
15.9 | | 25 | | -7.9 | -7.0 | 11.3 | | 5.6 | 18.1 | 2.8 | 9.5 | | 7.8 | 12.7 | | 26
27 | 3.5
11.0 | -11.7
-4.2 | -3.8
3.0
1.5
8 | 10.2
12.8 | 1.1 | 5.0
6.0 | 19.7
23.3
18.9
14.3 | 6.0
6.7 | 12.4
14.3
13.8
10.7
5.6 | 13.9
22.1 | 7.1
5.7 | 10.2
13.2 | | 28 | 6.4 | -4.9 | 1.5 | 6.7 | 3 | 3.3 | 18.9 | 6.7
8.1
3.9 | 13.8 | 26.4 | 10.6 | 18.5 | | 29
30 | 4.6 | | | 6.7 | -2.4
-3.1 | 2.1 | 12.8 | 1.8 | 10.7
5.6 | 27.3
26.9 | 13.5
12.8 | 21.0 | | 31
MONTH | 11.3 | -11.7 | .4 | -1.4
12.8 | -4.9
-9.4 | -3.2
.4 | 23.3 | -5.7 | 7.4 | 26.4
27.3 | 11.3 | 19.3
12.8 | | MONTH | 11.3 | -11.7 | . 4 | 12.0 | -9.4 | . 4 | 23.3 | -5.7 | 7.4 | 27.3 | -2.4 | 12.0 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | | | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 25.1 | JUNE
8.1 | 16.8 | 25.1 | JULY
11.7 | 18.7 | 29.7 | AUGUST | 22.9 | 19.7 | SEPTEMBE | R
13.4 | | 1
2
3 | 25.1
24.6
25.1 | JUNE
8.1
12.1
12.8 | 16.8
18.2
18.4 | 25.1
24.2
25.1 | JULY
11.7
12.8
15.0 | 18.7
18.6
20.4 | 29.7
29.7
28.2 | 18.1
16.5
15.8 | 22.9
22.1
21.2 | 19.7
20.9
22.1 | 8.5
8.1
12.1 | 13.4
14.8
16.5 | | 1
2 | 25.1
24.6 | JUNE
8.1
12.1 | 16.8
18.2 | 25.1
24.2 | JULY
11.7
12.8 | 18.7
18.6 | 29.7
29.7 | AUGUST
18.1
16.5 | 22.9
22.1 | 19.7
20.9
22.1
24.2 | SEPTEMBE
8.5
8.1 | 13.4
14.8 | | 1
2
3
4
5 | 25.1
24.6
25.1
25.5
23.3 | JUNE 8.1 12.1 12.8 11.0 13.9 | 16.8
18.2
18.4
18.1
17.6 | 25.1
24.2
25.1
26.0
26.4 | JULY 11.7 12.8 15.0 10.2 13.9 | 18.7
18.6
20.4
19.1
20.4 | 29.7
29.7
28.2
26.4
26.9 | 18.1
16.5
15.8
15.4
13.9 | 22.9
22.1
21.2
21.0
19.9 | 19.7
20.9
22.1
24.2
25.1 | 8.5
8.1
12.1
14.6
12.8 | 13.4
14.8
16.5
18.8
17.2 | | 1
2
3
4
5 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 | 16.8
18.2
18.4
18.1
17.6 | 25.1
24.2
25.1
26.0
26.4 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.9 | 29.7
29.7
28.2
26.4
26.9 | 18.1
16.5
15.8
15.4
13.9 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7 | 19.7
20.9
22.1
24.2
25.1 | 8.5
8.1
12.1
14.6
12.8 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5 | | 1
2
3
4
5 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2 | 3UNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 | 16.8
18.2
18.4
18.1
17.6 | 25.1
24.2
25.1
26.0
26.4 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8 | 29.7
29.7
28.2
26.4
26.9 | 18.1
16.5
15.8
15.4
13.9 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3 | 19.7
20.9
22.1
24.2
25.1 | 8.5
8.1
12.1
14.6
12.8 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0 | | 1
2
3
4
5
6
7
8
9 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
24.2
21.7
24.2 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 11.7 9.9 11.0 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.9
14.6 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4 | 18.1
16.5
15.8
15.4
13.9 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
21.7 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2 | 8.5
8.1
12.1
14.6
12.8
10.2
7.4
8.1
7.8
9.2 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5 | | 1
2
3
4
5
6
7
8
9
10 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5
21.3 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
24.2
21.7
24.2 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.9
14.6
17.5 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4 | 18.1
16.5
15.8
15.4
13.9
13.9
15.8
18.1
17.3 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
20.7 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2 | 8.5
8.1
12.1
14.6
12.8
10.2
7.4
8.1
7.8
9.2
9.5
8.5 | 13.4
14.8
16.5
18.8
17.2
14.5
14.5
14.5
14.5
14.8
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
24.2
24.2
22.5 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.9
14.6
17.5
18.5
19.9
21.7
18.8 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2 | AUGUST 18.1 16.5 15.8 15.4 13.9 13.9 15.4 15.8 18.1 17.3 15.0 12.4 11.7 13.9 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
21.7
20.7
19.8
18.2
18.2 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9 | 8.5
8.1
12.1
14.6
12.8
10.2
7.4
8.1
7.8
9.2
9.5
8.5
10.2
12.1 | 13.4
14.8
16.5
18.8
17.2
14.5
14.5
14.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
24.2
22.5
22.5
26.0 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
24.2
21.7
24.2
25.1
27.3
26.9
26.4 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.9
14.6
17.5
18.5
19.9
21.7
18.8
17.5 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2 | 18.1
16.5
15.8
15.4
13.9
13.9
15.4
15.8
18.1
17.3
15.0
12.4
11.7
13.9
13.1 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
20.7
19.8
18.2
18.2
18.0
17.6 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0 | 8.5
8.1
12.1
14.6
12.8
10.2
7.4
8.1
7.8
9.2
9.5
8.5
10.2
12.1
13.5 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5
14.8
15.3
16.8
18.1
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 25.1
24.6
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
24.2
22.5
26.0 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
18.5
19.9
21.7
18.8
17.5 | 29.7
29.7
28.2
26.4
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6 | 18.1
16.5
15.8
15.4
13.9
13.9
15.4
15.8
18.1
17.3
15.0
12.4
11.7
13.9 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
20.7
19.8
18.2
18.2
18.0
17.6 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0 | 8.5
8.1
12.1
14.6
12.8
10.2
7.4
8.1
7.8
9.2
9.5
8.5
10.2
12.1
13.5 |
13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5
14.8
15.3
16.8
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
24.2
22.5
26.0 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
18.5
19.9
21.7
18.8
17.5 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4
26.9
23.8 | AUGUST 18.1 16.5 15.8 15.4 13.9 13.9 15.4 15.8 18.1 17.3 15.0 12.4 11.7 13.9 13.1 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
21.7
20.7
19.8
18.2
18.0
17.6 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0 | 8.5
8.1
12.1
14.6
12.8
10.2
7.4
8.1
7.8
9.2
9.5
8.5
10.2
12.1
13.5 | 13.4
14.8
16.5
18.8
17.2
14.5
14.5
14.5
16.5
13.8
16.5
14.8
15.3
16.8
15.3
16.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 25.1
24.6
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
22.5
22.5
22.5
22.5
23.3 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 9.5 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.9
14.6
17.5
18.5
19.9
21.7
18.8
17.5 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6 | 18.1
16.5
15.4
13.9
13.9
15.4
15.8
18.1
17.3
15.0
12.4
11.7
13.9
13.1 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
20.7
19.8
18.2
18.0
17.6 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0 | 8.5
8.1
12.1
14.6
12.8
10.2
7.4
8.1
7.8
9.2
9.5
8.5
10.2
12.1
13.5 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5
14.8
15.3
16.8
18.1
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
24.2
22.5
26.0
23.3
21.7
18.5
22.1
21.7 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 9.5 8.8 9.5 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
14.9
19.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4
24.6
22.9
27.8
28.7
26.9 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 15.8 13.5 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
14.6
17.5
18.5
19.9
21.7
18.8
17.5 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4
26.9
23.8
21.3
19.3
22.1
22.1 | AUGUST 18.1 16.5 15.8 15.4 13.9 13.9 15.4 15.8 18.1 17.3 15.0 12.4 11.7 13.9 13.1 11.3 12.8 9.5 10.2 12.1 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
21.7
20.7
19.8
18.2
18.0
17.6
16.9
13.7
14.3
16.8 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0
27.8
25.5
19.3
20.9
18.1 | 8.5
8.1
114.6
12.8
10.2
7.4
8.1
7.8
9.2
9.5
8.5
10.2
12.1
13.5
14.3
12.1
7.4
6.4 | 13.4
14.8
16.5
18.8
17.2
14.5
14.5
14.5
13.8
16.5
14.8
15.3
16.8
15.3
16.8
19.2
19.5
19.1
11.9
11.9
11.9
11.9
11.9
11.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 25.1
24.6
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
22.5
22.5
22.5
22.5
22.1
21.7
21.7
22.1
21.7 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 9.5 8.8 9.5 7.4 11.7 11.7 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
14.8
14.4
15.4 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
24.2
21.7
24.2
26.4
25.1
27.3
26.9
27.8
28.7
26.9 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 15.8 13.5 15.8 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.9
21.7
18.5
19.9
21.7
18.5
17.5
16.7
16.7
20.4
20.9
21.1 | 29.7
29.7
28.2
26.4
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6
23.8
21.3
19.3
22.1
22.1 | 18.1
16.5
15.8
15.4
13.9
13.9
15.4
15.8
18.1
17.3
15.0
12.4
11.7
13.9
13.1
11.3
12.8
9.5
10.2
12.1 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
20.7
19.8
18.2
18.2
18.0
17.6
16.9
13.7
14.3
16.8 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.9
26.9
27.8
25.5
19.3
20.9
18.1 | SEPTEMBE 8.5 8.1 12.1 14.6 12.8 10.2 7.4 8.1 7.8 9.2 9.5 8.5 10.2 12.1 13.5 14.3 12.1 7.4 6.4 8.5 9.5 -3 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5
14.8
15.3
16.8
19.2
19.5
19.1
11.9
13.4
12.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
22.5
26.0
23.3
21.7
18.5
22.1
22.7 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 8.5 4.2 9.5 8.8 9.5 7.4 11.7 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
14.9
19.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4
24.6
22.9
27.8
28.7
26.9 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 12.4 15.8 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
18.5
19.9
21.7
18.8
17.5
16.7
20.4
20.9
21.1 | 29.7
29.7
28.2
26.4
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6
23.8
21.3
19.3
19.3
22.1
22.1 | 18.1
16.5
15.4
13.9
13.9
15.4
15.8
18.1
17.3
15.0
12.4
11.7
13.9
13.1
11.3
12.8
9.5
10.2
12.1 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
20.7
19.8
18.2
18.0
17.6
16.9
13.7
14.3
16.8 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0
27.8
25.5
19.3
20.9 | SEPTEMBE 8.5 8.1 12.1 14.6 12.8 10.2 7.4 8.1 7.8 9.2 9.5 8.5 10.2 12.1 13.5 14.3 12.1 7.1 7.4 6.4 8.5 9.5 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5
14.8
15.3
16.5
14.8
15.3
16.5
19.2
19.5
19.1
11.9
12.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
20.5
21.3
24.2
24.2
22.5
26.0
23.3
21.7
18.5 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 9.5 8.8 9.5 7.4 11.7 10.2 10.2 9.5 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
13.4
14.4
15.4
15.3
15.6
15.3
15.0
13.1 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4
24.6
22.9
27.8
28.7
26.9
27.8
28.7
26.9 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 15.8 13.5 15.4 15.8 17.3 14.3 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
18.5
19.9
21.7
18.8
17.5
16.7
20.9
21.1
21.3
21.6
22.6
21.1
20.7 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4
26.9
23.8
21.3
19.3
22.1
22.1
22.1
22.1
24.6
23.3 | AUGUST 18.1 16.5 15.8 15.4 13.9 13.9 15.8 18.1 17.3 15.0 12.4 11.7 13.9 13.1 11.3 12.8 9.5 10.2 12.1 11.7 11.7 12.4 10.6 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
21.7
20.7
19.8
18.2
18.0
17.6
16.9
14.3
16.8
15.0
16.0
16.0
16.7
17.2
16.9 |
19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0
27.8
25.5
19.3
20.9
18.1
19.7
21.3
19.3
19.3
19.3
19.3
19.3
19.3
19.3
1 | SEPTEMBE 8.5 8.1 14.6 12.8 10.2 7.4 8.1 7.8 9.2 9.5 8.5 10.2 12.1 13.5 14.3 12.1 7.1 7.4 6.4 8.5 9.5 -2.4 -2.4 2.8 | 13.4
14.8
16.5
14.5
14.5
14.5
14.5
16.5
19.2
19.5
19.1
11.9
19.1
11.1
11.2
19.5
19.1
11.4
12.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 25.1
24.6
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
22.5
26.0
23.3
21.7
18.5
22.1
21.7
24.2
24.6
19.7
23.3
21.7 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 9.5 8.8 9.5 7.4 11.7 10.2 10.2 9.5 7.8 9.9 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
14.8
14.4
15.4
15.3
15.6
15.3
15.0
13.1
12.6
16.8 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9
27.8
28.7
26.9
27.8
28.7
26.9 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 15.8 17.3 14.3 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
18.5
19.9
21.7
18.7
16.7
20.4
20.9
21.1
21.3
21.6
22.6
21.1
20.7 | 29.7
29.7
28.2
26.4
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6
23.8
21.3
19.3
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22 | 18.1
16.5
15.4
13.9
13.9
15.4
15.8
18.1
17.3
15.0
12.4
11.7
13.9
13.1
11.3
12.8
9.5
10.2
12.1
11.7
11.7
11.7
11.7
11.7
11.7
11 | 22.9
22.1
21.2
21.0
19.9
20.0
21.3
21.7
20.7
19.8
18.2
18.0
17.6
16.9
13.7
14.3
16.8
15.0
16.0
16.7
17.2
16.9 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0
27.8
25.5
19.3
20.9
18.1
19.7
21.3
15.4
5.7
15.8 | SEPTEMBE 8.5 8.1 12.1 14.6 12.8 10.2 7.4 8.1 7.8 9.2 9.5 8.5 10.2 12.1 13.5 14.3 12.1 7.4 6.4 8.5 9.53 -2.4 2.8 7.1 9.5 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5
14.8
15.3
16.8
19.2
19.5
19.1
11.9
13.4
12.1
14.2
15.4
8.8
.6
5.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 25.1
24.2
23.3
26.4
28.2
23.8
20.5
21.3
24.2
22.5
26.0
23.3
21.7
18.5
19.7 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 9.5 8.8 9.5 7.4 11.7 11.7 10.2 10.2 9.5 7.8 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
14.9
19.1
16.5
13.4
14.8
14.4
15.4
15.3
15.6
15.3
15.0
16.6
16.6
16.6
16.7
16.6
16.7
16.6
16.7
16.7 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4
24.6
22.9
27.8
28.2
29.2
26.0
27.3 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 15.8 17.1 15.8 17.1 15.8 17.1 15.8 17.1 15.8 17.3 14.3 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
18.5
19.9
21.7
16.7
16.7
20.4
20.9
21.1
21.3
21.6
22.6
21.1
20.7 | 29.7
29.7
28.2
26.4
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6
23.8
21.3
19.3
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22 | AUGUST 18.1 16.5 15.4 13.9 13.9 15.4 15.8 18.1 17.3 15.0 12.4 11.7 13.9 13.1 11.3 12.8 9.5 10.2 11.7 11.7 12.4 11.7 12.4 11.7 12.4 11.7 12.4 11.7 12.4 13.5 12.4 | 22.9
22.1
21.0
19.9
20.0
21.3
21.7
21.7
20.7
19.8
18.2
18.0
17.6
16.9
13.7
14.3
16.8
15.0
16.7
17.2
16.9
16.9
16.7
17.2
16.9 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0
27.8
25.5
19.3
20.9
18.1
19.7
21.3
15.4
5.7
15.8 | SEPTEMBE 8.5 8.1 12.1 14.6 12.8 10.2 7.4 8.1 7.8 9.2 9.5 8.5 10.2 12.1 13.5 14.3 12.1 7.1 7.4 6.4 8.5 9.53 -2.4 -2.4 2.8 7.1 9.5 7.8 | 13.4
14.8
16.5
18.8
17.2
14.5
14.0
12.5
13.8
16.5
14.8
15.3
16.8
15.3
16.8
19.2
19.5
19.1
11.9
19.1
11.4
12.1
14.2
15.4
8.8
6.6
10.2
12.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 25.1
24.6
25.1
25.5
23.3
26.4
28.2
23.8
20.5
21.3
24.2
24.2
22.5
22.5
22.5
22.1
21.7
24.2
24.6
19.7
23.3
21.7 | JUNE 8.1 12.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 8.5 7.1 1.0 8.5 4.2 9.5 8.8 9.5 7.4 11.7 10.2 10.2 9.5 7.8 9.9 13.9 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
13.4
14.4
15.4
15.3
15.6
15.3
15.0
13.1
12.6
16.8
18.5 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
26.9
26.4
24.6
22.9
27.8
28.7
26.9
27.8
28.7
26.9 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 15.8 13.5 15.4 15.8 17.3 14.3 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
14.6
17.5
18.5
19.9
21.7
16.7
20.9
21.1
21.3
21.6
22.6
21.1
20.7 | 29.7
29.7
28.2
26.4
26.9
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6
23.8
21.3
19.3
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22 | AUGUST 18.1 16.5 15.8 15.4 13.9 13.9 15.8 18.1 17.3 15.0 12.4 11.7 13.9 13.1 11.3 12.8 10.6 11.7 11.7 12.4 13.5 12.4 10.6 11.7 9.9 9.12.8 | 22.9
22.1
21.0
19.9
20.0
21.3
21.7
21.7
20.7
19.8
18.2
18.0
17.6
16.9
16.9
14.3
16.8
15.0
16.0
16.7
17.2
16.9 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0
27.8
25.5
19.3
20.9
18.1
19.7
21.3
15.4
5.7
15.8
18.5
18.5
19.3 | SEPTEMBE 8.5 8.1 14.6 12.8 10.2 7.4 8.1 7.8 9.2 9.5 8.5 10.2 12.1 13.5 14.3 12.1 7.4 6.4 8.5 9.5 -2.4 -2.4 2.8 7.1 9.5 7.8 | 13.4
14.8
16.5
14.5
14.5
14.5
14.5
16.5
11.9
16.5
12.5
13.8
16.5
14.8
15.3
16.8
15.3
16.8
15.3
16.9
19.1
11.9
11.9
12.1
11.9
12.5
12.5
13.4
12.1
14.2
15.4
16.5
16.5
16.5
16.5
16.5
16.5
16.5
16.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 25.1
24.2
23.3
26.4
28.2
23.8
20.5
21.3
24.2
22.5
26.0
23.3
21.7
18.5
19.7
24.6
19.7
24.6
19.7
24.6
23.3
21.7 | JUNE 8.1 12.8 11.0 13.9 14.3 15.8 10.6 10.2 7.4 9.9 10.2 11.0 5.7 11.0 8.5 4.2 9.5 8.8 9.5 7.4 11.7 11.7 10.2 10.2 9.5 7.8 9.9 13.9 11.7 | 16.8
18.2
18.4
18.1
17.6
19.8
20.7
18.6
15.1
15.1
16.6
18.0
16.5
14.9
19.1
16.5
14.9
19.1
16.5
13.4
14.8
14.4
15.4
15.3
15.6
15.3
15.0
16.6
16.6
16.6
16.7
16.6
16.7
16.6
16.7
16.7 | 25.1
24.2
25.1
26.0
26.4
29.7
24.2
21.7
24.2
21.7
24.2
26.4
25.1
27.3
26.9
26.4
24.6
22.9
27.8
28.2
29.2
26.0
27.3 | JULY 11.7 12.8 15.0 10.2 13.9 15.8 15.8 11.7 9.9 11.0 12.4 13.9 16.5 11.7 11.0 10.6 12.4 12.4 15.8 17.1 15.8 17.1 15.8 17.1 15.8 17.1 15.8 17.3 14.3 | 18.7
18.6
20.4
19.1
20.4
21.5
18.8
17.5
18.5
19.9
21.7
16.7
16.7
20.4
20.9
21.1
21.3
21.6
22.6
21.1
20.7 | 29.7
29.7
28.2
26.4
26.9
28.2
28.2
26.0
26.4
26.9
23.8
26.0
24.2
24.6
23.8
21.3
19.3
22.1
22.1
22.1
22.1
22.1
22.1
22.1
22 | AUGUST 18.1 16.5 15.4 13.9 13.9 15.4 15.8 18.1 17.3 15.0 12.4 11.7 13.9 13.1 11.3 12.8 9.5 10.2 11.7 11.7 12.4 11.7 12.4 11.7 12.4 11.7 12.4 11.7 12.4 13.5 12.4 | 22.9
22.1
21.0
19.9
20.0
21.3
21.7
21.7
20.7
19.8
18.2
18.0
17.6
16.9
13.7
14.3
16.8
15.0
16.7
17.2
16.9
16.9
17.0
17.0
17.0
17.0
17.0
17.0 | 19.7
20.9
22.1
24.2
25.1
18.9
19.3
18.5
20.9
24.2
21.3
23.3
24.6
26.9
26.0
27.8
25.5
19.3
20.9
18.1
19.7
21.3
15.4
5.7
15.8 | SEPTEMBE 8.5 8.1 12.1 14.6 12.8 10.2 7.4 8.1 7.8 9.2 9.5 8.5 10.2 12.1 13.5 14.3 12.1 7.1 7.4 6.4 8.5 9.53 -2.4 -2.4 2.8 7.1 9.5 7.8 | 13.4
14.8
16.5
18.8
17.2
14.5
14.5
13.8
16.5
14.8
15.3
16.8
15.3
16.8
19.2
19.5
19.1
11.9
2
19.5
19.1
11.4
12.1 | ### 380102107402200 OURAY METEOROLOGICAL STATION AT OURAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | | | | | | Dillo | DOI'I VILLO | ш | | | | | | |----------------------------------
----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .0
.0
.0
.0 | .0
.0
.0 | .0
.5
.6
.1 | .1
.5
.2
.0 | .0
.0
.0 | .0
.3
.0
.0 | .1
.2
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0 | .0.0.0.0 | .0
.1
.0
.0 | | 6
7
8
9
10 | .0
.3
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.7
.0
.1 | .0.0.0.0 | .0
.0
1.3
.1 | .0
.0
.0
.0 | .0
.0
.0
.1 | .0.0.0.0 | .1
.0
.1
.0 | | 11
12
13
14
15 | .0
.0
.0
.0 | .0 | .0
.0
.2
.0 | .0
.0
.0
.0 | .1
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0 | .0 | .1
.0
.0
.1 | .0
.3
.0
.0 | .0.0.0 | | 16
17
18
19
20 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.2
.0
.0 | .1
.0
.1
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.1
.0 | .0
.1
.0
.0 | .1
.0
.4
.3 | .0
.0
.5
.0 | | 21
22
23
24
25 | .0
.0
.0
.0 | .1
.3
.0
.0 | .2
.0
.0
.0 | .3
.0
.0
.1 | .0 | .3
.0
.0
.0 | .0.0.0.0 | .0 | .0
.0
.0
.0 | .0
.0
.0 | .2
.0
.0
.0 | .2
.1
.2
.2 | | 26
27
28
29
30
31 | .0
.0
.0
.1
.0 | .0
.0
.0
.0 | .0.0.0.0 | .5
.4
.0
.0 | .0
.0
.1
.1 | .0
.0
.4
.1
.0 | .0
.0
.0
.0 | .0.0.0.0.0 | .1
.2
.0
.0 | .0
.0
.0
.0 | .1
.2
.0
.0
.1 | .0
.0
.0
.3
.0 | | TOTAL | 0.4 | 0.4 | 1.7 | 2.3 | 0.8 | 3.5 | 0.6 | 1.4 | 0.6 | 0.8 | 1.9 | 1.8 | CAL YR 1999 TOTAL 22.3 WTR YR 2000 TOTAL 16.2 ### 380251107513000 WEST FORK DALLAS CREEK METEOROLOGICAL STATION NEAR RIDGWAY, CO $\texttt{LOCATION.--Lat 38}^\circ 02'51", \texttt{long } 107^\circ 51'30", \texttt{Ouray County, Hydrologic Unit } 14020006, \texttt{5.2 mi north of Mears Peak.}$ PERIOD OF RECORD. -- October 1992 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 9,260 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and rainfall data for water year 1993 are available in district office. Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD.-AIR TEMPERATURE: Maximum, 26.9°C, June 26, 1994, July 29, 1995, June 30, 1998, Aug. 2, 2000: minimum, -29.8°C, Dec. 18, 1996. PRECIPITATION: Maximum daily, 2.8 inches, Oct. 3, 1996. EXTREMES FOR CURRENT YEAR.-- AIR TEMPERATURE: Maximum, 26.9°C, Aug. 2; minimum, -21.6°C, Jan. 6. PRECIPITATION: Maximum daily, 1.7 inches, Dec. 3. | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|---------------------------------------|--------------------------------------|--|--|--|---|--|---|---|---| | | | OCTOBER | 3 | I | NOVEMBER | | 1 | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 16.9
16.5
15.0 | .0
7
7
 | 7.6
7.9
6.2
 | 12.8
11.7
13.1
13.9
15.8 | -3.1
-3.8
-3.5
-2.8
-3.1 | 1.7
1.0
1.2
2.1
2.4 | 8.8
1.1
-3.8
-4.9
4.6 | -2.8
-6.0
-8.3
-17.0
-17.9 | 3.2
-3.3
-6.2
-10.8
-10.6 | -1.7
-4.9
-11.7
3.5
-2.4 | -7.5
-12.1
-21.1
-21.1
-16.2 | -4.3
-8.2
-15.3
-10.3
-8.3 | | 6
7
8
9
10 | 12.4
17.3
18.9 |
-1.4
-1.7
7 | 3.5
5.1
6.2 | 15.0
15.0
13.9
9.9
15.4 | -2.8
-1.7
-1.0
-2.4
-4.6 | 2.8
3.5
7.5
2.4
1.8 | 3.5
-1.4
-6.0
-1.7
-3.5 | -13.7
-12.1
-15.3
-17.9
-8.6 | -9.5
-5.0
-8.3
-10.6
-6.1 | -6.4
1.1
-1.4
-4.2
1.1 | -21.6
-17.4
-16.2
-12.5
-4.2 | -16.2
-10.6
-8.8
-7.4
-1.7 | | 11
12
13
14
15 | 18.5
18.5
19.3
17.3
13.9 | .4
-1.0
.0
-1.0
1.8 | 6.8
7.0
6.6
5.6
8.1 | 17.3
17.3
15.8
16.9 | -3.5
-3.5
-3.5
-3.8
-2.4 | 2.2
2.5
1.3
2.3
2.4 | -5.3
-1.0
-2.4
-8.6
-3.1 | -16.6
-15.7
-13.7
-20.7
-19.7 | -10.2
-11.1
-7.4
-15.5
-13.8 | 6.7
3.2
8.5
8.5 | -1.0
-5.3
-6.4
-6.4
-2.1 | 2.4
.2
-2.0
-1.5
3.8 | | 16
17
18
19
20 | 3.2
4.9
9.5
9.9 | -6.4
-10.1
-5.7
-4.2
-4.6 | -1.2
-4.1
.3
.2
1.2 | 16.1
12.1
5.7
10.6
6.4 | -2.4
-1.4
-8.6
-9.8
-3.1 | 2.8
6.4
-1.5
-2.2
1.8 | .4
-1.4
3.9
-4.9
-7.5 | -13.3
-13.3
-11.3
-14.5
-14.9 | -7.5
-6.2
-3.4
-9.5
-10.4 | 7.8
5.3
4.9
7.4
6.7 | .0
3
.7
-6.0
-6.4 | 5.1
2.2
2.6
1.7
7 | | 21
22
23
24
25 | 14.6
16.1
15.8
15.4
15.0 | -3.8
-3.8
-2.4
-2.8
-2.8 | 2.0
2.7
3.5
3.1
2.8 | 1.4
-4.6
-1.4
-2.8
1.1 | -4.6
-10.5
-16.2
-17.0
-14.5 | -1.5
-7.1
-10.2
-12.4
-7.2 | -6.8
-4.2
2.8
5.7
5.3 | -15.7
-18.3
-13.7
-12.9
-12.1 | -10.9
-12.8
-9.5
-7.8
-7.4 | 3.9
.4
.0
1.8
1.1 | -3.8
-5.7
-12.1
-3.5
-2.4 | .3
-2.8
-6.7
8
4 | | 26
27
28
29
30
31 | 16.1
14.6
14.6
7.1
9.2
15.0 | -2.8
-1.7
-3.1
-5.7
-6.8
-3.8 | 3.3
4.0
5.3
6
-1.3
2.3 | 8.8
8.5
10.6
12.4
13.1 | -7.1
-3.8
-4.6
-4.6
-3.5 | -2.0
1.6
.3
1
3.1 | 4.6
4.6
6.7
6.4
4.9
2.8 | -12.1
-12.1
-9.8
-10.1
-12.1
-13.7 | -7.3
-7.5
-5.2
-5.1
-7.6
-7.0 | .7
-3.1
-7.1
-3.5
1.4
-1.4 | -3.1
-13.7
-17.4
-19.3
-19.7
-16.2 | -1.3
-6.8
-12.5
-14.4
-13.1
-7.6 | | MONTH | 19.3 | -10.1 | 3.5 | 17.3 | -17.0 | .3 | 8.8 | -20.7 | -8.1 | 10.2 | -21.6 | -4.6 | ### 380251107513000 WEST FORK DALLAS CREEK METEOROLOGICAL STATION NEAR RIDGWAY, CO--Continued | | | TEMPERAT | URE, AIR, | DEGREES | CELSIUS, | WATER | YEAR OCTOB | ER 1999 | TO SEPTEME | 3ER 2000 | | | |---|--|--|--|--|--|--|--|---|--|--|---
--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | -12.1
-12.5 | -8.2
-4.3 | 2.1 | -5.7
-9.4 | -1.5
-3.3 | | -10.1
-10.1 | -4.8
-3.1
-2.1
2.7 | 13.9
18.1 | -2.4
7 | 4.7
7.5 | | 3 4 | | -8.3
-8.3 | -2.4
-2.4 | .0
5.7
9.9 | -12.5 | -5.4
-1.6 | 4.2 | -7.9
-6.4 | -2.1 | 20.1 | .0
2.1 | 8.6
10.5 | | 5 | 5.7 | -6.0 | -1.0 | 3.5 | -4.6 | -1.7 | | 3.2 | 7.0 | 20.1 | 1.8 | 11.3 | | 6 | 5.7 | -8.3 | -3.3 | 3.2 | -9.4 | -2.7 | 12.1 | 2.8 | 7.4 | 17.7 | 2.8 | 11.9 | | 7 | $7.4 \\ 12.4$ | -10.9
-9.8 | -4.5
8 | . 7 | -7.1
-12.5 | -2.4
-5.6 | 13.9 | -1.7
-5.3 | 4.7 | 17.7
16.5
4.6
13.5 | 4.6
1.1 | 10.6
2.5 | | 9
10 | 3.2
2.1 | -1.4 -2.4 | 1.5
4 | 3.2
.7
.7
-1.7
-2.4 | -7.5
-14.5 | -4.8
-7.8 | 13.5
11.3 | 1.1
-2.8 | 6.9
3.3 | 13.5
18.1 | $^{-1.4}$ | 5.8
12.9 | | 11 | 3.2 | -7.1 | -2.3 | 4.6 | -15.7 | -5.4 | 7.1 | -2.8 | 1.6 | 13.5 | -1.7 | 8.5 | | 12
13 | 3
-1.4 | -4.9
-7.1 | -2.5
-4.0 | 3.2
6.4
8.5 | -7.9
-11.3 | -1.2
-3.8 | | -3.1
-2.1 | 3.0
5.7 | 4.6
11.7 | -6.0
-4.2 | -1.0
4.2 | | 14
15 | 6.4
5.3 | -4.6
-6.0 | 1.9
.7 | 8.5
5.3 | -9.8
-6.4 | -1.4
4 | 9.2
2.8 | .0
-3.8 | 5.4
-1.1 | 15.4
17.7 | .4
2.5 | 7.5
12.5 | | 16 | 6.0 | -7.9 | | | | -4.6 | | | 3 3 | 16.5 | 7.8 | 12.8 | | 17
18 | | -7.9
-12.5 | _3 7 | 2.1
4.9
-2.8 | -10.9
-14.1 | -4.2
-8.5 | 11.0
15.4
9.5 | 4.2
-1.4 | 9.1
4.8 | 7.8
7.1 | -1.7
-3.1 | 2.6
1.6 | | 19
20 | | -16.6
-9.8 | -7.8
3 | 9.2 | -14.5
-6.8 | -2.4
-2.6 | 2.0 | -3.5
-6.4 | 9 | 9.9
15.8 | -1.7
3 | 3.2
6.8 | | 21 | 8.1 | 3 | | 3.5 | -8.6 | -3.0 | | -1.7 | | | 3 | 8.7 | | 22
23 | .0 | -8.3
-11.7 | | | -5.3 | -1.0
7 | 7.1
11.7 | 1.4 | 6.6
3.2
4.5
5.3
5.2 | 20.5 | 2.5
4.9 | 11.3
13.4 | | 24 | .7 | -9.8 | -3.3 | 6.7
9.2 | -4.2 | 1.0 | 9.9 | -2.1 | 5.3 | 19.3 | 5.7
2.8 | 11.4 | | 25
26 | -8.3 | -12.1
-18.8 | -10.0
-7.6 | 9.5 | -5.3
-2.8 | 2.3 | 15.0
16.9 | | 5.2
9.6 | 16.9
13.5 | 3.2 | 9.5
8.2 | | 27 | | | -7.6
9
7 | 9.2
12.1
4.6
5.3 | -2.8
-4.9 | 2.0 | 19 7 | 3
1.1 | 7.7 | 18.9 | 1.1 | 9.5 | | 28
29 | 2.8 | -6.4 | -3.1 | 5.3 | -1.4
-5.7 | .7
6 | 12.1 | 2.1 | 8.8
7.6 | 24.2
24.2 | 4.6
10.2 | 14.9
17.9 | | 30
31 | | | | 4.2
-2.4 | -4.9
-6.4 | -1.5
-4.6 | 8.1 | 3 | 2.9 | 24.6
23.3 | 12.1
8.1 | 18.2
17.1 | | MONTH | 12.4 | -18.8 | -2.6 | 12.1 | -15.7 | -2.4 | 19.7 | -10.1 | 4.0 | 24.6 | -6.0 | 9.2 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 22.5 | JUNE
2.1 | 12.4 | 22.1 | JULY
8.5 | 14.5 | 26.0 | AUGUST | 17.2 | 15.0 | SEPTEMBE | R
9.9 | | 1
2
3 | | JUNE 2.1 4.2 4.9 | | 22.1
20.9
22.5 | JULY
8.5
6.7
11.3 | | 26.0 | AUGUST | | 15.0
16.9 | SEPTEMBE
4.9
6.7 | 9.9
11.4
12.1 | | 1
2 | 22.5
21.7 | JUNE
2.1
4.2 | 12.4
13.2 | 22.1
20.9
22.5 | JULY
8.5 | 14.5
14.2 | 26.0
26.9
25.1
23.8 | AUGUST
8.1
9.5 | 17.2
17.4 | 15.0
16.9 | SEPTEMBE | 9.9
11.4 | | 1
2
3
4 | 22.5
21.7
22.1
22.9 | JUNE 2.1 4.2 4.9 3.9 6.4 | 12.4
13.2
13.3
13.1
12.9 | 22.1
20.9
22.5
22.1
24.6 | JULY 8.5 6.7 11.3 8.8 6.0 | 14.5
14.2
17.0
15.9 | 26.0
26.9
25.1
23.8
23.3 | 8.1
9.5
11.3
11.0
7.8 | 17.2
17.4
15.3
16.9
15.4 | 15.0
16.9
18.1
20.5
19.3 | SEPTEMBE
4.9
6.7 | 9.9
11.4
12.1
12.6
11.0 | | 1
2
3
4
5 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 5.7 | 12.4
13.2
13.3
13.1
12.9 | 22.1
20.9
22.5
22.1
24.6 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 | 14.5
14.2
17.0
15.9
15.6 | 26.0
26.9
25.1
23.8
23.3 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1 | 17.2
17.4
15.3
16.9
15.4
15.2 | 15.0
16.9
18.1
20.5
19.3 | 4.9
6.7
6.4
6.7
7.1 | 9.9
11.4
12.1
12.6
11.0 | | 1
2
3
4
5
6
7
8
9 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 | 12.4
13.2
13.3
13.1
12.9 | 22.1
20.9
22.5
22.1
24.6 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.8
9.2 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9 | 15.0
16.9
18.1
20.5
19.3
16.5
16.5
14.6 | 4.9
6.7
6.4
6.7
7.1
7.1
3.9
5.7
4.6 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4 | | 1
2
3
4
5
6
7
8
9 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.2
12.5
10.6 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.8
9.2
9.5 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3 | 4.9
6.7
6.4
6.7
7.1
7.1
3.9
5.7
4.6
4.2 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4 | | 1
2
3
4
5
6
7
8
9
10 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5
19.7 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.2
12.5
10.6 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.8
9.2
9.5 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3 | 4.9
6.7
6.4
6.7
7.1
7.1
3.9
5.7
4.6
4.2 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
19.7 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
12.5
10.6 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
22.5
21.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5
20.9
20.9
22.5
21.7 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.1 6.7 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.9
12.5
12.7 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7 | 4.9
6.7
6.4
6.7
7.1
7.1
7.1
4.6
4.2
4.6
2.8
3.5
4.2 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
19.7
22.9 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 7.8 5.7 1.4 3.5 3.2 6.0 .7 3.9 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.2
12.5
10.6 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
22.5
21.3
22.5
21.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5
20.9
20.9
22.5
21.7 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.1 6.7 7.8 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7
21.7 | 4.9
6.7
6.4
6.7
7.1
7.1
3.9
5.7
4.6
4.2
4.6
2.8
3.5
4.2
6.0 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
19.3
19.7
20.9 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 5.7 7.8 5.7 1.4 3.5 3.2 6.0 .7 3.9 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
10.6
12.0
13.5
13.8
10.2
14.8 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
22.5
21.3
24.6
22.1
22.9 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8
7.8 7.8 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5
20.9
20.9
22.5
21.7
17.7 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.1 6.7 7.8 8.5 7.8 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7
21.7 | # 4.9
6.7
6.4
6.7
7.1
7.1
3.9
5.7
4.6
4.2
4.6
2.8
3.5
4.2
6.0
5.3
5.3 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 22.5
21.7
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.9
20.9
19.3
16.5
19.7 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 .7 3.9 4.9 .0 6.7 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.2
12.5
10.6
12.0
13.5
13.8
10.2
14.8 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
22.5
21.3
22.5
21.3
22.5
21.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.4 6.4 5.3 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
15.3
14.6
14.8 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5
20.9
20.9
22.5
21.7
17.7 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.1 6.7 7.8 8.5 7.8 8.1 7.8 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
12.0 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7
21.7
23.8
21.7
13.5
19.3 | # 4.9
6.7
6.4
6.7
7.1
7.1
7.1
4.6
4.2
4.6
2.8
3.5
4.2
6.0
5.3
5.3
3.9
2.5 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
9.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 22.5
21.7
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
19.7
22.9
20.9
19.3
16.5
18.9 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 7.8 5.7 1.4 3.5 3.2 6.0 .7 3.9 4.9 .0 6.0 6.7 4.6 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.2
12.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
13.0 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
24.6
22.1
22.9
22.5
19.3
24.2
25.5
23.8 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.7 8 7.8 7. | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
12.4
11.7
14.7
14.7
14.8 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5
20.9
20.9
22.5
21.7
717.7 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.8
9.2
9.5
7.4
8.1
7.1
6.7
7.8
8.1
7.8
8.1 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
12.0
11.9 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7
21.7
23.8
21.7
13.5
19.3 | 4.9
6.7
6.4
6.7
7.1
7.1
3.9
5.7
4.6
4.2
4.6
2.8
3.5
4.2
6.0
5.3
3.9
2.5
1.8 | 9.9
11.4
12.1
11.0
10.6
9.5
8.7
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
9.6
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
16.5
19.7
22.9 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 7 3.9 4.9 0.0 6.7 4.6 1.1 4.2 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
13.0
13.2 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
21.3
22.5
21.3
22.5
21.3
24.6
22.1
22.9
22.5
23.8
24.2 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
11.7
14.8
11.7
14.7
14.7
14.7
14.7
14.7
15.1 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
20.9
20.9
22.5
21.7
17.7
21.3
18.9
14.3
18.5
18.1 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.1 6.7 7.8 8.5 7.8 8.1 7.8 8.1 7.6 6.7 6.7 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
10.8
11.9 | 15.0
16.9
18.1
20.5
19.3
16.5
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7
21.7
23.8
21.7
13.5
19.3
15.8 | ### 4.9 4.9 6.7 6.4 6.7 7.1 7.1 3.9 5.7 4.6 4.2 4.6 2.8 3.5 4.2 6.0 5.3 5.3 3.9 2.5 1.8 6.0 10.2 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
9.5
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 22.5
21.7
22.9
21.7
23.8
23.3
20.5
20.5
22.1
19.7
20.9
20.9
19.3
16.5
19.7
22.9
20.9
19.3
16.5
18.9
19.3 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 .7 3.9 4.9 .0 6.7 4.6 1.1 4.2 7.4 5.3 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
12.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
13.0
13.2 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
22.5
21.3
22.5
21.3
22.5
22.1
22.9
22.5
19.3
24.6
22.1
22.9 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.6 7.7 6.4 6.4 6.7 6.7 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
15.3
14.7
14.7
14.7
14.7
14.8
15.1 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
22.5
24.2
22.5
20.9
20.9
22.5
21.7
17.7
21.3
18.9
14.3
18.1 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.1 7.8 8.5 7.8 8.1 6.7 6.7 7.7 7.1 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
10.7
10.6
10.7
10.3
9.9 | 15.0
16.9
18.1
20.5
19.3
16.5
16.5
14.6
17.3
19.3
18.9
19.7
21.7
21.7
23.8
21.7
21.7
23.8
21.7
19.3
15.8 | ### 4.9 4.9 6.7 6.4 6.7 7.1 7.1 7.1 3.9 5.7 4.6 4.2 4.6 2.8 3.5 4.2 6.0 5.3 5.3 3.9 2.5 1.8 6.0 10.2 -1.2 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
8.0
7.8
12.6
13.1
5.9
9.6
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
19.7
22.9
20.9
19.3
16.5
18.9
3
22.1
22.9 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 7.7 3.9 4.9 6.0 6.7 4.6 1.1 4.2 7.4 5.3 4.9 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
13.0
13.2 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
24.6
22.1
22.9
22.5
21.3
24.6
22.1
22.9
22.5
23.8
26.0
26.4
23.3
25.1 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.4 6.4 5.3 6.7 5.7 6.4 7.4 9.5 8.1 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
15.3
14.6
14.8
15.3
14.6
15.5
14.7
14.7
14.7
14.7
15.3
15.3
15.3
15.3
15.3 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5
20.9
20.9
22.5
21.7
7.7
17.7
21.3
18.9
14.3
18.5
18.1 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.1 6.7 7.8 8.5 7.8 8.1 7.8 6.7 6.7 7.1 7.1 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
12.0
11.9
10.7
10.3
9.9
10.4 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7
21.7
23.8
21.7
13.5
19.3
15.8 | \$\text{\$4.9} \\ 6.7 \\ 7.1 \\ 3.9 \\ 5.7 \\ 4.6 \\ 4.2 \\ 4.6 \\ 2.8 \\ 3.5 \\ 4.2 \\ 6.0 \\ 5.3 \\ 3.9 \\ 2.5 \\ 1.8 \\ 6.0 \\ 1.2 \\ 2.1 \\ -4.2 \\ -6.0 \\ \end{tabular} | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
10.9
10.6
12.1
13.3
12.1
12.0
8.0
9.6
7.8
12.6
13.1
5.9
-1.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 22.5
21.7
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
16.5
19.7
22.9
20.9
19.3
16.5
19.3 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2
6.0 6.7 4.6 1.1 4.2 7.4 5.3 4.9 6.0 6.7 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
14.8
13.0
13.2 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
21.3
22.5
21.3
24.6
22.1
22.9
22.5
19.3
24.2
25.5
23.8
26.0
26.0
26.4
23.3
23.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.4 6.4 5.3 6.7 5.7 6.4 7.4 9.5 8.1 8.1 7.8 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.7
14.6
14.8
15.3
14.6
14.8
15.3
14.7
14.7
14.7
14.7
14.7
15.5
15.5
15.5
15.5
15.5
15.5 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
20.9
20.9
22.5
21.7
17.7
21.3
18.9
14.3
18.5
18.1 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.1
7.8
9.2
9.5
7.4
8.1
7.7
8.5
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
10.7
10.1
10.7
10.3
9.9
10.4 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
21.7
21.7
23.8
21.7
13.5
19.3
15.8
16.1
16.9
11.3
12.4 | ### 4.9 4.9 6.7 7.1 7.1 3.9 5.7 4.6 4.2 4.6 2.8 3.5 4.2 6.0 5.3 3.9 2.5 1.8 6.0 10.2 -2.1 -4.2 -6.0 -2.8 .4 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
9.7
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 22.5
21.7
22.9
21.7
23.8
23.3
20.5
22.1
19.7
22.9
20.9
19.3
16.5
19.7
22.9
20.9
19.3
16.5
18.9
19.3 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 .7 3.9 4.9 .0 6.0 6.7 4.6 1.1 4.2 7.4 5.3 4.9 6.0 4.2 4.6 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
12.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
14.8
13.0 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
22.5
21.3
22.5
21.3
22.5
22.1
22.9
22.5
23.8
26.0
26.0
26.4
23.3
25.1 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 7.8 7.8 7.8 7.8 7.8 7.4 6.4 5.3 6.7 5.7 6.4 7.4 9.5 8.1 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
15.3
14.7
14.7
14.7
14.7
14.7
15.5
15.5
15.5 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
24.2
22.5
20.9
20.9
22.5
21.7
17.7
21.3
18.9
14.3
18.5
18.1 | AUGUST 8.1 9.5 11.3 11.0 7.8 7.4 7.1 7.8 9.2 9.5 7.4 8.1 7.7 8 8.5 7.8 8.1 7.8 8.1 6.7 6.7 7.1 7.1 6.7 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
12.0
11.9
10.6
10.7
10.3
9.9
10.4 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
21.7
21.7
23.8
21.7
21.7
23.8
21.7
19.3
15.8 | \$\text{SEPTEMBE}\$ 4.9 6.7 6.4 6.7 7.1 7.1 7.1 3.9 5.7 4.6 4.2 4.6 2.8 3.5 4.2 6.0 5.3 3.9 2.5 1.8 6.0 10.2 -2.1 -4.2 -6.0 -2.8 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
9.7
7.8
12.6
13.1
5.9
-1.7
1.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.5
21.7
22.1
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
16.5
18.9
19.3
16.5
18.9
19.3
16.5
18.9
19.3
16.5
18.9
19.3
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 6.7 4.6 1.1 4.2 7.4 5.3 4.9 6.0 6.7 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
13.0
13.2
11.1
12.2
11.8
10.4
11.7 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
21.3
22.5
21.3
22.5
22.1
22.9
22.5
19.3
24.2
25.5
23.8
26.0
26.0
26.4
23.3
25.5
23.3
25.5
23.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
15.3
15.2
15.8
15.3
15.2
15.8
15.5
16.7
16.8
16.7
16.8
16.7
16.8
16.8 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
20.9
20.9
22.5
21.7
17.7
21.3
18.9
14.3
18.5
18.1
18.9
17.3
17.7
16.1
14.6 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.1
7.8
9.2
9.5
7.4
8.1
7.8
8.5
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
10.7
10.6
10.7
10.3
9.9
10.4 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
20.9
21.7
21.7
23.8
21.7
13.5
19.3
16.5
14.6
17.3
19.3
19.4
11.3
11.3
11.4
12.4
15.8 | ### 4.9 4.9 6.7 7.1 7.1 3.9 5.7 4.6 4.2 4.6 2.8 3.5 4.2 6.0 5.3 3.9 2.5 1.8 6.0 10.2 -2.1 -4.2 -6.0 -2.8 4.1 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
9.7
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 22.5
21.7
22.9
21.7
23.8
23.3
16.5
19.7
20.5
22.1
19.3
16.5
19.7
22.9
20.9
19.3
16.5
18.9
19.3
16.5
18.9
19.3 | JUNE 2.1 4.2 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 7 3.9 4.9 6.0 6.7 4.6 1.1 4.2 7.4 5.3 4.9 6.0 4.2 6.7 5.7 | 12.4 13.2 13.3 13.1 12.9 15.5 14.5 14.5 12.0 13.5 10.6 12.0 13.5 13.8 10.2 14.8 13.0 9.3 12.2 14.8 13.0 13.2 11.1 12.2 11.8 10.4 11.7 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
19.7
18.5
21.3
22.5
21.3
22.5
21.3
22.5
22.1
22.9
22.5
19.3
24.6
22.1
22.9
22.5
19.3
24.6
22.1
22.5
23.8
26.0
26.4
23.3
25.1
23.3
24.6
25.1
25.5
25.5
26.4
26.4
27.5
27.5
27.5
27.5
27.5
27.5
27.5
27.5 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.4 6.4 5.3 6.7 5.7 6.4 7.4 9.5 8.1 7.8 8.1 7.4 6.7 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
15.3
14.7
14.7
14.7
14.7
14.7
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15 | 26.0
26.9
25.1
23.8
23.3
24.2
24.2
22.5
20.9
20.9
22.5
21.7
17.7
21.3
18.9
14.3
18.5
18.1
14.6 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.8
9.2
9.5
7.4
8.1
7.8
8.5
7.8
8.1
7.8
8.1
6.7
7.1
7.1
6.7
7.1
7.1 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
12.0
11.9
10.6
10.7
10.6
10.7
10.6
10.7
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.6 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
21.7
21.7
23.8
21.7
21.7
23.8
21.7
21.7
23.8
21.7
21.7
23.8
21.7
21.7
23.8
21.7
21.7
21.7
23.8
21.7
21.7
21.7
21.7
21.7
21.7
21.7
21.7 | \$\frac{4.9}{6.7}\$ 6.4 6.7 7.1 7.1 7.1 3.9 5.7 4.6 4.2 4.6 2.8 3.5 4.2 6.0 5.3 3.9 2.5 1.8 6.0 10.2 -2.1 -4.2 -6.0 -2.8 4.9 3.5 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
8.0
9.6
7.8
12.6
13.1
5.9
9.6
7.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 22.5
21.7
22.9
21.7
23.8
23.3
20.5
16.5
19.7
20.5
22.1
19.3
16.9
19.3
16.9
19.3
16.9
19.3
16.9
19.3 | JUNE 2.1 4.2 4.9 3.9 6.4 5.7 7.8 5.7 1.4 3.5 3.2 6.0 7 3.9 4.9 6.0 6.7 4.6 1.1 4.2 7.4 5.3 4.9 6.0 6.7 5.7 | 12.4
13.2
13.3
13.1
12.9
15.5
14.5
14.5
10.6
12.0
13.5
13.8
10.2
14.8
13.0
9.3
12.2
14.8
13.0
9.3
12.2
11.1
12.2
11.8
10.4
11.7 | 22.1
20.9
22.5
22.1
24.6
25.1
22.5
21.3
22.5
21.3
22.5
22.1
22.9
22.5
19.3
24.2
25.5
23.8
26.0
26.0
26.4
23.3
25.5
23.3
25.5
23.3 | JULY 8.5 6.7 11.3 8.8 6.0 6.0 9.2 8.8 6.7 6.7 7.8 8.1 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 | 14.5
14.2
17.0
15.9
15.6
15.5
14.9
13.5
12.2
13.7
14.6
14.8
15.3
14.6
14.8
15.3
15.2
15.8
15.3
15.2
15.8
15.5
16.7
16.8
16.7
16.8
16.7
16.8
16.8 |
26.0
26.9
25.1
23.8
23.3
24.2
24.2
25.5
20.9
20.9
22.5
21.7
17.7
21.3
18.9
14.3
18.5
18.1
18.9
17.3
17.7
16.1
14.6 | 8.1
9.5
11.3
11.0
7.8
7.4
7.1
7.1
7.8
9.2
9.5
7.4
8.1
7.8
8.5
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
8.1
7.8
8.1
7.8
8.1
7.8
8.1
7.8
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8.1
8 | 17.2
17.4
15.3
16.9
15.4
15.2
15.4
16.3
15.9
15.2
11.9
12.5
12.7
11.4
13.5
11.8
10.8
10.7
10.6
10.7
10.3
9.9
10.4 | 15.0
16.9
18.1
20.5
19.3
16.5
14.6
17.3
19.3
18.9
19.7
21.7
23.8
21.7
23.8
21.7
13.5
15.8
16.1
16.9
11.3
12.4
15.8
17.3
18.9 | ### 4.9 4.9 6.7 7.1 7.1 3.9 5.7 4.6 4.2 4.6 2.8 3.5 4.2 6.0 5.3 3.9 2.5 1.8 6.0 10.2 -2.1 -4.2 -6.0 -2.8 4.9 3.5 | 9.9
11.4
12.1
12.6
11.0
10.6
9.5
8.7
9.4
10.9
10.6
9.7
10.6
12.1
13.3
12.1
12.0
8.0
9.7
7.8
12.6
13.1
5.9
9.7
10.6
12.1
13.3 | ### 380251107513000 WEST FORK DALLAS CREEK METEOROLOGICAL STATION NEAR RIDGWAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | | | | | | DAILLI | . SUM VALU | ES | | | | | | |----------------------------------|----------------|----------------------|-----------------------|-----------------------|----------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------|---------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .0
.0
.0 | .0
.0
.0 | .1
.4
1.7
.0 | .0
.0
.0 | .1
.0
.0
.0 | .5
.4
.0
.0 | .2
.3
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0 .0 .0 .0 | .0.0.0.0 | .0
.0
.0
.0 | | 6
7
8
9
10 | .0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .1
1.1
.0
.1 | .0.0.0.0 | .0
.0
1.5
.0 | .0
.0
.1
.0 | .0
.0
.7
.1 | .0.0.0 | .4
.1
.6
.0 | | 11
12
13
14
15 | .0
.0
.0 | .0 .0 .0 .0 | .0 | .0
.0
.0
1.1 | .2
.1
.1
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .1
.6
.1
.2 | .0.0.0 | | 16
17
18
19
20 | .0
.0
.0 | .0.0.0.0 | .0 .0 .0 .0 | .0
.0
.2
.0 | .0
.3
.0
.0 | .0
.0
.1
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.2
.0 | .2
.5
.0
.0 | .1
.1
.5
.1 | .0
.0
.5
.0 | | 21
22
23
24
25 | .0
.0
.0 | .1
.3
.0
.0 | .0
.0
.0 | .2
.0
.0
.1 | .0
.2
.0
.2 | .3
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.1
.1 | .0 .0 .0 .0 | . 2
. 3
. 0
. 3
. 3 | .0
.0
.1
.4 | | 26
27
28
29
30
31 | .0 .0 .0 .0 | .0
.0
.0
.0 | .0 .0 .0 .0 .0 | .5
.3
.0
.0 | .0
.0
.1
.0 | .0
.0
.2
.1
.3 | .0 .0 .0 .0 .0 .0 | .0.0.0.0.0.0 | .0
.2
.0
.0 | .0.0.0.0.0 | .3
.1
.2
.1
.2 | .0
.0
.0
.4
.0 | | TOTAL | 0.0 | 0.4 | 2.3 | 3.0 | 1.7 | 5.1 | 0.9 | 1.5 | 0.9 | 1.6 | 4.0 | 3.0 | CAL YR 1999 TOTAL 27.6 WTR YR 2000 TOTAL 24.4 ### 380324107444500 WHITEHOUSE CREEK METEOROLOGICAL STATION NEAR OURAY, CO LOCATION.--Lat $38^{\circ}03'24"$, long $107^{\circ}44'45"$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.21, T.44 N, R.8 W., Ouray County, Hydrologic Unit 14020006, 3.0 mi north of Whitehouse Mountain, and 4.7 mi northwest of Ouray. PERIOD OF RECORD. -- October 1992 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 9,480 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and rainfall data for water year 1993 are available in district office. Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD.-AIR TEMPERATURE: Maximum recorded, 27.3°C, June 29, 1998; minimum recorded, -29.8°C, Dec. 17, 18, 1996. PRECIPITATION: Maximum daily, 2.5 inches, Oct. 3, 1996. EXTREMES FOR CURRENT YEAR. -- Alk TEMPERATURE: Maximum, 26.4°C, July 21, 23, Aug. 1, 2; minimum, -20.7°C, Jan. 3, 6. PRECIPITATION: Maximum daily, 1.2 inches, Dec. 3, May 8. | DAY | MAX | MIN | MEAN | |----------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--|--|--|---|---|---| | | | OCTOBER | | 1 | NOVEMBER | | I | DECEMBER | | | JANUAR' | Y | | 1
2
3
4
5 | 18.1
15.8
14.6
16.5
18.5 | 1.8
.7
.4
-1.0 | 8.5
8.5
6.9
5.9
7.9 | 12.8
12.1
12.8
14.6
14.3 | -3.5
-3.5
-3.5
-2.4
-2.8 | 1.9
1.5
1.4
2.7
2.9 | 7.1
1.4
-4.6
-5.7
3 | -4.6
-6.8
-9.8
-15.3
-15.3 | .3
-4.2
-7.7
-11.1
-9.7 | -3.5
-4.2
-10.1
2.1
-4.6 | -12.5
-13.3
-20.7
-20.2
-17.4 | -6.0
-9.8
-15.6
-9.1
-9.8 | | 6
7
8
9
10 | 12.4
3.9
12.1
17.3
18.5 | 2.8
7
-2.1
7 | 8.5
.9
3.5
6.1
7.1 | 15.8
14.6
12.8
9.5
15.0 | -2.1
-1.0
3
-3.5
-3.8 | 3.6
4.4
5.0
1.6
2.7 | 3
3
-7.5
-2.1
-3.5 | -13.7
-11.3
-15.3
-16.6
-8.6 | -9.1
-5.4
-9.5
-9.6
-6.7 | -6.8
1.1
-3.1
-6.4
2.8 | -20.7
-14.9
-15.7
-12.9
-7.5 | -15.3
-9.9
-8.9
-8.9
-1.6 | | 11
12
13
14
15 | 18.9
18.1
18.9
18.1
13.9 | 1.4
1.1
1.1
.0
2.1 | 8.0
7.6
7.6
6.7
7.5 | 15.8
16.9
16.5
17.3
15.4 | -1.7
-1.7
-1.7
-1.7 | 3.3
3.8
3.1
4.2
3.4 | -4.9
-2.8
3
-9.4
-3.1 | -15.7
-15.3
-12.9
-19.7
-19.3 | -11.2
-10.8
-7.5
-16.0
-12.9 | 7.4
4.2
6.0
9.2
9.9 | -2.8
-5.7
-7.1
-6.4
-4.6 | 2.8
7
-3.1
-2.0
2.7 | | 16
17
18
19
20 | 3.2
4.2
7.1
9.5
12.1 | -7.1
-9.8
-4.9
-4.9 | -1.8
-4.0
.0
.4
1.6 | 15.8
12.8
3.5
8.8
8.5 | -2.1
3
-7.9
-8.6
-4.6 | 4.1
5.8
-2.7
-1.5 | .4
3
1.4
-5.7
-8.3 | -12.5
-12.5
-10.5
-14.9
-16.2 | -6.8
-6.4
-5.5
-10.3
-11.1 | 9.2
4.2
4.9
6.4
4.2 | -1.4
-1.4
3
-6.0
-6.4 | 4.3
.9
2.3
.3
-1.7 | | 21
22
23
24
25 | 13.9
15.8
15.8
14.6
13.9 | -3.5
-2.4
-1.7
-2.4
-2.8 | 2.6
4.0
4.1
3.5
3.2 | 3
-5.7
-1.4
-1.4
7 | -5.7
-11.3
-17.0
-17.0
-15.3 | -3.6
-8.6
-10.9
-12.6
-7.7 | -8.6
-5.7
.0
4.9
3.9 | -17.0
-18.8
-12.9
-11.3
-10.1 | -12.4
-13.2
-8.6
-7.2
-4.2 | 4.9
3
.0
3 | -4.6
-6.8
-13.3
-6.8
-3.5 | -1.0
-4.0
-7.7
-2.6
-1.7 | | 26
27
28
29
30
31 | 16.9
14.3
13.9
5.7
9.2
15.8 | -1.4
-1.0
-2.4
-7.5
-7.9 | 4.4
4.1
5.6
-2.4
-1.4
3.1 | 7.1
7.8
10.6
12.4
12.8 | -6.8
-4.9
-5.7
-4.2
-2.8 | -2.1
5
8
5
1.2 | 2.1
2.5
5.3
4.9
3.5
3.2 | -10.5
-10.5
-7.1
-9.0
-10.5
-11.7 | -5.6
-6.1
-3.1
-4.0
-6.6
-6.2 | 1.1
-4.6
-9.0
-1.7
-1.4
-2.8 | -4.6
-14.5
-17.4
-19.3
-17.9
-15.3 | -2.8
-7.8
-13.2
-14.6
-12.4
-8.0 | | MONTH | 18.9 | -9.8 | 4.1 | 17.3 | -17.0 | .2 | 7.1 | -19.7 | -8.0 | 9.9 | -20.7 | -5.3 | ### 380324107444500 WHITEHOUSE CREEK METEOROLOGICAL STATION NEAR OURAY, CO--Continued | | | TEMPERAT | URE, AIR, | DEGREES | CELSIUS, | WATER | YEAR OCTOB | ER 1999 | TO SEPTEM | IBER 2000 | | | |---|--|---|---|--|---|---
--|--|--|---|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 2 | 3
6.7 | -12.5
-10.5 | -8.5
-3.9 | 2.8
7 | -7.9
-10.9 | -3.0
-4.8 | 7
4.6 | -10.9
-10.9 | -5.5
-3.8 | 13.5
18.9 | -2.8
3 | 4.5
7.9 | | 3
4 | 9.9 | -7.9
-8.3 | -2.0
-2.7 | 5.7 | -13.3
-8.3 | -5.0
2 | 4.6
14.3 | -9.4 | -2.2
3.1 | 19.7
20.1 | .7 | 9.2
10.2 | | 5 | 6.7 | -8.6 | -3.2 | 2.1 | -10.1 | -3.1 | 13.5 | -1.0 | 6.8 | 19.3 | 1.1 | 9.7 | | 6 | 4.9 | | -4.1 | 1.1 | | -4.0 | 12.8 | 1.8 | 7.2 | 16.9 | 1.1 | 9.8 | | 7 | 7.1
11.3 | -10.1
-8.3 | 9 | / | -7.1
-12.5 | -3.7
-6.6 | 9.2
11.7
14.3
9.2 | -2.8
-5.3 | 7.2
4.5
3.0 | 16.5
5.3 | 3.2 | 10.3 | | 9
10 | 1.8
2.1 | -2.1
-5.7 | 4
-1.8 | | -9.0
-14.9 | -5.6
-9.0 | 9.2 | 7
-3.1 | 6.6
2.9 | 13.9
17.3 | | 6.1
11.7 | | 11 | 2.8 | -8.6 | -3.4 | 4.9 | -15.7 | -5.5 | 7.1 | -3.1 | 1.1 | 13.1 | -3.5 | 8.0 | | 12
13 | -1.7
-3.5 | -8.6
-7.1 | -4.2
-5.4 | 1.8
5.3 | -9.0
-10.9 | -2.9
-3.7 | 11.3
14.6 | -4.2
-1.7 | 3.0
5.7 | 4.9
10.2 | -6.4
-4.6 | -1.8
3.2 | | 14
15 | 6.7
5.3 | | .2 | 7.1
4.2 | -9.0
-7.5 | -1.7
-1.8 | 9.2
2.5 | 7
-5.7 | 5.5
-2.0 | 15.0
17.3 | 3
2.8 | 6.4
10.6 | | | 6.4 | -7.9 | | | -9.0 | -4.9 | 11.0 | -5.7 | 2.7 | 15.0 | 6.7 | | | 17 | .0 | -10.1 | -4.1 | | -11.3 | -4.7 | 15.0 | -1.7 | 7.2 | 7.4
6.4 | -2.8 | 2.4 | | 18
19 | 2.5 | -12.5
-15.7 | -7.5 | 8.5 | -14.5
-14.5 | -9.3
-2.2 | 8.5
1.1 | -2.8
-5.3 | 4.7
-2.1 | 11.3 | | .9
3.4 | | 20 | 8.8 | | .3 | 1.4 | -8.3 | -3.5 | 12.4 | -5.3 | 2.5 | 14.3 | | | | 21
22 | 8.5
-1.0 | -1.7
-7.9 | 3.0
-3.5 | 3.9
3.5 | -9.8
-5.7 | -3.6
-1.5 | 13.1
7.1 | 7
.0 | 6.7
2.8 | 16.9
20.5 | .4
2.5 | 8.7
11.1 | | | 6.0 | -11.7
-10.5 | -3.3
-3.9 | 5.7
7.4 | -7.1 | -1.0
.5 | 10.6 | .0
.0
-2.1 | 3.9
4.3 | 22.5
18.1 | 5.7
5.7 | 13.9
11.0 | | | -8.3 | | -10.9 | 8.8 | -5.7 | 1.0 | 14.6 | -3.5 | 5.0 | 16.5 | 2.8 | 8.4 | | 26
27 | .7
9.5 | -17.9
-9.4 | -7.6 | 7.4
10.6 | -3.1
-5.3 | 2.1
2.1 | 16.1
18.1 | 1.1 | 7.8
8.2 | 11.7
17.7 | 2.5
1.1 | 6.7
9.4 | | 28 | 2.5 | -7.5 | .3
-1.9 | 3.5 | -2.8 | 2 | 15.4 | 1.1
.4
2.1 | 8.4 | 22.5 | 5.7 | 14.0 | | 29
30 | 2.5 | -7.5
 | -3.8
 | 4.6
3.9 | -7.5
-6.4 | 9
-2.7 | 7.8 | .4
-1.7 | 6.4
1.8 | 23.3
24.2 | 9.2
7.8 | 17.1
16.6 | | 31 | | | | -1.7 | -7.5 | -5.5 | | | | 22.5 | 6.7 | 14.5 | | MONTH | 11.3 | -17.9 | -3.3 | 10.6 | -15.7 | -3.1 | 18.1 | -10.9 | 3.5 | 24.2 | -6.4 | 8.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | 1 | 20.1 | JUNE
3.5 | 12.4 | 21.3 | JULY | 13.7 | 26.4 | AUGUST | 17.3 | 14.3 | SEPTEMBE | 10.0 | | 1
2
3 | 20.1
20.5
21.7 | JUNE 3.5 5.7 6.7 | 12.4
13.0
13.3 | 21.3
19.3
20.1 | JULY
7.8
8.5 | 13.7
13.6
15.5 | 26.4
26.4
23.8 | AUGUST
9.9
11.0
11.3 | 17.3
18.0
16.4 | 14.3
16.1
19.3 | 5.7
5.7
5.3 | 10.0
10.2
11.8 | | 1
2 | 20.1
20.5 | JUNE
3.5
5.7 | 12.4
13.0 | 21.3
19.3 | JULY
7.8
8.5 | 13.7
13.6 | 26.4
26.4
23.8
22.1 | AUGUST
9.9
11.0 | 17.3
18.0 | 14.3
16.1 | SEPTEMBE
5.7
5.7 | 10.0
10.2 | | 1
2
3
4
5 | 20.1
20.5
21.7
21.3
20.1 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 | 12.4
13.0
13.3
13.2
11.8 | 21.3
19.3
20.1
21.7
23.3 | JULY 7.8 8.5 11.3 6.0 6.0 7.4 | 13.7
13.6
15.5
14.0
14.4 | 26.4
26.4
23.8
22.1
22.9 | 9.9
11.0
11.3
10.2
8.5 | 17.3
18.0
16.4
15.0
15.0 | 14.3
16.1
19.3
22.5
21.3 | 5.7
5.7
5.3
7.1
8.5 | 10.0
10.2
11.8
14.3
12.6 | | 1
2
3
4
5 | 20.1
20.5
21.7
21.3
20.1 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7 | JULY 7.8 8.5 11.3 6.0 6.0 7.4 9.5 | 13.7
13.6
15.5
14.0
14.4 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5 | 9.9
11.0
11.3
10.2
8.5
8.5 | 17.3
18.0
16.4
15.0 | 14.3
16.1
19.3
22.5
21.3 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6 | 10.0
10.2
11.8
14.3
12.6 | | 1
2
3
4
5
6
7
8
9 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7
16.5 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3 | 9.9
11.0
11.3
10.2
8.5
8.5
8.8
9.5
10.6 | 17.3
18.0
16.4
15.0
15.1
15.7
15.9
16.2 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3 | | 1
2
3
4
5
6
7
8
9 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7
16.5
19.7 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5 | 26. 4
26. 4
23. 8
22. 1
22. 9
23. 8
25. 1
25. 5
23. 3
22. 9 | 9.9
11.0
11.3
10.2
8.5
8.5
8.8
9.5
10.6 | 17.3
18.0
16.4
15.0
15.0
15.1
15.7
15.9
16.2
14.0 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1 | | 1
2
3
4
5
6
7
8
9
10 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5
18.9
19.7 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9 | 9.9
11.0
11.3
10.2
8.5
8.5
8.6
9.5
10.6
10.2 | 17.3
18.0
16.4
15.0
15.0
15.1
15.7
15.9
16.2
14.0 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.5 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7
8.5
8.8
9.2 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3
15.0
14.3 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.5 8.5 10.6 10.2 9.2 8.5 8.5 8.5 8.5 | 17.3
18.0
16.4
15.0
15.0
15.1
15.7
16.2
14.0
12.1
13.4
13.7
12.7 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5
18.5
18.9
19.7
19.7
17.3
22.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
10.3
11.3
10.3
11.3
10.3 |
21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.1
22.5
23.3 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7
8.5
8.8
9.2
7.8 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3
15.0
14.2 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5
20.9 | 9.9
11.0
11.3
10.2
8.5
8.5
8.8
9.5
10.6
10.2
9.2
8.5
8.5
8.8 | 17.3
18.0
16.4
15.0
15.0
15.1
15.7
15.9
16.2
14.0
12.1
13.4
13.7
12.7 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8
20.9 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.5 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7
8.5
8.8
9.2 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3
15.0
14.3 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.5 8.5 10.6 10.2 9.2 8.5 8.5 8.5 8.5 | 17.3
18.0
16.4
15.0
15.0
15.1
15.7
16.2
14.0
12.1
13.4
13.7
12.7 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
18.5
18.9
19.7
17.3
22.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 .0 7.1 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
10.0
13.2
10.0
14.5 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.1
22.5
23.3
20.1 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7
8.5
8.8
8.8
9.2
7.8 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3
15.0
14.2
14.2 | 26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5
20.9 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.5 8.8 9.5 7.8 | 17.3
18.0
16.4
15.0
15.0
15.1
15.7
15.9
16.2
14.0
12.1
13.4
13.7
12.7
12.9 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8
20.9 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5
18.5
18.9
19.7
19.7
19.7
19.7
19.3
22.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
12.5
10.0
14.5 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.1
22.5
23.3
20.1
19.3 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7
8.5
8.8
9.2
7.8 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3
15.0
14.2
14.2 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5
20.5 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 | 17.3
18.0
16.4
15.0
15.0
15.1
15.7
15.9
16.2
14.0
12.1
13.4
13.7
12.7
12.9 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8
20.9 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 20.1
20.1
21.7
21.3
20.1
22.5
24.2
16.5
18.5
18.9
19.7
17.3
22.5
19.3
16.9
19.7 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 .0 7.1 6.0 5.3 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
12.5
9.1
10.0
14.5 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7
16.5
19.7
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3 | 7.8
8.5
11.3
6.0
6.0
7.4
9.5
8.5
7.4
6.7
8.5
8.8
9.2
7.8
7.8
7.1
8.5
7.8
7.1
8.5 | 13.7
13.6
15.5
14.0
14.4
15.1
11.5
12.4
14.0
14.3
15.0
14.2
14.2
14.2
14.2 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
21.7
20.5
20.9
21.7
16.5
15.0 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.5 8.8 8.6 6.7 8.5 7.8 | 17.3 18.0 16.4 15.0 15.0 15.1 15.7 15.9 16.2 14.0 12.1 13.4 13.7 12.7 12.9 13.3 11.2 10.4 11.3 11.8 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.7
17.3
18.1
19.7
18.9
20.1
23.8
20.9
22.1
23.8
20.9 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
4.2
3.5
2.8 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7.9
9.7
8.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
19.7
19.7
17.3
22.5
19.3
16.1
17.3
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 .0 7.1 6.0 5.3 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
12.5
9.1
10.4
11.8
12.3
11.3
12.3 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3 | 7.8 8.5 11.3 6.0 6.0 7.4 9.5 8.5 8.5 7.4 6.7 8.5 8.8 8.8 9.2 7.8 7.8 7.8 8.5 7.8 7.8 8.5 9.5 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.2
14.2
14.2
12.7
12.5
15.1
15.5
15.6
16.2
16.2
16.9 | 26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
21.7
20.5
20.9
21.7
16.5
15.0
18.5
18.5 | 9.9 11.0 11.3 10.2 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.8 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 | 17.3
18.0
16.4
15.0
15.0
15.7
15.7
15.9
16.2
14.0
12.1
13.4
13.7
12.7
12.9
13.3
11.2
10.4
11.3
11.8 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8
20.9
22.1
13.1
17.7
15.4 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
4.2
3.5
2.8 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7.9
9.7
8.7
12.5
11.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.5
18.5
18.5
19.7
19.7
17.3
22.5
16.9
16.1
17.3
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 0.1 6.0 5.3 2.5 6.0 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
12.5
9.1
10.4
11.8
12.3
11.3
12.3 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3 | 7.8 8.5 11.3 6.0 6.0 7.4 9.5 8.5 7.4 6.7 8.5 8.8 8.8 9.2 7.8 7.8 7.8 8.5 7.8 8.5 8.5 8.5 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3
15.0
14.2
14.2
12.7
12.5
15.5
15.6 | 26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5
20.9
21.7
16.5
15.0
18.5 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.5 8.5 8.5 7.8 6.7 | 17.3
18.0
16.4
15.0
15.0
15.7
15.7
15.9
16.2
14.0
12.1
13.4
13.7
12.7
12.9
13.3
11.2
10.4
11.3
11.8 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8
20.9
22.1
20.1
13.1
17.7
15.4 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
4.2
3.5
2.8 |
10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7.9
9.7
8.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 20.1
20.1
21.7
21.3
20.1
22.5
24.2
18.9
19.7
17.3
22.5
19.3
16.6
11.3
18.5
20.9
19.3
15.8
20.9
19.3
15.3
15.8
20.9 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 .0 7.1 6.0 5.3 2.5 6.0 6.4 5.3 4.9 5.7 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
10.3
11.3
10.0
14.5
12.5
9.1
10.0
14.5
12.5
9.1
10.4
11.8
12.3
11.3
10.3 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7
16.5
19.7
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3
26.4
25.1
26.4
21.7
25.1 | 7.8 8.5 11.3 6.0 6.0 7.4 9.5 8.5 7.4 6.7 8.5 8.8 9.2 7.8 7.8 7.8 8.5 7.1 8.5 8.5 9.5 1.0 8.8 | 13.7
13.6
15.5
14.0
14.4
15.1
11.5
12.4
14.0
14.3
15.0
14.2
14.2
14.2
12.7
12.5
15.5
15.6
16.2
16.2
16.9
15.7
15.7 | 26.4
26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
21.7
20.5
20.9
21.7
16.5
15.0
18.5
18.5 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.8 8.8 6.7 8.5 7.8 6.4 6.0 8.5 8.5 | 17.3 18.0 16.4 15.0 15.0 15.1 15.7 15.9 16.2 14.0 12.1 13.4 13.7 12.7 12.9 13.3 11.2 10.4 11.3 11.8 10.6 10.4 10.8 11.3 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.7
18.1
19.7
18.9
20.1
23.8
20.9
22.1
23.8
20.9
22.1
23.8
20.1
21.3
17.7
15.4 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
2.8
5.3
6.4
-2.8
-5.3
-4.6 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7,9
9.7
8.7
12.5
11.9
5.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
16.5
18.5
19.7
19.7
17.3
22.5
20.9
16.1
17.3
18.5
20.9
16.1
17.3
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 .0 7.1 6.0 5.3 2.5 6.0 6.4 5.3 4.9 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
12.5
9.1
10.4
11.8
12.3
11.3
12.3
10.3 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3
26.4
21.7
25.1
26.4
21.7
22.1 | 7.8 8.5 11.3 6.0 6.0 7.4 9.5 8.5 8.5 8.8 8.8 9.2 7.8 7.8 8.5 7.8 8.5 9.5 11.0 8.8 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
111.5
12.4
14.3
15.0
14.2
14.2
12.7
12.5
15.1
15.5
15.6
16.2
16.2
16.9
15.7 | 26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5
20.5
18.5
18.5
18.1
16.1
16.9 | 9.9 11.0 11.3 10.2 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.5 8.6 10.2 9.2 8.5 8.5 8.5 8.6 10.2 8.5 8.5 8.5 8.5 8.5 8.8 8.8 8.5 7.8 8.8 8.5 7.8 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8 | 17.3 18.0 16.4 15.0 15.0 15.1 15.7 15.9 16.2 14.0 12.1 13.4 13.7 12.7 12.9 13.3 11.2 10.4 11.3 11.8 10.6 10.4 10.8 11.3 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8
20.9
22.1
13.1
17.7
15.4
16.9
17.7
11.3
1.4
12.4 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
4.2
3.5
2.8
5.3
6.4
-2.8
-5.3
-4.6 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7.9
9.7
8.7
7.9
9.7
8.7
12.5
11.9
12.5
11.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.5
18.5
18.5
19.7
19.7
17.3
22.5
19.3
16.9
16.1
17.3
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 .0 7.1 6.0 5.3 2.5 6.0 6.4 5.3 4.9 5.7 4.6 4.9 7.1 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
10.3
11.3
10.0
14.5
12.5
9.1
10.0
14.5
12.3
11.8
12.3
10.3
10.3
10.3
10.0
10.0
10.0
10.0
10 | 21.3
19.3
20.1
21.7
23.3
23.3
20.1
17.7
16.5
19.7
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3
26.4
25.1
26.4
27.7
25.1
22.1
22.5
23.3 | 7.8 8.5 11.3 6.0 6.0 7.4 9.5 8.5 7.4 6.7 8.5 8.8 9.2 7.8 7.8 7.8 8.5 8.5 9.5 11.0 8.8 9.2 9.9 10.2 | 13.7
13.6
15.5
14.0
14.4
15.1
11.5
12.4
14.0
14.3
15.0
14.2
14.2
12.7
12.5
15.5
15.6
16.2
16.2
16.9
15.7
15.7 | 26. 4
26. 4
23. 8
22. 1
22. 9
23. 8
25. 1
25. 5
23. 3
22. 9
20. 9
21. 7
20. 5
20. 9
21. 7
16. 5
15. 0
18. 5
18. 5
18. 1
16. 1
16. 9 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.8 8.8 6.7 8.5 7.8 6.4 6.0 8.5 8.5 8.5 8.8 6.7 8.5 6.4 7.4 7.8 8.5 | 17.3 18.0 16.4 15.0 15.0 15.1 15.7 15.9 16.2 14.0 12.1 13.4 13.7 12.7 12.9 13.3 11.2 10.4 11.3 11.8 10.6 10.4 10.8 11.3 10.4 11.4 11.4 11.4 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
23.8
20.9
22.1
23.8
20.9
22.1
23.8
20.9
17.7
15.4
16.9
17.7
11.3
1.4
12.4 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
2.8
5.3
6.4
8.5
2.8
6.4
1.8
3.5
4.9 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7,9
9.7
8.7
12.5
11.9
5.4
1.2
5.2
7.5
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 20.1
20.5
21.7
21.3
20.1
22.5
24.2
18.9
19.7
17.3
22.5
19.3
16.6.1
17.3
18.5
20.9
19.3
15.8
17.3
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.1 1.8 5.7 5.3 0 7.1 6.0 5.3 2.5 6.0 6.4 5.3 4.9 5.7 4.6 4.9 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
12.5
9.1
10.4
11.8
12.3
12.3
10.3 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3
26.4
21.7
25.1
26.4
21.7
22.1 | JULY 7.8 8.5 11.3 6.0 6.0 7.4 9.5 8.5 8.5 8.8 8.8 9.2 7.8 7.8 7.8 8.5 7.8 7.8 8.5 9.5 11.0 8.8 9.2 9.9 9.9 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
111.5
12.4
14.0
14.3
15.0
14.2
12.7
12.5
15.1
15.5
15.6
16.2
16.9
15.7
15.7
15.7 | 26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.9
21.7
20.5
20.5
18.5
18.5
18.1
16.1
16.9 | 9.9 11.0 11.3 10.2 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.8 8.5 7.8 6.4 6.0 8.5 8.5 6.4 7.4 7.4 | 17.3 18.0 16.4 15.0 15.0 15.1 15.7 15.9 16.2 14.0 12.1 13.4 13.7 12.9 13.3 11.2 10.4 11.3 11.8 10.6 10.4 10.8 11.3 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
23.8
20.9
22.1
13.1
17.7
15.4
16.9
17.7
11.3
1.4
12.4 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
4.2
3.5
2.8
5.3
6.4
-2.8
-5.3
-4.6 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7.9
9.7
8.7
7.9
9.7
8.7
12.5
11.9
12.5
11.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
30
30
30
30
30
30
30
30
30
30
30
30 | 20.1
20.5
21.7
21.3
20.1
22.5
24.9
16.5
18.5
18.9
19.7
17.3
22.5
19.3
16.9
16.1
17.3
18.5
20.9
19.3
15.8
15.8
18.5 | JUNE 3.5 5.7 6.7 5.3 7.1 6.4 7.8 7.1 4.9 2.5 4.2 4.9 7.18 5.7 5.3 0.0 7.1 6.0 5.3 2.5 6.0 6.4 5.3 4.9 5.7 4.6 4.9 7.1 6.7 | 12.4
13.0
13.3
13.2
11.8
14.2
14.8
13.3
11.3
10.3
11.3
10.0
14.5
12.5
9.1
10.4
11.8
12.3
11.3
12.3
10.4
11.8
12.3 | 21.3
19.3
20.1
21.7
23.3
20.1
17.7
16.5
19.7
19.7
22.1
22.5
23.3
20.1
19.3
24.2
25.5
23.3
26.4
25.1
26.4
21.7
25.1
26.4
27.1
26.4
27.1
27.1
27.1
27.1
27.1
27.1
27.1
27.1 | 7.8 8.5 11.3 6.0 6.0 7.4 9.5 8.5 7.4 6.7 8.5 8.8 9.2 7.8 7.8 8.5 7.1 8.5 8.5 9.5 11.0 8.8 9.2 9.9 9.9 10.2 | 13.7
13.6
15.5
14.0
14.4
15.1
13.0
12.1
11.5
12.4
14.0
14.3
15.0
14.2
14.2
12.7
12.5
15.5
15.6
16.2
16.9
15.7
15.7 | 26.4
23.8
22.1
22.9
23.8
25.1
25.5
23.3
22.9
20.9
20.7
20.5
20.9
21.7
20.5
20.9
21.7
16.5
18.0
18.5
18.5
18.5
18.5 | AUGUST 9.9 11.0 11.3 10.2 8.5 8.5 8.8 9.5 10.6 10.2 9.2 8.5 8.5 8.8 8.5 7.8 6.7 8.5 7.8 6.4 6.0 8.5 8.5 6.4 7.4 7.8 8.5 6.4 7.8 8.5 6.4 |
17.3 18.0 16.4 15.0 15.1 15.7 15.9 16.2 14.0 12.1 13.4 13.7 12.9 13.3 11.2 10.4 11.3 11.8 10.6 10.4 10.4 10.8 11.3 11.8 | 14.3
16.1
19.3
22.5
21.3
17.7
17.7
17.3
18.1
19.7
18.9
20.1
22.1
22.1
20.1
13.1
17.7
15.4
16.9
17.7
11.3
1.4
12.4 | 5.7
5.7
5.3
7.1
8.5
7.1
4.6
5.3
4.9
4.9
4.2
4.6
5.7
7.1
7.8
7.4
8.5
4.2
3.5
2.8
6.4
-2.8
-5.3
-4.6 | 10.0
10.2
11.8
14.3
12.6
11.0
9.9
9.4
10.3
11.1
10.5
10.9
12.0
13.2
13.5
13.7
7.9
9.7
8.7
12.5
11.9
5.4
-2.4
1.2
5.2
7.5
8.9
8.1
1.2 | ### 380324107444500 WHITEHOUSE CREEK METEOROLOGICAL STATION NEAR OURAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | | | | | | DAILI | SUM VALU | Cal | | | | | | |----------------------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .0
.0
.0 | .0.0.0.0 | .2
.5
1.2
.0 | .1
.4
.4
.0 | .1
.0
.0
.0 | .3
.4
.0
.0 | .2
.3
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0
.1
.0
.0 | | 6
7
8
9
10 | .3
.1
.0
.0 | .0.0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .1
.8
.0
.1 | .0.0.0.0 | .0
.1
1.2
.0 | .0.0.0.0 | .0
.0
.2
.5 | .0
.0
.0
.0 | .2
.0
.3
.0 | | 11
12
13
14
15 | .0
.0
.0 | .0.0.0.0 | .1
.0
.2
.0 | .0.0.0.0 | .2
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .1
.1
.0
.0 | .0
.0
.0
.0 | | 16
17
18
19
20 | .0 | .0.0.0.0 | .0
.0
.0
.0 | .0
.0
.1
.0 | .0
.2
.0
.0 | .1
.0
.1
.0 | .0.0.0.0 | .0
.0
.3
.0 | .0
.0
.1
.0 | .0
.1
.0
.0 | .3
.1
.2
.1 | .0
.6
.0 | | 21
22
23
24
25 | .0
.0
.0 | .4
.5
.0
.0 | .2
.0
.0
.0 | .3
.0
.0
.1 | .0
.3
.0
.2 | .2
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.2
.0 | .0.0.0.0 | .2
.3
.0
.1 | .1
.1
.2
.3 | | 26
27
28
29
30
31 | .0
.0
.0
.1
.0 | .0 .0 .0 .0 .0 .0 .0 | .0 .0 .0 .0 .0 .0 | .7
.6
.0
.0 | .0
.0
.1
.1 | .0
.0
.3
.0
.5 | .0 .0 .0 .0 .0 .0 .0 | .0.0.0.0.0.0 | .3
.2
.0
.0 | .0 .0 .0 .0 .0 .0 | .1
.0
.1
.1
.1 | .0
.0
.0
.4
.0 | | TOTAL | 0.5 | 0.9 | 2.7 | 3.2 | 1.5 | 4.8 | 0.9 | 1.6 | 0.8 | 0.9 | 2.3 | 2.7 | CAL YR 1999 TOTAL 26.5 WTR YR 2000 TOTAL 22.8 ### 380436107411500 PORTLAND METEOROLOGICAL STATION NEAR OURAY, CO LOCATION.--Lat $38^{\circ}04'36"$, long $107^{\circ}41'15"$, in $SE^{1}/_{4}NW^{1}/_{4}$ sec.12, T.44 N, R.8 W., Ouray County, Hydrologic Unit 14020006, 4 mi north of Ouray, and 8.6 mi east of Black Lake. PERIOD OF RECORD. -- May 1992 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 8,080 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and precipitation data for water years 1992 and 1993 are available in district office. Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD.-AIR TEMPERATURE: Maximum, 31.1°C, June 26, 1994; minimum, -23.6°C, Dec. 17, 18, 1996. PRECIPITATION: Maximum daily, 2.3 inches, Oct. 3, 1996. EXTREMES FOR CURRENT YEAR.-- AIR TEMPERATURE: Maximum, 30.6°C, July 23, Aug. 1; minimum, -14.9°C, Dec. 14, Jan. 4, 6. PRECIPITATION: Maximum daily, 1.2 inches, May 8. | DAY | MAX | MIN | MEAN | |----------------------------------|--|-------------------------------------|--|--------------------------------------|--|------------------------------------|--|--|---------------------------------------|------------------------------------|---|---| | | | OCTOBER | | I | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 20.5
19.3
18.9
20.1
21.7 | 8.5
6.4
6.0
6.4
8.5 | 13.9
13.0
11.8
12.4
14.8 | 13.1
14.3
14.6
16.5
17.3 | 2.8
1.1
3.5
4.6
4.9 | 7.3
7.0
7.8
9.5
10.3 | 11.3
1.1
-3.8
-3.1
3.9 | -2.8
-4.9
-7.1
-11.3 | 5.5
-1.8
-5.4
-7.7
-4.5 | .0
-2.8
-8.6
-1.0
-3.1 | -7.1
-10.9
-14.5
-14.9
-12.1 | -2.6
-6.4
-12.2
-7.5
-6.9 | | 6
7
8
9
10 | 18.1
8.1
16.1
20.5
21.7 | 8.1
2.8
2.1
5.3
8.8 | 12.9
5.0
7.8
12.2
14.2 | 17.3
18.5
16.1
12.1
15.4 | 6.4
8.8
7.8
3.2
2.8 | 10.7
12.9
11.5
7.0
7.9 | 2.5
2.8
-4.2
7
-1.0 | -7.9
-6.0
-9.0
-12.1
-7.1 | -2.8
-1.4
-6.3
-6.5
-4.4 | -6.0
1.1
-1.0
-1.7
4.2 | -14.9
-12.5
-11.7
-7.5
-1.7 | -11.3
-6.5
-6.0
-5.0
1.2 | | 11
12
13
14
15 | 22.1
21.3
22.5
20.1
17.7 | 9.9
9.5
8.8
8.8 | 15.0
15.0
14.2
13.7
13.0 | 16.5
17.3
15.4
17.3
16.9 | 5.3
5.7
4.6
3.9
6.7 | 9.9
10.1
8.7
9.6
10.6 | -2.8
7
1.4
-7.5
-1.7 | | -8.0
-6.2
-3.8
-12.0
-8.0 | 11.0
5.3
7.8
10.6
12.4 | 1.8
7
-1.4
.7
1.8 | 5.8
2.2
2.5
4.5
7.0 | | 16
17
18
19
20 | 8.8
6.0
9.5
12.1
14.3 | -3.8
-7.9
-2.4
-1.4
1.8 | 2.1
-1.2
3.3
4.4
6.8 | 18.1
17.7
8.8
9.5
12.1 | 6.4
8.5
-4.2
-4.9 | 11.0
11.4
.5
1.7
4.8 | 1.1
2.1
3.9
-3.1
-4.9 | -8.3
-6.0
-5.3
-8.6
-10.5 | -3.8
-1.8
-1.1
-6.3
-7.0 | 12.8
7.1
8.1
9.2
7.1 | 1.8
1.8
1.8
.4 | 7.3
4.6
4.9
5.4
3.3 | | 21
22
23
24
25 | 16.1
17.3
17.7
17.3
16.1 | 3.2
4.6
5.7
6.0
4.6 | 8.4
9.8
10.4
9.9
9.3 | 4.2
-3.1
-2.8
-3.8
1.4 | -3.1
-9.0
-12.1
-11.7
-9.0 | 4
-5.9
-7.9
-8.5
-3.3 | -4.9
-3.1
.0
2.5
3.5 | -12.1
-13.3
-10.1
-6.8
-4.9 | -8.5
-8.6
-5.1
-2.7
-1.8 | 9.2
.4
1.1
2.1
2.5 | -2.4
-4.2
-7.9
-2.8
-1.0 | 2.8
-2.1
-3.5
3 | | 26
27
28
29
30
31 | 18.5
16.1
18.5
8.5
8.5
16.1 | 6.7
6.4
6.0
-2.4
-2.4 | 10.9
10.3
11.0
.8
2.5
7.9 | 11.3
9.5
12.1
13.1
14.3 | -1.7
2.5
1.4
3.2
4.9 | 4.7
5.7
5.2
7.0
8.2 | 3.9
2.8
6.0
7.4
3.5
6.0 | -5.7
-5.7
-3.8
-2.8
-3.5
-3.5 | -1.5
-1.6
1.0
1.6
-1.0 | 2.5
-1.0
-4.9
-3.5
.0 | -2.4
-9.8
-11.7
-13.7
-11.7
-8.3 | 4
-4.9
-9.4
-9.3
-6.6
-4.4 | | MONTH | 22.5 | -7.9 | 9.5 | 18.5 | -12.1 | 5.8 | 11.3 | -14.9 | -3.9 | 12.8 | -14.9 | -1.7 | ## 380436107411500 PORTLAND METEOROLOGICAL STATION NEAR OURAY, CO--Continued | DAY | MAX | MIN | | MAX | MIN | MEAN | MAX | | | | MIN | MEAN | |---|--|---|--|--|--|--|--|--|--
--|--|--| | DAI | | FEBRUARY | | MAA | MARCH | PIEAN | MAX | APRIL | PIEAN | MAX | MAY | MEAN | | 1 | .0 | | _5 5 | 5.3 | -2.4 | .9 | 3 9 | | -1 6 | 18 1 | | 9.2 | | 2 | 8.8
12.4 | -7.1
1.1 | 1.6
5.7 | .7 | -4.2
-6.0 | -2.0 | 3.9
6.7
8.1 | -4.2
-5.3 | .0 | 22.5 | 1.1
7.4
10.2 | 14.6
16.8 | | | 8.1
7.4 | 3
-1.7 | 1.6
5.7
3.4
1.9 | 7.4
12.8
6.7 | 7
-3.1 | .5
6.0
2.1 | 3.9
6.7
8.1
16.9
17.3 | 1.8 | 9.1
11.5 | 25.1
23.8 | 12.8
12.1 | 18.1
17.8 | | | 7.1 | | 1.5 | 4.6 | -4.9 | | | | | | | | | , | 7.4
10.2 | -2.4
-1.0 | 1.3 | .7
1.1 | -3.5
-5.7 | -1.6
-2.3 | 12.8
15.0 | 3.9 | 8.8 | 22.5 | 5.3
2.5 | 14.3
4.4 | | | 5.7
6.4 | 3
7 | 1.5
1.3
4.4
2.4
1.5 | 4.6
.7
1.1
1.4
.0 | -4.9
-6.8 | -2.5
-4.5 | 15.4
12.8
15.0
17.3
13.5 | 7.4 | 12.2 | 18.5 | .7 | 9.4
16.4 | | | 4.2 | | | | | | | | | | | | | 12
13 | 2.8 | -3.1
-3.5 | .5
.3
-2.1 | 4.9 | -2.8
-2.8 | .5 | 15.4
18.1 | 1.8 | 8.4
11.6 | 8.5 | -3.8
- 7 | 2.0 | | - 4 | 6.7
6.4 | -1.0
-1.0 | 3.4 | 6.7
4.9
7.8
9.2
7.8 | -1.4
-5.3 | 6
.5
2.2
3.8
1.8 | 11.0
15.4
18.1
14.3
4.6 | 1.1 | 8.8 | 17.7 | 6.0 | 11.9 | | | | | | | -6.8 | -2 2 | | | | | | | | 17
18 | 8.8
2.5
1.1 | -5.3 | -1.2
-2.5 | 4.9
7.4
.7
9.9
4.6 | -4.6
-7.5 | .4 | 15.0
18.9
13.9
3.9
16.1 | 5.7 | 8.0
12.1
8.8
1.1
7.0 | 10.6 | 10.6
.4
1.8
1.1
7.1 | 6.1 | | 10 | 4.2
11.7 | -8.6 | -2.4
4.2 | 9.9
4.6 | -6.4
-6.0 | 2.5 | 3.9 | -2.8
-1.7 | 1.1 | 15.4 | 1.1 | 7.8 | | 0.1 | 10 6 | | | | | | | | | 21 3 | | | | 22
23 | 10.6
2.1
6.4
3.2 | -2.8
-6.8 | 6.6
4
.4
-1.2
-7.3 | 7.4 | -7.1
-3.8
-2.4
.7 | .2 | 17.3
10.2
13.9
13.5
18.5 | 2.8 | 6.7 | 24.2 | 9.9 | 17.1 | | 24 | 3.2
-5.7 | -8.3 | -1.2 | 9.2 | .7 | 4.6 | 13.5 | 3.9 | 8.6 | 20.9 | 12.1 | 16.5 | | | | | | | | | | | | | | 13.0
11.7 | | | 12.4 | -3.5 | 3.9 | 11.3
13.1
7.1
7.1
7.1 | 2.8
1.4
7 | 6.3
7.6
3.6
2.2
.2 | 23.3 | 9.2 | 15.8 | 22.5 | 8.5
6.7 | 14.6 | | 28
29 | 6.0 | -5.3
-5.3 | 3.9
1.5
4 | 7.1 | -4.2 | 2.2 | 16.1 | 3.9 | 11.0 | 27.3 | 18.1 | 20.3 | | 30
31 | | | | .4 | -3.5
-5.3 | -3.1 | 20.1
23.3
20.1
16.1
13.1 | 1.4 | 5.6 | 28.7 | 15.4
15.0 | 22.3
20.7 | | MONTH | 12.4 | -11.7 | .8 | 13.1 | | .9 | 23.3 | -5.7 | 8.3 | 28.7 | -3.8 | 13.7 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | 26.0 | JUNE
9.5 | | | JULY | | i | AUGUST | | | SEPTEMBE | R
13.6 | | 1
2
3 | 26.0
25.1
24.6 | JUNE
9.5
13.5
13.5 | | | JULY | | i | AUGUST | | | 9.9
8.5
11.3 | 13.6
15.3
16.7 | | 1
2 | 26.0
25.1 | JUNE
9.5
13.5
13.5 | | | JULY | | i | AUGUST | | | 9.9
8.5
11.3
13.1 | 13.6
15.3
16.7
18.9 | | 1
2
3
4
5 | 26.0
25.1
24.6
26.4
23.8 | JUNE 9.5 13.5 13.5 12.1 16.1 | 17.7
19.4
19.3
19.3
18.4 | 25.5
23.8
26.4
26.0
28.2 | JULY 12.8 13.5 15.0 11.7 12.8 | 18.9
18.3
20.4
18.9
20.4 | 30.6
29.7
28.7
28.7
27.8 | 15.8
16.9
16.9
15.8
13.9 | 22.9
22.7
21.6
20.1
20.2 | 18.1
22.1
24.6
26.0
26.4 | 9.9
8.5
11.3
13.1
13.9 | 13.6
15.3
16.7
18.9
18.2 | | 1
2
3
4
5 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6 | JUNE 9.5 13.5 13.5 12.1 16.1 | 17.7
19.4
19.3
19.3
18.4 | 25.5
23.8
26.4
26.0
28.2 | JULY 12.8 13.5 15.0 11.7 12.8 | 18.9
18.3
20.4
18.9
20.4 | 30.6
29.7
28.7
28.7
27.8 | 15.8
16.9
16.9
15.8
13.9 | 22.9
22.7
21.6
20.1
20.2 | 18.1
22.1
24.6
26.0
26.4 | 9.9
8.5
11.3
13.1
13.9 | 13.6
15.3
16.7
18.9
18.2 | | 1
2
3
4
5
6
7
8 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8 | JUNE 9.5 13.5 13.5 12.1 16.1 | 17.7
19.4
19.3
19.3
18.4 | 25.5
23.8
26.4
26.0
28.2 | JULY 12.8 13.5 15.0 11.7 12.8 | 18.9
18.3
20.4
18.9
20.4 | 30.6
29.7
28.7
28.7
27.8 | 15.8
16.9
16.9
15.8
13.9 | 22.9
22.7
21.6
20.1
20.2 | 18.1
22.1
24.6
26.0
26.4 | 9.9
8.5
11.3
13.1
13.9 | 13.6
15.3
16.7
18.9
18.2 | | 1
2
3
4
5
6
7
8
9
10 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0 | 30.6
29.7
28.7
28.7
27.8
28.2
28.7
29.7
29.7
28.2
27.3 | 15.8
16.9
16.9
15.8
13.9
13.9
16.9
15.8
17.7
16.1 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.9
21.8
20.7 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1 | | 1
2
3
4
5
6
7
8
9
10 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
16.9
18.4 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0
17.0 | 30.6
29.7
28.7
28.7
27.8 | 15.8
16.9
16.9
15.8
13.9
13.9
13.9
16.9
15.8
17.7
16.1 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.9
21.8
20.7 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
15.1
17.1 | | 1
2
3
4
5
6
7
8
9
10 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
16.9
18.4 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0
17.0 | 30.6
29.7
28.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3 | 15.8
16.9
16.9
15.8
13.9
13.9
13.9
16.9
15.8
17.7
16.1 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.9
21.8
20.7 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
15.1
17.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
23.8
25.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 12.4 5.7 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.8
27.8 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 14.6 12.1 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0
17.0
19.4
20.5
21.4
18.5 | 30.6
29.7
28.7
27.8
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
25.5
26.4
25.1 | 15.8
16.9
15.8
13.9
13.9
15.8
17.7
16.1
15.8
12.4
13.5 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.9
21.8
20.7
19.1
18.7
18.8
18.1 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
11.3 | 13.6
15.3
16.7
18.9
18.2
14.2
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2 | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
23.8
22.5
23.8
22.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 12.4 5.7 12.1 9.2 3.9 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7
19.3 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.8
27.3
26.4 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 14.6 12.1 10.6 12.1 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0
17.0
19.4
20.5
21.4
18.5
18.0 | 30.6
29.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
25.5
26.4
25.1
24.6 | 15.8
16.9
15.8
13.9
13.9
16.9
15.7
16.1
15.8
12.4
12.4
12.4
13.5
13.1 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
11.3
11.3
11.4
15.8 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
26.0
23.8
22.5
26.0 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 12.4 5.7 12.1 9.2 3.9 9.5 8.8 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
14.7
19.3
16.6
13.1
14.4 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.3
26.4
23.8
22.1
28.7 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 14.6 12.1 12.1 10.6 12.4 14.6 13.5 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0
17.0
19.4
20.5
21.4
18.5
18.0 | 30.6
29.7
28.7
27.8
28.2
28.7
29.7
29.7
28.2
27.3
25.5
26.4
25.1
24.6
25.1
22.1
19.7
23.3 | 15.8
16.9
15.8
13.9
16.9
15.8
13.9
16.9
15.8
17.7
16.1
15.8
12.4
12.4
13.5
13.1
11.7
14.3
11.7 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3
17.9
17.2
14.0
16.1 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5
19.3
22.5 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
11.3
12.4
15.8 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.6
12.5
15.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
22.5
23.8
22.5
26.0
23.8
22.1
18.9
21.7
22.9 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 12.4 5.7 12.1 9.2 3.9 9.5 8.8 8.8 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.4
14.3
16.0 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.8
27.3
26.4
23.8
22.1
28.2
28.7
28.2 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 14.6 12.1 10.6 12.1 10.6 13.5 16.1 | 18.9 18.3 20.4 18.9 20.4 21.2 18.7 16.8 14.0 17.0 19.4 20.5 21.4 18.5 18.0 16.6 16.9 21.3 21.5 21.7 | 30.6
29.7
28.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
26.4
25.1
24.6
25.1
24.6
25.1
22.1
19.7
23.3
22.1 | 15.8
16.9
15.8
13.9
13.9
15.8
13.9
15.8
17.7
16.1
15.8
12.4
12.4
13.5
13.1
11.7
14.3
11.0
11.7 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3
17.9
17.2
14.0
16.1
16.9 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5
19.3
22.5
19.3 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
11.3
12.4
15.8
15.0
13.9
7.4
8.8
7.1 | 13.6
15.3
16.7
18.9
18.2
14.2
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.5
15.1
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
23.8
22.5
26.0
23.8
22.1
18.9
22.1
22.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 10.6 7.4 11.0 12.4 12.4 12.4 15.7 12.1 9.2 3.9 9.5 8.8 8.8 7.8 13.1 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.4
14.3
16.0 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.8
27.3
26.4
23.8
22.1
28.2
29.2
29.2 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 12.1 10.6 12.4 14.6 13.5 16.1 15.4 15.0 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0
17.0
19.4
20.5
21.4
18.5
18.0
16.6
16.9
21.3
21.5
21.7 | 30.6
29.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
26.4
25.1
24.6
25.1
22.1
19.7
23.3
22.1 | 15.8
16.9
15.8
13.9
13.9
15.8
17.7
16.1
15.8
17.7
16.1
15.8
17.7
16.1
11.7
14.3
11.7
14.3
11.7
12.8 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
11.9
17.2
14.0
16.1
16.9 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
27.3
27.3
27.3
27.3
27.3
27.3
27.3
27.3 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
11.3
11.3
11.3
15.8
15.0
13.9
7.4
8.8
7.1 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.6
12.5
15.1
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
26.0
23.8
22.1
18.7
22.9 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 12.4 5.7 12.1 9.2 3.9 9.5 8.8 8.8 7.8 13.1 11.3 9.9 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.3
16.0 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.3
26.4
23.8
22.1
28.7
28.2
29.2
29.7
29.2 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 14.6 12.1 12.1 10.6 12.4 14.6 12.5 16.1 15.4 15.0 18.1 16.9 | 18.9 18.3 20.4 18.9 20.4 21.2 18.7 16.8 14.0 17.0 19.4 20.5 21.4 18.5 18.0 16.6 16.9 21.3 21.7 22.4 22.4 23.6 21.6 | 30.6
29.7
28.7
27.8
28.2
28.7
29.7
29.7
28.2
27.3
25.5
26.4
25.1
24.6
25.1
22.1
19.7
23.3
22.5
23.8
23.8 | 15.8
16.9
15.8
13.9
16.9
15.8
13.9
16.9
15.8
17.7
16.1
15.8
12.4
12.4
12.4
13.5
13.1
11.7
14.3
11.7
12.8
12.4
12.1
11.3
13.9 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3
17.9
17.2
14.0
16.1
16.9 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5
19.3
22.5
19.3
4.9 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
11.3
12.4
15.8
15.0
13.9
7.1
7.8
8.8
7.1 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.6
12.5
15.1
13.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
23.8
22.5
26.0
23.8
22.1
18.9
21.7
22.9
22.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 10.6 7.4 11.0 12.4 12.4 5.7 12.1 9.2 3.9 9.5 8.8 8.8 7.8 13.1 11.3 9.9 11.0 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.4
14.3
16.0 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.8
27.3
26.4
23.8
22.1
28.2
28.7
28.2
29.2
30.6
27.3
28.7 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 16.1 14.6 12.1 12.1 10.6 13.5 16.1 15.4 15.4 15.0 18.1 16.9 14.3 | 18.9 18.3 20.4 18.9 20.4 21.2 18.7 16.8 14.0 17.0 19.4 20.5 21.4 18.5 18.0 16.6 16.9 21.3 21.5 21.7 22.4 22.4 22.4 22.6 20.6 | 30.6
29.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
26.4
25.1
24.6
25.1
22.1
19.7
23.3
22.1
21.3
22.5
23.8
23.3
24.2 |
15.8
16.9
15.8
13.9
13.9
16.9
15.7
16.1
15.8
12.4
12.4
12.4
12.5
13.1
11.7
14.3
11.0
11.7
12.8 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3
17.9
17.2
14.0
16.1
16.9
15.8
17.0
17.7
17.2 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5
19.3
22.5
19.3
22.5
19.3 | 9.9 8.5 11.3 13.1 13.9 9.2 8.1 7.4 9.9 12.4 11.7 11.3 11.3 12.4 15.8 15.0 13.9 7.4 8.8 7.1 7.8 11.3 -7 -2.8 -2.8 | 13.6
15.3
16.7
18.9
18.2
14.2
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.5
15.1
13.0
15.7
16.8
8.8
.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
23.8
22.5
26.0
23.8
22.1
18.9
22.9
25.5
24.6
20.1
22.9 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 12.4 12.4 5.7 12.1 9.2 3.9 9.5 8.8 8.8 7.8 13.1 11.3 9.9 11.0 9.9 8.5 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.4
14.3
16.0 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.8
26.4
23.8
27.3
26.4
23.8
22.1
28.2
29.2
29.2
29.2
29.2
29.2
29.2
29.2 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 12.1 10.6 12.4 14.6 13.5 16.1 15.4 14.6 13.5 16.1 15.4 14.6 13.5 16.1 | 18.9
18.3
20.4
18.9
20.4
21.2
18.7
16.8
14.0
17.0
19.4
20.5
21.4
18.5
18.0
16.6
16.9
21.3
21.7
22.4
23.6
21.6
20.6 | 30.6
29.7
28.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
25.5
26.4
25.1
24.6
25.1
22.1
19.7
23.3
22.1
21.3
22.5
23.8
23.8
24.2 | 15.8
16.9
15.8
13.9
16.9
15.8
13.9
15.8
17.7
16.1
15.8
12.4
12.4
13.5
13.1
11.7
14.3
11.7
12.8
12.1
11.3
13.5
12.1
11.3
12.8
12.4
12.1
11.3
13.5
12.8 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3
17.9
17.2
14.0
16.1
16.9
15.8
17.0
17.2
15.9
15.9 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
27.3
27.3
27.8
25.5
19.3
22.5
19.3
22.5
19.3
22.1
22.5
19.3
22.1
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
22.5
22.5
22.5
22.5
22.5
22.5
22.5
22 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
11.3
11.3
11.3
15.8
15.0
13.9
7.4
8.8
7.1
7.8
11.3
-7.2
8.8
7.1 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.6
12.5
15.1
13.0
15.7
16.5
8.8
.2
6.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
26.0
23.8
22.5
22.5
26.0
23.8
22.5
24.6
22.1
22.5
23.8
22.5
24.6
22.1
22.5
23.8
22.5
23.8
22.5
24.6
25.5
26.0
27.6
27.6
27.6
27.6
27.6
27.6
27.6
27.6 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 10.6 7.4 11.0 12.4 12.1 9.2 3.9 9.5 8.8 8.8 7.8 13.1 11.3 9.9 11.0 9.9 8.5 10.2 13.9 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.3
16.0
16.2
18.4
14.7
15.7 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.3
26.4
23.8
22.1
28.7
28.2
29.7
28.2
29.7
28.2 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 12.1 12.1 10.6 12.4 14.6 13.5 16.1 15.4 15.0 18.1 16.9 14.3 15.4 16.9 15.8 | 18.9 18.3 20.4 18.9 20.4 21.2 18.7 16.8 14.0 17.0 19.4 20.5 21.4 22.5 21.7 22.4 22.4 23.6 20.6 20.5 21.5 23.0 22.5 | 30.6
29.7
28.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
26.4
25.1
24.6
25.1
22.1
19.7
23.3
22.5
23.8
23.3
24.2 | 15.8
16.9
15.8
13.9
16.9
15.8
13.9
16.9
15.8
17.7
16.1
15.8
12.4
12.4
12.4
13.5
13.1
11.7
14.3
11.7
12.8
12.4
12.1
11.7
12.8
12.4
12.1
11.7
12.8
12.4
12.1
11.7
12.8
12.4
13.5
13.1 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3
17.9
17.2
14.0
16.1
16.9
16.1
15.8
17.7
17.2
15.9
15.9
15.9
15.9
16.7 | 18.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5
19.3
22.5
19.3
22.5
19.3
22.5
19.3
20.5
20.5
20.5
20.5 | 9.9 8.5 11.3 13.1 13.9 9.2 8.1 7.4 9.9 12.4 11.7 11.3 12.4 15.8 15.0 13.9 7.4 8.8 7.1 7.8 11.3 -7.2 8.8 11.3 -7.2 8.8 10.2 8.1 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.6
12.5
15.1
13.0
15.7
16.5
8.8
.2
6.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
24.6
22.1
22.5
23.8
25.5
23.8
25.5
23.8
22.1
18.9
21.7
22.9
25.5
24.6
20.1
22.9
25.5
23.8
23.8 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 10.6 7.4 11.0 12.4 12.4 12.1 9.2 3.9 9.5 8.8 8.8 7.8 13.1 11.3 9.9 11.0 9.9 8.5 10.2 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
18.7
15.3
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.4
14.3
16.0
16.2
18.4
16.1
14.7
15.7 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
22.5
19.7
23.3
26.4
25.5
27.8
27.3
26.4
23.8
22.1
28.2
29.7
28.2
29.7
28.2 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 16.1 14.6 12.1 10.6 12.1 12.1 10.6 13.5 16.1 15.4 14.6 13.5 16.1 15.4 14.3 | 18.9 18.3 20.4 18.9 20.4 21.2 18.7 16.8 14.0 17.0 19.4 20.5 21.4 18.5 18.0 16.6 16.9 21.3 21.5 21.7 22.4 23.6 20.6 20.5 21.5 23.0 | 30.6
29.7
28.7
27.8
28.2
28.7
29.7
28.2
27.3
25.5
26.4
25.1
24.6
25.1
19.7
23.3
22.1
21.3
22.5
23.8
23.3
24.2 | 15.8
16.9
15.8
13.9
13.9
16.9
15.7
16.1
15.8
12.4
12.4
12.4
12.5
13.1
11.7
14.3
11.0
11.7
12.8
12.4
12.1
11.3
13.5
12.4 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.8
18.1
18.3
17.9
17.2
14.0
16.1
16.9
16.1
17.7
17.2 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5
19.3
22.5
19.3
22.1
22.1
19.3
22.1
19.3
22.1
19.3
20.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
19.0 | 9.9 8.5 11.3 13.1 13.9 9.2 8.1 7.4 9.9 12.4 11.7 11.3 11.3 11.3 12.4 15.8 15.0 13.9 7.4 8.8 7.1 7.8 11.37 -2.8 5.3 8.8 10.2 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.6
12.5
15.1
13.0
15.7
16.5
8.8
.2
6.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 26.0
25.1
24.6
26.4
23.8
26.9
27.8
22.1
22.5
23.8
25.5
23.8
22.5
26.0
23.8
22.1
18.9
21.7
22.9
25.5
24.6
20.1
22.5 | JUNE 9.5 13.5 13.5 12.1 16.1 15.0 14.3 10.6 7.4 11.0 12.4 12.4 12.7 12.1 9.2 3.9 9.5 8.8 8.8 7.8 13.1 11.3 9.9 11.0 9.9 8.5 10.2 13.9 12.4 | 17.7
19.4
19.3
19.3
18.4
20.8
20.8
20.8
15.3
15.3
16.9
18.4
17.5
14.7
19.3
16.6
13.1
14.4
14.3
16.0
16.2
18.4
11.7
15.7 | 25.5
23.8
26.4
26.0
28.2
29.2
25.1
19.7
23.3
26.4
25.5
27.3
26.4
23.8
22.1
28.2
29.7
28.2
29.7
28.2
29.7
28.2 | JULY 12.8 13.5 15.0 11.7 12.8 14.6 15.4 11.3 9.5 10.6 14.3 16.1 12.1 10.6 12.4 14.6 13.5 16.1 15.4 15.0 18.1 16.1 15.4 15.0 18.1 16.9 14.3 15.4 16.9 14.3 | 18.9 18.3 20.4 21.2 18.7 16.8 14.0 17.0 19.4 20.5 21.4 18.5 18.0 16.6 16.9 21.3 21.7 22.4 23.6 21.6 20.6 20.5 21.5 23.0 22.5 21.0 | 30.6
29.7
28.7
27.8
28.2
28.7
29.7
29.7
28.2
27.3
25.5
25.5
26.4
25.1
24.6
25.1
22.1
19.7
23.3
22.5
23.8
23.3
24.2 |
15.8
16.9
15.8
13.9
16.9
15.8
13.9
16.1
15.8
17.7
16.1
15.8
12.4
12.4
13.5
13.1
11.7
14.3
11.7
12.8
12.4
12.1
11.3
11.7
12.8
12.4
12.1
11.3
13.5
13.1
11.7
12.8
12.4
12.1
11.3
13.5
13.1
13.5
13.5
13.5
13.5
13 | 22.9
22.7
21.6
20.1
20.2
20.8
21.9
21.8
20.7
19.1
18.7
18.3
17.9
17.2
14.0
16.1
16.9
16.1
15.8
17.0
17.7
17.2 | 18.1
22.1
24.6
26.0
26.4
18.1
21.7
20.5
22.1
25.1
22.1
24.2
26.4
27.3
27.3
27.8
25.5
19.3
22.5
19.3
22.1
22.5
19.3
22.1
22.5
19.3
20.5
20.5
20.5
20.5
20.5
20.5
20.5
20.5 | 9.9
8.5
11.3
13.1
13.9
9.2
8.1
7.4
9.9
12.4
11.7
11.3
12.4
15.8
15.0
13.9
7.4
8.8
7.1
7.8
11.3
7
-2.8
-2.8
-2.8 | 13.6
15.3
16.7
18.9
18.2
14.2
13.9
13.3
15.1
17.1
16.2
16.7
17.9
19.1
20.2
20.4
19.6
12.5
13.0
15.1
13.0
15.1
13.0 | ### 380436107411500 PORTLAND METEOROLOGICAL STATION NEAR OURAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------|----------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------------|----------------------------| | 1
2
3
4
5 | .0
.0
.0
.0 | .0
.0
.0 | .2
.5
.9
.1 | .1
.2
.2
.0 | .0
.0
.0 | .0
.3
.0
.0 | .2
.1
.0
.0 | .0.0.0.0 | .0
.0
.0 | .0
.3
.0
.0 | .0
.0
.0
.1 | .0.0.0 | | 6
7
8
9
10 | .0
.1
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.7
.0
.0 | .0.0.0.0 | .0
.1
1.2
.0 | .0
.0
.1
.0 | .0
.0
.2
.7 | .0
.0
.0 | .0
.1
.1
.0 | | 11
12
13
14
15 | .0
.0
.0
.0 | .0 | .1
.0
.1
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0 | .0
.0
.0
.1 | .0
.2
.0
.0 | .0.0.0 | | 16
17
18
19
20 | .0
.0
.0
.0 | .0 | .0
.0
.0 | .0
.0
.0 | .0
.2
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0
.0
.4
.0 | .0
.0
.1
.1 | .0
.2
.0
.0 | .1
.0
.3
.0 | .0
.0
.5
.0 | | 21
22
23
24
25 | .0
.0
.0
.0 | .3
.2
.0
.0 | .2
.0
.0
.0 | .3
.0
.0
.0 | .0
.2
.0
.0 | .2
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0 | .0
.0
.0 | .1
.0
.0
.2 | .0
.0
.2
.2 | | 26
27
28
29
30
31 | .0
.0
.0
.1
.0 | .0
.0
.0
.0 | .0 .0 .0 .0 .0 | .5
.4
.0
.0
.0 | .0
.0
.0
.1 | .0
.0
.2
.0
.4 | .0
.0
.0
.0 | .0.0.0.0.0 | .1
.3
.1
.0 | .0
.0
.0
.0 | .1
.2
.2
.0
.1 | .0
.0
.0
.3
.0 | | TOTAL | 0.2 | 0.5 | 2.3 | 2.1 | 0.8 | 3.4 | 0.3 | 1.7 | 0.8 | 1.8 | 2.1 | 1.4 | CAL YR 1999 TOTAL 23.7 WTR YR 2000 TOTAL 17.4 ### 380844107512200 PLEASANT VALLEY METEOROLOGICAL STATION NEAR RIDGWAY, CO LOCATION.--Lat $38^{\circ}08^{\circ}44^{\circ}$, long $107^{\circ}51^{\circ}22^{\circ}$, in $SE^{1}/_{4}SE^{1}/_{4}$ sec.16, T.45 N, R.9 W., Ouray County, Hydrologic Unit 14020006, 5.3 mi west of Ridgway. PERIOD OF RECORD. -- October 1994 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 7,530 ft above sea level, from topographic map. REMARKS.--Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD .-- AIR TEMPERATURE: Maximum recorded, 30.6°C, Aug. 13, 1996, and June 29, 30, and July 20, 1998; minimum recorded, -25.7°C, Dec. 18, 1996. PRECIPITATION: Maximum daily, 3.1 inches, July 31, 1999. EXTREMES FOR CURRENT YEAR.--AIR TEMPERATURE: Maximum, 30.1°C, Aug. 9; minimum, -19.7°C, Dec. 14. PRECIPITATION: Maximum daily, 1.3 inches, May 8. | DAY | MAX | MIN | MEAN | |----------------------------------|---|--|---------------------------------------|--------------------------------------|---|------------------------------------|--|---|--|------------------------------------|--|---| | | | OCTOBER | | 1 | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 20.9
19.7
18.1
20.1
22.1 | 6.4
2.1
2.1
3
2.1 | 13.9
11.9
11.0
9.7
12.3 | 14.6
14.6
15.0
17.3
17.7 | -2.4
-3.8
-3.1
-1.0
7 | 5.4
4.7
4.9
6.9
7.7 | 13.1
2.5
-2.8
-3.1
3.5 | 3
-3.1
-5.7
-14.9
-15.7 | 6.5
5
-4.3
-8.4
-7.8 | 1.8
-1.7
-6.0
3
-2.1 | -4.2
-9.0
-18.8
-18.8
-14.1 | -1.7
-5.1
-12.2
-9.2
-7.0 | | 6
7
8
9
10 | 18.5
8.8
16.1
20.5
21.7 | 8.1
1.4
3
1.1
3.2 | 13.2
5.6
7.0
10.2
11.9 | 18.1
19.7
16.9
13.9
17.7 | .0
.7
3.9
-2.8
-2.8 | 7.6
9.1
9.3
6.0
5.8 | 3.5
3.5
-2.8
-1.0
.4 | -11.7
-7.9
-10.5
-15.3
-6.4 | -4.4
-1.6
-5.3
-7.1
-4.3 | -3.1
1.4
3
-1.7
4.6 | -17.4
-15.7
-14.5
-7.5
-2.1 | -11.5
-7.7
-6.4
-4.0
1.9 | | 11
12
13
14
15 | 22.1
21.7
22.5
20.9
18.5 | 3.2
4.6
3.2
3.2
5.3 | 12.5
12.7
11.6
11.7
12.3 | 18.1
18.9
16.9
19.3
18.9 | -1.7
-1.4
-2.4
-2.8
.4 | 6.7
6.5
5.3
6.3
7.4 | -1.7
2.5
1.8
-7.5
1.1 | -14.9
-15.3
-11.7
-19.7
-19.3 | -7.7
-7.5
-4.5
-12.6
-10.4 | 10.2
6.7
8.8
11.0
12.1 | 1.4
-3.8
-4.2
-4.6
-1.7 | 6.3
2.3
1.0
2.2
4.5 | | 16
17
18
19
20 | 6.0
7.4
11.7
12.4
14.6 | -4.2
-7.5
-5.7
-4.2
-3.8 | 2.3
5
2.5
3.2
4.6 | 19.3
18.5
8.8
11.3
11.0 | -1.7
1.4
-7.1
-9.8
-3.8 | 8.3
9.9
.4
.2
3.4 | 1.1
3.2
4.9
-2.1
-4.2 | -11.3
-9.0
-7.5
-12.1
-14.5 | -5.3
-2.5
-1.4
-7.0
-8.0 | 11.3
8.1
8.8
9.5
9.2 | 2.8
2.5
1.8
-1.7
-2.1 | 7.2
4.9
5.0
5.2
2.6 | | 21
22
23
24
25 | 16.9
18.5
18.9
17.7
17.7 | -3.1
-1.7
-1.0
7
-1.4 | 6.2
7.2
7.5
7.3
7.2 | 5.7
-1.7
-2.1
7
3.9 | -3.8
-7.1
-12.5
-14.5
-12.5 | .2
-4.7
-7.2
-8.9
-4.6 | -3.5
-1.4
2.5
3.9
5.7 | -15.3
-16.2
-14.5
-12.1
-10.1 | -8.6
-9.6
-7.3
-5.5 | 8.1
2.1
3.9
3.2
3.2 | -3.1
-5.3
-9.8
-4.6
-1.0 | 2.1
-1.3
-3.9
.3 | | 26
27
28
29
30
31 | 20.1
17.3
17.7
11.7
9.9
17.7 | 7
1.8
-1.4
-5.7
-6.8
-3.1 | 8.4
8.2
9.5
2.0
.7
5.8 | 12.8
11.7
13.1
14.6
18.1 | -4.9
-1.0
-2.8
-2.1
7 | 3.1
5.2
4.0
4.7
6.0 | 6.4
6.7
7.8
7.8
7.1
5.7 | -8.3
-8.6
-9.0
-5.3
-8.3 | -2.5
-3.9
-2.2
.1
-3.1
-2.1 | 3.5
-1.0
-3.1
-2.8
1.8 | -1.4
-7.9
-12.9
-16.6
-14.9
-10.9 | .7
-3.6
-7.5
-10.0
-7.6
-4.3 | | MONTH | 22.5 | -7.5 | 8.1 | 19.7 | -14.5 | 4.0 | 13.1 | -19.7 | -4.9 | 12.1 | -18.8 | -1.8 | ### 380844107512200 PLEASANT VALLEY METEOROLOGICAL STATION NEAR RIDGWAY, CO--Continued | DAY | MAX | MIN | MEAN | |---|---|---|--|--|--|--|--|---|--
---|---|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0
8.5
11.7
8.5
8.1 | -9.0
-9.8
-4.6
-3.5 | -5.0
-1.5
3.2
2.5
1.6 | 5.7
1.8
8.1
13.1
6.0 | -3.1
-6.8
-9.8
-3.8
-4.6 | .5
-1.2
8
4.1
1.0 | 3.2
6.0
8.1
16.5
16.1 | -6.0
-6.0
-3.8
-2.4
3.5 | -1.2
.2
1.3
7.4
10.1 | 17.3
21.7
23.3
23.8
22.9 | -1.4
1.8
4.9
7.8
7.4 | 8.3
12.9
15.4
16.3
16.0 | | 7
8
9 | 6.0 | -5.3
-6.4
-4.9
-1.0
7 | | | | 1.1
1
-1.6
-1.4
-4.3 | 15.8
13.5
15.8
16.5
15.0 | 6.4
.7
-3.1
3.2
-1.0 | 11.5
8.7
7.0
10.5
7.5 | 21.3
20.1
9.9
17.3
21.3 | 8.1
6.7
3.2
3
12.1 | 15.8
14.9
5.9
9.5
17.2 | | 12
13
14 | 4.9
3.9
1.4
8.1
6.0 | -3.8
-3.8
-2.4
3
-2.8 | 1.1
.3
9
3.8
3.5 | 7.1
6.4
8.8
9.5
9.9 | -10.9
-3.1
-5.7
-4.2
-3.8 | -1.0
1.4
1.4
3.7
2.2 | 11.3
15.0
17.7
14.6
6.4 | .0
.4
3.9
2.5
-1.4 | 5.9
8.4
11.0
10.3
1.9 | 16.9
8.5
15.8
18.9
20.9 | 1.4
-3.5
-3.1
1.8
5.3 | 12.2
2.5
7.0
10.2
14.9 | | 16
17
18
19
20 | 9.9
2.5
1.8
5.7
12.1 | -3.5
-6.8
-9.8 | 2.7
6
-1.6
-2.8
2.9 | 4.9
7.4
1.4
11.0
7.4 | -5.3
-4.9
-8.6
-8.6
-4.9 | | 14 6 | | | | | | | 22
23
24 | | 2.1
-4.6
-7.9
-5.7
-7.5 | 6.6
2
.5
.4
-6.3 | 3.5
7.4
8.1
10.2
12.8 | -6.4
-2.4
-2.1
3
-1.7 | -1.8
1.4
3.2
4.9
6.1 | 18.1
9.5
14.3
13.9
18.5 | 2.1
4.6
3.2
.7
-2.4 | 9.2
7.1
8.2
7.3
9.0 | 20.9
23.8
26.0
22.5
20.9 | 2.5
4.9
10.2
10.2 | 12.9
15.7
18.4
15.9
13.3 | | 26
27
28
29
30
31 | 13.1
9.2 | -14.5
-5.3
-3.5
-6.4
 | -4.0
4.0
2.9
2 | 12.8
13.1
7.1
8.1
8.5 | .4
-1.7
.7
-3.5
-2.4
-3.5 | 6.6
6.4
4.4
2.9
1.2
-1.8 | 20.1
22.5
20.5
16.1
12.8 | 3.9
3.5
4.9
5.3
3.2 | 12.9
14.2
14.0
11.5
7.2 | 16.9
22.5
26.4
26.9
26.9
25.1 | 6.4
4.6
8.1
12.1
12.1 | 12.0
13.6
18.3
21.0
21.3
19.7 | | MONTH | 13.1 | -14.5 | | 13.1 | | | 22.5 | -6.0 | | 26.9 | | 13.1 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBI | ER | | | | JUNE | 16.7
17.6
18.0
17.6
16.2 | 26.4
26.4
25.5
24.2
27.3 | JULY 12.4 10.2 13.9 9.2 9.5 | 18.9
19.0
20.3
18.6
19.2 | 29.7
29.7
28.7
27.3
26.4 | AUGUST 13.9 14.3 15.4 15.4 11.0 | 22.2
22.2
20.9
21.7
19.9 | 18.5
20.9
22.1
25.5
24.2 | 7.8
9.9
8.8
9.5
11.3 | 13.8
15.4
15.3
17.7
16.2 | | 1
2
3
4
5
6
7
8
9 | 26.0
25.1
25.1
26.0
25.1
26.9
27.8
23.3
20.5
22.1 | JUNE 4.9 7.1 9.5 7.8 9.5 8.8 9.5 10.6 8.5 4.9 | 16.7
17.6
18.0
17.6
16.2 | 26.4
26.4
25.5
24.2
27.3 | JULY 12.4 10.2 13.9 9.2 9.5 | 18.9
19.0
20.3
18.6
19.2 | | AUGUST 13.9 14.3 15.4 15.4 11.0 | 22.2
22.2
20.9
21.7
19.9 | | 7.8
9.9
8.8
9.5
11.3 | 13.8
15.4
15.3
17.7
16.2 | | 1
2
3
4
5
6
7
8
9
10 | 26.0
25.1
25.1
26.0
25.1
26.9
27.8
23.3
20.5
22.1 | JUNE 4.9 7.1 9.5 7.8 9.5 10.6 8.5 4.9 | 16.7
17.6
18.0
17.6
16.2
18.6
19.3
18.1
15.3 | 26.4
26.4
25.5
24.2
27.3 | JULY 12.4 10.2 13.9 9.2 9.5 10.6 12.1 12.1 8.8 8.8 | 18.9
19.0
20.3
18.6
19.2
20.1
18.7
17.5
15.4 | 29.7
29.7
28.7
27.3
26.4 | AUGUST 13.9 14.3 15.4 11.0 11.0 10.6 12.8 12.8 13.9 | 22.2
22.2
20.9
21.7
19.9
19.4
19.9
21.5
21.0
20.4 | 18.5
20.9
22.1
25.5
24.2 | 7.8
9.9
8.8
9.5
11.3
9.9
6.7
6.7
6.0
7.4 | 13.8
15.4
15.3
17.7
16.2
14.3
11.2
13.3
15.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 26.0
25.1
25.1
26.0
25.1
26.9
27.8
23.3
20.5
22.1
24.6
24.2
22.9 | JUNE 4.9 7.1 9.5 7.8 9.5 8.8 9.5 10.6 8.5 4.9 7.1 6.4 10.2 | 16.7
17.6
18.0
17.6
16.2
18.6
19.3
18.1
15.3
14.5 | 26.4
26.4
25.5
24.2
27.3
27.3
26.4
24.6
20.9
25.5
27.3
26.9
25.7 | JULY 12.4 10.2 13.9 9.2 9.5 10.6 12.1 12.1 8.8 8.8 11.0 11.7 11.7 13.5 | 18.9
19.0
20.3
18.6
19.2
20.1
18.7
17.5
15.4
17.8
19.5
19.5
19.2
20.1
19.3 | 29.7
29.7
28.7
27.3
26.4
27.3
27.8
29.7
30.1
27.8
26.0
26.0
25.5 | AUGUST 13.9 14.3 15.4 11.0 11.0 10.6 12.8 12.8 13.9 12.8 12.1 10.2 12.8 | 22.2
22.2
20.9
21.7
19.9
19.4
19.9
21.5
21.0
20.4
18.3
18.6
17.8 | 18.5
20.9
22.1
25.5
24.2
20.9
20.9
20.9
22.5
22.1
23.8
25.1
27.8 | 7.8
9.9
8.8
9.5
11.3
9.9
6.7
6.0
7.4
8.1
5.7
7.1
8.1 | 13.8
15.4
15.3
17.7
16.2
14.3
11.2
13.3
15.2
15.1
14.6
15.7
77.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 26.0
25.1
25.1
26.0
25.1
26.9
27.8
23.3
20.5
22.1
24.6
24.2
22.9 | JUNE 4.9 7.1 9.5 7.8 9.5 8.8 9.5 10.6 8.5 4.9 7.1 6.4 10.2 | 16.7
17.6
18.0
17.6
16.2
18.6
19.3
18.1
15.3
14.5
16.4
17.2
17.9 | 26.4
26.4
25.5
24.2
27.3
27.3
26.4
24.6
20.9
25.5
27.3
26.9
27.3
27.8
25.5
22.5
27.3 | JULY 12.4 10.2 13.9 9.2 9.5 10.6 12.1 12.1 8.8 8.8 11.0 11.7 11.7 13.5 11.0 10.2 11.7 11.3 8.1 | 18.9
19.0
20.3
18.6
19.2
20.1
18.7
17.5
15.4
17.8
19.5
19.3
18.5
16.3
16.3
19.9 | 29.7
29.7
28.7
27.3
26.4
27.3
27.8
29.7
30.1
27.8
26.0
26.0
25.5
26.4
25.5
23.3
27.3 | AUGUST 13.9 14.3 15.4 11.0 11.0 10.6 12.8 12.8 13.9 12.8 10.6 12.1 11.3 11.0 | 22.2
22.2
20.9
21.7
19.9
19.4
19.9
21.5
21.0
20.4
18.3
18.6
17.9
17.5 | 18.5
20.9
22.1
25.5
24.2
20.9
20.9
22.5
22.1
23.8
25.1
27.8
26.4
26.9
24.2
18.9
21.3 | 7.8
9.9
8.8
9.5
11.3
9.9
6.7
6.0
7.4
8.1
5.7
7.1
8.1
11.0 | 13.8
15.4
15.3
17.7
16.2
14.3
11.2
13.3
15.2
15.1
14.6
15.7
17.7
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 26.0
25.1
25.1
26.0
25.1
26.9
27.8
23.3
20.5
22.1
24.6
24.2
22.9
 | JUNE 4.9 7.1 9.5 7.8 9.5 8.8 9.5 10.6 8.5 4.9 7.1 6.4 10.2 8.1 | 16.7
17.6
18.0
17.6
16.2
18.6
19.3
14.5
16.4
17.2
17.2
17.2 | 26.4
26.4
25.5
24.2
27.3
26.4
24.6
20.9
25.5
27.3
26.9
28.2
27.3
27.8
25.5
22.5
27.3
27.8
25.5
27.3
27.8 | JULY 12.4 10.2 13.9 9.2 9.5 10.6 12.1 12.1 8.8 8.8 11.0 11.7 11.7 13.5 11.0 10.2 11.7 11.3 8.1 9.9 10.6 10.2 11.7 11.3 8.1 9.9 | 18.9
19.0
20.3
18.6
19.2
20.1
18.7
17.5
15.4
17.8
19.5
19.3
18.5
16.3
16.3
19.9
19.6
19.8 | 29.7
29.7
28.7
27.3
26.4
27.3
27.8
29.7
30.1
27.8
26.0
26.0
25.5
26.4
25.5
23.3
17.3
23.8
22.5
22.5
22.5
23.3
24.2 | AUGUST 13.9 14.3 15.4 11.0 11.0 10.6 12.8 12.8 13.9 12.8 12.1 10.2 12.8 10.6 11.1 11.3 11.0 11.0 11.0 11.0 11.0 11. | 22.2
22.2
20.9
21.7
19.9
19.4
19.9
21.5
21.0
20.4
18.3
18.6
17.9
17.5
18.2
17.0
14.0
16.3
16.5 | 18.5
20.9
22.1
25.5
24.2
20.9
20.9
22.5
22.1
23.8
25.1
27.8
26.4
26.9
24.2
18.9
21.3
19.3 | 7.8
9.9
8.8
9.5
11.3
9.9
6.7
6.0
7.4
8.1
5.7
7.1
8.1
11.0
9.5
9.9
7.1
6.0
6.4
7.1
13.5
4
-2.1 | 13.8
15.4
15.3
17.7
16.2
14.3
11.2
13.3
15.2
15.1
14.6
15.7
17.7
18.0
18.1
17.6
12.4
13.3
12.7 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 26.0
25.1
26.0
25.1
26.9
27.8
23.3
20.5
22.1
24.6
24.2
22.9

- | JUNE 4.9 7.1 9.5 7.8 9.5 8.8 9.5 10.6 8.5 4.9 7.1 6.4 10.2 8.1 8.5 8.8 6.4 6.7 11.0 9.5 | 16.7
17.6
18.0
17.6
19.3
18.1
15.3
14.5
16.4
17.2
17.9

14.6
15.7
13.9
13.1
15.8
17.0 |
26.4
26.4
25.5
24.2
27.3
26.4
24.6
20.9
25.5
27.3
26.9
28.2
27.3
27.8
25.5
22.5
27.3
27.8
25.5
27.3
27.8
27.8
27.8
28.7
27.8
28.7
27.8
28.7
29.2
29.7
29.2
29.7
29.2
29.7
29.2
29.7
29.2
29.7
29.2
29.3
20.4
20.8
20.8
20.8
20.8
20.8
20.8
20.8
20.8 | JULY 12.4 10.2 13.9 9.2 9.5 10.6 12.1 12.1 8.8 8.8 11.0 11.7 11.7 13.5 11.0 10.2 11.7 11.3 8.1 9.9 10.6 10.2 11.7 11.3 16.5 11.7 12.4 12.1 13.5 12.1 | 18.9
19.0
20.3
18.6
19.2
20.1
18.7
17.5
15.4
17.8
19.5
19.2
20.1
19.3
16.3
19.9
19.8
20.1
20.3
20.1
20.2
20.1
20.3
20.1
20.3 | 29.7 29.7 29.7 28.7 27.3 26.4 27.3 27.8 29.7 30.1 27.8 26.0 26.0 26.0 25.5 26.4 25.5 23.3 17.3 23.8 22.5 23.3 24.2 23.8 20.9 23.8 20.9 23.8 | AUGUST 13.9 14.3 15.4 11.0 10.6 12.8 12.8 13.9 12.8 10.6 11.1 10.2 11.0 11.0 11.0 11.0 11.0 11.0 | 22.2
22.2
20.9
21.7
19.9
19.4
19.9
21.5
21.0
20.4
18.3
18.6
17.9
17.5
18.2
17.0
14.0
16.3
16.5
15.4
16.3
15.8
16.8 | 18.5
20.9
22.1
25.5
24.2
20.9
20.9
21.9
22.5
22.1
23.8
25.1
27.8
26.4
26.9
24.2
18.9
21.3
19.3
20.9
21.7
15.4
6.0
16.1 | 7.8 9.9 8.8 9.5 11.3 9.9 6.7 6.0 7.4 8.1 5.7 7.1 8.1 11.0 9.5 9.9 7.1 6.0 6.4 7.1 13.5 4.6 6.4 7.1 7.1 1.7 | 13.8
15.4
15.3
17.7
16.2
14.3
11.2
13.3
15.2
15.1
14.6
15.7
17.7
18.0
18.1
17.6
12.4
13.7
12.7
14.9
17.3
10.2
1.3
10.2
1.3
10.2
1.3
10.2
10.3
10.2
10.3
10.2
10.3
10.3
10.3
10.3
10.3
10.3
10.3
10.3 | ### 380844107512200 PLEASANT VALLEY METEOROLOGICAL STATION NEAR RIDGWAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | | | | | | DAILLI | . SUM VALO | EO | | | | | | |----------------------------------|----------------------|----------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------|-----------------------|----------------------------|----------------------|----------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.1
.5
.0 | .0
.0
.0
.0 | .0
.0
.0 | .1
.2
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0.0 | .0.0.0 | | 6
7
8
9
10 | .0
.1
.1
.0 | .0
.0
.0
.0 | .0
.0
.1
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.3
.0
.0 | .0.0.0.0 | .0
.1
1.3
.0 | .0.0.0.0 | .0
.0
.4
.1 | .0.0.0.0 | .2
.0
.2
.0 | | 11
12
13
14
15 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.1 | .0.0.0.0 | .0
.0
.0 | .0
.0
.0
.0 | .6
.1
.0
.0 | .0.0.0 | | 16
17
18
19
20 | .0
.0
.0
.0 | .0.0.0.0 | .0 .0 .0 .0 | .0
.0
.2
.0 | .0 | .0
.0
.0
.0 | .0.0.0.0 | .0
.0
.1
.0 |

 | .2
.1
.0
.0 | .2
.0
.5
.0 | .0
.0
.4
.0 | | 21
22
23
24
25 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0 | .2
.0
.0
.0 | .0 | .2
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 |

.1
.1 | .0 .0 .0 .0 | .5
.1
.0
.0 | .0
.0
.2
.0 | | 26
27
28
29
30
31 | .0.0.0.0 | .0
.0
.0
.0 | .0 .0 .0 .0 .0 | .2
.0
.1
.0
.0 | .0
.0
.0
.0 | .0
.0
.1
.0
.1 | .0 .0 .0 .0 .0 .0 | .0.0.0.0.0 | .0
.1
.1
.0
.0 | .0.0.0.0.0 | .1
.3
.0
.3 | .0
.0
.0
.3
.0 | | TOTAL | 0.2 | 0.1 | 0.9 | 1.0 | 0.2 | 1.6 | 0.2 | 1.5 | 0.4 | 0.8 | 2.9 | 1.3 | CAL YR 1999 TOTAL 17.1 WTR YR 2000 TOTAL 11.1 ### 380916107452200 RIDGWAY METEOROLOGICAL STATION AT RIDGWAY, CO LOCATION.--Lat $38^{\circ}09^{\circ}16^{\circ}$, long $107^{\circ}45^{\circ}22^{\circ}$, in $SW^{1}/_{4}NW^{1}/_{4}$ sec.16, T.45 N, R.8 W., Ouray County, Hydrologic Unit 14020006, 0.2 mi north of post office in Ridgway, and 0.3 mi north of State Highway 62. PERIOD OF RECORD. -- December 1992 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 7,000 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and precipitation data for water year 1993 are available in district office. Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD.--AIR TEMPERATURE: Maximum, 32.6°C, Aug. 2, 2000; minimum, -32.4°C, Dec. 21, 1998. PRECIPITATION: Maximum daily, 2.0 inches, Oct. 3, 1996. EXTREMES FOR CURRENT YEAR.-- AIR TEMPERATURE: Maximum, 32.6° C, Aug. 2; minimum, -28.0° C, Dec. 15, Jan. 4. PRECIPITATION: Maximum daily, 1.1 inches, May 8. | TEMPERATURE, | AIR, | DEGREES | CELSIUS, | WATER | YEAR | OCTOBER | 1999 | TO | SEPTEMBER | 2000 | | |--------------|------|---------|----------|-------|------|---------|------|----|-----------|------|--| |--------------|------|---------|----------|-------|------|---------|------|----|-----------|------|--| | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|---|--------------------------------------|---|---------------------------------------|-----------------------------------|--|--|-------------------------------------|---|--| | | | OCTOBER | 2 | 1 | NOVEMBER | | I | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 22.5
21.3
20.5
22.1
22.9 | -4.2
-3.5
-2.8
-6.8
-6.0 | 8.8
9.0
8.5
6.6
9.1 | 15.8
16.5
16.5
19.3
19.7 | -9.0
-10.5
-11.3
-10.1
-9.8 | 1.6
.7
.7
2.1
3.0 | 14.3
4.6
-1.7
-2.4
3 | -6.8
-2.8
-5.3
-21.6
-23.6 | 3.1
5
-3.6
-9.2
-14.2 | .7
-1.0
-6.4
-1.7
-1.4 | -6.8
-11.7
-27.4
-28.0
-17.0 | -3.0
-6.1
-14.1
-14.7
-7.3 | | 6
7
8
9
10 | 19.7
11.0
17.7
21.7
23.8 | 5.7
.7
-3.5
-4.9 | 11.8
5.2
5.5
7.6
8.5 | 19.3
19.7
19.3
14.6
17.7 | -9.8
-9.0
-3.7
-7.1
-10.5 | 2.7
3.5
7.5
2.5
1.4 | 2.8
4.2
-2.4
-1.7
7 | -17.4
-15.3
-11.3
-21.1
-10.1 | -10.6
-4.5
-5.2
-9.8
-5.5 | -3.1
7
1.1
.4
6.0 | -23.1
-24.7
-19.7
-7.5
3 | -14.8
-13.8
-7.8
-3.1
3.2 | | 11
12
13
14
15 | 23.8
23.3
23.3
22.5
19.7 | -4.2
-6.0
-4.6
-6.0
-4.2 | 8.7
8.8
8.0
7.1
9.0 | 18.9
19.7
18.1
20.1
18.9 | -10.5
-12.1
-12.5
-12.1
-10.5 | 1.5
.5
4
.5
1.1 | -3.1
.4
1.8
-5.7
-1.7 | -20.7
-22.1
-20.7
-26.9
-28.0 | -8.7
-12.8
-8.2
-15.8
-17.2 | 11.0
7.1
10.6
10.6
12.8 | -1.0
-6.0
-9.0
-12.1
-7.9 | 5.4
.6
-2.5
-3.5
1.4 | | 16
17
18
19
20 | 11.3
8.1
12.1
13.9
16.1 | -7.5
-10.9
-10.1
-9.4
-10.1 | 2.0
-1.8
.7
.9
1.6 | 20.1
18.9
10.6
11.3
11.7 | -10.9
-8.3
-11.3
-15.3
-10.1 | 2.0
6.3
.4
-3.9
5 | 2.1
3.2
5.3
3
-3.5 | -17.9
-14.1
-14.1
-14.9
-18.8 | -8.7
-5.1
-4.7
-8.5
-9.4 | 11.7
7.8
7.8
10.6
8.8 | .4
.7
.7
-5.7
-6.4 | 4.3
3.3
3.1
3.1
2 | | 21
22
23
24
25 | 18.5
19.7
19.7
18.5
18.9 | -10.1
-9.4
-8.6
-8.6
-9.4 | 2.5
3.2
3.8
3.4
3.4 | 5.7
-1.0
-1.4
1.1
4.9 | -9.8
-6.8
-14.5
-17.9
-16.6 | -2.1
-4.2
-7.7
-10.8
-7.2 | -4.2
-1.4
2.8
1.1
3.5 | -19.7
-21.1
-21.6
-21.1
-20.2 | -10.3
-12.6
-13.5
-12.9
-11.1 | 8.8
3.9
6.0
2.5
2.1 | -2.4
-8.6
-11.7
-6.0
-1.4 | 1.6
-1.6
-5.4
4 | | 26
27
28
29
30
31 | 20.1
18.1
19.3
12.4
10.2
18.5 | -8.6
-6.0
-8.3
-8.6
-12.1
-10.1 | 3.7
4.0
6.8
1.8
-2.0
1.8 | 13.9
12.1
14.3
15.4
16.5 | -9.8
-4.9
-8.6
-9.0
-7.9 | 8
2.7
.3
.2
.9 | 6.4
4.2
5.3
6.4
5.3 | -17.9
-18.3
-17.0
-14.9
-17.4
-18.3 | -9.1
-9.7
-9.1
-7.0
-9.3
-8.7 | 2.5
3
-2.1
7
1.4 | -1.0
-10.9
-11.7
-18.8
-19.7
-12.9 | .4
-2.8
-7.4
-11.0
-10.2
-4.5 | | MONTH | 23.8 | -12.1 | 5.1 | 20.1 | -17.9 | .2 | 14.3 | -28.0 | -8.8 | 12.8 | -28.0 | -3.5 | ### 380916107452200 RIDGWAY METEOROLOGICAL STATION AT RIDGWAY, CO--Continued | | | TEMPERATI | JRE, AIR, | DEGREES | CELSIUS, | WATER | YEAR OCTOBE | IR 1999 : | IO SEPTEME | 3ER 2000 | | | |---|--|--
--|--|---|--|--|---|--|---|--|--| | DAY | MAX | MIN
FEBRUARY | MEAN | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1
2
3
4
5 | 11.0
13.5 | -10.9
-12.9
-10.9 | | 6.7
3.9
11.0
15.0
6.4 | -6.4
-6.4
-9.8 | .6
3
9
2.5
4 | 8.1
8.5
11.0

18.1 | -4.2
-5.7
-3.8
-5.7
-2.8 | .3
.5
2.4

8.6 | 19.7
24.2
25.5
25.5
25.5 | -3.8
-3.5
-2.1
-1.4
-1.0 | 8.1
11.5
13.4
13.9 | | 6
7
8
9
10 | 9.5
10.2
12.4
7.8
7.4 | -9.0 | 9
-1.4
.0
1.7
2.5 | 3.9 | -8.3
7
-7.1
-3.1
-9.0 | .5
.4
4
2
-2.9 | 18.1
15.8
18.1
18.5
16.5 | .7
7
-7.5
-2.8
-3.5 | 11.0
9.2
5.7
9.2
7.2 | 23.8
22.9
9.5
18.9
24.6 | 3
2.5
4.6
3
5.7 | 13.4
13.6
6.7
10.0
17.4 | | 12 | 6.0
4.6
3.5
9.5
8.5 | -4.9
-4.9
-1.0
-1.0
-4.6 | 1.1
.5
.3
4.9
4.6 | 6.4
10.6
11.3
10.6 | -10.9
-4.6
-7.5
-9.0
-4.6 | 3
1.3
.7
2.1 | 13.9
16.9
19.3
17.7
8.1 | -2.8
-4.9
-3.1
.4
-1.4 | 6.1
7.2
8.8
9.5
3.1 | 20.1
9.5
16.9
20.5
22.9 | 2.8
-3.5
-4.6
-2.1 | 14.4
3.7
6.8
9.9
12.4 | | 17
18
19 | | -3.5
-6.8 | 2.1
.2
-1.0
-3.4
1.1 | | -5.3
-7.1
-8.6
-10.9
-4.2 | 8
3
-3.0
2.4
.4 | 16.5
21.3
17.7
6.4
18.5 | -3.8
-3.1
1.4
-3.5
-7.1 | 6.4
9.3
9.1
3.2
5.7 | 22.1
12.4
11.7
17.7
20.9 | 3.2
-2.1
-2.4 | 18.2
8.0
4.8
7.6
11.2 | | 22
23
24 | 12.8
4.2
9.5
7.4
-2.8 | -2.8
-4.2
-9.4
-4.2
-5.7 | 4.8
.9
.8
1.7
-4.5 | 4.2
9.2
10.6
13.5
14.6 | | -1.2
1.7
3.4
5.2
5.1 | | | 7.1
6.6
8.5
6.4
7.6 | | -1.4
.7
3.2
6.0
2.1 | 12.0
14.5
16.6
15.4
12.6 | | 26
27
28
29
30
31 | 5.3
15.4
9.2
7.8 | -8.3
-2.8 | -2.5
3.0
4.1
.1 | 15.4
8.8
9.9
10.6 | -3.8
-7.1
.0
-2.1
-1.4
-3.1 | 4.7
5.2
3.6
4.1
1.9 | 22 9 | -2.8
-2.4
-1.0
3.9
4.9 | 11.1
12.4
12.0
10.5
8.6 | 18.1
24.2
29.2
30.6
30.1
26.9 | 2.8
.0
1.1
4.2
3.9
3.2 | 11.4
13.0
17.3
19.1
18.2
16.9 | | MONTH | 15.4 | -12.9 | . 4 | 15.4 | -10.9 | 1.1 | 24.6 | -7.9 | 7.4 | 30.6 | -4.6 | 12.4 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
29.2
27.3
27.3
29.2
27.8 | | 15.9
16.3
16.2
16.5 | 27.8
29.2
29.2
26.0
31.6 | | MEAN
18.9
18.5
21.8
17.5
18.1 | 31.6
32.6
31.1
29.2
29.7 | 7.1
10.6
11.0
12.4
8.1 | 20.6
22.4
21.6
20.7
19.1 | 20.5
23.8
26.4
26.9
26.9 | SEPTEMBE
6.4
7.8 | | | 1
2
3
4
5
6
7
8
9 | 29.2
27.3
27.3
29.2
27.8
28.7
29.7
25.5
24.2 | JUNE .7 2.1 3.2 2.5 3.9 6.4 2.5 10.6 7.43 | 15.9
16.3
16.2
16.5 | 27.8
29.2
29.2
26.0
31.6
29.2
26.9
25.1
22.5
26.9 | JULY 11.0 6.0 11.0 4.9 2.5 3.5 7.8 10.2 9.9 8.5 | 18.9
18.5
21.8
17.5 | 31.6
32.6
31.1
29.2
29.7
29.7
30.6
32.1
32.1
28.2 | 7.1
10.6
11.0
12.4
8.1
6.4
4.6
5.7
7.8
11.3 | 20.6
22.4
21.6
20.7
19.1 | 20.5
23.8
26.4
26.9
26.9
22.1
23.8
19.7
22.9
24.6 | 6.4
7.8
3.5
2.5
10.6
10.2
4.6
4.6
1.4 | 14.0
16.3
13.7
16.7 | | 1
2
3
4
5
6
7
8
9
10 | 29.2
27.3
27.3
29.2
27.8
28.7
29.7
25.5
24.2
26.0 | JUNE . 7 2.1 3.2 2.5 3.9 6.4 2.5 10.6 7.4 3 1.4 1.1 | 15.9
16.3
16.2
16.5
16.5
19.3
18.4
19.0
16.8
14.2 | 27.8
29.2
29.2
26.0
31.6
29.2
26.9
25.1
22.5
26.9 | JULY 11.0 6.0 11.0 4.9 2.5 3.5 7.8 10.2 9.9 8.5 8.5 8.5 | 18.9
18.5
21.8
17.5
18.1
18.3
17.7
17.8
16.2
18.2 | 31.6
32.6
31.1
29.2
29.7
29.7
30.6
32.1
32.1
28.2 | 7.1
10.6
11.0
12.4
8.1
6.4
4.6
5.7
7.8
11.3
8.5
9.9 | 20.6
22.4
21.6
20.7
19.1
18.2
18.5
19.6
18.9
20.1 | 20.5
23.8
26.9
26.9
22.1
23.8
19.7
22.9
24.6 | SEPTEMBE 6.4 7.8 3.5 2.5 10.6 10.2 4.6 4.6 1.4 .0 .7 | 14.0
16.3
13.7
16.7
17.7
15.1
14.4
10.4
12.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 29.2
27.3
27.3
29.2
27.8
28.7
29.7
25.5
24.2
26.0
26.4
26.6
24.6
25.1 | JUNE .7 2.1 3.2 2.5 3.9 6.4 2.5 10.6 7.43 1.4 1.1 3.5 2.5 2.1 | 15.9
16.3
16.2
16.5
16.5
19.3
18.4
19.0
16.8
14.2
15.9
15.7
16.0
15.2 | 27.8
29.2
29.2
26.0
31.6
29.2
26.9
25.1
22.5
26.9
28.7
27.8
31.1
29.7 | JULY 11.0 6.0 11.0 4.9 2.5 3.5 7.8 10.2 9.9 8.5 8.5 8.5 8.1 9.2 | 18.9
18.5
21.8
17.5
18.1
18.3
17.7
17.8
16.2
18.2 | 31.6
32.6
31.1
29.2
29.7
29.7
30.6
32.1
32.1
28.2
26.9
26.9
28.2
27.8 | 7.1
10.6
11.0
12.4
8.1
6.4
4.6
5.7
7.8
11.3
8.5
9.9
8.5 | 20.6
22.4
21.6
20.7
19.1
18.2
18.5
19.6
18.9
20.1
17.9
18.3
19.0
17.5 | 20.5
23.8
26.4
26.9
26.9
22.1
23.8
19.7
22.9
24.6
25.5
27.3
30.6 | SEPTEMBE 6.4 7.8 3.5 2.5 10.6 10.2 4.6 4.6 1.4 .0 .7 .0 .4 1.8 | 14.0
16.3
13.7
16.7
17.7
15.1
14.4
10.4
12.0
13.0
12.3
12.5
14.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 29.2
27.3
29.2
27.8
28.7
29.5
524.2
26.0
26.4
26.0
24.6
25.1
27.8
25.1
24.6
25.1
27.8 | JUNE .7 2.1 3.2 2.5 3.9 6.4 2.5 10.6 7.43 1.4 1.1 3.5 2.5 2.1 3.5 2.5 3.9 6.0 | 15.9
16.3
16.2
16.5
16.5
19.3
18.4
19.0
16.8
14.2
15.9
15.7
16.0
15.2
17.7 | 27.8
29.2
29.2
26.0
31.6
29.2
26.9
25.1
22.5
26.9
28.7
27.8
31.1
29.7
30.1 | JULY 11.0 6.0 11.0 4.9 2.5 3.5 7.8 10.2 9.9 8.5 8.5 8.5 8.1 9.2 9.2 9.5 11.7 7.4 2.8 | 18.9
18.5
21.8
17.5
18.1
18.3
17.7
17.8
16.2
18.2
19.2
18.7
19.0
18.6
17.6
17.1
18.9 | 31.6
32.6
31.1
29.2
29.7
29.7
30.6
32.1
32.1
28.2
26.9
26.9
28.2
27.8
27.8
26.9
26.0
19.7
25.5 | 7.1
10.6
11.0
12.4
8.1
6.4
4.6
5.7
7.8
11.3
8.5
9.9
8.5
7.4 | 20.6
22.4
21.6
20.7
19.1
18.2
18.5
19.6
18.9
20.1
17.9
18.3
19.0
17.5
16.7 | 20.5
23.8
26.4
26.9
26.9
22.1
23.8
19.7
22.9
24.6
25.5
27.3
30.6
28.2
29.7
27.8
21.7
22.9 | SEPTEMBE 6.4 7.8 3.5 2.5 10.6 10.2 4.6 4.6 1.4 .0 .7 .0 .4 1.8 2.8 2.5 5.7 2.1 | 14.0
16.3
13.7
16.7
17.7
15.1
14.4
12.0
13.0
12.3
12.5
14.7
15.4
15.7
15.7
15.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 29.2
27.3
27.3
29.2
27.8
28.7
29.5
524.2
26.0
26.4
26.6
21.3
24.6
25.1
27.8
25.1
24.2
24.2
24.2
24.2 | JUNE | 15.9
16.3
16.2
16.5
16.5
19.3
18.4
19.0
16.8
14.2
15.9
15.7
16.0
15.2
17.7
15.4
13.4
13.4
14.5
15.1 | 27.8
29.2
29.2
26.0
31.6
29.2
26.9
25.1
22.5
26.9
28.7
27.8
31.1
29.7
30.1
27.3
24.2
29.2
30.1
29.7 | JULY 11.0 6.0 11.0 4.9 2.5 3.5 7.8 10.2 9.9 8.5 8.5 8.1 9.2 9.2 9.5 11.7 7.4 2.8 3.9 4.2 3.9 4.2 3.9 3.2 9.2 7.4 |
18.9
18.5
21.8
17.5
18.1
18.3
17.7
17.8
16.2
18.2
19.2
18.7
19.0
18.6
17.6
17.1
18.9
17.9
18.3
18.3 | 31.6
32.6
31.1
29.2
29.7
29.7
30.6
32.1
32.1
28.2
26.9
26.9
26.9
26.9
26.0
19.7
25.5
26.0 | 7.1
10.6
11.0
12.4
8.1
6.4
4.6
5.7
7.8
11.3
8.5
9.9
8.5
7.4
11.0
9.2
6.4
11.0
7.4
11.0 | 20.6
22.4
21.6
20.7
19.1
18.2
18.5
19.6
18.9
20.1
17.9
18.3
19.0
17.5
16.7
18.4
17.3
15.3
17.0
16.9 | 20.5
23.8
26.4
26.9
26.9
22.1
23.8
19.7
22.9
24.6
25.5
27.3
30.6
28.2
29.7
27.8
21.7
22.9
20.9 | SEPTEMBE 6.4 7.8 3.5 2.5 10.6 10.2 4.6 4.6 1.4 .0 .7 .0 4.8 2.8 2.5 5.7 2.1 1.8 3.5 8.8 1.4 -3.1 | 14.0
16.3
13.7
16.7
17.7
15.1
14.4
12.0
13.0
12.3
12.5
14.7
15.4
15.7
15.4
15.7
12.6
11.1
13.0
17.9
11.0
17.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
30
30
30
30
30
30
30
30
30
30
30
30 | 29.2
27.3
29.2
27.8
28.7
29.5
24.2
26.0
26.4
26.0
24.6
25.1
27.8
25.1
24.2
24.2
26.9
28.2
22.1
26.9
22.1
26.4
26.4
26.9 | JUNE | 15.9
16.3
16.2
16.5
16.5
19.3
18.4
19.0
16.8
14.2
15.9
15.7
16.0
15.2
17.7
15.4
13.4
14.5
15.1
14.7
16.6
17.4
14.8
15.3
14.3
13.7
15.6
17.0 | 27.8
29.2
29.2
26.0
31.6
29.2
26.9
25.1
22.5
26.9
28.7
27.8
31.1
29.7
30.1
29.7
30.1
29.7
30.6
31.1
32.1
29.7
30.6
31.1
29.7 | JULY 11.0 6.0 11.0 4.9 2.5 3.5 7.8 10.2 9.9 8.5 8.5 8.1 9.2 9.5 11.7 7.4 2.8 3.9 4.2 3.9 3.2 7.4 8.8 7.1 6.7 6.4 7.8 | 18.9
18.5
21.8
17.5
18.1
18.3
17.7
17.8
16.2
18.2
19.2
18.7
19.0
18.6
17.6
17.1
18.9
17.9
18.3
18.6
17.1
20.2
20.4
20.8
19.7
20.8
19.7
20.8 | 31.6
32.6
31.1
29.2
29.7
30.6
32.1
32.1
28.2
26.9
26.9
28.2
27.8
27.8
26.9
26.0
19.7
25.5
26.0
20.9
23.8
25.1
25.5
25.5 | AUGUST 7.1 10.6 11.0 12.4 8.1 6.4 4.6 5.7 7.8 11.3 8.5 9.9 8.5 7.4 11.0 9.2 6.4 11.0 7.4 8.1 7.8 9.9 9.9 7.8 10.6 11.7 10.6 | 20.6
22.4
21.6
20.7
19.1
18.2
18.5
19.6
18.9
20.1
17.9
18.3
19.0
17.5
16.7
18.4
17.3
15.3
17.0
16.9
14.0
15.4
16.3
14.0
16.7 | 20.5
23.8
26.4
26.9
26.9
22.1
23.8
19.7
22.9
24.6
25.5
27.3
30.6
28.2
29.7
27.8
21.7
22.9
20.9
23.8
24.2
17.7
7.4
18.1
20.5
22.5
22.9
21.3
22.9 | SEPTEMBE 6.4 7.8 3.5 2.5 10.6 10.2 4.6 4.6 1.4 .0 .7 .0 4.8 2.8 2.5 5.7 2.1 1.8 3.5 8.8 4.4 -3.1 -6.4 -4.67 1.4 3.5 4.2 | 14.0
16.3
13.7
16.7
17.7
15.1
14.4
10.4
12.0
13.0
12.3
12.5
14.7
15.7
15.4
15.7
13.6
11.1
13.0
17.9
11.0
17.9
11.0
10.0
10.0
10.0
10.0
10.0
10.0
10 | ### 380916107452200 RIDGWAY METEOROLOGICAL STATION AT RIDGWAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------------|----------------------------| | 1
2
3
4
5 | .0
.0
.0
.0 | .0
.0
.0 | .1
.4
.7
.0 | .1
.1
.0
.0 | .0
.0
.0 | .0
.1
.0
.0 | .1
.1
.0
.0 | .0.0.0.0 | .0 | .1
.0
.0
.0 | .0.0.0.0 | .0.0.0 | | 6
7
8
9
10 | .0
.0
.1
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.3
.0
.0 | .0.0.0.0 | .0
.1
1.1
.0 | .0.0.0 | .0
.0
.2
.3 | .0
.0
.0 | .1
.0
.1
.0 | | 11
12
13
14
15 | .0
.0
.0
.0 | .0 | .1
.0
.1
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0 | .0
.0
.0
.0 | .1
.1
.0
.0 | .0.0.0 | | 16
17
18
19
20 | .0
.0
.0
.0 | .0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.1
.1 | .0
.5
.0
.0 | .2
.0
.1
.1 | .0
.0
.5
.0 | | 21
22
23
24
25 | .0
.0
.0
.0 | .1
.1
.0
.0 | .0
.0
.0 | .3
.1
.0
.0 | .0
.0
.0 | .2
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.0
.0
.0 | .0
.0
.0 | .2
.5
.0
.4 | .1
.0
.3
.0 | | 26
27
28
29
30
31 | .0.0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .3
.1
.0
.0 | .0
.0
.0
.0 | .0
.0
.1
.0
.5 | .0
.0
.0
.0 | .0.0.0.0.0 | .0
.2
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.1
.2 | .0
.0
.0
.3
.0 | | TOTAL | 0.1 | 0.2 | 1.6 | 1.3 | 0.2 | 2.0 | 0.2 | 1.2 | 0.7 | 1.3 | 2.3 | 1.5 | CAL YR 1999 TOTAL 17.2 WTR YR 2000 TOTAL 12.6 ### 381001107412300 DRY CREEK METEOROLOGICAL STATION NEAR RIDGWAY, CO LOCATION.--Lat $38^{\circ}10^{\circ}01^{\circ}$, long $107^{\circ}41^{\circ}23^{\circ}$, in $SE^{1}/_{4}NE^{1}/_{4}$ sec.12, T.45 N, R.8 W., Ouray County, Hydrologic Unit 14020006, 3.7 mi east of Ridgway. PERIOD OF RECORD. -- October 1994 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 7,360 ft above sea level, from topographic map. REMARKS.--Daily record for air temperature is good. Daily record for precipitation is good. EXTREMES FOR PERIOD OF RECORD.-AIR TEMPERATURE: Maximum recorded, 32.6°C, July 18, 19, 1998; minimum recorded, -26.9°C, Dec. 18, 1996. PRECIPITATION: Maximum daily, 1.8 inches, Oct. 3, 1996. MONTH 24.6 -8.6 8.1 21.3 -17.0 3.7 13.1 -21.1 -5.0 EXTREMES FOR CURRENT YEAR.-- AIR TEMPERATURE: Maximum, 32.1°C, July 23, Aug. 2, 8; minimum, -21.6°C, Jan. 4. PRECIPITATION: Maximum daily, 1.1 inches, May 8. | | | TEMPERAT | JRE, AIR, | DEGREES | CELSIUS, | WATER | YEAR OCT | OBER 199 | 9 TO SEPTE | EMBER 2000 | | | |----------------------------------|--|--|---------------------------------------|--------------------------------------|---|-----------------------------------|------------------------------|-------------------------------------|----------------------------------|---------------------------------------|--|--| | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MA | X MI | N MEAN | MAX | MIN | MEAN | | | | OCTOBER | | 1 | NOVEMBER | | | DECEMB | ER | | JANUAR | Y | | 1
2
3
4
5 | 22.1
21.3
20.1
22.5
23.3 | 3.9
1.4
2.5
-1.0 | 13.0
11.5
11.8
9.8
12.0 | 16.1
18.1
16.9
20.1
20.5 | -2.4
-5.7
-5.3
-3.1
-2.1 | 5.4
5.0
4.9
7.0
8.1 | 13.
5.
-2.
1.
5. | 7 -2.
1 -5.
8 -17. | 84
7 -3.9
4 -7.0 | -2.4
2.1 | | -2.3
-5.0
-11.1
-10.3
-6.8 | | 6
7
8
9 | 18.1
10.2
18.1
22.5
24.2 | 8.8
2.5
7
.4
.7 | 13.4
5.6
7.7
10.3
11.8 | 20.5
19.7
19.3
16.1
19.3 | -2.4
-1.0
1.8
-3.8
-4.2 | 7.1
8.0
9.8
6.3
5.5 | 6.
4.
-2.
-1. | 6 -9.
1 -10.
0 -18. | 0 -2.2
9 -5.2
3 -7.7 | 3.5 | -17.9
-17.9
-17.0
-7.1
-2.1 | -11.6
-8.8
-6.4
-3.8
2.3 | | 11
12
13
14
15 | 24.6
23.3
24.2
22.1
19.7 | 1.4
3.2
.7
1.8
4.2 | 12.7
12.5
11.4
11.1 | 20.1

18.9
21.3
20.1 | -3.1
-4.9
-5.7
-5.7
-2.4 | 6.1

4.8
5.6
6.9 |
3.
2.
-6. | 9 -15.
1 -12.
4 -19. | 7 -7.8
5 -5.2
7 -12.3 | 13.1
8.1
12.4
17.7
12.8 | 1.8
-3.8
-6.8
-5.7
-2.4 | 6.8
3.1
.5
2.2
4.4 | | 16
17
18
19
20 | 7.8
9.9
12.4
14.6
17.7 | -3.8
-8.3
-6.0
-6.0
-5.3 | 2.8
4
3.0
3.5
4.8 | 21.3
17.7
9.9
13.1
11.0 | -3.1
.4
-8.3
-11.3
-4.2 | 7.5
9.6
1.1
8
3.0 | 5.
6.
1.
-1. | 4 -9.
0 -7.
4 -11. | 4 -1.8
1 -2.0
7 -5.9 | 9.9
8.5
8.8
13.5
9.9 | 2.8
1.8
2.1
-2.8
-3.8 | 6.2
4.7
5.4
6.1
1.8 | | 21
22
23
24
25 | 18.9
20.1
20.5
19.7
20.5 | -4.9
-4.6
-2.1
-2.8
-2.4 | 6.0
7.0
7.7
7.3
8.0 | 5.7
-1.0
3.5
1.4
4.9 | -5.7
-7.5
-13.7
-17.0
-13.3 | 5
-4.3
-6.9
-9.2
-5.0 | 1.
5. | 4 -16.
7 -15.
1 -14. | 2 -9.5
3 -7.4
1 -6.1 | 7.1
2.1
6.4
2.1
2.8 | -3.5
-7.1
-9.8
-5.3
-1.0 | 2.0
-2.0
-3.8
2 | | 26
27
28
29
30
31 | 20.9
19.7
19.3
11.7
11.0
18.9 | -2.8
.0
-2.4
-5.7
-8.6
-5.3 | 8.0
8.8
9.5
2.1
.9
5.4 | 15.4
10.6
14.6
16.9
16.5 | -6.0
7
-3.1
-2.8
-1.7 | 2.9
4.9
3.6
4.5
5.8 | 9.
8.
10.
11.
7. | 1 -10.
2 -10.
7 -8.
4 -10. | 1 -3.9
5 -1.0
69
9 -4.0 | 3.2
2.5
.7
2.1
3.5
2.8 | -1.0
-9.4
-14.1
-18.3
-17.4
-11.7 | .8
-2.8
-7.1
-9.5
-8.2
-4.4 | 17.7 -21.6 -1.8 443 ## 381001107412300 DRY CREEK METEOROLOGICAL STATION NEAR
RIDGWAY, CO--Continued | DAY | MAX | MIN | MEAN | |---|---|--|--|--|--|--|--|---|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 16.5
11.3 | -11.7 | -4.3
-2.4
2.4
2.4
1.1 | 7.1
3.2

16.1
7.1 | -3.8
-6.0
-9.0
-6.0
-4.9 | 1.2
4

4.2
2.0 | 7.1
10.2
18.9 | -5.3
-5.3
-4.2
-3.1
2.8 | 2
.3
2.2
8.3
10.6 | 20.5
25.1
26.4
25.5
24.6 | -1.0
1.1
1.4
5.3
5.3 | 9.0
13.4
15.3
16.8
16.0 | | 8
9 | 10.6
12.8
5.7 | -7.5
-8.3
-7.5
-1.0 | .3
1
1.6
2.2
2.6 | 8.8
2.5
8.1
2.1
3.5 | -6.8
-1.7
-5.7
-3.5
-8.6 | 1.2
1
4
-1.3
-2.9 | 16.9
15.0
17.7
17.7 | 5.7
1.1
-4.2
2.8
3 | 11.4
9.6
7.5
10.5
8.6 | 23.3
22.5
9.5
18.9
22.5 | 5.7
6.7
3.5
.4
9.9 | 15.7
14.1
5.9
10.4
17.8 | | 12
13
14 | 3.9
2.1
9.5 | -3.5
-3.5
-1.7
3
-1.7 | 1.3
.6
3
4.3
4.6 | 9.9
7.1
11.3
11.0
9.2 | -12.1
-2.4
-6.0
-5.7
-3.8 | 8
1.4
2.1
3.7
1.8 | 13.9

19.3
15.8
6.7 | .0
1.4
2.8
-1.4 | 10.7
10.2
2.4 | 18.9
10.6
16.1
18.5
22.1 | 1.8
-3.1
-3.5
.7
4.9 | 13.5
3.2
7.3
10.6
14.9 | | 1.0 | 0 0 | -4.6
-5.3
-10.9 | 2.5
1
-1.0
-2.8
2.6 | 6.7
8.5
3.5
9.9
7.1 | -5.3
-5.3
-8.3
-9.4
-5.3 | 7
.6
-3.1
2.4
8 | 16.1
20.9
15.4
6.0
17.7 | -2.4
1.1
1.1
-2.4
-5.3 | 7.4
11.3
9.7
2.6
7.6 | 20.5
11.3
12.8
17.3
20.5 | 11.3
2.8
-1.0
3
3.9 | 17.8
7.2
5.2
7.5
12.2 | | 22
23
24 | 11.0
4.9 | -10.5
-5.3
-6.4 | .6
1.3
-5.3 | 8.8
10.6
13.1
15.4 | -2.4
-2.4
7
-2.1 | 1.2
3.5
5.6
6.6 | 18.9
12.1
16.1
14.6
20.5 | .7
5.3
2.5
1.4
-3.8 | 9.6
7.8
8.9
8.3
9.2 | 22.1
25.5
26.9
22.5
20.5 | 1.6
4.2
8.5
9.9
4.9 | 13.5
16.1
18.9
16.3
13.2 | | 27 | 15.8
9.5
9.5 | -12.9
-6.8
-3.5
-3.5 | -3.0
4.6
3.6
.6
 | 12.1
15.8
9.5
10.2
10.2
4.6 | .4
-3.1
.0
-1.4
-3.5
-3.5 | 6.7
7.1
4.2
3.7
1.4 | 22.5
25.1
23.8
17.7
15.4 | 4.6
1.1
3.9
5.3
2.5 | 13.9
14.1
13.9
11.6
7.8 | 17.3
26.0
27.8
28.7
28.7
26.4 | 5.3
3.2
7.4
9.9
12.4
10.2 | 11.6
14.5
19.1
20.6
21.0
19.7 | | MONTH | 16.5 | | .9 | | | 1.7 | 25.1 | -5.3 | 8.4 | 28.7 | -3.5 | 13.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | ER | | DAY 1 2 3 4 5 | | JUNE 6.0 7.4 8.1 7.4 8.1 | 17.8
17.3
18.2
20.0
17.1 | 27.8
28.2
28.2
26.0
29.7 | JULY 12.8 8.5 15.0 10.6 8.5 | 19.1
19.4
21.4
19.1
19.8 | 31.6
32.1
30.1
28.7
29.2 | AUGUST
11.7
13.9
13.8
16.1
11.7 | 22.2
23.0
21.8
21.6
20.6 | 20.5
23.3
24.2
26.9
26.4 | 7.4
9.9
7.8
7.4
13.1 | 14.5
16.6
15.4
18.4
18.7 | | 1
2
3
4
5
6
7
8
9 | 27.8
26.4
27.3
28.2
27.3
27.8
30.6
26.4
21.7
23.8 | JUNE 6.0 7.4 8.1 7.4 8.1 | 17.8
17.3
18.2
20.0
17.1 | 27.8
28.2
28.2
26.0
29.7 | JULY 12.8 8.5 15.0 10.6 8.5 | 19.1
19.4
21.4
19.1
19.8 | | AUGUST
11.7
13.9
13.8
16.1
11.7 | 22.2
23.0
21.8
21.6
20.6 | 20.5
23.3
24.2
26.9
26.4 | SEPTEMBE | 14.5
16.6
15.4
18.4
18.7 | | 1
2
3
4
5
6
7
8
9 | 27.8
26.4
27.3
28.2
27.3
27.8
30.6
26.4
21.7
23.8 | JUNE 6.0 7.4 8.1 7.4 8.1 7.8 7.1 13.5 11.0 3.9 | 17.8
17.3
18.2
20.0
17.1
19.0
19.7
19.2
16.3
15.1 | 27.8
28.2
28.2
26.0
29.7 | JULY 12.8 8.5 15.0 10.6 8.5 8.8 11.3 12.4 9.9 9.5 | 19.1
19.4
21.4
19.1
19.8
20.5
18.4
17.8
16.0
18.4 | 31.6
32.1
30.1
28.7
29.2 | AUGUST 11.7 13.9 13.8 16.1 11.7 11.3 10.2 9.5 13.1 13.9 | 22.2
23.0
21.8
21.6
20.6
20.3
20.6
21.4
20.9
20.3 | 20.5
23.3
24.2
26.9
26.4
22.5
22.5
20.9
22.9
25.1 | 7.4
9.9
7.8
7.4
13.1
10.2
6.7
7.1
4.9
6.0 | 14.5
16.6
15.4
18.7
15.0
14.9
11.7
14.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 27.8
26.4
27.3
28.2
27.3
27.8
30.6
26.4
21.7
23.8
23.8
25.1
24.6 | JUNE 6.0 7.4 8.1 7.4 8.1 7.8 7.1 13.5 11.0 3.9 6.0 5.3 7.8 5.3 6.4 | 17.8
17.3
18.2
20.0
17.1
19.0
19.7
19.2
16.3
15.1
16.6
17.3
17.4
15.6 | 27.8
28.2
28.2
26.0
29.7
29.2
26.9
24.6
22.1
26.9
29.7
27.3
30.6
28.7 | JULY 12.8 8.5 15.0 10.6 8.5 8.8 11.3 12.4 9.9 9.5 11.0 11.3 11.0 13.1 10.6 | 19.1
19.4
21.4
19.1
19.8
20.5
18.4
16.0
18.4
20.2
19.8
20.5 | 31.6
32.1
30.1
28.7
29.2
28.2
30.1
32.1
29.2
28.7
26.9
26.0
28.2
26.4 | AUGUST 11.7 13.9 13.8 16.1 11.7 11.3 10.2 9.5 13.1 13.9 12.4 12.8 10.2 11.7 | 22.2
23.0
21.8
21.6
20.6
20.3
20.6
21.4
20.9
20.3
19.2
18.9
18.9 | 20.5
23.3
24.2
26.9
26.4
22.5
22.5
20.9
22.9
25.1
23.3
26.0
27.8
30.1 | 7.4
9.9
7.8
7.4
13.1
10.2
6.7
7.1
4.9
6.0
6.7
4.2
6.0
8.1 | 14.5
16.6
15.4
18.4
18.7
15.0
14.9
11.7
14.0
15.4
15.7
16.7
18.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 27.8
26.4
27.3
28.2
27.3
27.8
30.6
26.4
21.7
23.8
25.1
24.6

24.6
25.1
20.9
22.1 | JUNE 6.0 7.4 8.1 7.4 8.1 7.8 7.1 13.5 11.0 3.9 6.0 5.3 7.8 5.3 6.4 3.5 8.1 | 17.8
17.3
18.2
20.0
17.1
19.0
19.7
19.2
16.3
15.1
16.6
17.3
17.4
15.6 | 27.8
28.2
28.2
26.0
29.7
29.2
26.9
24.6
22.1
26.9
29.7
27.3
30.6
28.7
 | JULY 12.8 8.5 15.0 10.6 8.5 8.8 11.3 12.4 9.9 9.5 11.0 13.1 10.6 11.0 12.4 10.2 7.8 | 19.1
19.4
21.4
19.1
19.8
20.5
18.4
17.8
16.0
18.4
20.2
19.5
19.5
 | 31.6
32.1
30.1
28.7
29.2
28.2
30.1
32.1
29.2
28.7
26.9
26.0
28.2
26.4
27.3 | AUGUST 11.7 13.9 13.8 16.1 11.7 11.3 10.2 9.5 13.1 13.9 12.4 12.8 10.2 11.7 10.2 12.4 11.7 11.3 | 22.2
23.0
21.8
21.6
20.6
20.3
20.6
21.4
20.9
20.3
19.2
18.9
18.5
17.9
18.5
17.7
15.0
17.1 | 20.5
23.3
24.2
26.9
26.4
22.5
22.5
20.9
22.9
25.1
23.3
26.0
27.8
30.1
28.7 | 7.4
9.9
7.8
7.4
13.1
10.2
6.7
7.1
4.9
6.0
6.7
4.2
6.0
8.1
9.2
7.8
7.8
7.8
7.1 | 14.5
16.6
15.4
18.4
18.7
15.0
14.9
11.7
14.0
15.4
15.7
16.7
18.1
18.6
18.4
17.9
13.5
14.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 27.8
26.4
27.3
28.2
27.3
27.8
30.6
26.4
21.7
23.8
25.1
24.6

24.6
25.1
20.9
22.1
23.8
26.4
26.4
26.4
21.7 | JUNE 6.0 7.4 8.1 7.4 8.1 7.8 7.1 13.5 11.0 3.9 6.0 5.3 7.8 5.3 6.4 3.5 8.5 8.5 8.5 8.7 12.1 7.8 |
17.8
17.3
18.2
20.0
17.1
19.0
19.7
19.2
16.3
15.1
16.6
17.3
17.4
15.6

16.6
14.1
14.7
14.6
15.8 | 27.8
28.2
28.2
26.0
29.7
29.2
26.9
24.6
22.1
26.9
29.7
27.3
30.6
28.7

26.0
22.9
29.7
29.7
29.2 | JULY 12.8 8.5 15.0 10.6 8.5 8.8 11.3 12.4 9.9 9.5 11.0 11.3 11.0 12.4 10.6 11.0 13.1 10.6 11.0 12.4 10.2 7.8 9.2 9.5 9.2 9.5 13.9 10.2 12.1 | 19.1
19.4
21.4
19.1
19.8
20.5
18.4
17.8
16.0
18.4
20.2
19.8
20.5
19.5

17.4
17.2
20.1
20.1
20.4
20.9
20.6
21.7
22.1 | 31.6
32.1
30.1
28.7
29.2
28.2
30.1
29.2
28.7
26.9
26.0
28.2
26.4
27.3
28.2
24.6
20.1
24.2
25.1 | AUGUST 11.7 13.9 13.8 16.1 11.7 11.3 10.2 9.5 13.1 13.9 12.4 12.8 10.2 11.7 10.2 12.4 11.7 11.3 11.3 9.5 11.0 9.5 10.2 | 22.2
23.0
21.8
21.6
20.6
20.3
20.6
21.4
20.9
20.3
19.2
18.9
18.5
17.9
18.5
17.7
15.0
17.1
17.4 | 20.5
23.3
24.2
26.9
26.4
22.5
22.5
20.9
22.9
25.1
23.3
26.0
27.8
30.1
28.7
29.2
26.4
21.7
22.9
22.5 | 7.4
9.9
7.4
13.1
10.2
6.7
7.1
4.9
6.0
6.7
4.2
6.0
8.1
9.2
7.8
7.8
7.8
7.1
4.9
6.4 | 14.5
16.6
15.4
18.4
18.7
15.0
14.9
11.7
14.0
15.4
15.7
18.1
18.6
18.4
17.9
13.5
14.5
17.3
10.1 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 27.8
26.4
27.3
28.2
27.3
27.8
30.6
26.1
21.7
23.8
23.8
25.1
24.6
2
24.6
25.1
20.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2 | JUNE 6.0 7.4 8.1 7.4 8.1 7.8 7.1 13.5 11.0 3.9 6.0 5.3 7.8 5.3 6.4 3.5 8.1 8.5 8.5 8.7 12.1 7.8 7.8 10.2 7.1 7.1 9.9 | 17.8
17.3
18.2
20.0
17.1
19.0
19.7
19.2
16.3
15.1
16.6
17.3
15.6

16.6
14.1
14.7
14.6
15.8
17.8
17.8
17.6
17.6
17.6
17.6
17.6
17.6
17.6
17.6 | 27.8
28.2
26.0
29.7
29.2
26.9
24.6
22.1
26.9
29.7
27.3
30.6
32.1
26.9
28.7
29.7
29.2
30.6
30.6
32.1
29.7
29.7
29.2 | JULY 12.8 8.5 15.0 10.6 8.5 8.8 11.3 12.4 9.9 9.5 11.0 11.3 11.0 6 11.0 12.4 10.2 7.8 9.2 9.5 9.9 13.9 10.2 12.1 11.7 11.3 11.0 12.4 | 19.1
19.4
21.4
19.1
19.8
20.5
18.4
17.8
20.2
19.8
20.5
17.4
17.2
20.1
20.1
20.1
20.1
20.4
20.9
20.6
21.7
22.1
21.2 | 31.6
32.1
30.1
28.7
29.2
28.2
30.1
32.1
29.2
28.7
26.9
26.0
28.2
26.4
27.3
28.2
24.6
20.1
23.8
24.2
25.1
22.1
23.8
24.2
26.0
25.5 | AUGUST 11.7 13.9 13.8 16.1 11.7 11.3 10.2 9.5 13.1 13.9 12.4 12.8 10.2 11.7 10.2 12.4 11.7 11.3 11.3 9.5 11.0 9.5 11.0 9.5 11.0 11.0 11.0 10.2 11.3 11.7 10.6 | 22.2
23.0
21.8
21.6
20.6
20.3
20.6
21.4
20.9
20.3
19.2
18.9
18.5
17.9
18.5
17.7
15.0
17.1
17.4
15.5
15.9
16.9
17.8
17.8
17.5 | 20.5
23.3
24.2
26.9
26.4
22.5
22.5
22.9
25.1
23.3
26.0
27.8
30.1
28.7
29.2
26.4
21.7
22.9
22.5
22.1
23.8
15.8
15.8
17.7 | 7.4 9.9 7.8 7.4 13.1 10.2 6.7 7.1 4.9 6.0 6.7 4.2 6.0 8.1 9.2 7.8 7.8 7.1 4.9 6.4 6.4 8.8 -4-1.7 -4.2 -1.0 2.8 5.3 7.8 | 14.5
16.6
15.4
18.4
18.7
15.0
14.9
11.7
14.0
15.4
15.7
18.1
18.6
18.4
17.9
13.5
14.5
17.3
10.7
14.9
13.5 | ### 381001107412300 DRY CREEK METEOROLOGICAL STATION NEAR RIDGWAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | | | | | | Dillo | . DOI:1 VIIIIO | ш | | | | | | |----------------------------------|----------------------|----------------------|----------------------|---------------------------------|----------------------|----------------------------|----------------------|-----------------------|----------------------|----------------------|----------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .0
.0
.0
.0 | .0
.0
.0 | .0
.4
.6
.0 | .1
.1
.2
.0 | .0
.0
.0 | .0
.1
.0
.0 | .1
.1
.0
.0 | .0.0.0.0 | .0.0.0.0 | .1
.0
.0
.0 | .0.0.0.0 | .0 | | 6
7
8
9
10 | .0
.1
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.8
.0
.0 | .0.0.0.0 | .0
.1
1.1
.0 | .0.0.0.0 | .0
.0
.3
.3 | .0.0.0 | .1
.0
.2
.0 | | 11
12
13
14
15 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0 | .0
.0
.0
.1 | .0
.2
.0
.0 | .0
.0
.0
.0 | | 16
17
18
19
20 | .0
.0
.0
.0 | .0
.0
.0 | .0 .0 .0 .0 | .0.0.0 | .0
.0
.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .0
.1
.0 | .0
.2
.0
.0 | .2
.0
.1
.0 | .0
.0
.5
.0 | | 21
22
23
24
25 | .0
.0
.0
.0 | .2
.3
.0
.0 | .1
.0
.0
.0 | .3
.0
.0
.1 | .0
.0
.0 | .2
.0
.0
.0 | .0.0.0.0 | .0
.0
.0
.0 | .0.0.0.0 | .0.0.0.0 | .1
.0
.0
.5 | .0
.1
.0
.2 | | 26
27
28
29
30
31 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0 .0 .0 .0 .0 | . 4
. 0
. 0
. 0
. 0 | .0
.0
.0
.0 | .0
.0
.3
.1
.2 | .0 .0 .0 .0 .0 .0 | .1
.0
.0
.0 | .0
.1
.0
.0 | .0.0.0.0.0.0 | .0 .0 .0 .0 .2 .0 | .0
.0
.0
.3
.0 | | TOTAL | 0.1 | 0.5 | 1.3 | 1.5 | 0.2 | 2.4 | 0.4 | 1.4 | 0.2 | 1.1 | 1.3 | 1.4 | CAL YR 1999 TOTAL 16.6 WTR YR 2000 TOTAL 11.8 ### 381422107453000 RIDGWAY RESERVOIR METEOROLOGICAL STATION NEAR RIDGWAY, CO LOCATION.--Lat $38^{\circ}14^{\circ}22^{\circ}$, long $107^{\circ}45^{\circ}30^{\circ}$, in $NE^{1}/_{4}SE^{1}/_{4}$ sec.17, T.46 N, R.8 W., Ouray County, Hydrologic Unit 14020006, 6.3 mi north of Ridgway, and 6.7 mi south of Colona. PERIOD OF RECORD. -- October 1991 to current year. GAGE.--Weighing-bucket rain gage with satellite telemetry. Elevation of gage is 6,710 ft above sea level, from topographic map. REMARKS.--Unpublished air-temperature and precipitation data for water years 1992 and 1993 are available in district office. Daily record for air temperature is good. Daily record for precipitation is good. ### EXTREMES FOR PERIOD OF RECORD .-- AIR TEMPERATURE: Maximum recorded, 33.2°C, June 26, 1994, June 29, 30 and July 19, 1998, July 23, 2000; minimum recorded, -23.6°C, Dec. 13, 1993. PRECIPITATION: Maximum daily, 1.7 inches, Oct. 3, 1996. ### EXTREMES FOR CURRENT YEAR . -- AIR TEMPERATURE: Maximum, 33.2°C, July 23; minimum, -20.2°C, Jan. 4. PRECIPITATION: Maximum daily, 0.8 inches, May 8. | DAY | MAX | MIN | MEAN | |----------------------------------|--|--------------------------------------|---|--------------------------------------|---|------------------------------------|--|--|--|-------------------------------------|---|---| | | | OCTOBER | | 1 | NOVEMBER | | 1 | DECEMBER | | | JANUAR | Y | | 1
2
3
4
5 | 23.8
22.1
20.5
22.1
24.6 | 2.1
2.8
3.5
.7
1.8 | 12.7
12.3
11.7
10.4
13.0 | 15.0
16.1
15.8
19.3
20.9 | -3.5
-4.2
-3.5
-2.1 | 4.9
4.5
5.2
6.6
7.7 | 14.3
7.1
-1.0
.4
3.9 | -3.5
-2.1
-4.9
-13.7
-15.7 | 5.3
1.1
-3.0
-6.6
-7.8 | 1.4
1.8
-3.8
1.8
7 | -4.9
-7.9
-17.9
-20.2
-12.9 | -1.9
-3.5
-10.8
-10.1
-6.4 | | 6
7
8
9
10 | 19.7
10.6
17.3
22.1
24.2 | 9.5
3.5
.0
1.1
3.2 | 13.4
6.7
8.0
10.7
12.6 | 18.9
18.9
19.3
15.0
16.5 | -1.0
-2.1
1.8
-1.0
-3.5 | 7.3
7.6
9.5
5.8
5.1 | 6.7
7.1
-2.4
.7
7 | -12.5
-8.3
-9.4

-7.1 | -5.0
-1.1
-4.0

-4.3 | -1.7
-2.1
2.5
1.8
7.4 | -17.0
-18.3
-15.3
-9.0
3 | -11.1
-10.2
-6.8
-3.1
4.3 | | 11
12
13
14
15 | 25.1
24.6
23.3
23.8
21.3 | 3.2
3.5
2.8
2.1
4.2 | 13.4
13.3
11.9
12.0
12.3 | 17.3
17.7
16.5
17.7
19.3 | -2.1
-4.9
-6.8
-4.2
3 | 5.9
4.8
3.9
4.8
6.7 | -3.1
1.4
5.3
-3.8
1.1 | -14.1
-14.9
-12.1
-18.3
-19.7 | -7.0
-7.3
-4.3
-11.6
-11.4 | 13.1
9.2
11.7
12.8
13.1 | 5.3
-2.8
-5.7
-7.1
-1.4 | 7.7
4.6
1.0
.6
4.2 | | 16
17
18
19
20 | 12.1
8.5
12.4
13.1
15.8 | -3.1
-7.5
-5.3
-4.6
-4.2 | 3.6
.3
3.2
3.7
4.9 | 18.1
19.3
11.3
9.5
13.1 | -3.8
1.8
-6.4
-9.0
-3.1 | 6.4
10.2
2.0
8
3.0 | 3.5
4.9
8.5
3.5
-2.1 | -13.3
-7.9
-8.6
-10.9
-12.1 | -5.4
-2.3
-1.8
-6.0
-6.4 | 13.1
8.5
8.8
12.8
10.6 | 2.8
2.1
2.5
-2.1
-2.8 | 6.1
4.4
5.0
4.8
2.2 | | 21
22
23
24
25 | 17.7
19.3
19.3
18.5
18.1 | -2.4
-2.1
-1.7
7
-2.1 | 6.2
7.3
7.9
7.6
6.9 | 6.0
-1.0
.4
.0
4.6 | -3.8
-5.3
-11.7
-13.7
-12.1 | .3
-3.6
-6.1
-8.2
-4.6 | -2.8
1.1
2.1
4.2
6.7 | -13.3
-15.7
-15.3
-12.9
-12.1
| -7.7
-8.7
-7.7
-6.0
-5.0 | 8.8
5.7
5.3
2.8
3.2 | -1.4
-4.9
-9.0
-3.5
7 | 2.9
.0
-2.8
.3
1.4 | | 26
27
28
29
30
31 | 19.7
18.9
20.9
13.9
10.6
16.5 | -1.7
.7
-1.0
-3.8
-6.8 | 7.6
8.4
10.2
3.4
1.1
4.5 | 10.6
13.1
13.9
14.3
15.0 | -5.7
3
-2.8
-3.1
-1.0 | 2.2
5.2
3.5
3.7
5.0 | 5.7
7.4
7.4
5.7
6.0
7.1 | -10.9
-11.3
-9.8
-8.6
-12.1
-10.1 | -3.9
-4.3
-3.3
-2.5
-4.3
-2.8 | 3.9
1.1
-1.4
1.4
4.2 | 3
-6.8
-10.1
-14.9
-14.9 | 1.0
-1.9
-6.1
-8.2
-6.7
-4.1 | | MONTH | 25.1 | -7.5 | 8.4 | 20.9 | -13.7 | 3.6 | 14.3 | -19.7 | -4.8 | 13.1 | -20.2 | -1.4 | ### 381422107453000 RIDGWAY RESERVOIR METEOROLOGICAL STATION NEAR RIDGWAY, CO--Continued | | | TEMPERATU | JRE, AIR, | DEGREES | CELSIUS, | WAIER | YEAR OCTOBE | K 1999 | IO SEPIEMI | 5ER 2000 | | | |---|--|--|--|--|--|--|--|--|--|--|---|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 3.2
8.1
12.8
9.2
8.1 | -0.4 | -3.4
-2.7
.9
.8
1.0 | | -4.2
-3.8
-6.8
-4.2
-4.6 | .9
.2
1.2
4.4
2.4 | 7.4
8.8
9.5
19.7
19.7 | -2.8
-2.8
-3.8
-1.7
1.1 | 1.0
2.2
3.0
8.8
10.5 | 19.3
24.6
26.0
26.9
26.4 | .0
2.8
3.5
6.0 | 9.3
13.9
15.7
17.2
16.4 | | 6
7
8
9
10 | 9.9
10.2
11.3
7.8
8.5 | -5.3
-6.0
-6.4
-1.4 | 3.9 | 8.8
2.5
4.6
4.2
3.5 | -6.4
-1.7
-6.0
-1.4
-6.4 | 1.8
.3
1
.6
-2.0 | 19.3
15.4
18.1
19.3
16.1 | 1.8
-2.4
1.1 | 12.3
8.9
7.9
10.9
8.7 | 23.8
22.1
11.0
19.7
24.6 | 8.1
7.1
4.9
1.4
8.5 | 17.5
15.0
7.2
10.8
18.3 | | 11
12
13
14
15 | 9.2
4.6
2.8
10.6
9.2 | -1.4
-1.7
7
.4
-1.4 | 3.3
1.7
.8
5.0
5.0 | 9.9
8.5
11.3
12.8
11.3 | -9.0
-1.7
-4.6
-4.9 | .9
2.5
2.5
4.1
2.1 | 14.3
18.5
20.9
16.5
8.1 | .4
3
1.1
4.2
.7 | 7.7
9.4
11.4
10.9
4.0 | 19.7
9.9
16.1
20.1
23.3 | 3.2
-1.7
-1.4
1.8
4.9 | 14.6
4.2
7.5
11.7
14.6 | | 16
17
18
19
20 | 12.1
3.5
5.3
7.1
13.5 | -4.2 | 3.1
1.3
.2
-1.5
2.1 | 6.7
9.5
3.5
11.3
9.5 | -6.0 | 4
2.0
-1.7
4.0
2 | 17.3
21.3
17.3
7.1
17.3 | -1.0
1.1
2.5
-2.4
-3.5 | 8.3
11.5
9.4
3.3
7.0 | 22.1
12.8
11.0
17.7
20.1 | 9.5
5.3
1.1
3
3.9 | 17.5
9.1
6.2
8.7
12.5 | | 21
22
23
24
25 | 12.8
6.4
9.2
6.7
-1.4 | -3.1 | 5.4
1.6
1.1
1.2 | 2.1
7.4
11.3
12.4
16.1 | -4.6
-2.4
-2.8
-1.0
3 | -1.5
1.5
4.6
6.1
7.1 | 19.7
11.7
15.8
14.3
20.9 | .4
4.9
4.9
1.8
-1.7 | 9.3
8.7
9.6
8.1
9.8 | 22.9
26.4
28.7
24.2
22.9 | 8.8 | 13.6
17.0
19.5
17.2
14.2 | | 26
27
28
29
30
31 | 6.0
14.6
9.2
8.1 | | -2.1
4.2
4.9
1.6 | 13.9
17.7
9.2
11.3
10.2
1.4 | .0
-1.4
2.5
-1.4
-1.4
-2.8 | 6.7
7.7
4.9
4.6
2.4
9 | 22.1
24.6
22.1
17.7
14.6 | 2.8
3.5
5.3
6.7
5.7 | 13.3
14.4
14.3
11.9
9.2 | 17.3
24.6
29.7
30.6
30.1
28.7 | 6.4
4.2
7.8
11.7
10.2
11.3 | 12.1
14.8
19.8
22.1
21.5
20.1 | | MONTH | 14.6 | -10.5 | 1.4 | 17.7 | -9.0 | 2.2 | 24.6 | -3.8 | 8.9 | 30.6 | -1.7 | 14.2 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | DAY 1 2 3 4 5 | MAX
27.8
27.8
27.8
28.2
29.2 | JUNE 5.7 7.8 8.5 7.4 6.7 | MEAN
17.5
18.8
18.5
18.5 | 27.8
28.7 | | MEAN 20.2 20.4 22.9 19.1 20.1 | | | MEAN 23.1 24.3 23.2 22.3 21.2 | 20.5
24.2
25.1
28.2 | | | | 1
2
3
4 | 27.8
27.8
27.8
28.2 | JUNE 5.7 7.8 8.5 7.4 6.7 6.7 9.2 10.2 10.2 4.2 | 17.5
18.8
18.5
18.5 | 27.8
28.7 | JULY 13.1 10.2 14.6 8.8 9.2 9.9 12.8 | 20.2
20.4
22.9
19.1 | 32.1
32.1
30.1
29.7
29.7 | 11.7
14.6
15.8
15.8 | 23.1
24.3
23.2
22.3 | 20.5
24.2
25.1
28.2
26.9 | 9.2
9.2
7.8
7.8 | 15.6
17.3
16.5
19.2 | | 1
2
3
4
5
6
7
8
9
10 | 27.8
27.8
27.8
28.2
29.2
29.7
31.1
26.9
22.9
24.6
26.4
27.3 | JUNE 5.7 7.8 8.5 7.4 6.7 9.2 10.2 10.2 4.2 7.4 7.1 | 17.5
18.8
18.5
18.5
17.6
19.5
20.9
19.2
16.9
15.8 | 27.8
28.7
28.2
27.8
30.6
31.1
29.2
26.9
23.3
27.8 | JULY 13.1 10.2 14.6 8.8 9.2 9.9 12.8 12.8 12.1 11.3 | 20.2
20.4
22.9
19.1
20.1
21.4
20.1
18.5
16.9
19.6 | 32.1
32.1
30.1
29.7
29.7
29.2
30.1
31.1
31.6 | 11.7
14.6
15.8
15.8
11.7
11.0
10.2
10.6
12.4
11.3
13.5
14.3 | 23.1
24.3
23.2
22.3
21.2
20.7
21.0
22.5
22.0
21.0
20.6
20.4 | 20.5
24.2
25.1
28.2
26.9
23.3
22.9
22.1
23.8
25.5 | 9.2
9.2
7.8
7.8
12.1
11.7
7.4
7.4
5.7 | 15.6
17.3
16.5
19.2
19.2
16.6
15.5
12.5
14.6
16.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 27.8
27.8
27.8
28.2
29.2
29.7
31.1
26.9
22.9
24.6
26.4
27.3
23.8 | JUNE 5.7 7.8 8.5 7.4 6.7 6.7 9.2 10.2 10.2 4.2 7.4 7.1 9.9 5.3 | 17.5
18.8
18.5
17.6
19.5
20.9
16.9
15.8
17.5
18.4
18.1
15.5 | 27.8
28.7
28.2
27.8
30.6
31.1
29.2
26.9
23.3
27.8
29.7
28.2
30.1
29.2 | JULY 13.1 10.2 14.6 8.8 9.2 9.9 12.8 12.8 12.1 11.3 12.1 12.8 12.1 13.5 | 20.2
20.4
22.9
19.1
20.1
21.4
20.1
18.5
16.9
19.6
21.2
21.0
21.9
20.8 | 32.1
32.1
30.1
29.7
29.7
29.7
29.2
30.1
31.1
31.6
28.7
27.8
27.3
28.2
28.7 | 11.7
14.6
15.8
15.8
11.7
11.0
10.2
10.6
12.4
11.3
13.5
14.3
11.3 | 23.1
24.3
23.2
22.3
21.2
20.7
21.0
22.5
22.0
21.0
20.4
20.4
20.0
18.7 | 20.5
24.2
25.1
28.2
26.9
23.3
22.9
22.1
23.8
25.5
25.5
25.1
26.9 | 9.2
9.2
7.8
7.8
12.1
11.7
7.4
5.7
5.7
8.5
6.0
6.4
7.4 | 15.6
17.3
16.5
19.2
19.2
16.6
15.5
12.5
14.6
16.2
16.5
15.4
16.7
18.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 27.8
27.8
27.8
28.2
29.2
29.7
31.1
26.9
24.6
26.4
27.3
23.8
23.8
23.8
23.7
26.0
23.3
24.6 | JUNE 5.7 7.8 8.5 7.4 6.7 6.7 9.2 10.2 10.2 4.2 7.4 7.1 9.9 5.3 8.1 6.4 4.2 9.9 8.8 | 17.5
18.8
18.5
17.6
19.5
20.9
19.2
16.9
15.8
17.5
18.4
18.1
15.5
19.2
16.8
14.4
15.9
15.5 | 27.8
28.7
28.2
27.8
30.6
31.1
29.2
26.9
23.3
27.8
29.7
28.2
30.1
29.2
29.7
27.8
24.6
31.1
32.1 | JULY 13.1 10.2 14.6 8.8 9.2 9.9 12.8 12.8 12.1 11.3 12.1 11.3 12.1 13.5 11.7 11.7 13.9 11.3 8.8 | 20.2
20.4
22.9
19.1
20.1
21.4
20.1
18.5
16.9
19.6
21.2
21.0
21.9
20.8
20.4
18.2
18.4
21.6 | 32.1
32.1
30.1
29.7
29.7
29.7
29.2
30.1
31.1
31.6
28.7
27.8
27.3
28.2
28.7
27.3 |
11.7
14.6
15.8
11.7
11.0
10.2
10.6
12.4
11.3
13.5
14.3
12.1
12.1
12.8
10.6
12.8
11.7 | 23.1
24.3
23.2
22.3
21.2
20.7
21.0
22.5
22.0
21.0
20.4
20.4
20.0
18.7
18.1
19.9
18.0
15.7
17.5 | 20.5
24.2
25.1
28.2
26.9
23.3
22.9
22.1
23.8
25.5
25.5
25.5
29.2
28.7
30.1
27.8
20.9
24.2 | 9.2
9.2
7.8
7.8
12.1
11.7
7.4
5.7
5.7
8.5
6.0
6.4
7.4
9.2
8.8
9.2
8.5
6.0 | 15.6
17.3
16.5
19.2
19.2
16.6
15.5
14.6
16.2
16.5
15.4
16.7
18.0
19.2 | | 1 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | 27.8
27.8
27.8
28.2
29.2
29.7
31.1
26.9
24.6
26.4
27.3
23.8
23.8
23.8
23.8
24.6
22.9
26.4
26.9
26.9
26.9
27.8
28.7 | JUNE 5.7 7.8 8.5 7.4 6.7 6.7 9.2 10.2 10.2 4.2 7.4 7.1 9.9 5.3 8.1 6.4 4.2 9.9 8.8 8.5 4.6 8.5 12.4 9.2 | 17.5
18.8
18.5
17.6
19.5
20.9
15.8
17.5
18.4
18.1
15.5
19.2
16.8
14.4
15.5
16.2
16.3
18.8
18.8
16.6 | 27.8
28.7
28.2
27.8
30.6
31.1
29.2
26.9
23.3
27.8
29.7
28.2
30.1
29.2
29.7
27.8
24.6
31.1
31.1
31.1
31.6
31.1
33.2
30.6 | JULY 13.1 10.2 14.6 8.8 9.2 9.9 12.8 12.8 12.1 11.3 12.1 11.3 12.1 13.5 11.7 11.7 13.9 11.3 8.8 9.9 9.9 11.0 9.9 14.6 | 20.2
20.4
22.9
19.1
20.1
21.4
20.1
18.5
16.9
19.6
21.2
21.0
21.9
20.8
20.4
18.2
18.4
21.3
22.1
3 | 32.1
32.1
30.1
29.7
29.7
29.7
29.2
30.1
31.6
28.7
27.8
27.3
28.2
28.7
27.3
28.2
25.5
19.3
23.3
25.5 | 11.7
14.6
15.8
15.8
11.7
11.0
10.2
10.6
12.4
11.3
13.5
14.3
11.3
12.1
12.1
12.1
12.1
12.1
11.7
11.7 | 23.1
24.3
23.2
22.3
21.2
20.7
21.0
22.5
22.0
21.0
20.4
20.4
20.0
18.7
18.1
19.9
18.0
15.7
17.5
18.0 | 20.5
24.2
25.1
28.2
26.9
23.3
22.9
22.1
23.8
25.5
25.5
25.5
29.2
28.7
30.1
27.8
20.9
24.2
21.7
23.8
25.5 | 9.2
9.2
7.8
7.8
12.1
11.7
7.4
5.7
5.7
8.5
6.0
6.4
7.4
9.2
8.8
9.2
8.8
9.2
8.5
6.0
4.9 | 15.6
17.3
16.5
19.2
19.2
16.6
15.5
14.6
16.2
16.5
15.4
16.7
18.0
19.2
19.1
19.0
14.2
14.6
12.8 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 27.8
27.8
27.8
28.2
29.2
29.7
31.1
26.9
24.6
26.4
27.3
23.8
23.8
23.8
23.8
23.8
23.8
23.8
23 | JUNE 5.7 7.8 8.5 7.4 6.7 6.7 9.2 10.2 10.2 10.2 4.2 7.4 7.1 9.9 5.3 8.1 6.4 4.2 9.9 8.5 4.6 8.5 12.4 9.2 8.5 | 17.5 18.8 18.5 17.6 19.5 20.9 15.8 17.5 18.4 18.1 15.5 19.2 16.8 14.4 15.9 16.2 16.3 18.8 18.8 18.6 17.1 | 27.8
28.7
28.2
27.8
30.6
31.1
29.2
26.9
23.3
27.8
29.7
28.2
29.7
27.8
24.6
31.1
31.1
31.6
31.1
33.2
30.6
30.1 | JULY 13.1 10.2 14.6 8.8 9.2 9.9 12.8 12.8 12.1 11.3 12.1 11.3 12.1 12.8 9.9 11.7 11.7 13.9 11.3 8.8 9.9 9.9 11.0 9.9 14.6 11.7 12.8 12.4 12.1 10.6 12.8 | 20.2
20.4
22.9
19.1
20.1
21.4
20.1
18.5
16.9
19.6
21.2
21.0
21.9
20.8
20.4
18.2
18.4
21.3
22.1
22.1
22.1
22.2
22.3 | 32.1
32.1
30.1
29.7
29.7
29.7
29.2
30.1
31.1
31.6
28.7
27.3
28.2
28.7
27.3
28.2
25.5
19.3
25.5
19.3
25.5
25.1
24.6
25.1
26.4
26.0
21.7 | 11.7
14.6
15.8
11.7
11.0
10.6
12.4
11.3
13.5
14.3
11.3
12.1
12.1
12.8
10.6
12.8
11.7
11.7 | 23.1
24.3
23.2
22.3
21.2
20.7
21.0
22.5
22.0
21.0
20.6
20.4
20.0
18.7
18.1
19.9
18.0
15.7
17.5
18.0
16.3
16.7
17.8
16.6
18.5
18.5
18.5 | 20.5
24.2
25.1
28.2
26.9
23.3
22.9
22.1
23.8
25.5
25.5
25.1
26.9
29.2
28.7
30.1
27.8
20.9
24.2
21.7
23.8
25.5 | 9.2
9.2
7.8
7.8
12.1
11.7
7.4
5.7
5.7
8.5
6.0
6.4
9.2
8.8
9.2
8.5
6.0
4.9
7.1
9.9
-4,7
-3.5
6.4
13.5
6.4
13.5
6.4
14.9 | 15.6
17.3
16.5
19.2
19.2
16.6
15.5
14.6
16.2
16.5
15.4
16.7
18.0
19.2
19.1
19.0
14.2
14.6
12.8
14.4
19.7
12.8 | ### 381422107453000 RIDGWAY RESERVOIR METEOROLOGICAL STATION NEAR RIDGWAY, CO--Continued # PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY SUM VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------|----------------------|----------------------|----------------------|----------------------------|----------------------------| | 1
2
3
4
5 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.4
.4
.0 | .1
.1
.2
.0 | .0
.0
.0 | .0
.1
.0
.0 | .0
.1
.0
.0 | .0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0 | | 6
7
8
9
10 | .0
.1
.0
.0 | .0
.0
.0
.0 | .0
.0
.1
.0 | .0.0.0 | .0
.0
.0
.0 | .0
.3
.0
.0 | .0
.0
.0 | .0
.2
.8
.0 | .0
.0
.1
.0 | .0
.0
.1
.2 | .0
.0
.0 | .2
.0
.2
.1 | | 11
12
13
14
15 | .0
.0
.0
.0 | .0
.0
.0
.0 | .1
.0
.0
.0 | .0.0.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0.0.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.2 | .0.0.0 | | 16
17
18
19
20 | .0.0.0 | .0.0.0 | .0.0.0 | .0.0.0 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | .0.0.0.0 | .0.0.0 | .0
.2
.0
.0 | .3
.0
.5
.0 | .0
.0
.5
.0 | | 21
22
23
24
25 | .0
.0
.0
.0 | .0
.1
.0
.0 | .0
.0
.0
.0 | .1
.1
.0
.0 | .0
.2
.0
.0 | .1
.0
.0
.0 | .0
.0
.0 | .0.0.0 | .0
.0
.1
.0 | .0
.0
.0
.0 | .1
.1
.0
.0 | .1
.0
.0
.2
.0 | | 26
27
28
29
30
31 | .0.0.0 | .0
.0
.0
.0 | .0.0.0 | .3 .0 .0 .0 .0 .0 | .0
.0
.0
.0 | .0
.0
.3
.0
.2 | .0 | .0.0.0.0.0 | .0.0.0.0.0 | .0.0.0 | .1
.2
.0
.0
.1 | .0
.0
.0
.3
.0 | | TOTAL | 0.1 | 0.2 | 1.1 | 1.0 | 0.4 | 1.6 | 0.2 | 1.0 | 0.3 | 0.6 | 2.1 | 1.6 | CAL YR 1999 TOTAL 15.9 WTR YR 2000 TOTAL 10.2 ### MISCELLANEOUS STATION ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 09010500 COLORADO RIVER BELOW BAKER GULCH, NEAR GRAND LAKE, CO (LAT 40 19 33N LONG 105 51 22W) | 0901050 | | COLORADO | | | | | | | | |--|---|---|---|---|---|---|--|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
14 | 1132 | 15 | 70 | 4.5 | MAY
18 | 0943 | 207 | 46 | 1.0 | | NOV
04 | 1030 | 7.3 | 72 | .5 | JUN
13 | 1622 | 183 | 42 | 10.0 | | JAN
12 | 1352 | 8.5 | 73 | .0 | JUL
11 | 1605 | 55 | 62 | 17.0 | | MAR
08 | | | 73 | | AUG
08 | 1650 | | 67 | | | APR | 1411 | 10 | | .5 | SEP | | 20 | | 18.5 | | 19 | 1255 | 36 | 56 | .0 | 14 | 1100 | 16 | 72 | 11.5 | | | 090 | 019500 | COLORAD | OO RIVER NEAR GR | ANBY, CO (LAT 40 07 15M | I LONG 10 |)5 54 00W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
14 | 0942 | 110 | 51 | 6.0 | JUL
11 | 1349 | 82 | 56 | 14.5 | | APR
19 | 1001 | 28 | 71 | 1.5 | AUG
08 | 1234 | 39 | 58 | 13.0 | | MAY
17 | 1631 | 84 | 62 | 4.5 | SEP
14 | 1252 | 18 | 70 | 11.5 | | JUN
13 | 1334 | 468 | 51 | 8.5 | | | | | | | | | | | | | | | | | | DATE | 0902 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) |
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PARK, CO (LAT 39 54 00M
DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
MAY | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
13
NOV | TIME
1658 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
MAY
17
JUN | TIME
1435 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
13
NOV
02
JAN | TIME
1658
1145 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | DATE MAY 17 JUN 14 JUL | TIME
1435
1048 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 1.0 7.5 | | OCT
13
NOV
02
JAN
11 | TIME
1658
1145
1730 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
16
5.6
7.1 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 6.0 1.0 | DATE MAY 17 JUN 14 JUL 10 AUG | TIME
1435
1048
1008 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 | | OCT
13
NOV
02
JAN
11
MAR
06 | TIME
1658
1145
1730
1218 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
85
105
122 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
6.0
1.0
.5 | DATE MAY | TIME 1435 1048 1008 1213 | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
22
19
37 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 | | OCT
13
NOV
02
JAN
11
MAR
06 | TIME
1658
1145
1730 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
85
105
122
187
200 | TEMPER-ATURE WATER (DEG C) (00010) 6.0 1.0 .5 2.0 7.0 | DATE MAY | TIME 1435 1048 1008 1213 1030 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 22 19 37 18 8.7 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
100
76
66
83 | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 | | OCT
13
NOV
02
JAN
11
MAR
06 | TIME 1658 1145 1730 1218 1517 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
85
105
122
187
200 | TEMPER-ATURE WATER (DEG C) (00010) 6.0 1.0 .5 2.0 7.0 | DATE MAY | TIME 1435 1048 1008 1213 1030 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 22 19 37 18 8.7 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
100
76
66
83 | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 | | OCT 13 NOV 02 JAN 11 MAR 06 APR 17 | TIME 1658 1145 1730 1218 1517 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 16 DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM)(00095) 85 105 122 187 200 VASQUEZ SPE-CIFIC CON-DUCT-ANCE (US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 6.0 1.0 .5 2.0 7.0 CREEK AT WINTE | DATE MAY 17 JUN 14 JUL 10 AUG 07 SEP 12 R PARK, CO (LAT 39 55 1 | TIME 1435 1048 1008 1213 1030 L3N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 22 19 37 18 8.7 105 47 05 DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 100 76 66 83 101 W) SPE-CIFIC CON-DUCT-ANCE (US/CM) | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 10.5 6.5 TEMPER-ATURE WATER (DEG C) | | OCT 13 NOV 02 JAN 11 MAR 06 APR 17 | TIME 1658 1145 1730 1218 1517 09029 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 16 5000 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
85
105
122
187
200
VASQUEZ
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.0 1.0 .5 2.0 7.0 CREEK AT WINTE TEMPER- ATURE WATER (DEG C) (00010) | DATE MAY 17 JUN 14 JUL 10 AUG 07 SEP 12 R PARK, CO (LAT 39 55 1 | TIME 1435 1048 1008 1213 1030 13N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 22 19 37 18 8.7 105 47 05 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
100
76
66
83
101
W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 10.5 6.5 TEMPER-ATURE WATER (DEG C) (00010) | | OCT 13 NOV 02 JAN 11 MAR 06 APR 17 DATE | TIME 1658 1145 1730 1218 1517 09029 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 16 5000 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
85
105
122
187
200
VASQUEZ
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.0 1.0 .5 2.0 7.0 CREEK AT WINTE TEMPER- ATURE WATER (DEG C) (00010) 1.5 | DATE MAY 17 JUN 14 JUL 10 AUG 07 SEP 12 R PARK, CO (LAT 39 55 1 | TIME 1435 1048 1008 1213 1030 L3N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 22 19 37 18 8.7 105 47 05 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
100
76
66
83
101
W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 10.5 6.5 TEMPER-ATURE WATER (DEG C) (00010) 1.5 | | OCT 13 NOV 02 JAN 11 MAR 06 APR 17 DATE OCT 13 NOV 03 JAN | TIME 1658 1145 1730 1218 1517 09029 TIME 0853 1031 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 16 5000 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.1 1.4 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
85
105
122
187
200
VASQUEZ
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.0 1.0 .5 2.0 7.0 7.0 CCREEK AT WINTE TEMPER- ATURE WATER (DEG C) (00010) 1.5 .0 | DATE MAY 17 JUN 14 JUL 10 AUG 07 SEP 12 R PARK, CO (LAT 39 55 1 DATE MAY 17 JUN 12 JUL 12 JUL | TIME 1435 1048 1008 1213 1030 L3N LONG TIME 1310 1643 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 22 19 37 18 8.7 105 47 05 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 13 9.3 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
100
76
66
83
101
W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 10.5 6.5 TEMPER- ATURE WATER (DEG C) (00010) 1.5 11.2 | | OCT 13 NOV 02 JAN 11 MAR 06 APR 17 DATE OCT 13 NOV 03 JAN 11 MAR | TIME 1658 1145 1730 1218 1517 09029 TIME 0853 1031 1539 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 5.6 7.1 4.9 16 5000 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.1 1.4 8.3 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
85
105
122
187
200
VASQUEZ
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.0 1.0 .5 2.0 7.0 CREEK AT WINTE TEMPER- ATURE WATER (DEG C) (00010) 1.5 .0 .0 | DATE MAY 17 JUN 14 JUL 10 AUG 07 SEP 12 R PARK, CO (LAT 39 55 1 DATE MAY 17 JUN 12 JUL 10 AUG | TIME 1435 1048 1008 1213 1030 ISIN LONG TIME 1310 1643 1500 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 22 19 37 18 8.7 105 47 05 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 13 9.3 8.6 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 100 76 66 83 101 W) SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 42 34 42 | ATURE WATER (DEG C) (00010) 1.0 7.5 8.5 10.5 6.5 TEMPER-ATURE WATER (DEG C) (00010) 1.5 11.2 13.5 | SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS 09025300 ELK CREEK AT UPPER STATION, NEAR FRASER, CO (LAT 39 53 21N LONG 105 49 55W) | | 09025300 | ELK C | REEK AT U | IPPER STATIC | N, NEAR FRASE | R, CO | (LAT 39 | 53 21N | LONG 105 4 | 9 55W) | | |--|---|---|---|--|----------------|--|-----------------|---|--|---|--| | DATE | TIME |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
13 | 1039 | .83 | 42 | 1.0 | | JUL
10. | | 1612 | 2.3 | 33 | 8.5 | | MAY
17 | 0854 | .38 | 37 | 1.0 | | AUG
07. | | 1400 | .99 | 37 | 10.0 | | JUN
12 | 1332 | 5.5 | 28 | 5.8 | | 07. | • • | 1100 | .,,, | 3, | 10.0 | | 12 | 1332 | 5.5 | 28 | 5.8 | | | | | | | | | | 09026 | 500 | ST. LOU | JIS CREEK NE | AR FRASER, CO | (LAT | 39 54 3 | 6N LONG | 105 52 40W |) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | 1 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
12 | 1202 | 17 | 72 | 4.0 | | MAY | | 1120 | 22 | 71 | 2 5 | | NOV | 1303 | 17 | | 4.0 | | JUN | | | 23 | | 2.5 | | 02
JAN | 1336 | 7.2 | 90 | .0 | | JUL | | 1522 | 57 | 55 | 9.5 | | 13
MAR | 1327 | 6.3 | 86 | .0 | | 11.
AUG | | 0842 | 15 | 71 | 7.5 | | 06
APR | 1436 | 8.0 | 87 | .0 | | 07.
SEP | | 1537 | 14 | 71 | 14.5 | | 18 | 1252 | 14 | 83 | 2.0 | | 13. | • • | 1242 | 11 | 76 | 8.5 | | | ngn | 32100 | CARTA | I CDEEK MEVD | FRASER, CO (1 | ፣ አጥ ጋር | 50 00% | ILONG 10 | 5 44 40w) | | | | | 050 | | CABIN | CREEK NEAK | ridiolit, co (| LIAI 39 | 35 051 | LONG 10 | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | Traible, co | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT 13 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | JUN
14. | DATE | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | OCT
13
NOV
03 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | JUN
14.
JUL
12. | DATE
 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
13
NOV
03
JAN
25 | TIME
1442 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | JUN
14.
JUL
12.
AUG
09. | DATE
 | TIME
0836 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
13
NOV
03
JAN
25
MAR
07 | TIME
1442
1349 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | JUN 14.
JUL 12.
AUG | DATE | TIME
0836
0913 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 3.0 | | OCT
13
NOV
03
JAN
25 | TIME 1442 1349 1438 | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
2.6
3.9
2.8
1.1 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
4.5
.0 | | JUN 14. JUL 12. AUG 09. SEP | DATE | TIME
0836
0913
1022 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 6.5 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
27
37 | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 | | OCT
13
NOV
03
JAN
25
MAR
07 | TIME 1442 1349 1438 1032 | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
2.6
3.9
2.8
1.1 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
4.5
.0 | | JUN 14. JUL 12. AUG 09. SEP | DATE | TIME
0836
0913
1022 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 6.5 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
27
37 | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 | | OCT
13
NOV
03
JAN
25
MAR
07 | TIME 1442 1349 1438 1032 1422 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 3.9 2.8 1.1 3.1 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
43
42
43
45 | TEMPER-ATURE WATER (DEG C) (00010) 4.5 .0 .0 .5 6.5 | JONES PASS, CO | JUN
14.
JUL
12.
AUG
09.
SEP
12. | DATE | TIME
0836
0913
1022
1314 | DIS-CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061)
16
6.5
2.7
2.3 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
27
37
43 | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 | | OCT
13
NOV
03
JAN
25
MAR
07 | TIME 1442 1349 1438 1032 1422 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 3.9 2.8 1.1 3.1 DIS-CHARGE, INST. CUBIC FEET PER | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 43 42 43 45 23 BOBTAIL SPE-CIFIC CON-DUCT-ANCE (US/CM) | TEMPER-ATURE WATER (DEG C) (00010) 4.5 .0 .0 .5 6.5 CREEK NEAR | | JUN 14. JUL 12. AUG 09. SEP 12. | DATE | TIME
0836
0913
1022
1314 | DIS-CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061)
16
6.5
2.7
2.3 | CIFIC CON- DUCT- ANCE (US/CM) (00095) 27 37 43 44 W) SPE- CIFIC CON- DUCT- ANCE (US/CM) | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 8.0 TEMPERATURE WATER (DEG C) | | OCT
13
NOV
03
JAN
25
MAR
07
MAY
16 | TIME 1442 1349 1438 1032 1422 090349 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 3.9 2.8 1.1 3.1 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TEMPER- ATURE WATER (DEG C) (00010) 4.5 .0 .0 .5 6.5 CREEK NEAR TEMPER- ATURE ATURE (DEG C) (00010) | | JUN 14. JUL 12. AUG 09. SEP 12. | DATE 39 45 | TIME 0836 0913 1022 1314 37N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 6.5 2.7 2.3 105 54 21 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 27 37 43 44 W) SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 8.0 TEMPER-ATURE WATER (DEG C) (00010) | | OCT 13 NOV 03 JAN 25 MAR 07 MAY 16 DATE | TIME 1442 1349 1438 1032 1422 090349 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 3.9 2.8 1.1 3.1 00 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
43
42
43
45
23
BOBTAIL
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 4.5 .0 .0 .5 6.5 CREEK NEAR TEMPER-ATURE WATER (DEG C) (00010) .0 | | JUN 14. JUL 12. AUG 09. SEP 12. O (LAT | DATE 39 45 DATE | TIME 0836 0913 1022 1314 37N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 6.5 2.7 2.3 105 54 21 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 27 37 43 44 W) SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 8.0 TEMPER-ATURE WATER (DEG C) (00010) | | OCT 13 NOV 03 JAN 25 MAR 07 MAY 16 DATE OCT 19 NOV 17 JAN | TIME 1442 1349 1438 1032 1422 090349 TIME 0946 1100 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 3.9 2.8 1.1 3.1 00 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 1.7 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
43
42
43
45
23
BOBTAIL
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 4.5 .0 .0 .5 6.5 CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) .0 .3 | | JUN 14. JUL 12. AUG 09. SEP 12. O (LAT MAY 26. JUN 21. AUG | DATE 39 45 DATE | TIME 0836 0913 1022 1314 37N LONG TIME 1410 1330 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
16
6.5
2.7
2.3
105 54 21
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 27 37 43 44 W) SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 35 36 | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 8.0 TEMPER-ATURE WATER (DEG C) (00010) .5 9.8 | | OCT 13 NOV 03 JAN 25 MAR 07 MAY 16 DATE OCT 19 NOV NOV 17 JAN 20 MAR MAR | TIME 1442 1349 1438 1032 1422 090349 TIME 0946 1100 1410 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 3.9 2.8 1.1 3.1 00 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 1.7 .85 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 43 42 43 45 23 BOBTAIL SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 60 67 71 | TEMPER- ATURE WATER (DEG C) (00010) 4.5 .0 .0 .5 6.5 CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) .0 .3 .1 | | JUN 14. JUL 12. AUG 09. SEP 12. O (LAT MAY 26. JUN 21. AUG 07. SEP | DATE 39 45 DATE | TIME 0836 0913 1022 1314 37N LONG TIME 1410 1330 1258 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 16 6.5 2.7 2.3 105 54 21 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 44 29 4.4 | CIFIC CON- DUCT- ANCE (US/CM) (00095) 27 37 43 44 W) SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 35 36 55 | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 8.0 TEMPER-ATURE WATER (DEG C) (00010) .5 9.8 13.0 | | OCT 13 NOV 03 JAN 25 MAR 07 MAY 16 DATE OCT 19 NOV 17 JAN 20 | TIME 1442 1349 1438 1032 1422 090349 TIME 0946 1100 | DIS- CHARGE, INST.
CUBIC FEET PER SECOND (00061) 2.6 3.9 2.8 1.1 3.1 00 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 2.6 1.7 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
43
42
43
45
23
BOBTAIL
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 4.5 .0 .0 .5 6.5 CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) .0 .3 | | JUN 14. JUL 12. AUG 09. SEP 12. O (LAT MAY 26. JUN 21. AUG 07. | DATE 39 45 DATE | TIME 0836 0913 1022 1314 37N LONG TIME 1410 1330 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
16
6.5
2.7
2.3
105 54 21
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 27 37 43 44 W) SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 35 36 55 | ATURE WATER (DEG C) (00010) 3.0 8.0 9.5 8.0 TEMPER-ATURE WATER (DEG C) (00010) .5 9.8 | ### SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS ## MISCELLANEOUS STATION ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000--Continued WILLIAMS FORK BELOW STEELMAN CREEK, CO (LAT 39 46 44N LONG 105 55 40W) 09035500 | | 09035500 | W | ILLIAMS F | ORK BELOW | STEELMAN | CREEK, | CO | (LAT 39 4 | 6 44N L | ONG 105 55 | 40W) | | |------------------|---------------|---|--|---|-----------|---------|------------------|-----------|--------------|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
19
NOV | 1215 | 7.8 | 60 | .0 | | | MAY
26
JUN | | 1120 | 119 | 34 | 1.5 | | 17 | 1240 | 5.2 | 61 | .3 | | | 21 | | 1110 | 79 | 36 | 4.8 | | JAN
20
MAR | 1140 | 3.3 | 68 | .3 | | | AUG
07
SEP | | 1245 | 12 | 58 | 12.0 | | 02
APR | 1110 | 2.9 | 72 | .3 | | | 06 | | 1250 | 1.1 | 80 | 8.5 | | 25 | 1205 | 6.3 | 65 | .5 | | | | | | | | | | 090
DATE | 35700
TIME | WILLIA DIS- CHARGE, INST. CUBIC FEET PER | MS FORK A SPE- CIFIC CON- DUCT- ANCE | BOVE DARL TEMPER- ATURE WATER | ING CREEK | , NEAR | LEAL . | , CO (LAT | 39 47 : | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE | TEMPER-
ATURE
WATER | | | 11112 | SECOND
(00061) | (US/CM)
(00095) | (DEG C)
(00010) | | | | 2112 | 111111 | SECOND
(00061) | (US/CM)
(00095) | (DEG C)
(00010) | | OCT
20
NOV | 1105 | 17 | 65 | .5 | | | MAY
03
23 | | 1330
1400 | 64
130 | 55
44 | 7.0
7.5 | | 23
JAN | 1445 | 9.5 | 77 | .0 | | | JUN
06 | | 1330 | 265 | 36 | 7.5 | | 20
MAR | 1320 | 8.1 | 71 | .0 | | | JUL
11 | | 1340 | 28 | 54 | 8.5 | | 01 | 1400 | 8.4 | 73 | .0 | | | AUG | | | | | | | APR
13 | 1210 | 13 | 70 | 3.0 | | | 15
SEP | | 1430 | 10 | 67 | 5.5 | | | | | | | | | 25 | | 1300 | 11 | 65 | 7.0 | | | 090 | 35800 | DARLI | NG CREEK | NEAR LEAL | , CO (L | AT 39 | 9 48 17N | LONG 10 | 6 01 11W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
20 | 1230 | 3.6 | 76 | .0 | | | MAY
03 | | 1050 | 9.7 | 67 | 2.5 | | NOV
23 | 1150 | 2.8 | 80 | .0 | | | 23.
JUN | | 1100 | 26 | 54 | 4.0 | | JAN
20 | 1520 | 2.2 | 81 | .0 | | | 06
20 | | 1140
1545 | 55
25 | 46
52 | 5.0
7.0 | | MAR
01 | 1130 | 2.0 | 85 | .0 | | | JUL
11 | | 1220 | 9.1 | 64 | 9.0 | | APR
04 | 1120 | 2.2 | 84 | .5 | | | AUG
15 | | 1235 | 3.8 | 78 | 10.0 | | | | | | | | | SEP
25 | | 1130 | 3.7 | 77 | 1.0 | | | | | | | | | | | | | | | ### SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS MISCELLANEOUS STATION ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000--Continued | | 09035900 | COLL | ייט דייסע כי | TODE WITH TAME FORE | NEAR LEAL, CO (LAT 39 | 47 44NT I | ONG 106 0 | 1 4014) | | |--|---|--|--|---|--|---|---|--|--| | | 09035900 | | In FORK C | F WILLIAMS FORK | NEAR LEAL, CO (LAI 39 | 4/44101 | | 1 49W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
20 | 1430 | 11 | 85 | 1.5 | MAY
03 | 1500 | 44 | 69 | 7.0 | | NOV
23 | 1330 | 7.9 | 91 | .0 | 23
JUN | 1505 | 97 | 56 | 8.0 | | JAN
20 | 1130 | 7.8 | 93 | .0 | 06
JUL | 1445 | 191 | 46 | 9.0 | | MAR
02 | 0850 | 7.4 | 94 | .0 | 11
AUG | 1530 | 38 | 68 | 14.5 | | APR
13 | 1330 | 10 | 92 | 4.0 | 15
SEP | 1550 | 15 | 84 | 13.0 | | 13 | 1330 | 10 | 72 | 4.0 | 25 | 1400 | 15 | 86 | 3.5 | | | 090 | 036000 | WILLI | AMS FORK NEAR LE | AL, CO (LAT 39 49 53N | LONG 10 | 5 03 15W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
21 | 1000 | 27 | 80 | 1.0 | MAY
03 | 1620 | 139 | 66 | 9.5 | | NOV 23 | 1630 | 27 | 82 | .5 | 23
JUN | 1630 | 327 | 55 | 10.0 | | JAN
20 | 1715 | 22 | 85 | .5 | 06
JUL | 1710 | 630 | 47 | 10.0 | | MAR
01 | 1630 | 19 | 87 | 1.5 | 11
AUG | 1730 | 98 | 67 | 15.5 | | APR
04 | 1630 | 19 | 88 | 5.0 | 15
SEP | 1800 | 40 | 83 | 13.5 | | | | | - | | 26 | 0915 | 40 | 80 | 3.0 | | | | | | | | | | | | | | 09037 | DIS-
CHARGE, | SPE- | IS FORK NEAR PARS | SHALL, CO (LAT 40 00 0 | 1n Long I | DIS-
CHARGE, | SPE- | | | DATE | 09037 | DIS- | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SHALL, CO (LAT 40 00 0) DATE | 1n long : | DIS- | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT 21 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | OCT | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE MAY 04 24 JUN | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT 21 | TIME
1135 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | DATE MAY 04 24 | TIME
1230 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT 21
NOV 24
JAN | TIME
1135
0945 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | DATE MAY 04 24 JUN 07 | TIME
1230
1400 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
7.0
6.5 | | OCT 21 NOV 24 JAN 21 MAR 02 APR | TIME 1135 0945 1130 1100 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
101
120
105 | TEMPER-ATURE WATER (DEG C) (00010) 2.5 .0 .0 1.5 | DATE MAY 04 24 JUN 07 JUL 12 AUG 16 | 1230
1400
1000 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) |
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
7.0
6.5
7.5 | | OCT 21 NOV 24 JAN 21 MAR 02 | TIME
1135
0945
1130 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
47
38 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 2.5 .0 | DATE MAY 04 24 JUN 07 JUL 12 AUG | 1230
1400
1000
1005 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
69
51
47 | ATURE WATER (DEG C) (00010) 7.0 6.5 7.5 | | OCT 21 NOV 24 JAN 21 MAR 02 APR 05 | TIME 1135 0945 1130 1100 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 38 46 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
101
120
105
109 | TEMPER-ATURE WATER (DEG C) (00010) 2.5 .0 .0 1.5 4.0 | DATE MAY | 1230
1400
1000
1005
0935
1045 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
308
516
620
14
15
74 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
69
51
47
114
130 | ATURE WATER (DEG C) (00010) 7.0 6.5 7.5 15.0 5.5 | | OCT 21 NOV 24 JAN 21 MAR 02 APR 05 | TIME 1135 0945 1130 1100 1030 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 38 46 WILLIA DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 101 120 105 109 108 MS FORK E | TEMPER- ATURE WATER (DEG C) (00010) 2.5 .0 .0 1.5 4.0 SELOW WILLIAMS FOR TEMPER- ATURE WATER (DEG C) | DATE MAY 04 24 JUN 07 JUL 12 AUG 16 SEP 26 | 1230
1400
1000
1005
0935
1045 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 308 516 620 14 15 74 7N LONG 10 DIS-CHARGE, INST. CUBIC FEET PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
69
51
47
114
130
101
6 12 17W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE WATER (DEG C) (00010) 7.0 6.5 7.5 15.0 15.0 5.5 TEMPER- ATURE WATER (DEG C) | | OCT 21 NOV 24 JAN 21 MAR 02 APR 05 | TIME 1135 0945 1130 1100 1030 038500 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 38 46 WILLIA DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
101
120
105
109
108
MS FORK E
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 2.5 .0 .0 1.5 4.0 TEMPER- ATURE WATER (DEG C) (00010) | DATE MAY | TIME 1230 1400 1000 1005 0935 1045 40 02 07 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 308 516 620 14 15 74 7N LONG 10 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
69
51
47
114
130
101
6 12 17W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | OCT 21 NOV 24 JAN 21 MAR 02 APR 05 DATE OCT 21 NOV | TIME 1135 0945 1130 1100 1030 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 38 46 WILLIA DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
101
120
105
109
108
MS FORK E
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 2.5 .0 .0 .1.5 4.0 ELOW WILLIAMS FOR TEMPER- ATURE WATER (DEG C) (00010) 9.0 | DATE MAY | TIME 1230 1400 1000 1005 0935 1045 40 02 07 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 308 516 620 14 15 74 7N LONG 10 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 410 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
69
51
47
114
130
101
6 12 17W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 7.0 6.5 7.5 15.0 15.0 5.5 TEMPERATURE WATER (DEG C) (00010) | | OCT 21 NOV 24 JAN 21 MAR 02 APR 05 O9 DATE OCT 21 NOV 24 MAR | TIME 1135 0945 1130 1100 1030 038500 TIME 1345 1145 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 38 46 WILLIA DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 108 108 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
101
120
105
109
108
MS FORK E
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 2.5 .0 .0 .1.5 4.0 SELOW WILLIAMS FOR TEMPER-ATURE WATER (DEG C) (00010) 9.0 6.0 | DATE MAY 04 24 JUN 07 JUL 12 AUG 16 SEP 26 PRK RESERVOIR, CO (LAT DATE JUN 07 JUL 12 AUG | TIME 1230 1400 1000 1005 0935 1045 40 02 07 TIME 1300 1240 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
308
516
620
14
15
74
70 LONG 10
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
69
51
47
114
130
101
6 12 17W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 7.0 6.5 7.5 15.0 15.0 5.5 TEMPER- ATURE WATER (DEG C) (00010) 7.0 8.5 | | OCT 21 NOV 24 JAN 21 MAR 02 APR 05 OCT 21 NOV 24 MAR 02 APR 21 APR 05 | TIME 1135 0945 1130 1100 1030 TIME 1345 1145 1230 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 38 46 WILLIA DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 108 100 152 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
101
120
105
109
108
MS FORK E
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 2.5 .0 .0 1.5 4.0 SELOW WILLIAMS FOR TEMPER- ATURE WATER (DEG C) (00010) 9.0 6.0 3.0 | DATE MAY | TIME 1230 1400 1000 1005 0935 1045 40 02 07 TIME 1300 1240 1200 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 308 516 620 14 15 74 7N LONG 10 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 410 113 151 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 69 51 47 114 130 101 6 12 17W) SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 104 97 95 | ATURE WATER (DEG C) (00010) 7.0 6.5 7.5 15.0 15.0 5.5 TEMPERATURE WATER (DEG C) (00010) 7.0 8.5 9.0 | | OCT 21 NOV 24 JAN 21 MAR 02 APR 05 DATE OCT 21 NOV 24 NOV 24 MAR 02 | TIME 1135 0945 1130 1100 1030 038500 TIME 1345 1145 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 47 38 41 38 46 WILLIA DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 108 108 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
101
120
105
109
108
MS FORK E
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 2.5 .0 .0 .1.5 4.0 SELOW WILLIAMS FOR TEMPER-ATURE WATER (DEG C) (00010) 9.0 6.0 | DATE MAY | TIME 1230 1400 1000 1005 0935 1045 40 02 07 TIME 1300 1240 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
308
516
620
14
15
74
70 LONG 10
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
69
51
47
114
130
101
6 12 17W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 7.0 6.5 7.5 15.0 15.0 5.5 TEMPER- ATURE WATER (DEG C) (00010) 7.0 8.5 | | | MISCEI | LLANEOUS S | TATION AN | MALISES, WAIER IE | AR OCTOBER 1999 TO SE | PIEMBER . | 2000 | IIIuea | | |--|---|--|--|--|---|---|--|--|---| | | 090 | 046490 | BLUE | RIVER AT BLUE RI | VER, CO (LAT 39 27 21 | N LONG 1 | 06 01 52W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1038 | 19 | 162 | 7.5 | JUN
06 | 1430 | 80 | 134 | 11.0 | | NOV
01 | 1340 | 14 | 167 | 4.5 | JUL
12 | 1753 | 39 | 129 | 14.5 | | JAN
03 | 1421 | | 193 | 1.0 | AUG
17 | 0820 | 32 | 145 | 14.0 | | MAR
07 | 1324 | 20 | 193 | 1.0 | SEP
06 | 1208 | 43 | 129 | 12.5 | | MAY
01 | 1226 | 72 | 09 | 9046530 FR | ENCH GULC | H AT BRECKENRIDG | E, CO (LAT 39 29 35N 1 | LONG 106 | 02 39W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | NOV
30 | 1200 | 2.9 | 269 | 2.4 | JUN
06 | 1600 | 40 | 143 | 7.5 | | JAN
03 | 1523 | 1.9 | | | JUL
12 | 1854 | 11 | 187 | 8.5 | | MAR
07
 1545 | 1.9 | 329 | 2.0 | AUG
09 | 1230 | 5.6 | 223 | 9.0 | | 28
MAY | 1548 | 2.2 | 334 | 2.5 | SEP
06 | 1341 | 6.3 | 232 | 8.5 | | 01 | 1508 | 7.6 | DATE | 09
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | ON, CO (LAT 39 34 00N
DATE | LONG 10 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C) | DATE
JUN | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
05
NOV | TIME
1218 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
JUN
09
JUL | TIME
1445 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
05
NOV
01
JAN
03
MAR
07 | TIME 1218 1600 1254 1220 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156 | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 | JUN
09
JUL
13
AUG | TIME
1445
1432 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
10.0 | | OCT
05
NOV
01
JAN
03
MAR
07
27 | TIME 1218 1600 1254 1220 1555 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 37 26 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156
197 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
10.5
7.0
1.0
5.0
8.5 | JUN 09 JUL 13 AUG 09 SEP | TIME
1445
1432
1335 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
116
151 | ATURE WATER (DEG C) (00010) 10.0 14.0 14.7 | | OCT
05
NOV
01
JAN
03
MAR
07
27 | TIME 1218 1600 1254 1220 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156 | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 | JUN 09 JUL 13 AUG 09 SEP | TIME
1445
1432
1335 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
116
151 | ATURE WATER (DEG C) (00010) 10.0 14.0 14.7 | | OCT
05
NOV
01
JAN
03
MAR
07
27 | 1218
1600
1254
1220
1555
1637 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 37 26 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156
197
197 | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 8.5 | JUN 09 JUL 13 AUG 09 SEP | TIME 1445 1432 1335 1533 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 83 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
116
151
162 | ATURE WATER (DEG C) (00010) 10.0 14.0 14.7 | | OCT
05
NOV
01
JAN
03
MAR
07
27 | 1218
1600
1254
1220
1555
1637 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
54
37
24
37
26
172 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156
197
197 | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 8.5 | JUN 09 JUL 13 AUG 09 SEP 06 | TIME 1445 1432 1335 1533 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 83 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
116
151
162 | ATURE WATER (DEG C) (00010) 10.0 14.0 14.7 | | OCT
05
NOV
01
JAN
03
MAR
07
27
MAY
01 | TIME 1218 1600 1254 1220 1555 1637 0904 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 37 26 172 47500 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156
197
197

SNAKE
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 8.5 RIVER NEAR MONTE TEMPER- ATURE WATER (DEG C) (00010) | DATE JUN 09 JUL 13 AUG 09 SEP 06 ZUMA, CO (LAT 39 36 20 | TIME 1445 1432 1335 1533 ON LONG : | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 83 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 116 151 162 161 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 10.0 14.0 14.7 13.0 TEMPER-ATURE WATER (DEG C) (00010) | | OCT 05 NOV 01 JAN 03 MAR 07 27 MAY 01 DATE | TIME 1218 1600 1254 1220 1555 1637 0904 TIME | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 37 26 172 47500 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 36 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156
197
197

SNAKE
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 8.5 RIVER NEAR MONTE TEMPER- ATURE WATER (DEG C) (00010) 6.0 | DATE JUN 09 JUL 13 AUG 09 SEP 06 ZUMA, CO (LAT 39 36 20 DATE JUN 07 JUL | TIME 1445 1432 1335 1533 ON LONG : | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 83 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 116 151 162 161 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER-ATURE WATER (DEG C)(00010) 10.0 14.0 14.7 13.0 TEMPER-ATURE WATER (DEG C)(00010) 8.5 | | OCT
05
NOV
01
JAN
03
MAR
07
27
MAY
01
DATE | TIME 1218 1600 1254 1220 1555 1637 0904 TIME 1548 1303 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
54
37
24
37
26
172
47500
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 157 160 156 197 197 SNAKE SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 8.5 RIVER NEAR MONTE TEMPER- ATURE WATER (DEG C) (00010) 6.0 1.0 | DATE JUN 09 JUL 13 AUG 09 SEP 06 ZUMA, CO (LAT 39 36 20 DATE JUN 07 JUL 11 AUG | TIME 1445 1432 1335 1533 ON LONG : TIME 1322 1326 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
296
107
61
83
105 56 33W
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 116 151 162 161 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER-ATURE WATER (DEG C) (00010) 10.0 14.0 14.7 13.0 TEMPER-ATURE WATER (DEG C) (00010) 8.5 | | OCT
05
NOV
01
JAN
03
MAR
07
27
MAY
01
DATE | TIME 1218 1600 1254 1220 1555 1637 0904 TIME | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 37 26 172 47500 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 36 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156
197
197

SNAKE
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 8.5 RIVER NEAR MONTE TEMPER- ATURE WATER (DEG C) (00010) 6.0 | JUN 09 JUL 13 AUG 09 SEP 06 ZUMA, CO (LAT 39 36 20 DATE JUN 07 JUL 11 | TIME 1445 1432 1335 1533 ON LONG : | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 83 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 116 151 162 161 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER-ATURE WATER (DEG C)(00010) 10.0 14.0 14.7 13.0 TEMPER-ATURE WATER (DEG C)(00010) 8.5 | | OCT
05
NOV
01
JAN
03
MAR
07
27
MAY
01
DATE OCT
04
NOV
02
JAN
05 | TIME 1218 1600 1254 1220 1555 1637 0904 TIME 1548 1303 0933 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 54 37 24 37 26 172 47500 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 36 27 14 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
157
160
156
197
197

SNAKE
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 10.5 7.0 1.0 5.0 8.5 RIVER NEAR MONTE TEMPER- ATURE WATER (DEG C) (00010) 6.0 1.0 .0 | JUN 09 JUL 13 AUG 09 SEP 06 ZUMA, CO (LAT 39 36 20 DATE JUN 07 JUL 11 AUG 08 SEP | TIME 1445 1432 1335 1533 ON LONG : TIME 1322 1326 1050 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 296 107 61 83 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 247 94 38 | CIFIC CON- DUCT- ANCE (US/CM) (00095) 116 151 162 161 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 67 103 | TEMPER-ATURE WATER (DEG C)(00010) 10.0 14.0 14.7 13.0 TEMPER-ATURE WATER (DEG C)(00010) 8.5 8.5 | ### SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS ## MISCELLANEOUS STATION ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000--Continued | | MISCE | LLANEOUS S | TATION AN | ALYSES, WAT | R YEAR OCTOBER 199 | 99 TO SEPTEM | BER 2 | 2000Cont | inued | | |------------------|--------------|---|--|---|--------------------|--------------|------------
---|--|---| | | 0904 | 17700 | KEYSTO | NE GULCH NE | R DILLON, CO (LAT | 39 35 40N L | ONG I | 105 58 19W |) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE T | IME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
04
NOV | 1655 | 3.8 | 84 | 5.5 | JUN
07.
JUL | 1 | 506 | 21 | 65 | 11.0 | | 02 | 1515 | 5.8 | 83 | 1.0 | 11. | 1 | 522 | 6.0 | 80 | 14.5 | | JAN
05
MAR | 1111 | 2.8 | 90 | .0 | AUG
08.
SEP | 0 | 950 | 3.7 | 88 | 8.7 | | 08
27 | 1145 | 2.5 | 88
88 | .0 | 05. | 1 | 410 | 2.9 | 90 | 13.5 | | MAY | 1330 | 2.7 | | .5 | | | | | | | | 02 | 1432 | 8.2 | 88 | 7.0 | | | | | | | | 09050100 | | TENMILE C | REEK BELO | W NORTH TEN | ILE CREEK, AT FRIS | SCO, CO (LAT | 39 | 34 37N LON | G 106 06 | 33W) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE T | IME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 1028 | 48 | 862 | 5.0 | JUN
08. | 1 | 517 | 489 | 270 | 10.0 | | NOV
01 | 1710 | 48 | 1100 | 4.0 | JUL
13. | 1 | 324 | 120 | 645 | 13.5 | | JAN
05 | 1350 | 25 | 1080 | .0 | AUG
09. | 1 | 430 | 39 | | 12.0 | | MAR
06
29 | 1430
1415 | 27
26 | 1190
1290 | 2.0
6.0 | SEP
06. | 1 | 707 | 54 | 660 | 11.5 | | MAY
03 | 1309 | 194 | | | | | | | | | | | 090 | 050700 | BLUE | RIVER BELOW | DILLON, CO (LAT 39 | 9 37 32N LON | G 10 | 6 03 57W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE T | IME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06
NOV | 1213 | 137 | 218 | 7.5 | JUN
09.
12. | 1 | 530
134 | 769
543 | 222 | 11.5 | | 03
JAN | 1037 | 109 | 222 | 7.5 | 15. | 0 | 820 | 393 | | | | 04 | 1128 | 110 | 259 | 3.0 | JUL
14. | 0 | 934 | 75 | | | | MAR
06
28 | 1600
1758 | 108
106 | 318
330 | 3.0
3.0 | AUG
08.
17. | | 215
310 | 110
84 | 253
 | 7.0 | | MAY
03 | 1517 | 64 | 339 | 5.5 | SEP
07. | 0 | 942 | 76 | 251 | 6.0 | | | MISCEI | LLANEOUS S | TATION AN | ALYSES, WATER YEA | R OCTOBER 1999 TO S | EPTEMBER | 2000Cont | inued | | |--|--|--|---|---|---|---|---|--|--| | 0905 | 1050 | STRAIGH | T CREEK B | BELOW LASKEY GULCH | NEAR DILLON, CO (L | AT 39 38 | 23N LONG 1 | 06 02 23W |) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 1335 | 8.0 | 127 | 6.0 | JUN
07 | 1657 | 99 | | | | NOV
03 | 1156 | 4.8 | 117 | .5 | JUL
26 | 0900 | 11 | | | | JAN | | | | | AUG | | | | | | 05
MAR | 1215 | 5.0 | 168 | .0 | 08
SEP | 0845 | 6.2 | 139 | 7.4 | | 07
29 | 1115
1600 | 4.7
3.4 | 467
316 | 1.5
3.0 | 07 | 1138 | 8.0 | 148 | 8.5 | | MAY
02 | 1818 | 22 | 269 | 8.0 | | | | | | | | 09057500 | BLUE RIVE | R BELOW G | REEN MOUNTAIN RES | ERVOIR, CO (LAT 39 | 52 49N L | ONG 106 20 | 00W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
14 | 1152 | 702 | | | MAY
02 | 1200 | 212 | 230 | 5.5 | | NOV
02 | 1150 | 650 | 195 | 9.0 | JUN
09 | 0945 | 100 | 212 | 8.5 | | JAN
04 | 1530 | 276 | 196 | 3.0 | JUL
12 | 1425 | 388 | 192 | 9.5 | | MAR
06 | 1226 | 299 | 218 | 3.0 | AUG
16 | 1530 | 944 | 179 | 17.5 | | 28 | 1235 | 272 | 252 | 2.5 | | | | | | | | 1235
058500
TIME | | | | EAR MINTURN, CO (LA:
DATE | T 39 42 2 | 9N LONG 10
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | 058500
TIME | PINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | RIVER BE
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
JUN | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT 15 NOV | D58500
TIME
0950 | PINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE JUN 01 13 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | DATE OCT 15 NOV 09 JAN | D58500 TIME 0950 1430 | PINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND(00061) 5.0 2.7 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
3.1
2.3 | JUN
01
13
JUL
18 | TIME
1835 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT 15 NOV 09 JAN 06 FEB | 058500
TIME
0950
1430
1140 | PINEY DIS-CHARGE, INST. CUBIC FEET PER SECOND(00061) 5.0 2.7 2.3 | RIVER BE
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
52
57 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
3.1
2.3 | JUN
01
13
JUL | TIME
1835
1735 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT 15 NOV 09 JAN 06 FEB 29 APR | D58500 TIME 0950 1430 1140 1255 | PINEY DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 5.0 2.7 2.3 2.2 | RIVER BE SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 52 57 74 68 | TEMPER-ATURE WATER (DEG C) (00010) 3.1 2.3 .0 | JUN
01
13
JUL
18
AUG | TIME
1835
1735
1450 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
7.4
8.5 | | DATE OCT | 058500
TIME
0950
1430
1140 | PINEY DIS-CHARGE, INST. CUBIC FEET PER SECOND(00061) 5.0 2.7 2.3 | RIVER BE
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
52
57 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
3.1
2.3 | JUN
01
13
JUL
18
AUG | TIME
1835
1735
1450 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
7.4
8.5 | | DATE OCT 15 NOV 09 JAN 06 FEB 29 APR | 058500
TIME
0950
1430
1140
1255
1030 | PINEY DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 5.0 2.7 2.3 2.2 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 52 57 74 68 60 | TEMPER-ATURE WATER (DEG C) (00010) 3.1 2.3 .0 .0 .5 | JUN
01
13
JUL
18
AUG | 1835
1735
1450
1010 | DIS-CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061)
193
85
31 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
7.4
8.5 | | DATE OCT 15 NOV 09 JAN 06 FEB 29 APR | 058500
TIME
0950
1430
1140
1255
1030 | PINEY DIS-CHARGE, INST. CUBIC FEET PER SECOND(00061) 5.0 2.7 2.3 2.2 21 DIS-CHARGE, INST. CUBIC FEET PER | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 52 57 74 68 60 DICKS | TEMPER-ATURE WATER (DEG C) (00010) 3.1 2.3 .0 .0 .5 CON CREEK NEAR VAI | JUN 01 13 JUL 18 AUG
18 | 1835
1735
1450
1010 | DIS-CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061)
193
85
31 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
7.4
8.5 | | DATE OCT 15 NOV 09 JAN 06 FEB 29 APR 19 DATE | D58500 TIME 0950 1430 1140 1255 1030 090 TIME | PINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 5.0 2.7 2.3 2.2 21 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | RIVER BE SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 52 57 74 68 60 DICKS SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER-ATURE WATER (DEG C) (00010) 3.1 2.3 .0 .0 .5 ON CREEK NEAR VAI TEMPER-ATURE WATER (DEG C) (00010) | DATE JUN 01 13 JUL 18 AUG 18 L, CO (LAT 39 42 14) DATE MAY | TIME 1835 1735 1450 1010 N LONG 10 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 193 85 31 9.2 6 27 25W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
16
17
36
50
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 7.4 8.5 19.4 13.7 TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT | D58500 TIME 0950 1430 1140 1255 1030 090 TIME | PINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND(00061) 5.0 2.7 2.3 2.2 21 DIS- CHARGE, INST. CUBIC FEET PER SECOND(00061) 1.3 | RIVER BE SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 52 57 74 68 60 DICKS SPE- CIFIC CON- DUCT- ANCE (US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 3.1 2.3 .0 .0 .5 SON CREEK NEAR VAI TEMPER- ATURE WATER (DEG C) (00010) 7.7 | DATE JUN 01 13 JUL 18 AUG 18 AUG 18 DATE MAY 25 JUN | TIME 1835 1735 1450 1010 TIME 1215 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 193 85 31 9.2 6 27 25W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
16
17
36
50
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 7.4 8.5 19.4 13.7 TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT | D58500 TIME 0950 1430 1140 1255 1030 090 TIME | PINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 5.0 2.7 2.3 2.2 21 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
52
57
74
68
60
DICKS
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 3.1 2.3 .0 .0 .5 ON CREEK NEAR VAI TEMPER-ATURE WATER (DEG C) (00010) | DATE JUN 01 13 JUL 18 AUG 18 L, CO (LAT 39 42 14) DATE MAY 25 | TIME 1835 1735 1450 1010 N LONG 10 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 193 85 31 9.2 6 27 25W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
16
17
36
50
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 7.4 8.5 19.4 13.7 TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT 15 NOV 09 JAN 06 FEB 29 APR 19 DATE OCT 14 NOV 09 JAN | D58500 TIME 0950 1430 1140 1255 1030 TIME 1320 0915 | DINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 5.0 2.7 2.3 2.2 21 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 1.3 1.2 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
52
57
74
68
60
DICKS
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 3.1 2.3 .0 .0 .5 ON CREEK NEAR VAI TEMPER- ATURE WATER (DEG C) (00010) 7.7 2.7 | DATE JUN 01 13 JUL 18 AUG 18 L, CO (LAT 39 42 14) DATE MAY 25 JUN 15 JUL | TIME 1835 1735 1450 1010 TIME 1215 1105 | DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND (00061)
193 85
31
9.2 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
16
17
36
50
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 7.4 8.5 19.4 13.7 TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT 15 NOV 09 JAN 06 FEB 29 APR 19 DATE OCT 14 NOV 09 JAN 12 FEB | D58500 TIME 0950 1430 1140 1255 1030 TIME 1320 0915 0955 | PINEY DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 5.0 2.7 2.3 2.2 21 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 1.3 1.2 1.1 | RIVER BE SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 52 57 74 68 60 DICKS SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 381 406 399 | TEMPER-ATURE WATER (DEG C) (00010) 3.1 2.3 .0 .0 .5 ON CREEK NEAR VAI TEMPER-ATURE WATER (DEG C) (00010) 7.7 2.7 .0 | DATE JUN 01 13 JUL 18 AUG 18 L, CO (LAT 39 42 14) DATE MAY 25 JUN 15 JUL 19 AUG | TIME 1835 1735 1450 1010 TIME 1215 1105 1250 | DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061)
193
85
31
9.2
6 27 25W)
DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061) | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 16 17 36 50 SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TEMPER-ATURE WATER (DEG C) (00010) 7.4 8.5 19.4 13.7 TEMPER-ATURE WATER (DEG C) (00010) 7.9 11.2 17.0 | | | 090 | 58700 | FREEM | AN CREEK | NEAR MINTURN, CO (I | AT 39 41 5 | 5N LONG | 106 26 41 | W) | | |-----------------|--------------|---|--|---|----------------------------------|------------|----------|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT 14 | 1000 | .26 | 244 | 3.3 | MA) | 7
25 | 1615 | 12 | 83 | 9.4 | | NOV
09 | 1050 | .15 | 266 | 2.6 | JUN
1 | 1
13 | 1905 | 1.8 | 138 | 12.7 | | JAN
06 | 1430 | .09 | 295 | .0 | JUI
1 | 8 | 1010 | .56 | 233 | 13.2 | | APR
19 | 1910 | .84 | 122 | .1 | AUC
2 | 3
22 | 1205 | .40 | 239 | 13.4 | | | 090588 | 800 | EAST MEA | DOW CREEK | NEAR MINTURN, CO (| LAT 39 43 | 54N LONG | 106 25 3 | б W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT 14 | 1540 | .94 | 72 | 2.7 | |)1 | 1140 | 38 | 20 | 3.7 | | NOV
09 | 1245 | .92 | 76 | .0 | JUI | | 1510 | 14 | 25 | 5.9 | | APR
19 | 1220 | 1.1 | 83 | .2 | AUG | | 1215 | 2.8 | 56 | 8.9 | | | 0005 | 8900 | MONTGE | D ODEEN M | 2
EAR MINTURN, CO (L <i>I</i> | 22 | 0940 | 1.3 | 65 | 7.1 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | EAC HINDING, CO (IE | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT 14 | 1145 | .05 | 173 | 1.8 | JUI
1 | .9 | 1040 | .09 | 163 | 8.2 | | JUN
15 | 0845 | .84 | 75 | 5.1 | AUG | }
?1 | 1735 | .02 | 170 | 9.7 | | | 090595 | 500 | PINEY RI | VER NEAR | STATE BRIDGE, CO (I | AT 39 48 0 | ON LONG | 106 35 001 | W) | | | DATE | TIME | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
07 | 1115 | 21 | 330 | 5.5 | | 30 | 1850 | 647 | 109 | 10.3 | | 21
NOV
17 | 1100
0910 | 19
15 | 331
385 | .2 | JUN
1
JUI | 5 | 1650 | 174 | 106 | 15.0 | | JAN
11 | 1100 | 17 | 389 | .0 | | 7 | 1325 | 52 | 224 | 13.8 | | MAR
02 | 1010 | 15 | | .7 | | 8 | 1455 | 22 | 336 | 16.5 | | APR
11 | 1535 | 58 | 273 | 7.1 | | | | | | | | | 090632 | 200 | WEARYMAN | CREEK NE | AR RED CLIFF, CO (I | AT 39 31 1 | 4N LONG | 106 19 06 | W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT 13 | 1035 | 3.5 | 300 | 1.8 | MA) | 7
24 | 1125 | 32 | 124 | 4.0 | | NOV
08 | 1325 | 2.7 | 308 | .5 | JUN | | 1530 | 33 | 144 | 6.9 | | JAN 04 | 1250 | 1.6 | 321 | .0 | JUI | | 1700 | 11 | 262 | 8.0 | | MAR
01 | 0930 | 1.4 | 286 | .0 | AUG | | 1540 | 5.7 | 270 | 7.6 | | | | | | | | | | | | | | | 09063 | 3400 | TURKEY | CREEK NEAR REI | CLIFF, CO (LAT 39 31 | 32N LONG | 106 20 08W |) | | |---|--|--|--|--|---|---
--|---|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
13 | 0910 | 6.9 | 293 | 1.6 | MAY
24 | 1255 | 149 | | 5.4 | | NOV
08 | 1425 | 8.4 | 300 | .3 | JUN
14 | 1355 | 84 | 208 | 7.1 | | JAN
04 | 1400 | 3.7 | 315 | .0 | JUL
19 | 1920 | 21 | 257 | 9.5 | | APR
25 | 1245 | 14 | 285 | 3.1 | AUG
22 | 1735 | 11 | 281 | 10.2 | | | 090639 | 900 | MTSSOURT | CREEK NEAR GO | OLD PARK, CO (LAT 39 2 | 3 25N LONG | 106 28 10 | W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | | TEMPER-
ATURE
WATER
(DEG C) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
13 | 1530 | 4.8 | 37 | 6.0 | MAY
23 | 1400 | 30 | 16 | 4.8 | | NOV
10 | 1025 | .59 | 49 | .0 | 31
JUN | 1405 | 38 | 14 | 6.5 | | JAN
07
APR | 1130 | .48 | 47 | .0 | 15
JUL
20 | 1200
0925 | 8.4
17 | 25
23 | 7.2
8.6 | | 26 | 0945 | 3.8 | 35 | . 4 | AUG
23 | 1105 | 5.5 | 30 | 10.1 | | | | | | | | | | | | | | 09064 | 4000 | HOMESTA | KE CREEK AT GO | OLD PARK, CO (LAT 39 2 | 4 20N LONG | 106 25 58 | W) | | | DATE | 09064
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OLD PARK, CO (LAT 39 2 | 4 20N LONG | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT 13 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE
MAY
23 | TIME
1635 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
13
NOV
10 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE MAY 23 31 JUN | TIME
1635
1010 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
9.2
4.2 | | OCT
13
NOV
10
JAN
07 | TIME
1400 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE MAY 23 31 JUN 15 JUL | TIME
1635
1010
1020 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
9.2
4.2
6.7 | | OCT
13
NOV
10
JAN
07
MAR
01 | TIME
1400
1135 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | MAY 23 31 JUN 15 JUL 20 AUG | 1635
1010
1020
1130 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
93
146
219 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.2 4.2 6.7 | | OCT
13
NOV
10
JAN
07 | TIME 1400 1135 1300 | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
14
8.6
5.6
4.4 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
6.8
.2
.0 | DATE MAY 23 31 JUN 15 JUL 20 | 1635
1010
1020
1130 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
9.2
4.2
6.7 | | OCT
13
NOV
10
JAN
07
MAR
01 | TIME 1400 1135 1300 1345 0840 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 14 8.6 5.6 4.4 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
36
41
44
 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
6.8
.2
.0 | MAY 23 31 JUN 15 JUL 20 AUG | 1635
1010
1020
1130
0940 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 93 146 219 56 15 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
18
13
19
24 | ATURE WATER (DEG C) (00010) 9.2 4.2 6.7 | | OCT
13
NOV
10
JAN
07
MAR
01 | TIME 1400 1135 1300 1345 0840 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 14 8.6 5.6 4.4 23 DIS-CHARGE, INST. CUBIC FEET PER | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 36 41 44 36 HOMESTAK SPE-CIFIC CON-DUCT-ANCE (US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 6.8 .2 .0 .0 .4 E CREEK NEAR F | DATE MAY 23 31 JUN 15 JUL 20 AUG 23 | 1635
1010
1020
1130
0940 | DIS-CHARGE, INST. CUBIC PER SECOND (00061) 93 146 219 56 15 G 106 22 0 DIS-CHARGE, INST. CUBIC FEET PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
18
13
19
24
32 | ATURE WATER (DEG C) (00010) 9.2 4.2 6.7 11.9 8.8 | | OCT
13
NOV
10
JAN
01
APR
26 | TIME 1400 1135 1300 1345 0840 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 14 8.6 5.6 4.4 23 DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 36 41 44 36 HOMESTAK SPE-CIFIC CON-DUCT-ANCE (US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 6.8 .2 .0 .0 .4 E CREEK NEAR F | DATE MAY 23 31 JUN 15 JUL 20 AUG 23 AUG 23 DATE MAY 23 | TIME 1635 1010 1020 1130 0940 28 24N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 93 146 219 56 15 G 106 22 0 DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 9.2 4.2 6.7 11.9 8.8 | | OCT
13
NOV
10
JAN
07
MAR
01
APR
26
DATE | TIME 1400 1135 1300 1345 0840 090645 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 14 8.6 5.6 4.4 23 500 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 36 41 44 36 HOMESTAK SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.8 .2 .0 .0 .4 E CREEK NEAR F | DATE MAY 23 31 JUN 15 15 AUG 23 AUG 23 RED CLIFF, CO (LAT 39) DATE MAY 23 JUN 15 | TIME 1635 1010 1020 1130 0940 28 24N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 93 146 219 56 15 G 106 22 0 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
18
13
19
24
32
2W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.2 4.2 6.7 11.9 8.8 TEMPER-ATURE WATER (DEG C) (00010) | | OCT | TIME 1400 1135 1300 1345 0840 090645 | DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061)
14 8.6 5.6 4.4 23 500 DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
36
41
44

36
HOMESTAK
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.8 .2 .0 .0 .4 E CREEK NEAR F TEMPER- ATURE WATER (DEG C) (00010) 8.2 | DATE MAY 23 31 JUN 15 AUG 23 PRED CLIFF, CO (LAT 39) DATE MAY 23 JUN 15 JUN 15 JUL 20 | TIME 1635 1010 1020 1130 0940 28 24N LONG | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
93
146
219
56
15
G 106 22 0
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
18
13
19
24
32
2W)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.2 4.2 6.7 11.9 8.8 TEMPER- ATURE WATER (DEG C) (00010) | | OCT | TIME 1400 1135 1300 1345 0840 090649 TIME | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 14 8.6 5.6 4.4 23 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 21 5.3 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
36
41
44

36
HOMESTAK
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.8 .2 .0 .0 .4 TEMPER- ATURE WATER (DEG C) (00010) 8.2 3.0 | DATE MAY 23 31 JUN 15 JUL 20 AUG 23 PRED CLIFF, CO (LAT 39) DATE MAY 23 JUN 15 JUL 15 JUL | TIME 1635 1010 1020 1130 0940 28 24N LONG TIME 1840 0855 | DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND (00061)
93
146
219
56
15
0 DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) 18 13 19 24 32 2W) SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.2 4.2 6.7 11.9 8.8 TEMPERATURE WATER (DEG C) (00010) 13.3 6.4 | SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | | MISCEI | LLANEOUS S | TATION AN | ALYSES, WAT | R YEAR OCTOBER 199 | 99 TO SEPT | EMBER 2 | 2000Cont | inued | | |------------------|--------------|---|--
---|--------------------|------------|--------------|---|--|---| | | 090 | 064600 | EAGLE | RIVER NEAR | MINTURN, CO (LAT | 39 33 14N | LONG 10 | 06 24 07W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 0820 | 52 | 165 | 4.8 | JUN
15 | | 0715 | 468 | 97 | 6.7 | | NOV
16 | 1000 | 24 | 215 | .3 | JUL
18 | | 1230 | 207 | 69 | 13.4 | | APR 20 | 0950 | 129 | 149 | 2.2 | AUG
16 | | 0900 | 57 | 166 | 12.1 | | MAY
18 | 1255 | 383 | 74 | 4.7 | | | | | | | | 31 | 1805 | 833 | 76 | 10.8 | | | | | | | | | 090 | 065100 | CROSS | CREEK NEAR | MINTURN, CO (LAT) | 39 34 05N | LONG 10 |)6 24 45W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06
NOV | 0940 | 16 | 52 | 5.2 | MAY
18
JUN | | 0902 | 100 | 17 | 2.4 | | 16
JAN | 0940 | 4.8 | 58 | .3 | | | 1000
1430 | 357
166 | 13
23 | 5.4
8.0 | | 13
MAR | 0820 | 3.6 | 62 | .0 | JUL
18 | | 1100 | 98 | 19 | 12.1 | | 01
APR | 1620 | 4.5 | | .0 | AUG | | 1140 | 32 | 41 | 15.4 | | 20 | 0845 | 27 | 39 | .9 | | | | | | | | 0906 | 55500 | GORE | CREEK AT | UPPER STATI | N, NEAR MINTURN, (| CO (LAT 39 | 37 40N | N LONG 106 | 16 24W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
07 | 1033 | 12 | 68 | 4.0 | | | 1120 | 158 | 32 | 5.0 | | NOV
02 | 1645 | 9.5 | 70 | .0 | JUL
25 | | 1040 | 20 | 54 | 9.5 | | JAN
19 | 1427 | 3.4 | 76 | .5 | AUG
17 | | 1310 | 11 | 59 | 11.6 | | MAR
17 | 1023 | 3.6 | 77 | .5 | 17. | | 1340 | 11 | 63 | 12.0 | | APR
06
14 | 1345
1440 | 10 | 70
46 | 2.0
2.4 | SEP | | 1154 | 0.4 | | 2.2 | | MAY | | | | | 25 | | 1154 | 8.4 | 68 | 2.2 | APR 06... 14... MAY 10... 60 1000 44 4.0 | | 09066000 BLACK GORE CREEK NEAR MINTURN, CO (LAT 39 35 47N LONG 106 15 52W) | | | | | | | | | | | |------------------|---|---|--|---|----------------|----------|--------------|---|--|---|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | AR MINIORN, CO | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | OCT
07 | 0831 | 4.9 | 213 | 2.7 | JU | л
07 | 0938 | 92 | 100 | 5.0 | | | NOV
08 | 0945 | 2.6 | 272 | .5 | JU | | 1220 | 6.9 | | | | | JAN | | | 325 | | JA | | 1220 | 0.9 | | | | | 19
MAR | 1145 | 4.0 | | .0 | | 29 | 1111 | 4.8 | | | | | 09
APR | 1008 | 3.8 | 487 | .5 | SE | 21 | 1100 | 2.7 | 243 | 6.7 | | | 06
MAY | 1135 | 5.8 | 550 | 2.5 | | | | | | | | | 10 | 1725 | 95 | 136 | 4.8 | | | | | | | | | | 09066100 BIGHORN CREEK NEAR MINTURN, CO (LAT 39 38 24N LONG 106 17 34W) DIS- DIS- | | | | | | | | | | | | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | OCT
06 | 1543 | 2.5 | 69 | 5.8 | MZ | ΑΥ
11 | 0949 | 36 | 40 | 3.0 | | | NOV
02 | 1120 | 1.2 | 73 | .1 | JU | JN
08 | 0910 | 47 | 34 | 3.5 | | | JAN
19 | 1600 | .92 | 77 | . 4 | | 几
25 | 1315 | 6.5 | 50 | 10.0 | | | MAR
17 | 1208 | .92 | 81 | .8 | JA | JG
30 | 1205 | 4.1 | 65 | 10.4 | | | APR 06 | 1520 | 2.9 | 74 | 1.5 | SE | EP
25 | 1316 | 5.1 | 68 | 3.1 | | | | 1320 | 2., | , - | 1.5 | | 23 | 1310 | 3.1 | 00 | 3.1 | | | | 09066150 PITKIN CREEK NEAR MINTURN, CO (LAT 39 38 37N LONG 106 18 07W) | | | | | | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | OCT
06 | 1312 | 3.5 | 83 | 5.5 | | 08 | 1018 | 53 | 36 | 4.4 | | | NOV
02 | 0940 | 1.6 | 90 | .1 | JU | | 1024 | 53 | 36 | 4.5 | | | JAN
19 | 1628 | 1.7 | 89 | 1.0 | | 25
25 | 1410
1411 | 6.8
6.8 | 67
67 | 10.0
10.0 | | | MAR
10
10 | 1023
1056 | 1.5
1.5 | 100
100 | .5 | | 29
29 | 1235
1248 | 6.9
6.9 | 72
72 | 9.8
10.0 | | | APR
06
MAY | 1600 | 2.9 | 121 | 2.5 | SE | EP
21 | 1249 | 4.0 | 88 | 6.6 | | 39 39 1024 1032 06... MAY 11... 11... 3.2 50 50 #### SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | | MISCE | LLANEOUS S | TATION AN | ALYSES, WAT | ER YEAR OCTOBER 1999 TO | SEPTEMBER | 2000Cont | inued | | |--------------|--------------|---|--|---|-------------------------|--------------|---|--|---| | | 090 | 066200 | BOOTH | CREEK NEAR | MINTURN, CO (LAT 39 39 | 02N LONG 1 | 06 19 16W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 1425 | 2.0 | 108 | 7.2 | MAY
11 | 1159 | 45 | 74 | 5.0 | | NOV
03 | 1205 | .58 | 125 | 4.5 | JUN
08 | 1130 | 63 | 43 | 6.0 | | JAN
20 | 0910 | .96 | 130 | .5 | JUL
25 | 1522 | 2.5 | 95 | 12.5 | | MAR
17 | 1256 | 1.0 | 138 | 2.5 | AUG
29 | 1421 | 3.2 | 101 | 13.0 | | APR
07 | 0855 | 2.8 | 145 | 1.5 | SEP
25 | 1440 | 3.6 | 92 | 7.0 | | | 0906 | 56300 | MIDDLE | CREEK NEAF | MINTURN, CO (LAT 39 38 | 50N LONG 1 | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 1120 | 1.0 | 208 | 5.0 | MAY
11 | 1330 | 19 | 160 | 5.0 | | NOV
03 | 1030 | .47 | 229 | 1.0 | JUN
08 | 1230 | 42 | 113 | 6.0 | | JAN | | .47 | 231 | 1.0 | JUL | 0920 | 2.0 | 210 | 9.0 | | 20
MAR | 1002 | . 28 | 247 | | 26
AUG | | 2.3 | 206 | 11.5 | | 17
APR | 1345 | | | 2.5 | 29
SEP | 1535 | | | | | 07 | 1047 | .68 | 248 | 1.5 | 25 | 1559 | .92 | 220 | 6.0 | | | 09066325 | GORE CREE | K ABV RED | SANDSTONE | CREEK AT VAIL, CO (LAT | 39 38 28N | LONG 106 2 | 3 39W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1212 | 29 | 271 | 8.8 | APR 07 | 1320 | 38 | 331 | 5.0 | | 05-05
NOV | 1212 | 29 | 271 | 9.0 | MAY
10 | 1645 | 343 | 153 | 9.4 | | 03-03
03 | 0910
0955 |
11 |
373 |
1.7 | JUN
07 | 1504 | 679 | 99 | 9.5 | | 16 | 1130 | 13 | 389 | 2.0 | JUL | | | | | | 16
23 | 1345
0810 | 15
18 | 399
 | 3.9
 | 03
26 | 1219
1145 | 161
54 | 183
225 | 11.4
13.0 | | JAN
20 | 1220 | 20 | 372 | 3.0 | AUG
30 | 0955 | 48 | 252 | 11.2 | | 20
MAR | 1221 | 20 | 372 | 3.1 | SEP 26 | 1218 | 45 | 239 | 6.1 | | 09 | 1620 | 21 | 401 | 4.4 | | | | | | | | MISCEI | LLANEOUS S | STATION AN | ALYSES, WA | TER YEAR OCTOB | ER 1999 TO SE | PTEMBER 2 | 2000Cont | inued | | |------------------|-------------------
---|--|---|----------------|------------------|-----------|---|--|---| | | 0906640 | 00 | RED SANDS | TONE CREEK | NEAR MINTURN, | CO (LAT 39 4 | 58N LO | NG 106 24 | 03W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
15 | 1140 | 1.3 | 109 | 1.5 | | MAY 24 | 1810 | 105 | 28 | 3.8 | | NOV
09 | 1620 | 1.4 | 107 | 1.0 | | JUN
15 | 1300 | 22 | 39 | | | JAN | | | | | | JUL | | | | | | 06
FEB | 1550 | .97 | 100 | .0 | | 18
AUG | 1650 | 4.6 | 85 | 12.3 | | 29
APR | 1445 | 1.7 | 98 | .5 | | 18 | 1130 | 2.5 | 96 | 8.6 | | 18 | 1335 | 6.2 | 79 | 1.2 | | | | | | | | | (| 9067000 | BEA | VER CREEK | AT AVON, CO (L | AT 39 37 47N 1 | LONG 106 | 31 20W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | 06 | 1115 | 5.3 | 239 | 6.9 | | 26 | 1330 | 82 | 94 | 5.0 | | NOV
16
JAN | 1150 | 3.6 | 290 | 1.6 | | JUN
12
JUL | 1710 | 46 | 59 | 9.9 | | 11 | 1415 | 2.9 | 308 | .7 | | 17 | 1525 | 16 | 129 | 15.0 | | FEB
28 | 1510 | 2.8 | 335 | 2.2 | | AUG | | | | | | APR
10 | 1510 | 6.3 | 399 | 8.3 | | 17 | 0830 | 6.1 | 231 | 11.8 | | DATE | 020 EAGLE
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | TMENT PLANT AT | DATE | AT 39 38 | 06N LONG DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
14 | 1040 | 136 | 275 | 5.6 | | MAY
02 | 1050 | 772 | 187 | 4.8 | | NOV
16 | 1250 | 64 | 364 | 3.0 | | JUL
18 | 0855 | 494 | 98 | 11.5 | | FEB
28 | 1430 | 72 | 445 | 6.1 | | AUG 24 | 0930 | 150 | 258 | 11.8 | | | | | | | | | | | | | | | 090 | 067200 | LAKE | CREEK NEAR | EDWARDS, CO (| LAT 39 38 51N | LONG 106 | 5 36 31W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
07 | 1345 | 33 | 319 | 6.5 | | JUN
12 | 1645 | 157 | 173 | 11.2 | | NOV
17 | 1110 | 16 | 486 | 3.6 | | JUL
17 | 1335 | 77 | 168 | 12.9 | | JAN
05 | | 11 | 538 | 1.5 | | AUG | 1333 | ., | 100 | 20.7 | | APR | 1005 | | | | | 15 | 1440 | 28 | 422 | 16.4 | | 10
MAY | 1326 | 27 | 458 | 8.7 | | 23 | 1600 | 41 | 352 | 14.7 | | 26 | 1130 | 305 | 127 | 4.8 | | | | | | | ## SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | | 09 | 9070000 | EAGL | E RIVER BELO | OW GYPSUM, | CO (LAT | 39 38 5 | 8N LONG | 106 57 11W |) | | |---|---------------------------------|---|---|---|------------|--|------------------|---|--|--|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
07 | 1505 | 245 | 859 | 9.3 | | JUL
17. | | 1145 | 627 | 620 | 14.6 | | NOV
17
FEB | 1320 | 204 | 1030 | 3.4 | | AUG
24. | | 1145 | 261 | 770 | 16.8 | | 28 | 1145 | 171 | 1030 | 4.1 | | | | | | | | | | 09070 |)500 | COLORAD | O RIVER NEAM | R DOTSERO, | CO (LAT | 39 38 3 | 88N LONG | 107 04 38W |) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
08 | 0840 | 2080 | 379 | 8.5 | | JUN
16.
JUL | | 0750 | 3790 | 275 | 13.1 | | NOV
15
FEB | 1430 | 1040 | 502 | 3.1 | | 17.
25. | | 0910
1316 | 1650
1460 | 348
268 | 17.8
18.9 | | 28
APR | 0936 | 978 | 485 | 3.0 | | AUG
24. | | 1437 | 1500 | 431 | 19.7 | | 12 | 1200 | 1580 | 444 | 9.5 | 090734 | 100 | ROARING | FORK RIVER 1 | NEAR ASPEN | . CO (LAT | 39 10 | 48N LONG | 106 48 05 | W) | | | DATE | 090734 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE | TEMPER-
ATURE
WATER
(DEG C)
(00010) | NEAR ASPEN | | 7 39 10
DATE | 48N LONG | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | NEAR ASPEN | APR | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C)
(00010) | | | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | NEAR ASPEN | | DATE | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | OCT
12
NOV
30
JAN
26 | TIME
1430 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | NEAR ASPEN | APR
27.
JUN
08.
JUL
12. | DATE | TIME
1500 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
12
NOV
30
JAN | TIME
1430
1120 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
9.4
1.0 | NEAR ASPEN | APR
27.
JUN
08.
JUL | DATE | TIME
1500
0945 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
9.3
6.8 | | OCT
12
NOV
30
JAN
26 | TIME 1430 1120 1630 1430 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
75
82
88 | TEMPER-ATURE WATER (DEG C) (00010) 9.4 1.0 2.7 | | APR
27.
JUN
08.
JUL
12.
AUG
24. | DATE | 1500
0945
1130
1015 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
84
295
52 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.3 6.8 | | OCT
12
NOV
30
JAN
26 | TIME 1430 1120 1630 1430 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
80
42
27
26 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
75
82
88 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
9.4
1.0
2.7
2.7 | | APR
27.
JUN
08.
JUL
12.
AUG
24. | DATE | 1500
0945
1130
1015 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
84
295
52 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.3 6.8 | | OCT
12
VV
30
JAN
26
MAR
07 | TIME 1430 1120 1630 1430 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 80 42 27 26 074000 DIS- CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 75 82 88 89 HUNTE SPE-CIFIC CON-DUCT-ANCE (US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 9.4
1.0 2.7 2.7 R CREEK NEAF | | APR
27.
JUN
08.
JUL
12.
AUG
24. | DATE DATE | TIME 1500 0945 1130 1015 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 84 295 52 54 6 47 49W) DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 67 36 68 78 SPE-CIFIC CON-DUCT-ANCE (US/CM) | ATURE WATER (DEG C) (00010) 9.3 6.8 12.1 11.0 TEMPER-ATURE | | OCT 12 NOV 30 JAN 26 MAR 07 DATE | TIME 1430 1120 1630 1430 090 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 80 42 27 26 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
75
82
88
89
HUNTE
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 9.4 1.0 2.7 2.7 R CREEK NEAF | | APR 27. JUN 08. JUL 12. AUG 24. D (LAT 39 | DATE DATE DATE | TIME 1500 0945 1130 1015 I LONG 100 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 84 295 52 54 6 47 49W) DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
67
36
68
78
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.3 6.8 12.1 11.0 TEMPER-ATURE | | OCT 12 NOV 30 JAN 26 MAR 07 DATE | TIME 1430 1120 1630 1430 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 80 42 27 26 074000 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 75 82 88 89 HUNTE SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TEMPER- ATURE WATER (DEG C) (00010) 9.4 1.0 2.7 2.7 R CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) 8.2 | | APR 27. JUN 08. JUL 12. AUG 24. O (LAT 39 | DATE DATE DATE | TIME 1500 0945 1130 1015 I LONG 100 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 84 295 52 54 647 49W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
67
36
68
78
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 9.3 6.8 12.1 11.0 TEMPER-ATURE WATER (DEG C) (00010) | | | 090 | 80400 | FRYING | PAN RIVER | NEAR RUEDI, CO | (LAT 39 21 5 | 6N LONG 1 | LO6 49 30W |) | | |------------------|------|---|--|---|-----------------|-----------------|--------------|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | NOV
30 | 1420 | 98 | 181 | 7.4 | | JUN
15 | 1210 | 351 | 179 | 9.0 | | JAN
25 | 1550 | 97 | 208 | 3.1 | | JUL
13 | 0935 | 182 | 197 | 6.4 | | MAR
09 | 0930 | 98 | 247 | 3.2 | | AUG 23 | 1020 | 255 | 186 | 7.5 | | APR
26 | 1325 | 185 | 231 | 4.4 | | | | | | | | | 0908 | 9500 | WEST DI | VIDE CREE | K NEAR RAVEN, C | O (LAT 39 19 | 52N LONG | 107 34 46 | W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1005 | 3.0 | 433 | 3.9 | | JUL
14 | 1330 | 3.4 | 333 | 23.1 | | APR 13 | 1350 | 75 | 246 | 6.6 | | AUG 14 | 1355 | .11 | 425 | 21.2 | | JUN
15 | 0830 | 34 | 214 | 10.1 | | | | | | | | 09106150
DATE | CO | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | LEY DIVERSION N | DATE | CO (LAT 3 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | OCT
01
NOV | 1125 | 1940 | 752 | 11.1 | | JUL
10
24 | 1200
0945 | 1410
635 | 778
928 | 22.6
21.5 | | 30
JAN | 1225 | 1780 | 1060 | 4.1 | | AUG
08 | 1130 | 778 | 864 | 22.8 | | 21
MAR | 1250 | 2000 | 1060 | 3.9 | | 25
SEP | 1255 | 880 | 878 | 22.9 | | 08
APR | 1310 | 2000 | 1090 | 6.9 | | 06
18 | 1150
1215 | 1100
903 | 837
938 | 17.9
19.9 | | 04
MAY | 1245 | 1160 | 1030 | 11.5 | | | | | | | | 31 | 1030 | 12800 | 286 | 13.4 | | | | | | | | | 0910 | 7000 | TAYLOR | RIVER AT | TAYLOR PARK, CO | (LAT 38 50 5 | 9n Long 1 | LO6 34 21W |) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
07 | 1345 | 99 | 111 | 5.8 | | APR
06 | 0915 | 54 | 104 | .9 | | NOV
16 | 0902 | 29 | 127 | .1 | | MAY 23 | 0930 | 409 | 64 | 4.2 | | JAN
19 | 1245 | 36 | 115 | 2.0 | | JUN
28 | 0920 | 141 | 94 | 8.3 | | FEB 29 | 0945 | 33 | 118 | .8 | | AUG
29 | 1700 | 60 | 121 | 15.3 | | | | | | | | | | | | | SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | | | | | · | YEAR OCTOBER 1999 TO SEE | TEMBER 2 | 2000COIIC | Inuea | | |--|--|--|--|--|--|--|---|--|--| | (| 9109000 | TAY | LOR RIVER | BELOW TAYLOR | PARK RESERVOIR, CO (LAT | 38 49 06 | N LONG 10 | 6 36 31W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | | | | | APR | | | | | | 07
NOV | 1500 | 301 | 101 | 11.1 | 06
MAY | 1111 | 102 | 110 | 3.4 | | 16
FEB | 1342 | 97 | 97 | 5.8 | 23 | 1052 | 149 | 101 | 5.6 | | 29 | 1100 | 108 | 107 | 3.5 | | | | | | | | 0911 | 15500 | TOMICH | I CREEK AT SAR | GENTS, CO (LAT 38 23 42N | I LONG 10 |)6 25 19W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 1205 | 28 | 171 | 8.3 | APR
05 | 1620 | 81 | 168 | 1.9 | | NOV
17 | 1450 | 51 | 170 | 1.5 | MAY
10 | 1815 | 205 | 113 | 13.0 | | JAN | | 22 | | | JUN | | 205
72 | | | | 12
FEB | 1622 | | 155 | .1 | 27
SEP | 1635 | | 145 | 17.9 | | 29 | 0825 | 25 | 157 | .0 | 06 | 1313 | 37 | 176 | 15.0 | | | | | | | | | | | | | | 0.450 | ~~~ | | | | - 20 00 0 | | 06 46 10 | | | 0911
DATE | .8450
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | BELOW ROCK CR TEMPER- ATURE WATER (DEG C) (00010) | EEK NEAR PARLIN, CO (LAI
DATE | 38 20 (| DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
MAY | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT 06 NOV | TIME 0920 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE MAY 03 JUN | TIME
1245 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE
OCT
06 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) |
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE MAY 03 JUN 09 AUG | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT | TIME 0920 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE MAY 03 JUN 09 AUG 09 SEP | TIME
1245 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT | TIME
0920
1220 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | DATE MAY 03 JUN 09 AUG 09 | TIME
1245
0940 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT | TIME
0920
1220
1030 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
52
33
26
47 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
178
196
217 | TEMPER-ATURE WATER (DEG C) (00010) 6.3 .2 .1 | DATE MAY 03 JUN 09 AUG 09 SEP | TIME 1245 0940 1245 1007 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
98
15
21 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
112
283
294 | TEMPER-ATURE WATER (DEG C) (00010) 11.0 12.5 | | DATE OCT | TIME
0920
1220
1030 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
52
33
26
47 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
178
196
217 | TEMPER-ATURE WATER (DEG C) (00010) 6.3 .2 .1 | DATE MAY | TIME 1245 0940 1245 1007 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
98
15
21 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
112
283
294 | TEMPER-ATURE WATER (DEG C) (00010) 11.0 12.5 | | DATE OCT | TIME 0920 1220 1030 0935 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 52 33 26 47 09124500 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
178
196
217
242
LAKE FOR
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.3 .2 .1 .3 K AT GATEVIEW, TEMPER- ATURE WATER (DEG C) (00010) | DATE MAY 03 JUN 09 AUG 09 SEP 08 CO (LAT 38 17 56N LONG | TIME 1245 0940 1245 1007 3 107 13 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 98 15 21 35 46W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
112
283
294
214
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 11.0 12.5 17.2 9.9 TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT | TIME 0920 1220 1030 0935 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 52 33 26 47 09124500 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
178
196
217
242
LAKE FOR
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 6.3 .2 .1 .3 K AT GATEVIEW, TEMPER-ATURE WATER (DEG C) (00010) 10.3 | DATE MAY 03 JUN 09 AUG 09 SEP 08 CO (LAT 38 17 56N LONG DATE MAY 22 JUN | TIME 1245 0940 1245 1007 3 107 13 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 98 15 21 35 46W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
112
283
294
214
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 11.0 12.5 17.2 9.9 TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT | TIME 0920 1220 1030 0935 TIME 1520 1420 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
52
33
26
47
09124500
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 178 196 217 242 LAKE FOR SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 161 178 | TEMPER-ATURE WATER (DEG C) (00010) 6.3 .2 .1 .3 K AT GATEVIEW, TEMPER-ATURE WATER (DEG C) (00010) 10.3 2.6 | DATE MAY 03 JUN 09 AUG 09 SEP 08 CO (LAT 38 17 56N LONG DATE MAY 22 JUN 02 AUG | TIME 1245 0940 1245 1007 5107 13 TIME 1445 0900 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 98 15 21 35 46W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 641 1200 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
112
283
294
214
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 11.0 12.5 17.2 9.9 TEMPER-ATURE WATER (DEG C) (00010) 11.7 7.2 | | DATE OCT 06 NOV 17 FEB 29 APR 05 DATE OCT 05 NOV 15 | TIME 0920 1220 1030 0935 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 52 33 26 47 09124500 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
178
196
217
242
LAKE FOR
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 6.3 .2 .1 .3 K AT GATEVIEW, TEMPER-ATURE WATER (DEG C) (00010) 10.3 | DATE MAY | TIME 1245 0940 1245 1007 3 107 13 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 98 15 21 35 46W) DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
112
283
294
214
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 11.0 12.5 17.2 9.9 TEMPER-ATURE WATER (DEG C) (00010) | MAR 02... 21... 13... 27... 1325 1305 1530 1245 76 266 1580 1400 388 302 287 264 6.4 -- 11 2 9.8 # MISCELLANEOUS STATION ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000--Continued 09126000 CIMARRON RIVER NEAR CIMARRON, CO (LAT 38 15 26N LONG 107 32 46W) DIS-DIS-CHARGE, SPE-CHARGE, SPE-INST. CIFIC INST. CIFIC CON-DUCT-CUBIC CON-TEMPER-CUBIC TEMPER-DUCT-FEET ATURE FEET ATURE DATE TIME PER ANCE WATER DATE TIME PER ANCE WATER SECOND (US/CM) (DEG C) SECOND (US/CM) (DEG C) (00061)(00061)(00095)(00010)(00095)(00010)OCT MAY 05... 1205 09... 107 31 131 12.3 1433 317 7.2 JUN 07... 131 7.9 1115 30 NOV 02... 1340 516 84 8.5 15 JUL 15... 1155 135 4.8 19... 1600 123 12.5 SEP 28... 1430 12 152 2.0 FEB 08... 1205 85 152 13.8 1355 13 134 4.2 09132500 NORTH FORK GUNNISON RIVER NEAR SOMERSET, CO (LAT 38 55 33N LONG 107 26 01W) DIS-CHARGE, SPE-CHARGE SPE-INST. CIFIC INST. CIFIC CON-CUBIC CON-TEMPER-CUBIC TEMPER-DUCT-FEET ATURE FEET ATURE DATE TIME PER ANCE WATER DATE TIME PER ANCE WATER SECOND (US/CM) (DEG C) SECOND (US/CM) (DEG C (00061) (00061) (00095)(00010)(00095)(00010)NOV APR 1110 181 9.3 26... 1300 943 124 8.7 08... 94 DEC MAY 09... 01.. __ 1335 73 3 7 1352 1720 96 9.3 JAN 122 10.0 18... 1215 738 27... 1415 47 154 .0 JUL MAR 12... 1445 234 135 16 0 10... 1025 73 152 2.3 AUG 13... 3.5 15... 1140 236 181 20.2 1130 166 09134000 MINNESOTA CREEK NEAR PAONIA, CO (LAT 38 52 13N LONG 107 30 06W) DIS-CHARGE. SPE-CHARGE. SPE-INST. CIFIC INST. CIFIC TEMPER-CUBIC CON-CUBIC CON-TEMPER-DUCT-FEET DUCT-ATURE FEET ATTIRE DATE ANCE WATER DATE ANCE TIME PER TIME PER SECOND (US/CM) (DEG C) SECOND (US/CM) (DEG C) (00061) (00010) (00010) (00095)(00061)(00095) DEC JUN 1550 2.2 1130 283 01... 567 3.6 13... 31 14.8 28... 12... 0955 1.4 836 .0 1155 16 256 17.8 AUG MAR 10... 1210 1.9 821 4.3 23... 0950 6.4 285 15.0 APR 26... 1600 14 317 16.0 09134100 NORTH FORK GUNNISON RIVER BELOW PAONIA, CO (LAT 38 51 27N LONG 107 37 19W) DIS-DIS-CHARGE, SPE-CHARGE, SPE-INST. CIFIC INST. CIFIC CUBIC CUBIC CON-TEMPER-CON-TEMPER-DUCT-FEET DUCT-ATURE FEET ATURE TIME DATE TIME DATE PER ANCE WATER PER ANCE WATER (US/CM) SECOND (US/CM) (DEG C) SECOND (DEG C) (00061) (00095) (00010) (00061) (00095) (00010) MAY .TITN AUG 23... 05... 09... 18... 29... 1355 0930 1350 1055 1205 2230 2130 11 11 201 118 815 973 12.4 11.3 18.4 21 9 9.8 SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | | | | IAIION AN | ALYSES, WATER | YEAR OCTOBER | 1999 TO SE | PTEMBER 2 | 2000Cont: | inued | | |--|-------------------------------------|---|---|---|---|--|---|--|---|--| | 09135950 | NORTH | H FORK GUN | NISON RIV | ER BELOW LERO | JX CREEK NEAR | HOTCHKISS, | CO (LAT | 38 47 18N | LONG 107 | 44 21W) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DEC | 1050 | 107 | 1160 | 4.6 | MA | Y
10 | 0050 | 1600 | 227 | 10 1 | | 02
JAN | 1050 | 107 | 1160 | 4.6 | | 19 | 0958
0815 | 1680
567 | 342 | 10.1
9.2 | | 28
MAR |
1245 | 86 | 1230 | 3.6 | JU | љ
11 | 1605 | 76 | 1230 | 16.2 | | 30
APR | 1345 | 296 | 459 | 9.6 | AU | JG
23 | 1620 | 87 | 1490 | 23.0 | | 27 | 1640 | 1360 | 448 | 10.2 | | | | | | | | | 09143 | 3000 | SURFACE | CREEK NEAR C | EDAREDGE, CO (| LAT 38 59 | 05N LONG | 107 51 13 | W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
07 | 1115 | 36 | 76 | 7.5 | JU | JN
08 | 1220 | 81 | 67 | 12.8 | | DEC
02 | 1520 | 3.0 | 149 | .3 | JU | 九
11 | 1335 | 54 | 68 | 13.3 | | MAR
31 | 1435 | 7.0 | 143 | 1.3 | AU | JG
24 | 1125 | 36 | 72 | 13.4 | | APR
28 | 0920 | 111 | 163 | 7.6 | | | | | | | | DATE | 0914 | DIS-
CHARGE, | SURFAC | E CREEK AT CEI | DAREDGE, CO (I | AT 38 54 0 | 6N LONG 1 | DIS- | | | | | TIME | INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DEC | | CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | π | ЛN | | INST. CUBIC FEET PER SECOND (00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | 03
MAR | 0930 | CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | JU | IN
07
IL | 1355 | INST. CUBIC FEET PER SECOND (00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | 03
MAR
30
APR | 0930
1010 | CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 1.3 4.0 | | JN
07
JL
11
JG | 1355
1300 | INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
14.9 | | 03
MAR
30 | 0930 | CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | JU | JN
07
JL
11 | 1355 | INST. CUBIC FEET PER SECOND (00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | 03
MAR
30
APR | 0930
1010
1200 | CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
219
184 | ATURE WATER (DEG C) (00010) 1.3 4.0 | JŲ
JA | IN
07
JL
11
JG
24 | 1355
1300
1255 | INST.
CUBIC
FEET
PER
SECOND
(00061)
46
22
18 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
14.9 | | 03
MAR
30
APR | 0930
1010
1200 | CUBIC
FEET
PER
SECOND
(00061)
1.8
8.9
68 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
219
184 | ATURE WATER (DEG C) (00010) 1.3 4.0 8.2 | JŲ
JA | IN
07
JL
11
JG
24 | 1355
1300
1255 | INST.
CUBIC
FEET
PER
SECOND
(00061)
46
22
18 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
14.9
17.6 | | 03 MAR 30 APR 28 DATE | 0930
1010
1200
091 | CUBIC FEET PER SECOND (00061) 1.8 8.9 68 L44250 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 219 184 171 GUNNI SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 1.3 4.0 8.2 SON RIVER AT I | JU
AU
DELTA, CO (LA
AE | ON 07 UT 11 US 24 AT 38 45 01 DATE | 1355
1300
1255
N LONG 10 | INST. CUBIC FEET PER SECOND (00061) 46 22 18 08 04 06W) DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 79 166 83 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER-
ATURE WATER (DEG C) (00010) 14.9 17.6 15.9 TEMPER-
ATURE WATER (DEG C) (00010) | | 03 MAR 30 APR 28 DATE | 0930
1010
1200 | CUBIC FEET SECOND (00061) 1.8 8.9 68 144250 DIS-CHARGE, INST. CUBIC FEET PER SECOND | CIFIC CON- DUCT- ANCE (US/CM) (00095) 219 184 171 GUNNI SPE- CIFIC CON- DUCT- ANCE (US/CM) | ATURE WATER (DEG C) (00010) 1.3 4.0 8.2 SON RIVER AT I | JU
AU
DELTA, CO (LA
AE | DATE DATE DATE | 1355
1300
1255
N LONG 10
TIME | INST. CUBIC FEET PER SECOND (00061) 46 22 18 08 04 06W) DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 79 166 83 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 391 | ATURE WATER (DEG C) (00010) 14.9 17.6 15.9 TEMPER- ATURE WATER (DEG C) (00010) 8.8 | | 03 MAR 30 APR 28 DATE NOV 09 16 DEC 02 | 0930
1010
1200
091
TIME | CUBIC FEET PER SECOND (00061) 1.8 8.9 68 1.44250 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON-DUCT-ANCE (US/CM) (00095) 219 184 171 GUNNI SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 1.3 4.0 8.2 SON RIVER AT I | JU
AU
DELTA, CO (LA
AE
MA
JU | DATE DATE DATE DATE DATE DATE DATE | 1355
1300
1255
N LONG 10
TIME
1205
1650 | INST. CUBIC FEET PER SECOND (00061) 46 22 18 08 04 06W) DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 2500 3740 | CIFIC CON- DUCT- ANCE (US/CM) (00095) 79 166 83 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 391 357 | ATURE WATER (DEG C) (00010) 14.9 17.6 15.9 TEMPER- ATURE WATER (DEG C) (00010) 8.8 14.0 | | 03 MAR 30 APR 28 DATE | 0930
1010
1200
091
TIME | CUBIC FEET PER SECOND (00061) 1.8 8.9 68 L44250 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 1470 1540 | CIFIC CON- DUCT- ANCE (US/CM) (00095) 219 184 171 GUNNI SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 1.3 4.0 8.2 SON RIVER AT 1 TEMPERATURE WATER (DEG C) (00010) 8.0 5.8 | JU
AU
DELTA, CO (LA
AE
MA
JU | DATE DATE PR 12 Y 22 N 13 | 1355
1300
1255
N LONG 10
TIME | INST. CUBIC FEET PER SECOND (00061) 46 22 18 08 04 06W) DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 79 166 83 SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 391 | ATURE WATER (DEG C) (00010) 14.9 17.6 15.9 TEMPER- ATURE WATER (DEG C) (00010) 8.8 | | | MISCE | LLANEOUS S | TATION AN | ALYSES, WA | TER YEAR OCTOBER 1999 TO SEE | TEMBER 2 | 2000Cont | inued | | |------------------|---------------|---|--|---|------------------------------|-------------------|---|--|---| | | 09146 | 200 | UNCOMPAH | GRE RIVER | NEAR RIDGWAY, CO (LAT 38 11 | 02N LONG | g 107 44 4 | 3W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1040 | 86 | 639 | 6.6 | MAY
23 | 1130 | 467 | 281 | 9.4 | | NOV
03 | 1425 | 58 | 777 | 9.8 | JUN
15 | 1335 | 266 | 415 | 16.6 | | DEC 21 | 1630 | 54 | 787 | 2.4 | JUL
19 | 1315 | 151 | 655 | 18.0 | | MAR
02 | 1030 | 47 | 874 | 3.6 | SEP 01 | 1035 | 105 | 671 | 12.2 | | APR
11 | 1645 | 118 | 550 | 10.8 | | | | | | | | 091 | 47000 | DALLAS | CREEK NEA | R RIDGWAY, CO (LAT 38 10 40N | I LONG 10 | 07 45 28W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 0925 | 34 | 420 | 4.1 | MAY
23 | 1050 | 4.2 | 834 | 14.2 | | NOV
05 | 1105 | 24 | 538 | 3.7 | 25
31 | 1615
1230 | 15
62 | 629
459 | 16.7
13.8 | | DEC
21
JAN | 1520 | 26 | 610 | .0 | JUN
15
JUL | 1300 | 26 | 630 | 17.6 | | 18
FEB | 1250 | 18 | 651 | 2.5 | 19
AUG | 1140 | 26 | 926 | 17.2 | | 02
17 | 0900
0915 | E16
17 | 688
586 | .1
1.0 | 03
11 | 0910
1105 | .40
5.5 | 1260
1130 | 15.6
17.6 | | MAR
02 | 0900 | 16 | 646 | 1.1 | SEP
01 | 0920 | 30 | 796 | 12.0 | | APR
11
27 | 1515
1140 | 97
53 | 368
435 | 7.3
10.0 | | | | | | | 0914
DATE | 17025
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER | RIDGWAY RESERVOIR, CO (LAT 3 | 38 14 171
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | OCT | | (00061) | (00095) | (00010) | MAR | | (00061) | (00095) | (00010) | | 05
NOV | 1155 | 197 | 473 | 13.7 | 02
MAY | 1325 | 46 | 617 | 4.9 | | 03
DEC | 1140 | 44 | 502 | 11.5 | 25
JUN | 1400 | 378 | 650 | 5.7 | | 21 | 1335 | 50 | 508 | 5.0 | 06 | 1230 | 500 | 621 | 6.7 | | | 0914 | | UNCOMPA | HGRE RIVER | AT COLONA, CO (LAT 38 19 53 | N LONG | |) | | | DATE | TIME |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1330 | 218 | 500 | 15.4 | MAY
25 | 1020 | 687 | 433 | 6.7 | | NOV
03 | 1040 | 61 | 571 | 6.4 | 31
JUN | 0930 | 1010 | 496 | 6.7 | | DEC
22
MAR | 0855 | 54 | 644 | .0 | 13
JUL
19 | 1425
1450 | 378
267 | 550
473 | 12.7
16.3 | | 02
APR | 1445 | 65 | 646 | 5.4 | 19
AUG
03 | 1210 | 292 | 473 | 14.5 | | 11 | 1240 | 137 | 479 | 8.6 | SEP
01 | 1200 | 68 | 551 | 13.4 | | | | | | | | | | | | | | (| 09153290 | REE | D WASH NEAR MA | CK, CO (LAT 39 12 41N L | ONG 108 4 | 18 11W) | | | |-------------------------|---|--|---|---|--|--------------------------------|--|---|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
01 | 1445 | 56 | 1720 | 13.2 | APR
06 | 1035 | 95 | 1230 | 12.3 | | NOV 29 | 1415 | 7.7 | 4330 | 8.7 | MAY
01 | 1115 | 69 | 1190 | 11.3 | | JAN
21 | 0945 | 4.3 | 4480 | 6.6 | JUN
06 | 1340 | 52 | 1420 | 19.4 | | MAR
17 | 1005 | 3.0 | 4560 | 5.4 | JUL
11 | 1000 | 69 | 1720 | 18.7 | | | 091 | 165000 | DOLOR | ES RIVER BELOW | RICO, CO (LAT 37 38 20 | N LONG 10 | 08 03 35W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
04 | 1145 | 52 | 350 | 3.5 | MAY
26 | 0830 | 584 | 131 | 2.9 | | NOV
24 | 1415 | 43 | 450 | .0 | JUL
05 | 1000 | 51 | 345 | 8.8 | | FEB 23 | 1400 | 36 | 600 | .0 | AUG
24 | 1330 | 38 | 385 | 13.8 | | APR
05
19 | 1230
1245 | 50
166 | 397
268 | 3.8 | | | | | | | 28 | 1400 | 399 | 168 | 5.2 | | | | | | | 28 | | 399
166500 | | | LORES, CO (LAT 37 28 21 | n long 10 |)8 29 49W) | | | | DATE | | | | | LORES, CO (LAT 37 28 21
DATE | N LONG 10 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT 04 | 091 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) | ES RIVER AT DO
TEMPER-
ATURE
WATER
(DEG C) | DATE
MAY
26 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | DATE OCT 04 DEC 27 | 091
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | ES RIVER AT DO
TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
MAY
26
JUL
25 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | DATE OCT | 091
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
MAY
26
JUL | TIME
1045 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | DATE OCT 04 DEC 27 MAR | 091
TIME
1415
1445 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 359 | TEMPER-ATURE WATER (DEG C) (00010) | DATE MAY 26 JUL 25 SEP | TIME
1045
1100 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010)
6.7 | | DATE OCT | 091 TIME 1415 1445 1330 1100 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
132
55
67
249
1990 | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 359 481 465 392 162 | TEMPER-ATURE WATER (DEG C) (00010) 10.6 .1 1.5 5.5 3.9 | DATE MAY 26 JUL 25 SEP | TIME
1045
1100
1230 | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
1460
114 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
151
330
343 | ATURE
WATER
(DEG C)
(00010)
6.7 | | DATE OCT | 091 TIME 1415 1445 1330 1100 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
132
55
67
249
1990 | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 359 481 465 392 162 | TEMPER-ATURE WATER (DEG C) (00010) 10.6 .1 1.5 5.5 3.9 | DATE MAY 26 JUL 25 SEP 13 | TIME
1045
1100
1230 | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
1460
114 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
151
330
343 | ATURE
WATER
(DEG C)
(00010)
6.7 | | DATE OCT | 091
TIME
1415
1445
1330
1100
091669 | DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
132
55
67
249
1990
DIS-CHARGE,
INST.
CUBIC
FEET
PER
SECOND | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 359 481 465 392 162 LOST CAN SPE- CIFIC CON- DUCT- ANCE (US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 10.6 .1 1.5 5.5 3.9 YON CREEK NEAR TEMPER- ATURE WATER (DEG C) | DATE MAY 26 JUL 25 SEP 13 DOLORES, CO (LAT 37 26 | TIME 1045 1100 1230 45N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 1460 114 120 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON-DUCT-ANCE (US/CM) (00095) 151 330 343 3W) SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 6.7 19.4 16.0 TEMPER-ATURE WATER (DEG C) (00010) | | DATE OCT | 091 TIME 1415 1445 1330 1100 091669 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
132
55
67
249
1990
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | DOLOR SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) 359 481 465 392 162 LOST CAN SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER- ATURE WATER (DEG C) (00010) 10.6 .1 1.5 5.5 3.9 YON CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) | DATE MAY 26 JUL 25 SEP 13 DOLORES, CO (LAT 37 26 | TIME 1045 1100 1230 45N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 1460 114 120 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 151 330 343 3W) SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 6.7 19.4 16.0 TEMPER-ATURE ATURE (DEG C) (00010) | 09168730 DOLORES RIVER NEAR SLICK ROCK, CO (LAT 38 02 40N LONG 108 54 17W) | | 09100 | 3730 | DOLORES | RIVER NEAR S | SLICK ROCK, | CO (LAT 38 02 | 40N LONG | 3 108 54 1 | 7W) | | |--|--|--|---|--|--------------|--|---|--|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | MAR
02
APR | 1045 | 48 | 734 | 7.2 | | MAY
15
31 | 1130
1115 | 784
90 | 330
551 | 9.0
19.4 | | 07
24 | 0815
1100 | 204
1030 | 960
347 | 10.7
8.8 | | JUL
06 | 1315 | 56 | 287 | 23.5 | | | | | | | | AUG
15 | 1130 | 59 | 775 | 24.5 | | | 09172500 |) s | SAN MIGUEL | RIVER NEAR H | PLACERVILLE, | CO (LAT 38 0 | 2 05N LON | NG 108 07 | 15W)
| | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT 28 | 1230 | 101 | 384 | 5.4 | | MAY
16 | 1030 | 489 | 297 | 7.4 | | NOV 24 | 1200 | 63 | 409 | .0 | | 31
JUL | 2000 | 967 | 199 | 13.2 | | FEB 23 | 1130 | 72 | 420 | 2.2 | | 05
AUG | 1200 | 180 | 320 | 13.1 | | APR
05 | 1400 | 125 | 437 | 9.7 | | 17 | 1345 | 96 | 380 | 15.8 | | 25 | 1500 | 425 | 359 | 8.4 | | | | | | | | 091 | 74600 | SAN MI | GUEL RIVE | R AT BROOKS I | BRIDGE NEAR | NUCLA CO (LA | т 38 14 3 | 39N LONG 1 | N8 30 N5W | 1) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
28 | TIME
0815 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND | CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | | DATE
MAY
16 | TIME
0800 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
28
DEC
28 | | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE MAY 16 31 JUL | TIME
0800
1400 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | OCT
28
DEC
28
MAR
01 | 0815 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | DATE MAY 16 31 JUL 05 AUG | TIME
0800
1400
1345 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
473
926 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010)
9.0
12.7
21.8 | | OCT
28
DEC
28
MAR | 0815
1315 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | DATE MAY 16 31 JUL 05 | TIME
0800
1400 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | | OCT 28 DEC 28 MAR 01 APR 05 | 0815
1315
1730
1520
1230 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
117
85
60
293 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
425
477
454
386
301 | TEMPER-ATURE WATER (DEG C) (00010) 4.1 .3 4.8 11.7 7.6 | T URAVAN, CC | DATE MAY 16 31 JUL 05 AUG | 0800
1400
1345
1145 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
473
926
84 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
315
191
355 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
9.0
12.7
21.8 | | OCT 28 DEC 28 MAR 01 APR 05 | 0815
1315
1730
1520
1230 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
117
85
60
293
618 | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
425
477
454
386
301 | TEMPER-ATURE WATER (DEG C) (00010) 4.1 .3 4.8 11.7 7.6 | T URAVAN, CC | DATE MAY 16 31 JUL 05 AUG 17 | 0800
1400
1345
1145 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
473
926
84 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
315
191
355 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
9.0
12.7
21.8 | | OCT
28
DEC
28
MAR
01
APR
05
25 | 0815
1315
1730
1520
1230 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
117
85
60
293
618
77000
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | CIFIC CON- DUCT- ANCE (US/CM) (00095) 425 477 454 386 301 SAN MI SPE- CIFIC CON- DUCT- ANCE (US/CM) | TEMPER-ATURE WATER (DEG C) (00010) 4.1 .3 4.8 11.7 7.6 GUEL RIVER ATURE WATER ATURE WATER (DEG C) | T URAVAN, CC | DATE MAY 16 31 JUL 05 AUG 17 | TIME 0800 1400 1345 1145 6N LONG 1 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 473 926 84 12 108 42 44W DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
315
191
355
575 | TEMPER-ATURE WATER (DEG C) (00010) 9.0 12.7 21.8 22.7 TEMPER-ATURE WATER (DEG C) | | OCT 28 DEC 28 MAR 01 APR 05 25 DATE | 0815
1315
1730
1520
1230 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
117
85
60
293
618
77000
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 425 477 454 386 301 SAN MI SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER-ATURE WATER (DEG C) (00010) 4.1 .3 4.8 11.7 7.6 GUEL RIVER ATURE WATER (DEG C) (00010) | T URAVAN, CC | DATE MAY 16 31 JUL 05 AUG 17 DATE DATE MAY 15 31 JUL | TIME 0800 1400 1345 1145 6N LONG 1 TIME 1800 1530 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
473
926
84
12
108 42 44W
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
315
191
355
575 | TEMPER-
ATURE
WATER
(DEG C)
(00010)
9.0
12.7
21.8
22.7
TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT 28 DEC 28 MAR 01 APR 05 25 DATE | 0815
1315
1730
1520
1230
0917 | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
117
85
60
293
618
77000
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC CON- DUCT- ANCE (US/CM) (00095) 425 477 454 386 301 SAN MI SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095) | TEMPER- ATURE WATER (DEG C) (00010) 4.1 .3 4.8 11.7 7.6 GUEL RIVER A: TEMPER- ATURE WATER (DEG C) (00010) 10.2 | T URAVAN, CO | DATE MAY 16 31 JUL 05 AUG 17 DATE MAY 15 31 | TIME 0800 1400 1345 1145 6N LONG 1 TIME | DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND (00061)
473
926
84
12
LOS 42 44W
DIS-
CHARGE,
INST.
CUBIC
FEET PER
SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
315
191
355
575 | TEMPER-ATURE WATER (DEG C) (00010) 9.0 12.7 21.8 22.7 TEMPER-ATURE WATER (DEG C) (00010) | SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | 09237450 | YAMPA R | IVER ABOVE | STAGECOACH | RESERVOIR, | CO | (LAT | 40 | 16 | 09N | LONG | 106 | 52 | 49W) | | |----------|---------|------------|------------|------------|----|------|----|----|-----|------|-----|----|------|--| | | | | | | | | | | | | | | | | | | 09237450 | YAM | PA RIVER | ABOVE STAGE | ECOACH RESERVO | IR, CO (LAT 4 | 0 16 09N | LONG 106 | 52 49W) | | |-----------------|--------------|---|--|---|-----------------|------------------|--------------|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
04 | 0830 | 58 | 349 | 2.7 | | JUN
07 | 1220 | 77 | 424 | 17.4 | | NOV
08 | 1220 | 52 | 366 | 5.1 | | JUL
11 | 0915 | 98 | 505 | 14.5 | | 29
MAR | 1355 | 72 | 357 | .1 | | AUG 15 | 1230 | 50 | 496 | 18.5 | | 14
APR | 0900 | 43 | 395 | .2 | | SEP 25 | 0905 | 44 | 497 | 2.4 | | 11
MAY | 1145 | 122 | 513 | 6.5 | | | | | | | | 09 | 1005 | 159 | 342 | 6.1 | | | | | | | | | 09237500 | YAM | PA RIVER | BELOW STAGE | ECOACH RESERVO | IR, CO (LAT 4 | 0 17 15N | LONG 106 | 49 33W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
04 | 1000 | 100 | 403 | 11.0 | | MAY
09 | 1110 | 88 | 401 | 7.8 | | NOV
08 | 1120 | 94 | 399 | 7.9 | | JUN
14 | 1240 | 66 | 392 | 11.6 | | 29
JAN | 1225 | 78 | 399 | 4.7 | | JUL
11 | 1015 | 65 | 398 | 16.8 | | 19
FEB
29 | 1140
0950 | 80
98 | 409
403 | 3.2
2.6 | | AUG
15
SEP | 1325 | 78 | 418 | 17.3 | | MAR
13 | 1200 | 98 | 388 | 2.8 | | 07
25 | 1000
1005 | 81
68 | 423
419 | 16.0
12.6 | | 14
APR | 1005 | 95 | 403 | 2.6 | | 23 | 1003 | 00 | 419 | 12.0 | | 11 | 1240 | 87 | 422 | 4.0 | | | | | | | | 09238
DATE | 900
TIME | FISH CREE DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) |
TEMPER-
ATURE
WATER
(DEG C)
(00010) | NEAR STEAMBOAT | SPRINGS, CO | (LAT 40 2 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
04 | 1120 | 4.7 | 27 | 3.2 | | MAY
30 | 2015 | 754 | 13 | 3.3 | | NOV
18 | 1205 | 1.3 | 30 | .2 | | JUL
25 | 1030 | 6.0 | 25 | 14.2 | | FEB
29 | 1150 | 3.2 | 35 | 1.4 | | AUG
15 | 1445 | 6.9 | 19 | 16.8 | | APR
11 | 1510 | 36 | 34 | 3.9 | | SEP
25 | 1210 | 10 | 25 | 1.8 | | | 0: | 9240900 | ELK | RIVER ABOVE | E CLARK, CO (Li | AT 40 44 36N | LONG 106 | 51 17W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1345 | 52 | 84 | 5.0 | | JUL
11 | 1305 | 180 | 47 | 14.7 | | APR
12 | 1300 | 139 | 80 | 2.3 | | AUG
16 | 1100 | 63 | 75 | 14.6 | | MAY
25 | 1000 | 1330 | 33 | 4.5 | | | | | | | | 30 | 1530 | 1750 | 28 | 9.4 | | | | | | | | | | 09241000 | EI | K RIVER AT | CLARK, CO (LA | AT 40 43 03N 1 | LONG 106 | 54 55W) | | | |--|---|--|--|---|---------------|--|---|---|---|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1450 | 56 | 88 | 5.5 | | MAY
25 | 1220 | 1450 | 39 | 6.5 | | MAR
22 | 1130 | 35 | 115 | .5 | | 30
JUL | 1330 | 2050 | 35 | 8.8 | | APR
12 | 1420 | 296 | 96 | 3.4 | | 11
AUG | 1410 | 185 | 51 | 16.0 | | | | | | | | 16 | 1225 | 67 | 78 | 15.8 | | | 09 | 9242500 | ELK | RIVER NEAR | MILNER, CO (L | LAT 40 30 53N | LONG 106 | 57 12W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
04 | 1305 | 89 | 123 | 8.4 | | MAY
09 | 1300 | 1840 | 76 | 8.1 | | NOV
08 | 0840 | 79 | 149 | .5 | | 25
30 | 1425
1100 | 2540
4150 | 45
38 | 8.8
7.3 | | 29
MAR
14 | 0935
1305 | 72
92 | 152
178 | .0 | | JUL
11
AUG | 1525 | 232 | 80 | 21.9 | | 22
APR | 1300 | 92 | 185 | 2.6 | | 15
SEP | 1640 | 44 | 126 | 25.5 | | 11 | 1655 | 690 | 257 | 8.5 | | 25 | 1405 | 189 | 104 | 9.3 | | | 0004 | | | | ONE ODDERW OO | | 2017 7 0170 | 106 50 225 | ١ | | | | 09243 | 3700 | MIDDLE | CREEK NEAR | OAK CREEK, CC | O (LAT 40 23) | J8N LONG . | 106 59 33W | , | | | DATE | 0924:
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OAR CREEK, CC | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE OCT 06 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | OAA CREEK, CC | | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | OCT
06
NOV
08 | TIME
0850
1337 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) | OAR CREEK, CC | DATE MAY 16 JUN 14 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
06
NOV
08
30
JAN | TIME
0850
1337
0900 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 5.7 7.4 .1 | OAR CREEK, CC | DATE MAY 16 JUN 14 JUL 12 | TIME
1135 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
06
NOV
08
30
JAN
20 | TIME 0850 1337 0900 1110 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992 | TEMPER- ATURE WATER (DEG C) (00010) 5.7 7.4 .1 | OAR CREEK, CC | DATE MAY 16 JUN 14 JUL | TIME
1135
1020 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
4.5 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 13.5 13.9 | | OCT
06
NOV
08
30
JAN
20 | TIME
0850
1337
0900 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 5.7 7.4 .1 | OAR CREEK, CC | DATE MAY 16 JUN 14 JUL 12 AUG | TIME
1135
1020
0945 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
4.5 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 13.5 13.9 | | OCT
06
NOV
08
30
JAN
20
MAR
01 | TIME 0850 1337 0900 1110 0910 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992
816 | TEMPER-ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .1 | OAR CREEK, CC | DATE MAY 16 JUN 14 JUL 12 AUG | TIME
1135
1020
0945 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
4.5 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 13.5 13.9 | | OCT
06
NOV
08
30
JAN
20
MAR
01 | TIME 0850 1337 0900 1110 0910 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 1.1 6.3 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992
816
833
648 | TEMPER-ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .0 5.7 | OAK CREEK, CO | DATE MAY 16 JUN 14 JUL 12 AUG 15 | TIME
1135
1020
0945
1030 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.5 .80 .27 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
605
902
899
724 | ATURE WATER (DEG C) (00010) 13.5 13.9 | | OCT
06
NOV
08
30
JAN
20
MAR
01 | TIME 0850 1337 0900 1110 0910 0945 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 1.1 6.3 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992
816
833
648 | TEMPER-ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .0 5.7 | | DATE MAY 16 JUN 14 JUL 12 AUG 15 | TIME
1135
1020
0945
1030 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.5 .80 .27 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
605
902
899
724 | ATURE WATER (DEG C) (00010) 13.5 13.9 | | OCT 06 NOV 08 30 JAN 20 MAR 01 APR 12 DATE | TIME 0850 1337 0900 1110 0910 0945 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 1.1 6.3 B800 DIS- CHARGE, INST. CUBIC FEET PER SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992
816
833
648
FOIDEL
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .0 5.7 CREEK NEAR TEMPER-ATURE WATER (DEG C) | | DATE MAY 16 JUN 14 JUL 12 AUG 15 D(LAT 40 20 4) DATE APR 12 | TIME 1135 1020 0945 1030 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.5 .80 .27 .74 107 05 04W DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 605 902 899 724 | ATURE WATER (DEG C) (00010) 13.5 13.9 15.5 18.3 TEMPER-ATURE WATER (DEG C) | | OCT
06
NOV
08
30
JAN
20
MAR
01
APR
12 | TIME 0850 1337 0900 1110 0910 0945 TIME 0940 1455 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 1.1 6.3 3800 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .222 .05 |
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992
816
833
648
FOIDEL
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .0 5.7 CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) 6.0 4.6 | | DATE MAY | TIME 1135 1020 0945 1030 45N LONG | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.5 .80 .27 .74 107 05 04W DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
605
902
899
724
)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 13.5 13.9 15.5 18.3 TEMPER-ATURE WATER (DEG C) (00010) | | OCT 06 NOV 08 30 JAN 20 MAR 01 APR 12 DATE OCT 06 NOV 08 30 JAN | TIME 0850 1337 0900 1110 0910 0945 TIME 0940 1455 1025 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 1.1 6.3 3800 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .222 .05 .41 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992
816
833
648
FOIDEL
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .0 5.7 CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) 6.0 4.6 .2 | | DATE MAY 16 JUN 14 12 AUG 15 DATE DATE APR 12 MAY 16 JUN 14 | TIME 1135 1020 0945 1030 45N LONG : | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.5 .80 .27 .74 107 05 04W DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
605
902
899
724
)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 13.5 13.9 15.5 18.3 TEMPER-ATURE WATER (DEG C) (00010) 8.1 | | OCT 06 NOV 08 30 JAN 20 MAR 01 APR 12 DATE OCT 06 NOV 08 30 JAN 20 FEB | TIME 0850 1337 0900 1110 0910 0945 09243 TIME 0940 1455 1025 1300 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 1.1 6.3 8800 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .22 .05 .41 .29 | SPE-CIFIC CON-DUCT-ANCE (US/CM) 940 949 992 816 833 648 FOIDEL SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 3280 2180 3370 2240 | TEMPER-ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .0 5.7 CREEK NEAR TEMPER-ATURE WATER (DEG C) (00010) 6.0 4.6 .2 .1 | | DATE MAY 16 JUN 14 JUL 12 AUG 15 DATE DATE APR 12 MAY 16 JUN 14 JUN 14 JUN 14 JUL 12 | TIME 1135 1020 0945 1030 45N LONG TIME 1035 1300 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.5 .80 .27 .74 107 05 04W DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 3.9 1.9 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 605 902 899 724) SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 1560 2660 | ATURE WATER (DEG C) (00010) 13.5 13.9 15.5 18.3 TEMPER-ATURE WATER (DEG C) (00010) 8.1 17.4 | | OCT 06 NOV 08 30 JAN 20 MAR 01 APR 12 DATE OCT 06 NOV 08 30 JAN 20 | TIME 0850 1337 0900 1110 0910 0945 TIME 0940 1455 1025 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .33 .58 .47 .99 1.1 6.3 3800 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) .222 .05 .41 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
940
949
992
816
833
648
FOIDEL
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 5.7 7.4 .1 .0 5.7 CREEK NEAR TEMPER- ATURE WATER (DEG C) (00010) 6.0 4.6 .2 | | DATE MAY 16 JUN 14 AUG 15 DATE DATE APR 12 MAY 16 JUN 14 JUL | TIME 1135 1020 0945 1030 45N LONG : TIME 1035 1300 1110 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 4.5 .80 .27 .74 107 05 04W DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 3.9 1.9 .74 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
605
902
899
724
)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
1560
2660
3160 | TURE WATER (DEG C) (00010) 13.5 13.9 15.5 18.3 TEMPERATURE WATER (DEG C) (00010) 8.1 17.4 16.1 | #### SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | | 09243900 | FOI | DEL CREEK | AT MOUTH, | NEAR OAK | CREEK, CO | (LAT 40 | 23 25N 1 | LONG 106 5 | 9 39W) | | |------------------|------------------|---|--|---|-----------|-------------------|----------|--------------|---|--|---| | DAT | E TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 0815 | .26 | 2180 | 5.4 | | APR
12 | | 0805 | 6.5 | 1670 | 4.6 | | NOV
08 | 1410 | .21 | 1710 | 5.9 | | MAY
16 | | 1050 | 2.6 | 2260 | 11.8 | | 30
JAN | 0935 | . 45 | 2710 | .1 | | | | 0940 | 1.2 | 2420 | 12.5 | | 19
FEB
07 | 1345 | .74 | 1860 | .1 | | JUL
12 | | 0905 | .25 | 2020 | 14.2 | | 07
MAR
01 | 1055
1000 | .61
.72 | 2660
2390 | .1 | | AUG
15 | | 0955 | .04 | 1940 | 16.5 | | 01 | 1000 | . 72 | 2390 | . 2 | | | | | | | | | | 09249750 | WILLIA | MS FORK R | IVER AT MO | UTH, NEAR | HAMILTON, | CO (LAT | 40 26 14 | IN LONG 10 | 7 38 50W) | | | DAT | E TIME | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
04 | 1435 | 46 | 643 | 12.0 | | MAY
31 | | 0950 | 984 | 172 | 11.6 | | 25
NOV
30 | 1205
1445 | 42
70 | 680
675 | 5.4
1.2 | | JUL
12
17 | | 1340
1115 | 48
37 | 515
561 | 24.5
20.5 | | JAN
04 | 1320 | 52 | 691 | .5 | | AUG | | 0900 | 25 | 561 | 18.5 | | FEB 28 | 1115 | 78 | 719 | 3.0 | | | | 0955 | 19 | 615 | 17.5 | | MAR
14 | 1200 | 79 | 665 | 4.5 | | 12 | | 0930
1247 | 26
27 | 566
686 | 12.9
20.3 | | 28 | 0935 | 103 | 702 | 8.2 | | 26 | | 0820 | 62 | 498 | 6.7 | | | 092 | 255000 | SLATE | R FORK NEA | R SLATER, | CO (LAT 4 | 0 58 54N | LONG 10 | 7 22 58W) | | | | DAT | E TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 0945 | 20 | 267 | 5.2 | | APR
24 | | 1015 | 365 | 145 | 2.1 | | 21
NOV | 1130 | 20 | 275 | 3.1 | | MAY | | 1245 | 330 | 75 | 12.1 | | 30
JAN | 1300 | 34 | 264 | .3 | | | | 1545 | 13 | 297 | 24.0 | | 04
FEB | 1110 | 22 | 266 | .1 | | | | 0825 | 3.4 | 323 | 19.9 | | 28
MAR
13 | 0915
1030 | 30
14 | 271
300 | 2.3 | | SEP
26 | | 1305 | 13 | 242 | 10.0 | | 13 | 1030 | 14 | 300 | 2.3 | | | | | | | | | DAT | 092600
E TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | NEAR LILY | | 40 32 5 | ON LONG I | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | 07 | 1415 | 116 | 599 | 14.9 | | | | 1426 | 192 | 701 | 5.1 | | NOV
17
JAN | 0845 | 115 | 648 | 1 | | JUL
18
SEPT | | 1319 | 34 | 982 | 26.8 | | 13 | 1100 | 135 | 607 | .1 | | | | 1109 | 2.1 | 1040 | 22.1 | | | 00 | 304500 | WIITTE | DIVED NEAL | MEEKED CO | /IAT 40 02 01N | TONG 10 | 7 E1 40W) | | | |-----------|----------------|---|--|---|--------------|--------------------------|---------|---|--|--| | | 09 | | MHIIF | KIVEK NEAR | K MEEKER, CO | (LAT 40 02 01N | LONG IU | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | 1206 | 400 | 452 | 6.6 | | MAY | 0040 | 0210 | 224 | | | 26
DEC | 1326 | 408 | 473 | 6.6 | | 27
JUN | 0948 | 2310 | 224 | 7.4 | | 18
FEB | 1350 | 333 | 500 | .6 | | 26
AUG | 1133 | 461 | 460 | 17.2 | | 06
MAR | 1254 | 324 | 496 | 3.2 | | 10
SEP | 1044 | 208 | 599 | 17.2 | | 21
APR | 1537 | 342 | 547 | 6.7 | | 29 | 1006 | 359 | 496 | 9.7 | | 17 | 1300 | 553 | 404 | 10.9 | | | | | | | | 09339900 | EAST | | UAN RIVER | ABOVE SANI | CREEK, NEA | R PAGOSA SPRINGS | , CO (L | | 3N LONG 1 | 06 50 26W) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 0830 | 43 | 241 | 2.1 | | MAY
25 | 1400 | 208 | 88 | 13.4 | | DEC
06 | 1145 | 7.0 | 168 | .1 | | JUL
13 | 1115 | 20 | 155 | 15.4 | |
APR 28 | 1615 | 175 | 98 | 9.3 | | SEP
05 | 1230 | 16 | 172 | 16.1 | | DATE | 093425
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | S, CO (LAT 37 15
DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER -
ATURE
WATER
(DEG C)
(00010) | | OCT | | (00001) | (00055) | (00010) | | MAY | | (00001) | (00053) | (00010) | | 05
DEC | 1000 | 181 | 121 | 5.0 | | 25
JUL | 1245 | 875 | 67 | 10.0 | | 06
FEB | 1045 | 39 | 195 | .1 | | 13
SEP | 1430 | 47 | 200 | 24.8 | | 02
MAR | 1430 | 40 | 189 | .5 | | 05 | 1400 | 33 | 239 | 20.2 | | 30 | 1400 | 168 | 156 | 4.3 | | | | | | | | | 0934 | 6400 | SAN JUA | N RIVER NEA | AR CARRACAS, | CO (LAT 37 00 4 | 9N LONG | 107 18 42 | W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1245 | 262 | 227 | 11 2 | | JUN
02 | 1345 | 659 | 130 | 18.6 | | MAR | | | | 11.3 | | JUL | | | | | | 09
APR | 1115 | 155 | 452 | 4.3 | | 18
SEP | 1015 | 160 | 300 | 21.1 | | 11
28 | 0900
1000 | 742
1160 | 236
128 | 8.2
10.4 | | 06 | 1115 | 73 | 364 | 19.0 | #### SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS MISCELLANEOUS STATION ANALYSES, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000--Continued | | MISCEI | LLANEOUS S | TATION AN | ALYSES, WATE | YEAR OCTOBER 1999 TO | SEPTEMBER 2 | 2000Cont | ınued | | |------------------|--------------|---|--|---|------------------------|--------------|---|--|---| | | 0934 | 49800 | PIEDRA | RIVER NEAR | RBOLES, CO (LAT 37 05 | 18N LONG 10 | 07 23 50W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
05 | 1130 | 218 | 277 | 8.6 | JUN
02 | 1215 | 541 | 159 | 16.8 | | DEC | | | | | JUL | | | | | | 06
FEB | 0915 | 32 | 534 | .0 | 18
SEP | 1300 | 90 | 345 | 24.0 | | 02
APR | 1615 | 63 | 484 | 3.8 | 06 | 1345 | 65 | 439 | 19.5 | | 11
28 | 1145
1345 | 799
136 | 222
142 | 6.8
7.6 | | | | | | | | 093529 | 900 | VALLECIT | O CREEK NEAR | BAYFIELD, CO (LAT 37 2 | 8 39N LONG | 107 32 35 | W) | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
22 | 1300 | 36 | 86 | 3.0 | JUN
06 | 1045 | 292 | 42 | 5.4 | | JAN | | | | | JUL | | | | | | 28
APR | 1345 | 13 | 102 | .1 | 11 | 1030 | 55 | 55 | 10.6 | | 12
MAY | 1045 | 89 | 70 | 1.2 | 22 | 1600 | 59 | 61 | 14.2 | | DATE | OS
TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER | ACIO, CO (LAT 37 09 5 | 8N LONG 107 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | NOV | | 1.0 | 100 | 2.0 | JUN | 1.420 | 2.1 | 1.55 | 05.0 | | 10
18 | 0900
0915 | 16
13 | 186
197 | 3.8
3.5 | 22
JUL | 1430 | 3.1 | 157 | 25.3 | | FEB
03 | 1245 | 55 | 151 | 3.4 | 28
SEP | 1215 | 3.0 | 159 | 24.2 | | APR
10 | 1600 | 102 | 208 | 13.8 | 06 | 1615 | 5.5 | 263 | 18.2 | | MAY
30 | 1445 | 21 | 131 | 21.6 | | | | | | | | 093 | 54500 | LOS PI | NOS RIVER AT | LA BOCA, CO (LAT 37 00 | 34N LONG 1 | L07 35 56W |) | | | | | DIS-
CHARGE, | SPE- | | | | DIS-
CHARGE,
INST. | | | | DATE | TIME | INST.
CUBIC
FEET
PER | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | DATE | TIME | CUBIC
FEET
PER
SECOND
(00061) | CON-
DUCT-
ANCE | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE NOV 09 | TIME
1630 | INST. CUBIC FEET PER SECOND | CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | DATE
MAY
30 | TIME
1030 | CUBIC
FEET
PER
SECOND | CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | NOV | 1630 | INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | MAY | 1030 | CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | NOV
09
FEB | | INST. CUBIC FEET PER SECOND (00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | MAY
30
JUL | | CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | | ПЕСЫ | JUANEOUD D | 111111014 1114 | imiono, miini | SAR OCTOBER 1999 TO SEP | I EPIDER 2 | 2000 00110 | 111404 | | |---|---|---|---|---|--|--|---|--|---| | | 093 | 355000 | SPRIN | G CREEK AT LA BO | OCA, CO (LAT 37 00 40N | LONG 107 | 7 35 47W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | NOV
09 | 1515 | 5.3 | 886 | 11.3 | MAY
30 | 1200 | 48 | 323 | 18.2 | | FEB 11 | 0845 | 2.6 | 977 | .0 | JUL
28 | 0915 | 57 | 286 | 17.2 | | APR
10 | 1345 | 5.3 | 697 | 17.8 | SEP
07 | 0845 | 42 | 335 | 13.3 | | 10 | 1343 | 5.5 | 097 | 17.0 | 07 | 0043 | 42 | 333 | 13.3 | | | 0935 | 58000 | ANIMAS | RIVER AT SILVER | RTON, CO (LAT 37 48 40N | I LONG 10 |)7 39 32W) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | 1300 | 72 | 286 | 7.2 | MAY
16 | 1210 | 199 | 162 | 7.9 | | NOV
30 | 1400 | 30 | 376 | 1.7 | 24
JUN | 1100 | 621 | 110 | 5.8 | | MAR
15 | 1030 | 21 | 400 | 1.0 | 28
JUL | 1250 | 144 | 177 | 12.5 | | 29
APR | 1200 | 26 | 392 | 4.1 | 18
21 | 1005
1200 | 81
60 | 225
260 | 10.3
12.6 | | 13
24 | 1500
1215 | 63
110 | 328
256 | 9.3
6.4 | AUG
09 | 1300 | 38 | 310 | 13.0 | 0935 | 58550 | CEMENT | CREEK AT SILVE | RTON, CO (LAT 37 49 11N | LONG 1 |)7 39 47W) | | | | DATE | 0935 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | CREEK AT SILVER TEMPER- ATURE WATER (DEG C) (00010) | RTON, CO (LAT 37 49 11N
DATE | LONG 10 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT
06 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER-
ATURE
WATER
(DEG C) | DATE
MAY
24 | | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | ATURE
WATER
(DEG C) | | OCT
06
NOV
30 | TIME |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE MAY 24 JUN 01 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
06
NOV
30
MAR
15 | TIME 1015 1415 1230 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
20
14 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 | DATE MAY 24 JUN 01 JUL 21 | TIME
1230 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE
WATER
(DEG C)
(00010) | | OCT
06
NOV
30
MAR
15
29 | TIME 1015 1415 1230 1030 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
20
14
13 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
900
1120
1180
1050 | TEMPER-ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 4.0 | DATE MAY 24 JUN 01 JUL | TIME
1230
0945 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 7.8 4.0 | | OCT
06
NOV
30
MAR
15
29 | TIME 1015 1415 1230 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
20
14 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 | DATE MAY 24 JUN 01 JUL 21 SEP | TIME
1230
0945
1415 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 180 130 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
230
275 | ATURE WATER (DEG C) (00010) 7.8 4.0 15.7 | | OCT
06
NOV
30
MAR
15
29
APR
13 | TIME 1015 1415 1230 1030 1400 1025 | DIS-CHARGE,
INST.
CUBIC
FEET PER
SECOND (00061)
20
14
13
14 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
900
1120
1180
1050
593
559 | TEMPER-ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 4.0 9.0 3.9 | DATE MAY 24 JUN 01 JUL 21 SEP | TIME 1230 0945 1415 1245 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 180 130 19 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
230
275
930
1020 | ATURE WATER (DEG C) (00010) 7.8 4.0 15.7 | | OCT
06
NOV
30
MAR
15
29
APR
13 | TIME 1015 1415 1230 1030 1400 1025 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 20 14 13 14 32 42 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
900
1120
1180
1050
593
559
MINERA
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 4.0 9.0 3.9 L CREEK AT SILVI | DATE MAY 24 JUN 01 JUL 21 SEP 15 | TIME 1230 0945 1415 1245 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 180 130 19 | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
230
275
930
1020 | ATURE WATER (DEG C) (00010) 7.8 4.0 15.7 | | OCT 06 NOV 30 MAR 15 29 APR 13 24 | TIME 1015 1415 1230 1030 1400 1025 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 20 14 13 14 32 42 59010 DIS-CHARGE, INST. CUBIC FEET PER SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
900
1120
1180
1050
593
559
MINERA
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | TEMPER- ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 4.0 9.0 3.9 L CREEK AT SILVI | DATE MAY 24 JUN 01 JUL 21 SEP 15 ERTON, CO (LAT 37 48 10 | TIME 1230 0945 1415 1245 IN LONG 1 TIME | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 180 130 19 17 107 40 20W DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
230
275
930
1020
)
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | ATURE WATER (DEG C) (00010) 7.8 4.0 15.7 11.8 TEMPER-ATURE WATER (DEG C) (00010) | | OCT 06 NOV 30 MAR 15 29 APR 13 24 DATE | TIME 1015 1415 1230 1030 1400 1025 0935 | DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) 20 14 13 14 32 42 59010 DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
900
1120
1180
1050
593
559
MINERA
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 4.0 9.0 3.9 L CREEK AT SILVI TEMPER- ATURE WATER (DEG C) (00010) | DATE MAY 24 JUN 01 SID 21 SEP 15 ERTON, CO (LAT 37 48 10 DATE APR 13 24 MAY | TIME 1230 0945 1415 1245 IN LONG I | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 180 130 19 17 107 40 20W DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 65 80 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 230 275 930 1020 SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 7.8 4.0 15.7 11.8 TEMPER-ATURE WATER (DEG C) (00010) 5.9 8.9 | | OCT 06 NOV 30 MAR 15 29 APR 13 24 DATE OCT 13 NOV 30 MAR 15 | TIME 1015 1415 1230 1030 1400 1025 71ME 1005 1400 1115 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
20
14
13
14
32
42
59010
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
900
1120
1180
1050
593
559
MINERA
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 4.0 9.0 3.9 L CREEK AT SILVI TEMPER- ATURE WATER (DEG C) (00010) 2.8 2.1 1.2 | DATE MAY 24 JUN 01 JUL 21 SEP 15 ERTON, CO (LAT 37 48 10 DATE APR 13 24 MAY 24 JUL JUL JUL | TIME 1230 0945 1415 1245 IN LONG 1 TIME 1300 1410 1015 | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 180 130 19 17 LO7 40 20W DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 65 80 449 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 230 275 930 1020 SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | TURE WATER (DEG C) (00010) 7.8 4.0 15.7 11.8 TEMPER-ATURE WATER (DEG C) (00010) 5.9 8.9 4.9 | | OCT 06 NOV 30 MAR 15 29 APR 13 24 DATE OCT 13 NOV 30 MAR | TIME 1015 1415 1230 1030 1400 1025 0935 TIME | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 20 14 13 14 32 42 59010 DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095)
900
1120
1180
1050
593
559
MINERA
SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER- ATURE WATER (DEG C) (00010) 6.9 4.8 4.7 4.0 9.0 3.9 L CREEK AT SILVI TEMPER- ATURE WATER (DEG C) (00010) 2.8 2.1 | DATE MAY 24 JUN 01 JUL 21 SEP 15 ERTON, CO (LAT 37 48 10 DATE APR 13 24 MAY 24 | TIME 1230 0945 1415 1245 IN LONG I | DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 180 130 19 17 107 40 20W DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061) 65 80 | SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) 230 275 930 1020 SPE-CIFIC CON-DUCT-ANCE (US/CM) (00095) | ATURE WATER (DEG C) (00010) 7.8 4.0 15.7 11.8 TEMPER-ATURE WATER (DEG C) (00010) 5.9 8.9 | #### SUPPLEMENTAL WATER-QUALITY DATA FOR GAGING STATIONS | | | MISCEL | LANEOUS S | TATION AN | ALYSES, WA | TER YEAR OCTOBE | ER 1999 TO SEP. | TEMBER 2 | 2000Cont | ınuea | | |-----------|-----|--------|---|--|---|-----------------|------------------|----------|---|--|---| | | | 093 | 361500 | ANIMA | S RIVER AT | DURANGO, CO (I | AT 37 16 45N I | LONG 107 | 7 52 47W) | | | | Ŋ | ATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | NOV
10 | | 1430 | 230 | 615 | 8.8 | | APR
27
MAY | 1415 | 1760 | 243 | 8.3 | | 29 | • | 1415 | 191 | 583 | 4.4 | | 25 | 1145 | 3440 | 131 | 7.9 | | FEB 18 | | 1300 | 189 | 610 | 5.4 | | JUN
30 | 1200 | 570 | 420 | 15.3 | | MAR
30 | • | 1000 | 371 | 468 | 8.1 | | AUG
07 | 1100 | 178 | 855 | 17.7 | | | | | | | | | | | | | | | | | 0936 | 52550 | WILSON | GULCH NEA | R DURANGO, CO (| LAT 37 13 37N | LONG 10 |)7 50 31W) | | | | Dž | ATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | OCT | | 1515 | 0.2 | -1- | 10.5 | | JUN | 1500 | | 544 | 01.0 | | JAN | | 1515 | .83 | 616 | 10.5 | | 02
AUG | 1530 | 1.1 | 544 | 21.2 | | 28
APR | | 1535 | .76 | 758 | 5.4 | | 07 | 1145 | .86 | 615 | 18.3 | | 12 | 3 | 1345 | . 69 | 733 | 13.4 | | | | | | | | | | 093 | 371000 | MANCO | S RIVER NE | AR TOWAOC, CO (| LAT 37 01 39N | LONG 10 | 08 44 27W) | | | | D∄ | ATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | NOV
10 | | 1100 | 10 | 1660 | 6.1 | | APR
19
MAY | 1515 | 84 | 519 | 13.6 | | 19 | • | 1100 | 22 | 1580 | .9 | | 22 | 1330 | 15 |
1030 | 22.4 | | MAR
07 | • | 1615 | 22 | 1620 | 6.5 | | AUG 24 | 1030 | 2.0 | 2060 | 20.9 | | | | | | | | | | | | | | The Eagle River Watershed Retrospective Assessment Program conducted a major ion, nutrient, trace element, organic carbon, bacteria, suspended sediment, stream habitat, algal community and biomass, and macroinvertebrate community sampling survey during August 14-18, 2000. Macroinvertebrate community samples were also collected at 9 sites during April 13-14, 2000. Samples were collected to determine baseline conditions throughout the Eagle River watershed and to investigate natural and human factors influencing water quality and stream biology. Synoptic water-quality data for sites 392511106164000, East Fork Eagle River near Red Cliff, CO; 09063000, Eagle River at Red Cliff, CO; 0906510, Gore Creek at Mouth, near Minturn, CO; 09067005, Eagle River at Avon, CO; 394220106431500, Eagle River below Milk Creek near Wolcott, CO; and 09069000, Eagle River at Gypsum, CO are published elsewhere in this report with other water-quality data for these stations. REMARKS--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboaratory analysis value; K, based on non-ideal colony count. #### MISCELLANEOUS STATION ANALYSES | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM AD- SORP- TION RATIO (00931) | |----------------|----------|---|--|--|--|---|--|---|---|--|-------------------------------------| | | 0906450 | 00 | HOMESTAKE | CREEK NE | AR RED CI | LIFF, CO. | (LAT 39 2 | 28 24N LON | G 106 22 | 02W) | | | AUG 2000
17 | 0935 | 22 | 7.4 | 7.6 | 36 | 11.2 | 15 | 4.23 | 1.17 | .6 | .1 | | | 0906 | 64600 | EAGLE | RIVER NEA | R MINTURN | I, CO (LAT | 39 33 14 | IN LONG 10 | 6 24 07W) | | | | AUG 2000
16 | 0900 | 57 | 8.1 | 7.9 | 166 | 12.1 | 81 | 19.5 | 7.75 | .8 | .1 | | | 0906 | 65100 | CROSS | CREEK NEA | R MINTURN | 1, CO. (LA | т 39 34 0 | 5N LONG 1 | 06 24 43W |) | | | AUG 2000
16 | 1140 | 32 | 7.5 | 7.4 | 41 | 15.4 | 17 | 5.02 | .97 | . 4 | .1 | | 09065 | 5500 | GORE C | REEK AT U | PPER STAT | ION, NEAF | R MINTURN, | CO. (LAT | 39 37 33 | N LONG 10 | 6 16 39W) | | | AUG 2000
17 | 1310 | 11 | 8.8 | 8.0 | 59 | 11.6 | 29 | 6.66 | 2.89 | .3 | .1 | | | 09066 | 6050 | BLACK G | ORE CREEK | NEAR VAI | IL, CO. (L | AT 39 37 | 24N LONG | 106 16 47 | W) | | | AUG 2000
16 | 1435 | 7.4 | 7.0 | 8.6 | 233 | 15.4 | 99 | 32.8 | 4.21 | .8 | .3 | | | 09 | 9067000 | BEAV | ER CREEK | AT AVON, | CO. (LAT | 39 37 47N | LONG 106 | 31 20W) | | | | AUG 2000
17 | 0830 | 6.1 | 8.3 | 8.1 | 231 | 11.8 | 110 | 30.8 | 7.64 | 1.0 | .1 | | | 090 | 067200 | LAKE | CREEK NEA | R EDWARDS | G, CO (LAT | 39 38 51 | IN LONG 10 | 6 36 31W) | | | | AUG 2000
15 | 1440 | 28 | 7.3 | 8.4 | 422 | 16.4 | 200 | 60.5 | 10.8 | 1.2 | .1 | | 393030 | 10622470 | 00 EAGLE R | IVER BLW | HOMESTAKE | CREEK NF | R RED CLIF | F, CO (LA | AT 39 30 3 | ON LONG 1 | 06 22 47W |) | | AUG 2000
16 | 1540 | 45 | 7.2 | 8.3 | 171 | 14.9 | 85 | 20.9 | 7.99 | .9 | .1 | | | 39322 | 1106450700 | EAST BRU | SH CREEK | ABOVE CON | IFLUENCE (| LAT 39 32 | 2 21N LONG | 106 45 0 | 7W) | | | AUG 2000
14 | 1555 | 8.9 | 7.1 | 8.6 | 425 | 15.5 | 220 | 68.3 | 11.3 | .9 | .1 | | | 393 | 3501106313 | 200 BEAVE | R CREEK A | BOVE AVON | , CO (LAT | 39 35 01 | N LONG 10 | 6 31 32W) | | | | AUG 2000
15 | 1650 | 3.4 | 7.4 | 7.9 | 70 | 13.2 | 29 | 7.19 | 2.73 | .6 | .1 | | | 393523 | 3106364700 | WEST LAK | E CREEK N | EAR EDWAF | RDS, CO (L | AT 39 35 | 23N LONG | 106 36 47 | W) | | | AUG 2000
15 | 0830 | 8.3 | 8.7 | 8.1 | 228 | 10.1 | 110 | 32.0 | 6.65 | .7 | .0 | | 3936 | 27106264 | 4000 EAGLE | RIVER AB | OVE GORE | CREEK NR. | MINTURN, | CO (LAT | 39 36 27N | LONG 106 | 26 40W) | | | AUG 2000
16 | 0855 | 108 | 7.6 | 8.1 | 185 | 12.6 | 83 | 21.0 | 7.48 | .8 | . 2 | | | | | MIS | CELLANEOU | JS STATION | ANALYSES: | Continu | .ed | | | | |----------------|-----------|------------------------------|--|-----------|--------------------------|--|----------------|--|------------------------------------|------------------------|-----------------------------------| | DATE | | SODIUM
PERCENT
(00932) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | HCO3 | WATER
DIS IT
FIELD | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | (MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | DIS-
SOLVED
(MG/L
AS SO4) | DIS.
(MG/L
AS N) | MONIA + ORGANIC TOTAL (MG/L AS N) | | | 0906450 | 00 | HOMESTAKE | CREEK NE | EAR RED CL | IFF, CO. | (LAT 39 2 | 8 24N LON | IG 106 22 | 02W) | | | AUG 2000
17 | 1.3 | 15 | 15 | 18 | | .1 | .1 | 5.0 | 1.9 | E.10 | .15 | | | 0906 | 54600 | EAGLE | RIVER NEA | AR MINTURN | , CO (LAT | 39 33 14 | N LONG 10 | 6 24 07W) | | | | AUG 2000
16 | 1.9 | 5 | 68 | 83 | | .7 | <.1 | 6.0 | 11.7 | E.10 | E.10 | | | 0906 | 55100 | CROSS | CREEK NE | AR MINTURN | , CO. (LA | т 39 34 0 | 5N LONG 1 | 06 24 43W | 1) | | | AUG 2000
16 | 1.0 | 11 | 10 | 13 | | .1 | .1 | 3.6 | 7.1 | E.10 | .18 | | 0906 | 5500 | GORE C | REEK AT U | PPER STAT | TION, NEAR | MINTURN, | CO. (LAT | 39 37 33 | N LONG 10 | 6 16 39W) |) | | AUG 2000
17 | .8 | 6 | 27 | 33 | | .1 | .2 | 3.2 | 2.6 | <.10 | E.10 | | | 09066 | 5050 | BLACK G | ORE CREEK | NEAR VAI | L, CO. (Li | AT 39 37 | 24N LONG | 106 16 47 | 'W) | | | AUG 2000
16 | 7.3 | 14 | 96 | 110 | 4 | 11.4 | .1 | 5.8 | 1.9 | <.10 | E.10 | | | 09 | 9067000 | BEAV | ER CREEK | AT AVON, | CO. (LAT | 39 37 47N | LONG 106 | 31 20W) | | | | AUG 2000
17 | 2.5 | 5 | 70 | 86 | | 2.8 | <.1 | 7.9 | 34.8 | .12 | .19 | | | 090 | 067200 | LAKE | CREEK NEA | AR EDWARDS | , CO (LAT | 39 38 51 | N LONG 10 | 6 36 31W) | | | | AUG 2000
15 | 3.8 | 4 | 99 | 113 | 4 | 3.8 | .1 | 7.2 | 95.5 | E.10 | .11 | | 39303 | 010622470 | 00 EAGLE R | RIVER BLW | HOMESTAKE | CREEK NR | RED CLIF | F, CO (LA | т 39 30 3 | ON LONG 1 | .06 22 47 | 1) | | AUG 2000
16 | 1.9 | 5 | 77 | 94 | | .7 | .1 | 6.2 | 6.0 | .11 | .13 | | | 393221 | 1106450700 | EAST BRU | SH CREEK | ABOVE CON | FLUENCE (I | LAT 39 32 | 21N LONG | 106 45 0 | 7W) | | | AUG 2000
14 | 2.0 | 2 | 97 | 111 | 4 | . 4 | .1 | 6.8 | 111 | E.10 | E.10 | | | 393 | 3501106313 | 200 BEAVE | R CREEK A | ABOVE AVON | , CO (LAT | 39 35 01 | N LONG 10 | 6 31 32W) | | | | AUG 2000
15 | 1.4 | 9 | 29 | 36 | | .3 | <.1 | 7.3 | 2.5 | E.10 | E.10 | | | 393523 | 3106364700 | WEST LAK | E CREEK N | NEAR EDWAR | DS, CO (Li | AT 39 35 | 23N LONG | 106 36 47 | 'W) | | | AUG 2000
15 | 1.2 | 2 | 67 | 82 | | .3 | <.1 | 5.3 | 39.3 | E.10 | E.10 | | 393 | 627106264 | 1000 EAGLE | RIVER AE | SOVE GORE | CREEK NR. | MINTURN, | CO (LAT | 39 36 27N | LONG 106 | 26 40W) | | | AUG 2000
16 | 3.8 | 9 | 61 | 75 | | 1.0 | <.1 | 5.2 | 28.2 | E.10 | .13 | | DATE | DIS-
SOLVED
(MG/L
AS N) | | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
TOTAL
(MG/L
AS N) | NITRO-
GEN
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N) | PHOS-
PHORUS
DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHORUS
TOTAL
(MG/L
AS P) | DIS-
SOLVED
(MG/L
AS C) | |----------------|----------------------------------|------------|---|---|---|---|---|---|--|-----------------------------------|----------------------------------| | 3777 0000 | 0906450 | 00 I | HOMESTAKE | CREEK NE. | AR RED CL | IFF, CO. | (LAT 39 2 | 8 24N LON | IG 106 22 | 02W) | | | AUG 2000
17 | .009 | | | | | <.005 | <.001 | E.004 | <.001 | E.006 | 2.7 | | | 0906 | 4600 | EAGLE I | RIVER NEA | R MINTURN | I, CO (LAT | 39 33 14 | N LONG 10 | 6 24 07W |) | | | AUG 2000
16 | .009 | .017 | | | | .018 | .001 | <.006 | <.001 | E.005 | 1.8 | | | 0906 | 55100 | CROSS (| CREEK NEA | R MINTURN | I, CO. (LA | AT 39 34 0 | 5N LONG 1 | .06 24 431 | 1) | | | AUG 2000
16 | .034 | .048 | | .23 | | .049 | .001 | E.003 | .002 | E.005 | 1.3 | | 0906 | 55500 | GORE CE | REEK AT UI | PPER STAT | ION, NEAR | MINTURN | CO. (LAT | 39 37 33 | N LONG 10 | 06 16 39W) | | | AUG 2000
17 | <.002 | .066 | | | | .067 | .001 | <.006 | <.001 | <.008 | 1.2 | | | 09066 | 050 | BLACK GO | ORE CREEK | NEAR VAI | L,
CO. (I | .AT 39 37 | 24N LONG | 106 16 47 | 7W) | | | AUG 2000
16 | .007 | | | | | <.005 | .001 | <.006 | <.001 | <.008 | | | | 09 | 067000 | BEAVI | ER CREEK . | AT AVON, | CO. (LAT | 39 37 47N | LONG 106 | 31 20W) | | | | AUG 2000
17 | .011 | .087 | .11 | . 27 | .21 | .088 | .001 | .006 | .003 | .013 | 1.7 | | | 090 | 167200 | LAKE (| CREEK NEA | R EDWARDS | , CO (LAT | 39 38 51 | N LONG 10 | 6 36 31W |) | | | AUG 2000
15 | .012 | .139 | | . 25 | | .140 | .001 | E.003 | .005 | E.006 | 1.3 | | 39303 | 3010622470 | 0 EAGLE R | IVER BLW I | HOMESTAKE | CREEK NR | RED CLIE | FF, CO (LA | AT 39 30 3 | ON LONG | L06 22 47V | 1) | | AUG 2000
16 | .007 | .015 | .10 | .14 | .13 | .016 | .001 | E.004 | .002 | .009 | 1.8 | | | 393221 | .106450700 | EAST BRUS | SH CREEK . | ABOVE CON | FLUENCE (| LAT 39 32 | 2 21N LONG | 106 45 0 |)7W) | | | AUG 2000
14 | .008 | | | | | .013 | <.001 | E.005 | .005 | .008 | 1.4 | | | 393 | 5011063132 | 200 BEAVE | R CREEK A | BOVE AVON | I, CO (LAT | 39 35 01 | N LONG 10 | 6 31 32W |) | | | AUG 2000
15 | .006 | .025 | | | | .026 | .001 | <.006 | .003 | E.004 | 1.7 | | | 393523 | 106364700 | WEST LAK | E CREEK N | EAR EDWAR | DS, CO (I | AT 39 35 | 23N LONG | 106 36 47 | 7W) | | | AUG 2000
15 | .003 | | | | | .049 | <.001 | E.003 | .004 | <.008 | 1.2 | | 393 | 3627106264 | 000 EAGLE | RIVER ABO | OVE GORE | CREEK NR. | MINTURN | CO (LAT | 39 36 27N | LONG 106 | 5 26 40W) | | | AUG 2000
16 | .004 | .052 | | .18 | | .053 | .001 | E.003 | .001 | E.006 | 1.6 | | | | | предпи | 110000 0111 | 11014 11141111 | IDED COIL | cinaca | | | | |----------------|--|----------------------|--|--------------------------------------|---|---|-----------------------------------|-----------------------------------|-----------------|--| | DATE | DIS-
SOLVED
(TONS
PER
AC-FT) | (TONS
PER
DAY) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | TOTAL
UREASE
(COL /
100 ML) | FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | DIS-
SOLVED
(UG/L
AS CR) | DIS-
SOLVED
(UG/L
AS CU) | (UG/L
AS FE) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | | 09 | 064500 | HOMES | TAKE CREE | K NEAR RE | D CLIFF, | CO. (LAT | 39 28 24N | LONG 106 | 22 02W) | | | AUG 2000
17 | | 1.39 | 24 | | | <.1 | <.8 | <1 | 250 | 450 | | | 09064600 | EA | GLE RIVER | NEAR MIN | TURN, CO | (LAT 39 3 | 3 14N LON | IG 106 24 | 07W) | | | AUG 2000
16 | .12 | 13.8 | 90 | 62 | K16 | | | | 220 | | | | 09065100 | CR | OSS CREEK | NEAR MIN | TURN, CO. | (LAT 39) | 34 05N LC | NG 106 24 | 43W) | | | AUG 2000
16 | | 2.16 | 25 | | | | | | 70 | | | 09065500 | GC | RE CREEK | AT UPPER | STATION, 1 | NEAR MINT | URN, CO. | (LAT 39 3 | 7 33N LON | G 106 16 | 39W) | | AUG 2000
17 | .05 | .99 | 33 | | | <.1 | <.8 | <1 | 10 | 20 | | | 09066050 | BLA | CK GORE C | REEK NEAR | VAIL, CO | . (LAT 39 | 37 24N L | ONG 106 1 | 6 47W) | | | AUG 2000
16 | .17 | 2.44 | 122 | K11 | K13 | | | | E10 | | | | 0906700 | ın. | BEWLED CD | FFK AT AM | ON CO (| LAT 39 37 | 47N LONG | 1 1 1 6 3 1 2 | OW) | | | AUG 2000 | | | BEAVER CR | EEK AI AV | 014, 60. (| LAI 37 37 | 47IN LOING | 100 51 2 | ow, | | | | .18 | 2.12 | 130 | 46 | 43 | | | | 20 | | | | 09067200 | L | AKE CREEK | NEAR EDW | ARDS, CO | (LAT 39 38 | 8 51N LON | IG 106 36 | 31W) | | | AUG 2000
15 | | 18.2 | 243 | K21 | K27 | | | | E10 | | | 393030106 | 224700 EAG | LE RIVER | BLW HOMES | TAKE CREE | K NR RED | CLIFF, CO | (LAT 39 | 30 30N LO | NG 106 22 | 47W) | | AUG 2000
16 | | 11.0 | 91 | K260 | К80 | <.1 | <.8 | <1 | 80 | 250 | | 3! | 9322110645 | 0700 EAST | BRUSH CR | EEK ABOVE | CONFLUEN | CE (LAT 3 | 9 32 21N | LONG 106 | 45 07W) | | | AUG 2000
14 | | 6.19 | 259 | | | | | | <10 | | | | 39350110 | 6313200 B | EAVER CRE | EK ABOVE | AVON, CO | (LAT 39 3 | 5 01N LON | IG 106 31 | 32W) | | | AUG 2000
15 | .05 | .37 | 40 | | | | | | 10 | | | 3! | 9352310636 | 4700 WEST | LAKE CRE | EK NEAR E | DWARDS, C | O (LAT 39 | 35 23N L | ONG 106 3 | 6 47W) | | | AUG 2000
15 | | 2.82 | 126 | | | | | | 20 | | | 3936271 | 06264000 E | AGLE RIVE | R ABOVE G | ORE CREEK | NR. MINT | URN, CO (1 | LAT 39 36 | 27N LONG | 106 26 4 | OW) | | AUG 2000 | | 30.6 | 105 | | | | <.8 | 2 | 190 | 470 | | | | | | | | | | | | | | DATE | (UG/L
AS PB) | DIS-
SOLVED | ERABLE
(UG/L
AS MN) | DIS-
SOLVED
(UG/L
AS HG) | (UG/L
AS NI) | SOLVED
(UG/L
AS SE) | DIS-
SOLVED
(UG/L
AS AG) | (UG/L
AS ZN) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | (T/DAY) | |----------------|---------------------|----------------|---------------------------|-----------------------------------|-----------------|---------------------------|-----------------------------------|-----------------|---|---------| | 090 | 064500 | HOMEST | AKE CREE | K NEAR RE | D CLIFF, | CO. (LAT | 39 28 24N | LONG 106 | 22 02W) | | | AUG 2000
17 | | 20 | 29 | <.2 | <1 | <.7 | <1 | <20 | 2 | .09 | | | 09064600 | EAG | LE RIVER | NEAR MIN | TURN, CO | (LAT 39 3 | 3 14N LONG | J 106 24 | 07W) | | | AUG 2000
16 | | 165 | | | | | | | 2 | .31 | | | 09065100 | CRO | SS CREEK | NEAR MIN | TURN, CO. | (LAT 39 | 34 05N LOI | NG 106 24 | 43W) | | | AUG 2000
16 | | 5 | | | | | | | 2 | .19 | | 09065500 | GOF | RE CREEK A | T UPPER | STATION, | NEAR MINT | URN, CO. | (LAT 39 3 | 7 33N LON | G 106 16 | 39W) | | AUG 2000
17 | <1 | <2 | E2 | <.2 | <1 | <.7 | <1 | <20 | 1 | .01 | | (| 9066050 | BLAC | K GORE CI | REEK NEAR | VAIL, CO | . (LAT 39 | 37 24N L | ONG 106 1 | 6 47W) | | | AUG 2000
16 | | 17 | | | | | | | 2 | .04 | | AUG 2000 | 09067000 |) в | EAVER CRI | EEK AT AV | ON, CO. (| LAT 39 37 | 47N LONG | 106 31 2 | OW) | | | 17 | | 7 | | | | | | | 6 | .09 | | | 09067200 | LA | KE CREEK | NEAR EDW | ARDS, CO | (LAT 39 3 | 8 51N LONG | J 106 36 | 31W) | | | AUG 2000
15 | | E2 | | | | | | | 1 | .08 | | 3930301062 | 224700 EAGI | LE RIVER B | LW HOMES | TAKE CREE | K NR RED (| CLIFF, CO | (LAT 39) | 30 30N LO | NG 106 22 | 47W) | | AUG 2000
16 | <1 | 6 | 12 | <.2 | <1 | <.7 | <1 | <20 | 3 | .37 | | 39 | 3221106450 |)700 EAST | BRUSH CRI | EEK ABOVE | CONFLUEN | CE (LAT 3 | 9 32 21N 1 | LONG 106 | 45 07W) | | | AUG 2000
14 | | E2 | | | | | | | 2 | .05 | | | 393501106 | 5313200 BE | AVER CRE | EK ABOVE | AVON, CO | (LAT 39 3 | 5 01N LONG | G 106 31 | 32W) | | | AUG 2000
15 | | E1 | | | | | | | 1 | .00 | | 39 | 3523106364 | 1700 WEST | LAKE CRE | EK NEAR E | DWARDS, C | O (LAT 39 | 35 23N L | ONG 106 3 | 6 47W) | | | AUG 2000
15 | | E2 | | | | | | | 1 | .03 | | 39362710 | 06264000 E <i>F</i> | AGLE RIVER | ABOVE GO | ORE CREEK | NR. MINT | URN, CO (| LAT 39 36 | 27N LONG | 106 26 4 | OW) | | AUG 2000
16 | <1 | 99 | 126 | <.2 | <1 | <.7 | <1 | 52 | 3 | .87 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |----------------|---------|---|--|--|--|---|--|---|---|--|--| | | | 39382410 | 6221700 M | ILL CREEK | NR VAIL | (LAT 39 3 | 8 24N LON | IG 106 22 | 17W) | | | | AUG 2000
16 | 1315 | 1.9 | 8.1 | 8.8 | 293 | 11.1 | 150 | 45.9 | 9.74 | .8 | .1 | | | 39 | 3845106353 | 000 EAGLE | RIVER AT | EDWARDS, | CO. (LAT | 39 38 45 | N LONG 10 | 6 35 30W) | | | | AUG 2000
15 | 1045 | 144 | 8.9 | 8.5 | 338 | 15.9 | 150 | 43.5 | 10.9 | 1.1 | . 2 | | | 393851 | 106503400 1 | BRUSH CREI | EK AT MOUT | TH NEAR E | CAGLE, CO | (LAT 39 3 | 88 51N LON | G 106 50 | 34W) | | | AUG 2000
14 | 1350 | 20 | 7.9 | 8.6 | 960 | 17.9 | 480 | 154 | 22.3 | 2.4 | . 4 | | 393 | 8521065 | 03200 EAGL | E RIVER A | BOVE BRUSH | H CREEK A | AT EAGLE, | CO (LAT 3 | 9 38 52N | LONG 106 | 50 32W) | | | AUG 2000
14 | 1105 | 164 | 7.9 | 8.6 | 790 | 17.9 | 250 | 76.1 | 14.2 | 2.4 | 2 | | | | 393858106 | 570900 GYI | PSUM CREEK | K AT MOUT | TH (LAT 39 | 38 58N I | ONG 106 5 | 7 09W) | | | | AUG 2000
14 | 1155 | 9.3 | 8.6 | 8.1 | 1060 | 15.2 | 630 | 201 | 30.0 | 3.0 | .1 | | | | 3939 | 3010638200 | 01 SQUAW (| CREEK (LA | T 39 39 3 | ON LONG 1 | .06 38 20W |) | | | | AUG 2000
15 | 1140 | .74 | 7.3 | 8.6 | 835 | 17.4 | 440 | 133 | 26.8 | 2.2 | . 2 | | 39412 | 9106393 | 300 EAGLE 1 | RIVER AT I | EAGLE SPGS | S. GOLF C | COURSE NR 1 | WOLCOT(LA | T 39 41 2 | 9N LONG 1 | 06 39 33W |) | | AUG 2000
15 | 0850 | 144 | 7.7 | 8.4 | 764 | 14.9 | 190 | 55.0 | 12.2 | 2.4 | 2 | | | 39 | 4415106424 | 200 MILK (| CREEK 2 M | I ABOVE M | 10UTH (LAT | 39 44 15 | N LONG 10 | 6 42 42W) | | | | AUG 2000
14 | 1720 | .78 | 6.7 |
8.3 | 748 | 19.6 | 260 | 61.6 | 27.0 | 2.1 | 1 | | | | | MIS | CELLANEOU | S STATION | ANALYSES | Continu | .ed | | | | |----------------|------------|------------------------------|--|-----------|---|--|---|----------------------|--|--|------------------------------------| | DATE | | SODIUM
PERCENT
(00932) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | HCO3 | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | (MG/L
AS
SIO2) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | MONIA +
ORGANIC
DIS.
(MG/L
AS N) | ORGANIC
TOTAL
(MG/L
AS N) | | | | 39382410 | 6221700 M | ILL CREEK | NR VAIL | (LAT 39 3 | 8 24N LON | G 106 22 | 17W) | | | | AUG 2000
16 | 1.5 | 2 | 142 | 154 | 10 | 1.4 | <.1 | 6.0 | 13.2 | E.10 | <.10 | | | 393 | 8845106353 | 000 EAGLE | RIVER AT | 'EDWARDS, | CO. (LAT | 39 38 45 | n long 10 | 06 35 30W) | | | | AUG 2000
15 | 5.9 | 8 | 91 | 96 | 7 | 6.0 | <.1 | 5.1 | 61.9 | .14 | .19 | | | 3938511 | 06503400 | BRUSH CRE | EK AT MOU | TH NEAR E | AGLE, CO | (LAT 39 3 | 8 51N LON | IG 106 50 | 34W) | | | AUG 2000
14 | 21.4 | 9 | 144 | 156 | 10 | 30.1 | .6 | 10.6 | 319 | .14 | .20 | | 39 | 385210650 |)3200 EAGL | E RIVER A | BOVE BRUS | H CREEK A | T EAGLE, | CO (LAT 3 | 9 38 52N | LONG 106 | 50 32W) | | | AUG 2000
14 | 55.7 | 33 | 136 | 146 | 10 | 92.2 | .1 | 6.5 | 128 | .14 | .22 | | | | 393858106 | 570900 GY | PSUM CREE | K AT MOUT | H (LAT 39 | 38 58N L | ONG 106 5 | 57 09W) | | | | AUG 2000
14 | 7.5 | 3 | 226 | 276 | | 3.9 | .2 | 14.5 | 394 | .15 | .19 | | | | 3939 | 301063820 | 01 SQUAW | CREEK (LA | т 39 39 3 | ON LONG 1 | 06 38 20W | 1) | | | | AUG 2000
15 | 10.4 | 5 | 213 | 248 | 6 | 9.1 | <.1 | 15.4 | 237 | . 22 | .34 | | 3941 | 1291063933 | 300 EAGLE | RIVER AT | EAGLE SPG | S. GOLF C | OURSE NR | WOLCOT(LA | т 39 41 2 | 9N LONG 1 | .06 39 33W | 1) | | AUG 2000
15 | 68.7 | 44 | 93 | 106 | 4 | 113 | .1 | 4.8 | 93.2 | .19 | .28 | | | 394 | 1415106424 | 200 MILK | CREEK 2 M | II ABOVE M | OUTH (LAT | 39 44 15 | N LONG 10 |)6 42 42W) | | | | AUG 2000
14 | 55.4 | 31 | 159 | 182 | 6 | 2.4 | .3 | 10.1 | 221 | .16 | .18 | | DATE | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
ORGANIC
DIS-
SOLVED
(MG/L
AS N)
(00607) | GEN,
TOTAL
(MG/L
AS N) | AS N) | DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | DIS-
SOLVED
(MG/L
AS P) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | PHOS-
PHORUS
TOTAL
(MG/L
AS P)
(00665) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | |---|----------------------------------|--|--|---------------------------------|-----------|----------------------------------|--|----------------------------------|--|---|---| | | | 39382410 | 06221700 M | ILL CREEK | NR VAIL | (LAT 39 3 | 38 24N LON | IG 106 22 | 17W) | | | | AUG 2000
16 | <.002 | | | | | .046 | <.001 | <.006 | <.001 | <.008 | .87 | | | 393 | 8845106353 | 000 EAGLE | RIVER AT | EDWARDS, | CO. (LAT | 39 38 45 | N LONG 10 | 06 35 30W) |) | | | AUG 2000
15 | .007 | .479 | .13 | .67 | .62 | .482 | .003 | .066 | .059 | .082 | 1.6 | | 393851106503400 BRUSH CREEK AT MOUTH NEAR EAGLE, CO (LAT 39 38 51N LONG 106 50 34W) | | | | | | | | | | | | | AUG 2000
14 | .032 | .014 | .11 | .21 | .16 | .015 | .001 | .009 | .006 | .020 | 1.8 | | 39 | 385210650 |)3200 EAGL | E RIVER A | BOVE BRUS | H CREEK A | AT EAGLE, | CO (LAT 3 | 9 38 52N | LONG 106 | 50 32W) | | | AUG 2000
14 | .015 | .514 | .13 | .74 | .66 | .521 | .007 | .065 | .059 | .076 | 1.8 | | | | 393858106 | 570900 GY | PSUM CREE | K AT MOUT | TH (LAT 39 | 38 58N I | ONG 106 5 | 57 09W) | | | | AUG 2000
14 | .054 | .422 | .10 | .61 | .57 | .424 | .002 | E.005 | .002 | .015 | 1.9 | | | | 3939 | 301063820 | 01 SQUAW | CREEK (LA | AT 39 39 3 | 30N LONG 1 | .06 38 201 | 1) | | | | AUG 2000
15 | .022 | .056 | .20 | .39 | .28 | .057 | .001 | .052 | .047 | .074 | 3.4 | | 3941 | .291063933 | 300 EAGLE | RIVER AT | EAGLE SPG | S. GOLF (| COURSE NR | WOLCOT(LA | AT 39 41 2 | 9n Long 1 | L06 39 33V | 1) | | AUG 2000
15 | .061 | .694 | .13 | .98 | .90 | .706 | .012 | .080 | .074 | .094 | 1.7 | | | 394 | 1415106424 | 200 MILK | CREEK 2 M | I ABOVE N | MOUTH (LAT | 39 44 15 | N LONG 10 | 06 42 42W |) | | | AUG 2000
14 | .008 | | .15 | .19 | .17 | .009 | <.001 | <.006 | .001 | E.006 | 3.1 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS- | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | |----------------|---|------------|--|--|---|---|--|---|---|--| | | 3938 | 3241062217 | 00 MILL C | REEK NR V | AIL (LAT | 39 38 24N | LONG 106 | 22 17W) | | | | AUG 2000
16 | .22 | .85 | 164 | К2 | К3 | <.1 | <.8 | <1 | <10 | <20 | | | 39384510 | 06353000 E | AGLE RIVE | R AT EDWA | RDS, CO. | (LAT 39 3 | 8 45N LON | G 106 35 | 30W) | | | AUG 2000
15 | .26 | 74.4 | 191 | 44 | 25 | | | | 70 | | | 393 | 393851106503400 BRUSH CREEK AT MOUTH NEAR EAGLE, CO (LAT 39 38 51N LONG 106 50 34W) | | | | | | | | | | | AUG 2000
14 | .88 | 34.8 | 647 | | | <.1 | E.5 | 2 | E10 | 130 | | 3938521 | 06503200 | EAGLE RIV | ER ABOVE | BRUSH CRE | EK AT EAG | LE, CO (L | AT 39 38 | 52N LONG | 106 50 32 | W) | | AUG 2000
14 | .63 | 204 | 460 | K16 | 33 | | | | 30 | | | | 39385 | 810657090 | 0 GYPSUM | CREEK AT | MOUTH (LA | т 39 38 5 | 8N LONG 1 | .06 57 09W |) | | | AUG 2000
14 | 1.08 | 20.0 | 792 | | | <.1 | 1.1 | 3 | <10 | 100 | | | | 393930106 | 382001 SQ | UAW CREEK | (LAT 39 | 39 30N LO | NG 106 38 | 20W) | | | | AUG 2000
15 | .76 | 1.12 | 562 | K15 | K16 | | | | E10 | | | 394129106 | 393300 EA | AGLE RIVER | AT EAGLE | SPGS. GO | LF COURSE | NR WOLCO | T(LAT 39 | 41 29N LO | NG 106 39 | 33W) | | AUG 2000
15 | .56 | 159 | 409 | | | | | | 30 | | | | 39441510 | 06424200 M | ILK CREEK | 2 MI ABO | VE MOUTH | (LAT 39 4 | 4 15N LON | G 106 42 | 42W) | | | AUG 2000
14 | .65 | 1.00 | 475 | | | | | | <10 | | | DATE | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | NICKEL,
DIS-
SOLVED
(UG/L
AS NI)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |--|---|---|--|---|---|--|---|---|---|---| | | 3938 | 2410622170 | 00 MILL C | REEK NR V | AIL (LAT | 39 38 24N | LONG 106 | 22 17W) | | | | AUG 2000
16 | <1 | <2 | <3 | <.2 | <1 | <.7 | <1 | <20 | 1 | .00 | | | 39384510 | 6353000 EA | AGLE RIVE | R AT EDWA | RDS, CO. | (LAT 39 3 | 8 45N LON | G 106 35 | 30W) | | | AUG 2000
15 | | 17 | | | | | | | 2 | .78 | | 393 | 851106503 | 400 BRUSH | CREEK AT | MOUTH NE | AR EAGLE, | CO (LAT | 39 38 51N | LONG 106 | 50 34W) | | | AUG 2000
14 | <1 | 13 | 21 | <.2 | <1 | E.4 | <1 |
<20 | 10 | .52 | | | | | | | | | | | | | | 393852106503200 EAGLE RIVER ABOVE BRUSH CREEK AT EAGLE, CO (LAT 39 38 52N LONG 106 50 32W) | | | | | | | | | | | | AUG 2000
14 | | 11 | | | | | | | 2 | 1.1 | | | 39385 | 8106570900 | GYPSUM | CREEK AT | MOUTH (LA | т 39 38 5 | 8N LONG 1 | 06 57 09W |) | | | AUG 2000
14 | <1 | 4 | 9 | <.2 | <1 | .9 | <1 | <20 | 10 | . 25 | | | | 3939301063 | 882001 SO | IIAW CREEK | т.ат 39 | 39 30N LO | NG 106 38 | 20W) | | | | AUG 2000 | | | | | (==== | | | | | | | 15 | | 5 | | | | | | | 13 | .03 | | 394129106 | 393300 EA | GLE RIVER | AT EAGLE | SPGS. GO | LF COURSE | NR WOLCO | T(LAT 39 | 41 29N LO | NG 106 39 | 33W) | | AUG 2000
15 | | 22 | | | | | | | 2 | .74 | | | 39441510 | 6424200 MI | LK CREEK | 2 MI ABO | VE MOUTH | (LAT 39 4 | 4 15N LON | G 106 42 | 42W) | | | AUG 2000
14 | | <2 | | | | | | | 4 | .01 | ## PERIPHYTON ANALYSIS 09063000 EAGLE RIVER AT RED CLIFF, CO (LAT 39 30 30N LONG 106 22 36W) Date: 8/17/00 Time: 0945 | | | | Density | Biov | rolume | |-----------------|------------------------|----------------|------------------------|---------|------------| | Organ | isms | | | | | | Chrysophyta | | | | | | | Achnanthacea | | | | | | | Achnanthes | biasolettian | | 206 | | 890 | | | minutissima | | 10461 | | 109 | | Cocconeis | placentula | lineata | 377 | | 299 | | | placentula | euglypta | 34 | 20 | 663 | | Diatomaceae | | | | _ | | | Diatoma | tenue | | 34 | | 861 | | Fragilaria | leptostauron | | 69 | | 505 | | | pinnata ု | | 34 | | 302 | | | vaucheriae | | 17 | 3 | 548 | | Naviculaceae | | | 2.4 | 2 | 046 | | Amphora | perpusilla
brehmii | | 34
17 | | 246
473 | | <i>Cymbella</i> | minuta | silesiaca | 326 | | 420 | | Gomphonema | minuta
olivaceoides | SIIeSIaca | 326 | | 247 | | Navicula | cryptotenell | | 34 | | 413 | | Navicuia | molestiformi | | 34 | | 238 | | Reimeria | sinuata | | 137 | | 684 | | Nitzschiacea | Silidata | | 137 | 22 | 1001 | | Nitzschia | dissipata | | 34 | Ω | 919 | | Cyanophyta | атвыраса | | 24 | O | 717 | | Nostocaceae | | | | | | | Amphithrix | janthina | | 17139 | 555 | 460 | | Oscillatoria | Januaria | | 1,100 | 333 | 100 | | Hydrocoleum | brebissonii | | 10672 | 1045 | 073 | | Oscillatoria | sp. 1 ANS | | 5174 | 83 | 901 | | Rhodophyta | | | | | | | Chantransiac | | | | | | | Audouinella | violacea | | 19727 | 69815 | 603 | | | | Total Density | | | 594 | | | | Total Biovolum | ne | 72772 | 854 | | | | Chlorophyll a | | | 2.3 | | | | | Weight, g/sq. m (00572 | | 73.4 | | | | Biomass, Total | l, Dry Weight, g/sq. m | (00573) | 75.7 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued 09064500 HOMESTAKE CREEK NEAR RED CLIFF, CO (LAT 39 28 24N LONG 106 22 02W) Date: 8/17/00 Time: 1100 | , , , , , , | | | Damaita | D:1 | |-----------------------------------|--------------------|-------------------|----------------------|----------------| | | | | Density | Biovolume | | Organ | isms | | | | | Chlorophyta | | | | | | Desmidiaceae | | | | | | Cosmarium | sp.
subcrenatum | | 197
197 | 16757
16757 | | Oedogoniacea | Daboronacam | | | 20757 | | 0edogonium | sp. | | 591 | 24237411 | | Zygnematacea
<i>Spirogyra</i> | sp. | | 789 | 86632411 | | Chrysophyta | = | | | | | Achnanthacea | | | | | | Achnanthes | lapponica | ninckei | 168 | 250204 | | | levanderi | | 26 | 38493 | | | minutissima | | 4486 | 247059 | | | pusilla | | 64 | 5850 | | Cocconeis | placentula | lineata | 13 | 13507 | | Diatomaceae | pracericara | 11110404 | 13 | 15507 | | Fragilaria | construens | | 13 | 2495 | | rragriaria | construens | pumila | 1109 | 133153 | | | pinnata | punita | 13 | 1241 | | | vaucheriae | | 361 | 74667 | | | virescens | | 129 | 7077 | | | | exigua | | 7077 | | G | virescens | | 26 | | | Synedra | acus | 6 17 1 17 | 26 | 49798 | | | rumpens | fragilarioid | 155 | 15850 | | | ulna | | 39 | 253566 | | <i>Tab</i> ellaria
Eunotiaceae | flocculosa | (strain IV) | 26 | 222269 | | Eunotia | flexuosa | | 13 | 29856 | | | incisa | | 52 | 24383 | | | pectinalis | minor | 77 | 95015 | | Naviculaceae | | | | | | Anomoeoneis | vitrea | | 26 | 5150 | | Cymbella | cesatii | | 26 | 47800 | | | microcephala | | 39 | 2411 | | | minuta | silesiaca | 142 | 66768 | | | minuta | | 64 | 13792 | | | minuta | latens | 26 | 47800 | | Frustulia | rhomboides | saxonica | 13 | 22548 | | Gomphonema | parvulum | exilissima | 284 | 369254 | | <u>-</u> | subclavatum | | 26 | 20584 | | Navicula | pupula | | 13 | 8202 | | | radiosa | | 26 | 26621 | | | rhynchocepha | | 39 | 23888 | | Pinnularia | subcapitata | | 26 | 19743 | | Reimeria | sinuata | | 142 | 23446 | | Thalassiosir | Dinauca | | 112 | 23110 | | Aulacosira | distans | | 400 | 159670 | | Cyanophyta | aistais | | 400 | 137070 | | Nostocaceae | | | | | | Amphithrix | janthina | | 53228 | 1725027 | | | Janunina | | 53220 | 1/2302/ | | Oscillatoria | hwohi ====i ' | | 0000 | 701520 | | Hydrocoleum | brebissonii | materia Descripti | 8083 | 791538 | | | | Total Density | | 71173 | | | | Total Biovolume | 70 /7 / 70057 | 115749770 | | | | Chlorophyll a, U | | 1.0 | | | | | ght, g/sq. m (00572) | 159.5 | | | | віomass, Total, | Dry Weight, g/sq. m | (00573) 163.4 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. EAGLE RIVER NEAR MINTURN, CO (LAT 39 33 14N LONG 106 24 07W) 09064600 Date: 8/16/00 Time: 1430 | | | | Density | Biov | rolume | |-----------------------------|--------------------------|----------------|---------------------|-----------|------------| | Organ | isms | | | | | | Chrysophyta | | | | | | | Achnanthacea | | | | | | | Achnanthes | biasolettian | | 786 | 98 | 862 | | | minutissima | | 61854 | 3406 | 419 | | Cocconeis | placentula | lineata | 112 | 117 | 618 | | Diatomaceae | | | | | | | Fragilaria | construens | pumila | 1235 | | 310 | | | vaucheriae | | 6511 | 1346 | | | Hannaea | arcus | 6 | 337 | | 732 | | Synedra | rumpens
ulna | fragilarioid | 2133
337 | 2208 | 533 | | Naviculaceae | ullia | | 337 | 2200 | 0000 | | Cymbella | minuta | silesiaca | 7297 | 3435 | 688 | | -2 | minuta | | 786 | 168 | 149 | | Gomphonema | olivaceoides | | 1572 | 240 | 419 | | Reimeria | sinuata | | 337 | 55 | 683 | | Cyanophyta | | | | | | | Nostocaceae | | | | | | | Amphithrix | janthina | | 159141 | 5157 | 509 | | Oscillatoria | 1 1. 1 | | 00427 | 0050 | 200 | | Hydrocoleum
Oscillatoria | brebissonii
sp. 1 ANS | | 92437
44695 | 9052 | 328
745 | | OSCIIIALOIIA | sp. I ANS | Total Density | 44093 | | 1570 | | | | Total Biovolum | ٩ | 27196 | | | | | Chlorophyll a, | | 2/1/0 | 2.5 | | | | | eight, g/sq. m (005 | 72) | 81.8 | | | | Biomass, Total | , Dry Weight, g/sq. | m (00573) | 84.5 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 09065100 CROSS CREEK NEAR MINTURN, CO (LAT 39 34 05N LONG 106 24 45W) Date: 8/16/00 Time: 1330 | | | | Density | Biovolume | |--|--|---------------------|---|--| | Organ | nisms | | | | | Chlorophyta | | | | | | Desmidiaceae
Closterium
Cosmarium
Chrysophyta | venus
subcrenatum | | 132
132 | 11238
11238 | | Achnanthacea
<i>Achnanthes</i> | chlidanos
lapponica
minutissima
petersonii
scotica | ninckei | 62
124
15699
31
62 | 21533
184921
864577
8643
92460 | | Cocconeis | subatomoides
placentula
placentula | lineata
euglypta | 62
31
248 | 92460
32443
149237 | | Diatomaceae | | 5 11 | | | | Diatoma
Fragilaria | anceps brevistriata construens construens oldenburgian pinnata | venter
pumila | 31
31
31
1517
31
31 | 12935
3862
3060
182231
26537
2981 | | | vaucheriae | | 1331
31 | 275432
1700 | | Hannaea | virescens
arcus | exigua | 93 | 225559 | | Meridion | circulare | | 31 | 20097 | | Synedra | rumpens | fragilarioid | 310 | 31726 | | | ulna | | 62 | 406045 | | | ulna | contracta | 31 | 49226 | | Eunotiaceae
<i>Eunotia</i> | | | 93 | 114113 | | EUNOCIA | pectinalis
praerupta | minor | 31 | 106828 | | Melosiraceae
<i>Melosira</i> | varians | | 31 | 168115 | | Naviculaceae | | | | | | Cymbella | cistula
minuta
minuta
minuta | silesiaca
latens | 31
31
341
217 | 37412
6626
160377
401859 | | Gomphonema | consector | Tacens | 31 | 40316 | | | olivaceoides | | 62 | 9474 | | Navicula | minima | | 31 | 1645 | | | tripunctata | | 62 | 58595 | | Reimeria
Nitzschiacea | sinuata | | 341 | 56318
11774 | | Denticula
Nitzschia | tenuis
dissipata | | 124 | 32208 | | WICZSCIIIA | frustulum | perminuta | 62 | 3324 | | | palea | debilis | 62 | 10733 | | Thalassiosir | T | | ·- | | | Aulacosira | ambigua
distans | | 62
31 | 20639
12372 | | Cyanophyta | | | | | | Nostocaceae | | | 56060 | 1016013 | | Amphithrix
Oscillatoria | janthina
barbi zaraii | | 56060 | 1816813 | | <i>Hydrocoleum</i>
Rhodophyta
Chantransiac | brebissonii | | 104451 | 10228851 | | Audouinella | violacea | | 29088 | 102946676 | | | | Total Density | | 211417 | | | | Total Biovolume | | 118955209 | | | | Chlorophyll a, T | | 1.3 | | | | | ight, g/sq. m (005
Dry Weight, g/sq. | | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 09065500 GORE CREEK AT UPPER STATION, NEAR MINTURN, CO (LAT 39 37 40N LONG 106 16 24W) Date: 8/18/00 Time: 0835 | | | | Density | Biovolume | |--|--|----------------------
---|-----------------------------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chaetophorac Stigeocloniu Chrysophyta Achnanthacea | lubricum | | 5785 | 8586771 | | Achnanthes | biasolettian
chlidanos
minutissima | | 2269
67
35309 | 285511
23208
1944538 | | <i>Cocconeis</i>
Diatomaceae | placentula | lineata | 334 | 349671 | | Diatoma
Fragilaria | mesodon
pinnata
vaucheriae
vaucheriae | 1 ANS WRC | 67
67
200
2403 | 71074
6426
37424
497065 | | Hannaea
Synedra | arcus
rumpens
ulna | fragilarioid | 801
267
1068 | 1944847
27355
7002107 | | Naviculaceae
<i>Cymbella</i> | brehmii
cistula
minuta
minuta | silesiaca
latens | 200
67
400
67 | 5521
80644
188567
123749 | | Gomphonema | angustatum
olivaceoides
pumilum | | 67
4339
1802 | 27595
663695
525839 | | Reimeria
Cyanophyta
Nostocaceae | sinuata | | 1068 | 176578 | | Amphithrix
Oscillatoria | janthina | | 231888 | 7515109 | | Hydrocoleum Rhodophyta Chantransiac | brebissonii | | 69422 | 6798423 | | Audouinella | Total | Density
Biovolume | 3857 | 13649777
361814
50531494 | | | Biomas | | (70957)
, g/sq. m (00572)
Weight, g/sq. m (00573) | 104.4
107.7 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued 09066000 BLACK GORE CREEK NEAR MINTURN, CO (LAT 39 35 47N LONG 106 15 52W) Date: 8/17/00 Time: 1435 | | | | Density | Biovolume | |-----------------------------|----------------------------|------------------|--------------------|---------------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chaetophorac | | | | | | Stigeocloniu | lubricum | | 4119 | 6114458 | | Chlamydomona | | | | | | Chlamydomona | sp. | | 749 | 63665 | | Chrysophyta
Achnanthacea | | | | | | Achnanthes | biasolettian | | 1991 | 250515 | | Hermanenes | minutissima | | 39586 | 2180050 | | Cocconeis | placentula | lineata | 478 | 500714 | | Diatomaceae | | | | | | Fragilaria | pinnata ု | | 319 | 30673 | | | vaucheriae | | 637 | 131811 | | Hannaea
Meridion | arcus | | 159
80 | 386797 | | meriaion
Synedra | circulare
rumpens | fragilarioid | 478 | 51695
48964 | | Syneara | ulna | IIagIIaIIOIU | 478 | 3133352 | | Naviculaceae | alla | | 170 | 3133332 | | Amphora | perpusilla | | 80 | 7537 | | Cymbella | affinis | | 1115 | 564352 | | | brehmii | | 1593 | 43921 | | | minuta | silesiaca | 7328 | 3450259 | | Gomphonema | olivaceoides | | 159 | 24369 | | | olivaceum | | 796 | 274047 | | | pumilum | | 1832 | 534523 | | Navicula
Reimeria | secreta
sinuata | apiculata | 319
2071 | 79642
342405 | | Nitzschiacea | SIMUALA | | 2071 | 342405 | | Nitzschia | dissipata | | 319 | 82847 | | ni ozzonia | fonticola | | 319 | 31638 | | | frustulum | perminuta | 159 | 8549 | | Cyanophyta | | | | | | Nostocaceae | | | | | | Amphithrix | janthina | | 1213750 | 39335610 | | Oscillatoria | lance la de meneral d | | 120212 | 12642055 | | Hydrocoleum | brebissonii
Total Dens: | ++7 | 139313 | 13642855
1418227 | | | Total Biovo | | | 71315248 | | | | l a, UG/L (70957 | 7) | 6.6 | | | | sh Weight, g/sg. | | 179.2 | | | | | ., g/sq. m (00573) | 183.7 | | | • | | | | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 09066050 BLACK GORE CREEK NEAR VAIL, CO (LAT 39 38 28N LONG 106 23 37W) Date: 8/17/00 Time: 1530 | | | | Density | Biovolume | |------------------------|--------------------------|---------------------|--------------------|------------------| | Organ | nisms | | | | | Chlorophyta | | | | | | Chaetophorac | | | | | | Stigeocloniu | lubricum | | 2528 | 3751824 | | Chrysophyta | | | | | | Achnanthacea | | | | | | Achnanthes | biasolettian | | 75 | 9444 | | | lanceolata | | 25 | 3574 | | ~ | minutissima | 7 | 15413
425 | 848840
256261 | | Cocconeis | placentula
placentula | euglypta
lineata | 425
225 | 235948 | | Diatomaceae | pracentura | IIIEala | 225 | 233940 | | Diatoma | mesodon | | 25 | 26644 | | Fragilaria | construens | pumila | 50 | 6010 | | rragilaria | vaucheriae | Punitu | 300 | 62112 | | Hannaea | arcus | | 100 | 243024 | | Synedra | rumpens | fragilarioid | 50 | 5127 | | _ | ulna | _ | 200 | 1312450 | | Naviculaceae | | | | | | Cymbella | affinis | | 50 | 25327 | | | brehmii | | 50 | 1380 | | _ | minuta | silesiaca | 776 | 365225 | | Gomphonema | angustatum | | 100 | 41379 | | | olivaceum | | 475 | 163574 | | 37 | pumilum | | 325 | 94911 | | Navicula
Reimeria | incerta | | 50
75 | 2587 | | Nitzschiacea | sinuata | | /5 | 12411 | | Nitzschia
Nitzschia | fonticola | | 100 | 9939 | | Cyanophyta | TOTICICOTA | | 100 | 2222 | | Nostocaceae | | | | | | Amphithrix | janthina | | 189844 | 6152540 | | Oscillatoria | J | | | | | Hydrocoleum | brebissonii | | 19024 | 1863039 | | Rhodophyta | | | | | | Chantransiac | | | | | | Audouinella | violacea | | 3592 | 12712752 | | | Total Dens | | | 233877 | | | Total Biov | | | 28206322 | | | | l, a, UG/L (70957) | | 2.0 | | | | sh Weight, g/sq. | | 111.9 | | | Blomass, To | otaı, Dry Weight | z, g/sq. m (00573) | 114.3 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued 09066310 GORE CREEK, LOWER STATION, AT VAIL, CO (LAT 39 38 28N LONG 106 23 37W) Date: 8/18/00 Time: 1425 | | | | Density | Biovolume | |--|---|-----------|--|--| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona Chlamydomona Chrysophyta Achnanthacea | sp. | | 4760 | 404624 | | Achnanthes | biasolettian
lapponica
minutissima
pusilla | ninckei | 122354
1748
305012
1748 | 15393330
2609642
16797569
158653 | | <i>Cocconeis</i>
Diatomaceae | placentula | lineata | 1748 | 1831384 | | Diatoma
Fragilaria | moniliformis
vulgare
vaucheriae | | 27967
15731
27093 | 4214982
58125740
5604448 | | <i>Hannaea
Synedra</i>
Naviculaceae | arcus
ulna | | 3496
5244 | 8488374
34381135 | | Amphora
Cymbella | perpusilla
brehmii
minuta | silesiaca | 1748
1748
105749 | 165405
48193
49792080 | | Gomphonema
Navicula
Reimeria | minuta olivaceum cryptotenell sinuata | | 1748
33210
3496
7866 | 374026
11426673
1265220
1300528 | | Nitzschiacea Nitzschia Cyanophyta | fonticola | | 3496 | 347148 | | Nostocaceae Amphithrix Oscillatoria | janthina | | 1140089 | 36948388 | | Hydrocoleum Rhodophyta Chantransiac | brebissonii | | 211833 | 20744619 | | Audouinella | Total
Chloro
Biomas | | 40462
L (70957)
tt, g/sq. m (00572)
y Weight, g/sq. m (0057 | 143203711
2068346
413625872
20.6
114.4
3) 122.8 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 09066510 GORE CREEK AT MOUTH, NEAR MINTURN, CO (LAT 39 36 34N LONG 106 26 50W) Date: 8/17/00 Time: 1220 | | | | Density | Biovolume | | | |--|---|---------------|--------------------|-----------|--|--| | Organ | nisms | | | | | | | Chlorophyta | | | | | | | | Chaetophorac Stigeocloniu Chrysophyta Achnanthacea | lubricum | | 54083 | 80274736 | | | | Achnanthes | biasolettian | | 62427 | 7853857 | | | | | minutissima | | 124853 | 6875898 | | | | Cocconeis | placentula | euglypta | 1201 | 723245 | | | | Diatomaceae
<i>Diatoma</i>
Naviculaceae | vulgare | | 7203 | 26614746 | | | | Amphora | perpusilla | | 4802 | 454417 | | | | <i>Cymbella</i> | brehmii | | 14406 | 397198 | | | | | minuta | | 22810 | 4880905 | | | | | minuta | silesiaca | 140460 | 66135683 | | | | Gomphonema | tenellum | | 1201 | 208241 | | | | Navicula | cryptotenell | | 6003 | 2172457 | | | | | ignota | acceptata | 2401 | 246467 | | | | | incerta | | 36015 | 1862105 | | | | | tripunctata | | 9604 | 9087003 | | | | Reimeria | sinuata | | 286922 | 47440602 | | | | Nitzschiacea | | | | | | | | Nitzschia | dissipata | | 4802 | 1248720 | | | | | fonticola | | 46820 | 4649379 | | | | | inconspicua | | 34815 | 1258853 | | | | Cyanophyta | | | | | | | | Nostocaceae | | | | | | | | Amphithrix | janthina | | 5606642 | 181701943 | | | | Oscillatoria | | | | | | | | Hydrocoleum | brebissonii | | 1117723 | 109457708 | | | | Rhodophyta | | | | | | | | Chantransiac | | | | | | | | Audouinella | violacea | | 67604 | 239263151 | | | | | | Density | | 7652797 | | | | | | Biovolume | | 792807314 | | | | | | ophyll a, UG/ | | 25.7 | | | | | | | t, g/sq. m (00572) | 134.9 | | | | | Biomass, Total, Dry Weight, g/sq. m (00573) 142.8 | | | | | | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued 09067000 BEAVER CREEK AT AVON, CO (LAT 39 37 47N LONG 106 31 20W) | | | | Density | Biovolume | |-----------------------------------|------------------------|----------------|-----------------------|-------------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 4277 | 363558 | | Cladophorace | . 7 | | 10047 | 104402445605 | | <i>Cladophora</i>
Oedogoniacea | glomerata | | 19247 | 104483445625 | | Oedogonium | sp. | | 6416 | 262926920 | | Chrysophyta | Sp. | | 0110 | 202920920 | | Achnanthacea | | | | | |
Achnanthes | lanceolata | | 1747 | 249509 | | | minutissima | | 369438 | 20345640 | | Cocconeis | pediculus | | 3494 | 12084841 | | | placentula | lineata | 6987 | 7320645 | | Bi da ana ana | placentula | euglypta | 7860 | 4735467 | | Diatomaceae
<i>Diatoma</i> | rnilgano | | 1747 | 6454104 | | Fragilaria | vulgare
capucina | | 5240 | 978991 | | riagilalia | vaucheriae | | 1747 | 361336 | | Naviculaceae | vaucheriac | | 1/4/ | 301330 | | Amphora | perpusilla | | 6987 | 661179 | | Caloneis | bacillum | | 3494 | 1502788 | | Cymbella | brehmii | | 13101 | 361204 | | | minuta | | 24455 | 5232867 | | | minuta | silesiaca | 65503 | 30842256 | | Gomphonema | subclavatum | | 27948 | 22312807 | | Navicula | cryptocephal | | 1747 | 661782 | | | cryptocephal | veneta | 3494 | 757530 | | | cryptotenell | | 20961
3494 | 7586254 | | | incerta | | 1747 | 180625
2007862 | | | pygmaea
tripunctata | | 6987 | 6610824 | | | viridula | avenacea | 3494 | 4391612 | | Rhoicospheni | curvata | avenacea | 6987 | 3720861 | | Nitzschiacea | | | | | | Nitzschia | fonticola | | 18341 | 1821313 | | | frustulum | perminuta | 1747 | 93743 | | | heufleriana | | 5240 | 61384339 | | | palea | debilis | 1747 | 302732 | | | recta | | 5240 | 9093487 | | Surirellacea | | | | | | Surirella | angusta | | 1747 | 1978540 | | Ch b | minuta | | 1747 | 1648834 | | Cyanophyta
Nostocaceae | | | | | | Amphithrix | janthina | | 190333 | 6168379 | | Aupittenia | | Density | 170333 | 844741 | | | | . Biovolume | | 104968588454 | | | Chlor | cophyll a, UG/ | 'L (70957) | 5.5 | | | Bioma | ss, Ash Weigh | nt, g/sq. m (00572) | 134.6 | | | | | ry Weight, g/sq. m (C | 0573) 145.8 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 09067005 EAGLE RIVER AT AVON, CO (LAT 39 37 54N LONG 106 31 19W) | | | | Density | Biovolume | |--------------|-----------------------|-----------------|-------------------|---| | Organ | nisms | | | | | Chrysophyta | | | | | | Achnanthacea | | | | | | Achnanthes | biasolettian | | 3163 | 397971 | | | lanceolata | | 1582 | 225924 | | | minutissima | | 90944 | 5008483 | | Diatomaceae | | | | | | Diatoma | moniliformis | | 4745 | 715129 | | Fragilaria | construens | pumila | 1582 | 189963 | | | pinnata į | | 791 | 76137 | | | vaucheriae | | 19771
6327 | 4089766 | | Hannaea | arcus | fragilarioid | 791 | 15361790
81026 | | Synedra | rumpens
ulna | 11 a911a11010 | 1582 | 10370180 | | Tabellaria | flocculosa | (strain IV) | 791 | 6817673 | | Melosiraceae | 1100001034 | (SCIAIII IV) | 751 | 0017075 | | Melosira | varians | | 6327 | 34348573 | | Naviculaceae | V GI I GIID | | 032. | 31310373 | | Anomoeoneis | vitrea | | 1582 | 315959 | | Cymbella | brehmii | | 14235 | 392474 | | - | minuta | | 1582 | 338446 | | | minuta | silesiaca | 174772 | 82291416 | | Gomphonema | olivaceum | | 3163 | 1088388 | | | tenellum | | 791 | 137176 | | Navicula | atomus | | 3954 | 103272 | | | ignota | acceptata | 1582 | 162357 | | | incerta | | 5536 | 286216 | | | minima
tenelloides | | 1582
1582 | 84002
257197 | | Reimeria | sinuata | | 14235 | 2353624 | | Nitzschiacea | SIIIuala | | 14235 | 2353624 | | Nitzschia | fonticola | | 9490 | 942375 | | WICZBCIIIA | frustulum | | 3163 | 236345 | | | inconspicua | | 3163 | 114380 | | | palea | debilis | 25306 | 4385865 | | | paleacea | | 185052 | 5669314 | | Surirellacea | | | | | | Surirella | angusta | | 1582 | 1791522 | | | brebissonii | | 1582 | 4493721 | | Cyanophyta | | | | | | Nostocaceae | | | | | | Amphithrix | janthina | | 2920894 | 94661306 | | Oscillatoria | brebissonii | | 380174 | 37230178 | | Hydrocoleum | | l Density | 3801/4 | 37230178 | | | | l Biovolume | | 315018148 | | | | rophyll a, UG/L | (70957) | 20.7 | | | | | , g/sq. m (00572) | 79.2 | | | | | Weight, g/sq. m (| | | | | 2 | 2 2 | , | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued 09067200 LAKE CREEK NEAR EDWARDS, CO (LAT 39 38 51N LONG 106 36 31W) | | | | Density | Biovolume | |---------------------------------|--------------|----------------|-------------------------|-----------| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 869 | 73902 | | Desmidiaceae | ~ | | | | | Closterium | sp. | | 869 | 73902 | | Chrysophyta | | | | | | Achnanthacea | | | | | | Achnanthes | biasolettian | | 27473 | 3456353 | | | minutissima | | 138251 | 7613730 | | Cocconeis | pediculus | | 591 | 2043768 | | | placentula | lineata | 1772 | 1857083 | | Diatomaceae | | | | | | Diatoma | tenue | | 886 | 99774 | | Fragilaria | capucina | | 6499 | 1214145 | | | construens | pumila | 7090 | 851518 | | | leptostauron | | 1182 | 577144 | | | vaucheriae | | 4431 | 916628 | | Hannaea | arcus | | 1182 | 2869162 | | Synedra | ulna | | 1182 | 7747464 | | Melosiraceae | | | 1100 | 6415054 | | <i>Melosira</i>
Naviculaceae | varians | | 1182 | 6415374 | | Amphipleura | pellucida | | 591 | 668306 | | Amphora | perpusilla | | 591 | 55909 | | Cymbella | affinis | | 2363 | 1196063 | | Cyllbella | brehmii | | 1182 | 32579 | | | microcephala | | 2954 | 184139 | | | minuta | silesiaca | 16543 | 7789212 | | | minuta | DIIODIAGA | 1772 | 379274 | | Frustulia | vulgaris | | 591 | 917241 | | Gomphonema | angustatum | | 591 | 244261 | | - | olivaceum | | 591 | 203281 | | Navicula | cryptotenell | | 2068 | 748402 | | | menisculus | upsaliensis | 591 | 111539 | | | secreta | apiculata | 591 | 147690 | | | tripunctata | | 1477 | 1397514 | | Reimeria | sinuata | | 2659 | 439593 | | Nitzschiacea | | | | | | Denticula | tenuis | | 295 | 112329 | | Nitzschia | dissipata | | 591 | 153635 | | | frustulum | perminuta | 1182 | 63415 | | Character and brook a | palea | debilis | 591 | 102395 | | Cyanophyta
Nostocaceae | | | | | | Amphithrix | janthina | | 159977 | 5184578 | | Oscillatoria | Janunna | | 159977 | 3104370 | | Hydrocoleum | brebissonii | | 123460 | 12090365 | | Oscillatoria | sp. 1 ANS | | 493841 | 8007796 | | Rhodophyta | Sp. I ANS | | 493041 | 8007730 | | Chantransiac | | | | | | Audouinella | violacea | | 6086 | 21539667 | | nacamena | | Density | 3000 | 1014637 | | | | Biovolume | | 97579130 | | | | ophyll a, UG/L | (70957) | 5.4 | | | | | , g/sq. m (00572) | 143.1 | | | | | Weight, g/sq. m (00573) | 150.8 | | | | | | | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 09069000 EAGLE RIVER AT GYPSUM, CO (LAT 39 39 00N LONG 106 57 06W) | | | | Density | Biovolume | |-------------------------------------|--------------|---------------|---------------------------|-----------| | Organ | isms | | | | | Chlorophyta | | | | | | Chaetophorac
Stigeocloniu | lubricum | | 28724 | 42634084 | | Scenedesmace
Scenedesmus | acutus | | 107235 | 9738362 | | Chrysophyta
Achnanthacea | | | | | | <i>Achnanthes</i> | minutissima | | 141151 | 7773449 | | Cocconeis | placentula | euglypta | 601 | 361855 | | | placentula | lineata | 5406 | 5663915 | | Naviculaceae | | | | | | Amphora | perpusilla | | 7208 | 682065 | | Cymbella | affinis | | 12613 | 6383773 | | | minuta | silesiaca | 137547 | 64764236 | | | minuta | | 21022 | 4498467 | | Gomphonema | parvulum | | 5406 | 1207402 | | Navicula | minima | | 1201 | 63801 | | Reimeria | sinuata | | 32435 | 5362852 | | <i>Rhoicospheni</i>
Nitzschiacea | curvata | | 1201 | 639732 | | Nitzschia | fonticola | | 10812 | 1073625 | | | frustulum | perminuta | 2403 | 128939 | | | inconspicua | | 1802 | 65155 | | | palea | debilis | 4805 | 832785 | | Thalassiosir
<i>Cyclotella</i> | meneghiniana | | 1201 | 916371 | | Cyanophyta | | | | | | Nostocaceae | | | | | | <i>Amphithrix</i>
Oscillatoria | janthina | | 11952927 | 387374469 | | Hydrocoleum
Rhodophyta | brebissonii | | 1204484 | 117954185 | | Chantransiac | | | | | | Audouinella | violacea | | 13404 | 47440651 | | Audoumema | | Density | 13404 | 13693588 | | | | Biovolume | | 705560173 | | | | ophyll a, UG/ | T. (70957) | 48.9 | | | | | t, g/sq. m (00572) | 219.7 | | | | | y Weight, g/sg. m (00572) | | | | Dioma | DE, IOCUI, DI | , | ., 251.1 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued $393030106224700 \ \ \text{EagLe River blw homestake creek nr red cliff, co (lat 39 30 30n long 106 22 47w)}$ | | | | Density | Biovolume | |---|---|-------------------------|---|---| | Organ | isms | | | | | Chlorophyta | | | | | | Desmidiaceae
<i>Cosmarium</i>
Chrysophyta | subcrenatum | | 349 | 29696 | | Achnanthacea
Achnanthes | biasolettian
lanceolata
lapponica
minutissima
pusilla | dubia
ninckei | 3174
163
244
39465
244 | 399257
13172
364465
2173434
22158 | | Cocconeis | pediculus
placentula
placentula | lineata
euglypta | 163
1139
244 | 562969
1193606
147067 | | Diatomaceae | pracciicara | cagiypca | 211 | 117007 | | Diatoma
Fragilaria | vulgare
construens
leptostauron
pinnata
vaucheriae | pumila | 244
1546
163
1139
570 | 901988
185690
79489
109679
117829 | | Synedra | rumpens | fragilarioid | 488 | 50023 | | Naviculaceae
Amphipleura
Cymbella | ulna pellucida affinis brehmii microcephala | | 325
81
163
570
163 | 2134089
92045
82366
15705
10144 | | Gomphonema | minuta
minuta
sp. 5
ANS
olivaceoides
parvulum | silesiaca
exilissima | 3499
488
488
244
163 | 1647506
104474
905182
37344
211893 | | Navicula | parvulum
subclavatum
cryptotenell | exilissima | 163
488
814
163 | 36349
389789
294503
1220742 | | Reimeria | expecta
incerta
sinuata | | 163
163
814 | 8414
134543 | | Nitzschiacea
Nitzschia | dissipata
fonticola | | 325
163 | 84640
16161 | | Thalassiosir Aulacosira Cyanophyta Nostocaceae | distans | | 81 | 32512 | | Amphithrix
Oscillatoria | janthina | | 463605 | 15024677 | | Hydrocoleum Rhodophyta Chantransiac | brebissonii | | 278093 | 27233456 | | Audouinella | Total
Chlor
Bioma | | 14673
(70957)
g/sq. m (00572)
Weight, g/sq. m (00! | 51931262
815064
107998318
5.2
84.3
573) 87.5 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $393221106450700 \ \text{EAST BRUSH CREEK ABOVE CONFLUENCE (LAT 39 38 52N LONG 106 50 32W)}$ | | | | Density | Biovolume | |---|---|---|---|---| | Organ | nisms | | | | | Chlorophyta
Desmidiaceae | | | | | | Closterium | lunula
sp. | | 785
393 | 66764
33382 | | Chrysophyta
Achnanthacea | | | | | | Achnanthes | biasolettian
lanceolata
lanceolata
minutissima | dubia | 99
199
298
45658 | 12515
16102
42626
2514467 | | Cocconeis | pediculus
placentula
placentula | lineata
euglypta | 199
1492
9947 | 688198
1563338
5992700 | | Diatomaceae | _ | | | | | Fragilaria
Meridion
Synedra
Melosiraceae | construens
circulare
ulna | pumila
contracta | 199
199
597 | 23894
129124
948815 | | Melosiraceae
Melosira
Naviculaceae | varians | | 398 | 2160248 | | Amphora
Cymbella | perpusilla
affinis
minuta | silesiaca | 1592
298
2288 | 150609
151031
1077246 | | Gomphonema
Navicula | tenellum
contenta
cryptocephal | | 2288
199
199 | 396855
10292
75373 | | | cryptocephal
cryptotenell
incerta
minima | veneta | 199
1592
99
398 | 43139
576021
5143
21132 | | | minuscula
tripunctata | | 199
1890 | 10209
1788222 | | <i>Reimeria</i>
Nitzschiacea | sinuata | | 5670 | 937485 | | Nitzschia | archibaldii
dissipata
frustulum
linearis | perminuta | 199
5570
199
398 | 8175
1448539
10677
1029062 | | | palea
sublinearis
tubicola | debilis | 99
398
199 | 17240
1041536
48692 | | Cryptophyta | 04010014 | | 200 | 10072 | | Cryptomonada
<i>Cryptomonas</i>
Cyanophyta
Nostocaceae | ovata | | 393 | 3927 | | Amphithrix
Oscillatoria | janthina | | 333427 | 10805812 | | <i>Hydrocoleum</i>
Rhodophyta
Chantransiac | brebissonii | | 55768 | 5461269 | | Audouinella | Total
Chlor | Density Biovolume ophyll a, UG/1 ss, Ash Weight | 5498
L (70957)
E, g/sg. m (00572) | 19459116
479522
58768975
15.3
109.9 | | | Bioma | ss, Total, Dry | y Weight, g/sq. m (00573) | 116.5 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $393501106313200 \ \ \text{beaver creek above avon, co} \quad \text{(LAT 39 35 01N Long 106 31 32W)}$ | | | | Density | Biovolume | |------------------------|----------------------|------------------|-------------------|-----------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 1488 | 126484 | | Chrysophyta | | | | | | Achnanthacea | | | | | | Achnanthes | biasolettia | 1 | 186 | 23461 | | | clevei | | 93 | 20234 | | | lanceolata | | 559 | 79912 | | | minutissima | | 26853 | 1478859 | | | nodosa | | 186 | 278416 | | Cocconeis | placentula | lineata | 3823 | 4005405 | | | placentula | euglypta | 93 | 56172 | | Diatomaceae | | | | | | Diatoma | mesodon | | 93 | 99286 | | Fragilaria | capucina | | 559 | 104516 | | | construens | pumila | 186 | 22397 | | | vaucheriae | | 1119 | 231454 | | Hannaea | arcus | | 373 | 905603 | | Naviculaceae | | | | | | Amphora | perpusilla | | 559 | 52940 | | Cymbella | brehmii | | 4476 | 123397 | | | minuta | | 186 | 39904 | | _ | minuta | silesiaca | 4942 | 2326826 | | Gomphonema | olivaceoides | | 186 | 28249 | | | olivaceoides | 3 | 93 | 14264 | | | pumilum | | 9231 | 2693381 | | | subclavatum | | 932 | 744402 | | Navicula | cryptocephal | | 186 | 70651 | | | cryptocephal | | 932 | 202182 | | | cryptotenel1 | | 1492
186 | 539932
19142 | | | ignota
incerta | acceptata | 2984 | 154266 | | | minuscula | | 186 | 9569 | | Reimeria | minuscuia
sinuata | | 11562 | 1911666 | | Nitzschiacea | SIIIuata | | 11302 | 1911000 | | Nitzschia
Nitzschia | frustulum | perminuta | 373 | 20016 | | NILZSCIIIA | palea | debilis | 186 | 32319 | | Thalassiosir | ратеа | debiiis | 100 | 32319 | | Cyclotella | stelligera | | 93 | 24486 | | Cyanophyta | Scerrigera | | 23 | 24400 | | Nostocaceae | | | | | | Amphithrix | janthina | | 239079 | 7748141 | | Oscillatoria | Jancinia | | 233073 | 7740141 | | Hydrocoleum | brebissonii | | 889849 | 87142173 | | nyarocoream | | al Density | 000040 | 1203324 | | | | al Biovolume | | 111330105 | | | | prophyll a, UG/L | (70957) | 1.3 | | | | | g/sq. m (00572) | 116.4 | | | | | Weight, g/sq. m (| | | | | | 3 - , 3, 1 | ., | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $393523106364700 \text{ WEST LAKE CREEK NEAR EDWARDS, CO} \quad \text{(LAT 39 35 23N LONG 106 36 47W)}$ | | | | Density | Biovolume | |--------------------------------|---------------------------|-----------------|-------------------------|-------------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 98 | 8321 | | Chrysophyta | | | | | | Achnanthacea | | | | | | Achnanthes | biasolettian | 1 | 55 | 6935 | | | lanceolata
minutissima | | 28
6367 | 3937
350646 | | | pusilla | | 41 | 3753 | | Cocconeis | placentula | lineata | 841 | 880815 | | COCCOILCID | placentula | euglypta | 14 | 8303 | | Diatomaceae | pracerrara | cagippea | | 0303 | | Fragilaria | capucina | mesolepta | 28 | 10282 | | _ | construens | pumila | 41 | 4966 | | | leptostauror | 1 | 14 | 6731 | | | pinnata | | 28 | 2654 | | | vaucheriae | | 41 | 8553 | | Hannaea | arcus | | 41 | 100390 | | Naviculaceae
<i>Amphora</i> | normugillo | | 28 | 2608 | | Caloneis | perpusilla
bacillum | | 28 | 11857 | | Cymbella | brehmii | | 868 | 23939 | | 07.11001114 | cymbiformis | nonpunctata | 14 | 25551 | | | minuta | | 28 | 5898 | | | minuta | silesiaca | 165 | 77868 | | Gomphonema | angustatum | | 28 | 11395 | | | olivaceoides | hutchinsonia | 14 | 2088 | | Navicula | elginensis | | 28 | 27711 | | | incerta | 7 . | 96 | 4988 | | | minuscula
tripunctata | muralis | 14
41 | 625
39119 | | Reimeria | sinuata | | 537 | 88868 | | Nitzschiacea | SIIIuata | | 557 | 00000 | | Nitzschia | dissipata | | 41 | 10751 | | | frustulum | perminuta | 14 | 740 | | | vermicularis | ; | 14 | 63050 | | Cyanophyta | | | | | | Nostocaceae | | | | | | Amphithrix | janthina | | 76257 | 2471373 | | Oscillatoria | 1 1. 2 | | FF300 | E 41 C 2 0 E | | Hydrocoleum
Oscillatoria | brebissonii
sp. 1 ANS | | 55309
13411 | 5416327
217466 | | Rhodophyta | Sp. I ANS | | 13411 | 21/400 | | Chantransiac | | | | | | Audouinella | violacea | | 1370 | 4850364 | | | | l Density | | 155942 | | | Tota | l Biovolume | | 14748872 | | | | rophyll a, UG/L | | 6.0 | | | | | , g/sq. m (00572) | 82.4 | | | Biom | ass, Total, Dry | Weight, g/sq. m (00573) | 84.6 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued 393627106264000 EAGLE RIVER ABOVE GORE CREEK NR. MINTURN, CO (LAT 39 36 27N LONG 106 26 40W) | | | | Density | Biovolume | |--|---|--|--|--| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona Chlamydomona Chrysophyta Achnanthacea | sp. | | 1121 | 95326 | | Achnanthes | biasolettian
minutissima | | 43846
149507 | 5516230
8233649 | | Diatomaceae
Diatoma
Fragilaria | moniliformis
vaucheriae | | 359
18329 | 54166
3791572 | | Hannaea
Synedra | arcus
rumpens
ulna | fragilarioid | 719
8625
9704 | 1745310
883746
63622501 | | Naviculaceae | ulna | contracta | 1078 | 1714026 | | Anomoeoneis
Cymbella | vitrea
minuta
minuta | <i>si</i> lesiaca | 3594
26236
719 | 717946
12353095
153808 | | Gomphonema | naviculiform
olivaceoides
pumilum | | 719
7188
1438 | 1332628
1099571
419457 | | Navicula
Reimeria
Nitzschiacea | minima
sinuata | | 1078
2516 | 57263
415962 | | Denticula
Nitzschia | tenuis
frustulum
palea | perminuta
debilis | 359
2516
719 | 136659
135013
124574 | | Cyanophyta
Nostocaceae | | | | | | <i>Amphithrix</i>
Oscillatoria | janthina | | 700924 | 22715776 | | Hydrocoleum
Rhodophyta
Chantransiac | brebissonii | | 98690 | 9664641 | | Audouinella | Total | Density
Biovolume
ophyll a, UG/L | 217567 | 770006963
1297551
904989882
5.8 | | | Biomas | ss, Ash Weight, | (70957)
, g/sq. m (00572)
Weight, g/sq. m (005 | 114.2 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square
centimeter. $393824106221700 \ \text{MILL CREEK NEAR VAIL, CO} \ \ (\text{LAT 39 38 24N LONG 106 22 17W})$ | | | | Density | Biovolume | |--|-----------------------------|-------------------------------------|--|---| | Organ | isms | | | | | Chlorophyta | | | | | | Chaetophorac Stigeocloniu Chrysophyta Achnanthacea | lubricum | | 95529 | 141790844 | | Achnanthes | biasolettian
minutissima | | 33454
378376 | 4208830
20837890 | | <i>Cocconeis</i>
Diatomaceae | placentula | lineata | 1154 | 1208671 | | Diatoma
Fragilaria | mesodon
vaucheriae | | 11536
24225 | 12283781
5011287 | | Hannaea
Naviculaceae | arcus | | 68062 | 165262909 | | Amphora
Cymbella | perpusilla
affinis | | 2307
2307 | 218327
1167676 | | Cylliberra | brehmii
minuta | | 2307
2307
12689 | 63612
2715334 | | h | minuta | silesiaca | 220335 | 103744996 | | Gomphonema | angustatum
olivaceum | | 36915
21918 | 15261664
7541343 | | Navicula | cryptotenell
tripunctata | | 2307
1154 | 835016
1091477 | | <i>Reimeria</i>
Nitzschiacea | sinuata | | 9229 | 1525900 | | Nitzschia | fonticola
tubicola | | 2307
2307 | 229110
564680 | | Cyanophyta
Nostocaceae | cabicola | | 2507 | 301000 | | Amphithrix
Oscillatoria | janthina | | 2071775 | 67142766 | | Hydrocoleum | Total | Density
Biovolume
phyll a, UG | 1119475
5/L (70957) | 109629265
4119668
662335378
47.4 | | | Biomas | s, Ash Weig | ght, g/sq. m (00572)
Dry Weight, g/sq. m (00573 | 210.5
229.8 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $393826106235300 \ \, \text{GORE} \ \, \text{CREEK BELOW WWTP} \quad (\text{LAT 39 38 26N LONG 106 23 53W})$ | | | | Density | Biovolume | |---------------------------------|--------------|-------------------------|----------------------------|-------------------| | Organ | nisms | | | | | Chlorophyta | | | | | | Chaetophorac | | | | | | Stigeocloniu | lubricum | | 31571 | 46860667 | | Chlamydomona | | | 4510 | 202267 | | Chlamydomona | sp. | | 4510 | 383367 | | Chrysophyta
Achnanthacea | | | | | | Achnanthes | biasolettian | | 80598 | 10140042 | | | lanceolata | | 5656 | 807916 | | | minutissima | | 230483 | 12693138 | | Diatomaceae | | | | | | Diatoma | moniliformis | | 28280 | 4262223 | | Fragilaria | vaucheriae | | 53732 | 11115144 | | Hannaea | arcus | | 1414 | 3433404 | | Synedra | ulna
ulna | contracta | 1414 | 2247908 | | Naviculaceae | uina | | 8484 | 55626351 | | Cvmbella | brehmii | | 14140 | 389862 | | cymbella | minuta | silesiaca | 199375 | 93875958 | | | minuta | DIIODIAOA | 26866 | 5748911 | | Diatomella | balfouriana | | 14140 | 11511085 | | Gomphonema | olivaceum | | 11312 | 3892123 | | | parvulum | | 2828 | 631647 | | Navicula | cryptocephal | veneta | 14140 | 3066126 | | | cryptotenell | | 26866 | 9723444 | | | incerta | | 55146 | 2851234 | | Reimeria | tripunctata | | 8484 | 8027258 | | <i>Relmeria</i>
Nitzschiacea | sinuata | | 97566 | 16131943 | | Nitzschia | dissipata | | 2828 | 735395 | | NILZSCIIIA | fonticola | | 131503 | 13058658 | | | inconspicua | | 31108 | 1124825 | | Cyanophyta | | | | | | Nostocaceae | | | | | | Amphithrix | janthina | | 1639456 | 53132027 | | Oscillatoria | | | | | | Hydrocoleum | brebissonii | | 1062151 | 104015572 | | | | Density | | 3784051 | | | | Biovolume ophyll a, UG/ | (1 (70057) | 475486228
56.2 | | | | | nt, g/sq. m (00572) | 118.1 | | | | | ry Weight, g/sg. m (00572) | | | | Diomai | oo, rocar, br | .,, 5/54 (005/ | 5, 120.7 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 393845106353000 EAGLE RIVER AT EDWARDS, CO. (LAT 39 38 45N LONG 106 35 30W) | | | | Density | Biovolume | |---------------------------------|-----------------------|----------------|-------------------|-----------------| | Organ | nisms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 1794 | 152465 | | Scenedesmace
Scenedesmus | acutus | | 28699 | 2606262 | | Chrysophyta
Achnanthacea | acacac | | 20033 | 2000202 | | Achnanthes | biasolettian | | 795 | 100059 | | | minutissima | | 68398 | 3766787 | | Diatomaceae | moniliformis | | 0206 | 350500 | | Diatoma | monilliormis
tenue | | 2386
795 | 359599
89540 | | | vulgare | | 795
795 | 2938648 | | Fragilaria | vuigare
vaucheriae | | 4772 | 987129 | | Synedra | rumpens | fragilarioid | 795 | 81487 | | Sylledia | ulna | contracta | 3181 | 5057428 | | Melosiraceae | 4214 | 001101 4004 | 5101 | 303.120 | | Melosira | varians | | 5567 | 30226021 | | Naviculaceae | | | | | | Caloneis | bacillum | | 1591 | 684242 | | Cymbella | brehmii | | 9544 | 263138 | | - | minuta | | 1591 | 340372 | | | minuta | silesiaca | 187696 | 88376844 | | Navicula | atomus | | 37380 | 976284 | | | minima | | 7953 | 422402 | | | pelliculosa | | 3181 | 83018 | | | tantula | | 795 | 43625 | | <i>Reimeria</i>
Nitzschiacea | sinuata | | 31813 | 5260037 | | Nitzschia | fonticola | | 3977 | 394891 | | 111022011114 | frustulum | perminuta | 7158 | 384144 | | | fruticosa | 1 | 1591 | 296398 | | | inconspicua | | 6363 | 230061 | | | palea | debilis | 53287 | 9235159 | | | paleacea | | 148725 | 4556385 | | Cyanophyta | - | | | | | Nostocaceae | | | | | | Amphithrix
Oscillatoria | janthina | | 2286972 | 74116969 | | Hydrocoleum | brebissonii | | 846628 | 82909623 | | 11701000104111 | | Density | 010020 | 3754222 | | | | Biovolume | | 314939017 | | | | ophyll a, UG/L | (70957) | 34.8 | | | | | g/sq. m (00572) | 105.9 | | | | | Weight, g/sq. m (| | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $393851106503400 \ \mathtt{BRUSH} \ \mathtt{CREEK} \ \mathtt{AT} \ \mathtt{MOUTH} \ \mathtt{NEAR} \ \mathtt{EAGLE} \ \mathtt{,} \ \mathtt{CO} \ \mathtt{(LAT} \ \mathtt{39} \ \mathtt{38} \ \mathtt{51N} \ \mathtt{LONG} \ \mathtt{106} \ \mathtt{50} \ \mathtt{34W} \mathtt{)}$ | | | | Density | Biovolume | |---------------------|------------------------|----------------|----------------------|-------------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 3002 | 255152 | | Chrysophyta | | | | | | Achnanthacea | | | | | | Achnanthes | minutissima | | 44275 | 2438326 | | Cocconeis | pediculus | | 3459 | 11965525 | | | placentula | euglypta | 6918 | 4167744 | | Diatomaceae | , | | 41.51 | 15226015 | | Diatoma | vulgare | | 4151 | 15336915 | | Naviculaceae | | | 35074 | 2404107 | | Amphora
Caloneis | perpusilla
bacillum | | 35974
1384 | 3404187
595180 | | Cymbella | affinis | | 8993 | 4551635 | | Cymbella | minuta | silesiaca | 28364 | 13355173 | | Diploneis | puella | SITESTACA | 692 | 226557 | | Gomphonema | olivaceum | | 4843 | 1666192 | | Goniphonenia | tenellum | | 2767 | 480001 | | Navicula | atomus | | 4151 | 108410 | | | cryptocephal | veneta | 51885 | 11250755 | | | cryptotenell | | 96160 | 34802601 | | | minima | | 1384 | 73484 | | | nivalis | | 1384 | 1989587 | | | salinarum | intermedia | 24213 | 9017210 | | | secreta | apiculata | 12452 | 3112827 | | | tripunctata | | 57420 | 54328094 | | Pinnularia | obscura | | 692 | 241414 | | Reimeria | sinuata | | 4151 | 686308 | | Rhoicospheni | curvata | | 25597 | 13631258 | | Nitzschiacea | | | | | | Nitzschia | accommodata | | 2767 | 693761 | | | archibaldii | | 3459 | 142130 | | | dissipata | media | 69180 | 17989570 | | | dissipata
frustulum | | 4151
1384 | 2002154
74254 | | | inconspicua | perminuta | 6918 | 250145 | | | palea | debilis | 11069 | 1918354 | | Simonsenia | delognei | GEDIIIS | 1384 | 92164 | | Thalassiosir | derogner | | 1304 | J2104 | | Cyclotella | meneghiniana | | 692 | 527725 | | Cyanophyta | | | 332 | 327723 | | Chrococcace | | | | | | Merismopedia | glauca | | 48029 | 2608521 | | Nostocaceae | _ | | | | | Amphithrix | janthina | | 1080643 | 35021831 | | Oscillatoria | - | | | | | Hydrocoleum | brebissonii | | 732436 | 71726832 | | | | l Density | | 2386423 | | | | l Biovolume | | 320731976 | | | | rophyll a, UG/ | | 48.8 | | | | | t, g/sq. m (00572) | 323.9 | | | Biom | ass, Total, Dr | y Weight, g/sq. m ((| 00573) 347.6 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $393852106503200 \ \ \text{EAGLE RIVER ABOVE BRUSH CREEK AT EAGLE, CO} \quad \text{(LAT 39 38 52N LONG } 106\ 50\ 32\text{W)}$ | | | | Density | Biovolume | |-------------------------------------|-------------|------------------|----------------------|-----------| | Organ | isms | | | | | Chlorophyta | | | | | | Chaetophorac | | | | | | Stigeocloniu
Chlamydomona | lubricum | | 5547 | 8233592 | | Chlamydomona
Chrysophyta | sp. | | 792 | 67359 | | Achnanthacea | | | | | | Achnanthes | minutissim | | 56687 | 3121847 | | Cocconeis | placentula | lineata | 795 | 832621 | | | placentula | euglypta | 6093 | 3670414 | | Diatomaceae | | | 265 | F1063 | | Fragilaria | construens | | 265 | 51263 | | Malaninana | vaucheriae | | 265 | 54796 | | Melosiraceae | | | 265 | 1420162 | | <i>Melosira</i>
Naviculaceae | varians | | 265 | 1438163 | | Amphora | perpusilla | | 1854 | 175467 | | Caloneis | bacillum | | 1060 | 455790 | | Cymbella | brehmii | | 1589 | 43821 | | | minuta | silesiaca | 54833 | 25817970 | | | minuta | | 8477 | 1813838 | | Gomphonema | olivaceum | | 795 | 273423 | | | parvulum | | 4768 | 1064961 | | Navicula | atomus | | 13245 | 345918 | | | cryptocepha | | 1589 | 344634 | | | cryptotene. | 11 | 530 | 191740 | | | minima | | 1060 | 56274 | | | secreta | apiculata | 1060 | 264867 | | Reimeria | sinuata | | 18278 | 3022060 | | <i>Rhoicospheni</i>
Nitzschiacea | curvata | | 530 |
282131 | | Nitzschia | archibaldi: | Ĺ | 3708 | 152381 | | | fonticola | | 2119 | 210437 | | | frustulum | perminuta | 3973 | 213240 | | | inconspicua | 2 | 1060 | 38312 | | | palea - | | 530 | 170434 | | | palea | debilis | 1589 | 275452 | | | paleacea | | 2384 | 73038 | | Cyanophyta | - | | | | | Nostocaceae | | | | | | Amphithrix
Oscillatoria | janthina | | 3341794 | 108301997 | | Hydrocoleum | brebissoni: | i | 66566 | 6518800 | | 1174100010411 | | al Density | 00300 | 3604100 | | | | al Biovolume | | 167577040 | | | | lorophyll a, UG/ | т. (70957) | 18.4 | | | | | t, g/sq. m (00572) | 87.7 | | | | | y Weight, g/sq. m () | | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. #### EAGLE RIVER WATERSHED SYNOPTIC SAMPLING--Continued ## PERIPHYTON ANALYSIS--Continued $393858106570900 \ \, {\tt GYPSUM} \ \, {\tt CREEK} \ \, {\tt AT} \ \, {\tt MOUTH} \ \, ({\tt LAT} \ \, {\tt 39} \ \, {\tt 38} \ \, {\tt 58N} \ \, {\tt LONG} \ \, {\tt 106} \ \, {\tt 57} \ \, {\tt 09W})$ | | | | Density | Biovolume | |---------------------------|--------------|---------------|----------------------|------------| | Organ | nisms | | | | | Chrysophyta | | | | | | Achnanthacea | | | | | | Achnanthes | lanceolata | dubia | 4124 | 333816 | | | minutissima | | 637905 | 35130631 | | Cocconeis | pediculus | | 19247 | 66580334 | | | placentula | euglypta | 4124 | 2484726 | | Diatomaceae | - | 5 11 | | | | Diatoma | vulgare | | 2750 | 10159514 | | Fragilaria | vaucheriae | | 4124 | 853177 | | Naviculaceae | | | | | | Amphora | perpusilla | | 41244 | 3902901 | | Cymbella | affinis | | 10998 | 5566346 | | | microcephala | | 9624 | 599875 | | | minuta | silesiaca | 63241 | 29776914 | | Gomphonema | olivaceum | | 4124 | 1419072 | | | parvulum | | 5499 | 1228263 | | | pumilum | | 5499 | 1604562 | | Navicula | cryptocephal | veneta | 23372 | 5067871 | | | cryptotenell | | 75614 | 27366281 | | | ignota | acceptata | 2750 | 282248 | | | minima | | 2750 | 146033 | | | salinarum | intermedia | 2750 | 1023977 | | _ , , | tripunctata | | 19247 | 18210866 | | Reimeria | sinuata | | 2750 | 454626 | | Nitzschiacea | , , | | 5400 | 5545050 | | Hantzschia | amphioxys | | 5499 | 5745250 | | Nitzschia | dissipata | | 30246 | 7865017 | | Cyanophyta | | | | | | Nostocaceae
Amphithrix | d | | 1083727 | 35121800 | | Oscillatoria | janthina | | 1083727 | 35121800 | | Hydrocoleum | brebissonii | | 2279015 | 223182106 | | Rhodophyta | DIEDISSUILI | | 2279015 | 223102100 | | Chantransiac | | | | | | Audouinella | violacea | | 159372 | 564044309 | | Addodineiia | | Density | 137372 | 4499595 | | | | Biovolume | | 1048150515 | | | | phyll a, UG/L | . (70957) | 80.0 | | | | | ., g/sq. m (00572) | 493.1 | | | | | Weight, g/sq. m (005 | | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. 393930106382001 SQUAW CREEK (LAT 39 39 30N LONG 106 38 20W) | | | | Density | Biovolume | |-------------------------------|-------------------------|------------------|---|------------------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 2224 | 189021 | | Cladophorace | | | | | | Cladophora | glomerata | | 4448 | 24143551235 | | Chrysophyta
Achnanthacea | | | | | | Achnanthes | lanceolata | | 1584 | 226242 | | | minutissima | a | 9701 | 534261 | | Cocconeis | pediculus | | 10691 | 36982943 | | | placentula | lineata | 792 | 829748 | | Distances | placentula | euglypta | 13463 | 8110655 | | Diatomaceae
<i>Synedra</i> | ulna | | 396 | 2596185 | | Melosiraceae | uilla | | 390 | 2390103 | | Melosira | varians | | 1386 | 7524300 | | Naviculaceae | | | | | | Amphora | perpusilla | | 21976 | 2079596 | | G | submontana
olivaceum | | 198
7127 | 52964
2452310 | | Gomphonema | tenellum | | 7127 | 137369 | | Navicula | atomus | | 396 | 10342 | | | bremensis | | 198 | 4633 | | | capitata | | 396 | 313457 | | | cryptotene. | 11 | 13265 | 4800845 | | | hustedtii | | 594
198 | 77207
37377 | | | menisculus
pupula | upsaliensis | 1980 | 1259648 | | | salinarum | intermedia | 1980 | 737310 | | | secreta | apiculata | 2178 | 544404 | | | tripunctata | 3 | 13265 | 12550677 | | | vandamii | | 396 | 2970141 | | Reimeria | viridula
sinuata | avenacea | 594
396 | 746641
65470 | | Nitzschiacea | Sinuaca | | 370 | 03470 | | Nitzschia | capitellata | a | 792 | 331143 | | | dissipata | media | 2178 | 1050473 | | | dissipata | | 7523 | 1956367 | | | flexoides
fonticola | | 396
396 | 4638345
39321 | | | frustulum | perminuta | 792 | 42501 | | | linearis | porminada | 1188 | 3072254 | | | palea | | 1980 | 636922 | | | palea | debilis | 3168 | 549003 | | Surirellacea | recta | | 594 | 1030688 | | Surirella
Surirella | minuta | | 1584 | 1495077 | | Cyanophyta | шписа | | 1301 | 1403077 | | Nostocaceae | | | | | | Amphithrix | janthina | | 157888 | 5116884 | | Oscillatoria | , , , , | | 0.40.401 | 0210000 | | Hydrocoleum | brebissoni | 1 | 849481 | 83189029 | | Rhodophyta
Chantransiac | | | | | | Audouinella | violacea | | 13343 | 47221941 | | | | tal Density | | 1151917 | | | | tal Biovolume | | 24379754929 | | | | lorophyll a, UG/ | | 38.1 | | | | | t, g/sq. m (00572)
y Weight, g/sq. m | 301.5
(00573) 320.7 | | | DI | Juans, Iocai, Di | 7 WCTATTC, 8/24. III | (003/3) 320.7 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $394129106393300 \ \ \text{EAGLE RIVER AT EAGLE SPGS. GOLF COURSE NR WOLCOTT (LAT 39 41 29N LONG 106 39 33W)}$ | | | | Density | Biovolume | |--|----------------------------|---------------------|--|--------------------| | Organisms | | | | | | Chlorophyta | | | | | | Scenedesmace | | | | | | Scenedesmus | acutus | | 4177 | 379316 | | Chrysophyta | quadricauda | | 2088 | 238721 | | Achnanthacea | | | | | | Achnanthes | biasolettian
lanceolata | | 936
187 | 117750
26738 | | | minutissima | | 15911 | 876243 | | G | subatomoides | 7: | 562
187 | 838411 | | Cocconeis | placentula
placentula | lineata
euglypta | 1123 | 196125
676622 | | Diatomaceae | _ | | | | | Fragilaria | construens
leptostauron | pumila | 1310
187 | 157375
91428 | | | pinnata | | 749 | 72087 | | | vaucheriae | | 2059 | 425940 | | Hannaea
Synedra | arcus
rumpens | fragilarioid | 562
374 | 1363548
38358 | | Sylledia | ulna | 11ag11a1101u | 1123 | 7363848 | | Melosiraceae
<i>Melosira</i>
Naviculaceae | varians | | 3744 | 20325722 | | Amphora | perpusilla | | 749 | 70854 | | Caloneis | bacillum | | 1497 | 644173 | | Cymbella | affinis
brehmii | | 749
562 | 378947
15483 | | | microcephala | | 374 | 23336 | | | minuta [*] | | 1872 | 400550 | | Gomphonema | minuta
olivaceoides | silesiaca | 52600
1685 | 24766569
257717 | | Navicula | atomus | | 749 | 19556 | | | cryptocephal | veneta | 374 | 81179 | | | ignota | acceptata | 374
187 | 38430
9678 | | | incerta
minima | | 1497 | 79533 | | | secreta | apiculata | 4305 | 1076228 | | Reimeria | tripunctata
sinuata | | 374
5241 | 354218
866602 | | Rhoicospheni
Nitzschiacea | curvata | | 187 | 99685 | | Denticula
Nitzschia | tenuis | | 374 | 142356 | | NILZSCIIIA | accommodata
dissipata | | 2059
936 | 516222
243380 | | | fonticola | | 13290 | 1319770 | | | inconspicua
linearis | | 1497
374 | 54147
968242 | | | palea | debilis | 749 | 129766 | | | paleacea | | 3369 | 103225 | | Surirellacea
<i>Surirella</i>
Thalassiosir | angusta | | 374 | 424052 | | Aulacosira | distans | | 562 | 224371 | | Cyclotella
Cyanophyta | meneghiniana | | 374 | 285582 | | Nostocaceae
Amphithrix
Oscillatoria | janthina | | 294472 | 9543331 | | Hydrocoleum | brebissonii | | 14097 | 1380512 | | Oscillatoria | sp. 1 ANS
Total | Density | 74140 | 1202204
515322 | | | | Biovolume | | 78908130 | | | | ophyll a, UG/L | | 8.2 | | | | | , g/sq. m (00572)
Weight, g/sq. m (00573) | 98.5
101.8 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. $394220106431500 \ \mathtt{EAGLE} \ \mathtt{R} \ \mathtt{BLW} \ \mathtt{MILK} \ \mathtt{CR} \ \mathtt{NR} \ \mathtt{WOLCOTT} \quad (\mathtt{LAT} \ 39 \ 42 \ \mathtt{20N} \ \mathtt{LONG} \ 106 \ 43 \ 15\mathtt{W})$ | | | | Density | Biovolume | |-----------------------------|--------------------------|-----------------|---|-----------------| | Organ | isms | | | | | Chlorophyta | | | | | | Chlamydomona | | | | | | Chlamydomona | sp. | | 142 | 12062 | | Chrysophyta
Achnanthacea | | | | | | Achnanthes | biasolettian | | 346 | 43528 | | | lanceolata | | 247 | 35301 | | | minutissima | | 5585 | 307588 | | Cocconeis | placentula | euglypta | 1582 | 952863 | | Diatomaceae | placentula | lineata | 49 | 51787 | | Fragilaria | construens | pumila | 99 | 11873 | | rragitaria | vaucheriae | ришта | 247 | 51122 | | Hannaea | arcus | | 247 | 600074 | | Naviculaceae | | | | | | Amphora | perpusilla | | 247 | 23386 | | Caloneis | veneta
bacillum | | 99
198 | 56300
85047 | | Cymbella | affinis | | 198 | 50030 | | Супьсти | brehmii | | 890 | 24530 | | | minuta | silesiaca | 7315 | 3444347 | | | minuta | | 1928 | 412483 | | Gomphonema | olivaceum | | 99 | 34012 | | Navicula | atomus
minima | | 6129
643 | 160073
34126 | | | secreta | apiculata | 445 | 111200 | | | tripunctata | артситаса | 99 | 93531 | | Reimeria | sinuata | | 5140 | 849925 | | Rhoicospheni | curvata | | 198 | 105287 | | Nitzschiacea | | | 1026 | 50000 | | Nitzschia | archibaldii
fonticola | | 1236
692 | 50773
68715 | | | frustulum | perminuta | 445 | 23873 | | |
inconspicua | региниче | 445 | 16085 | | | palea | debilis | 198 | 34265 | | | paleacea | | 247 | 7571 | | Cyanophyta | | | | | | Nostocaceae
Amphithrix | janthina | | 80601 | 2612130 | | Oscillatoria | Janunina | | 80001 | 2012130 | | Hydrocoleum | brebissonii | | 8798 | 861576 | | - | Tota | l Density | | 124735 | | | | l Biovolume | | 11225463 | | | | rophyll a, UG/1 | | 6.2 | | | | | t, g/sq. m (00572)
y Weight, g/sq. m (00573) | 109.6
113.6 | | | DIOM | abb, iocai, Di | , werait, a/ad. m (002/2) | 110.0 | ^{*}Density is the abundance as cells per square centimeter. *Biovolume is the volume as cubic micrometers per square centimeter. ## MACROINVERTEBRATE ANALYSIS 09063000 EAGLE RIVER AT RED CLIFF, CO (LAT 39 30 30N LONG 106 22 36W) Date 8/17/00 Time 0945 Abundance per square meter | | Abundance p
square mete | |---|----------------------------| | Organisms | | | PLATYHELMINTHES TURBELLARIA | | | TRICLADIDA | | | Planariidae
<i>Polycelis coronata</i> | 11 | | ANNELIDA | 11 | | OLIGOCHAETA | | | TUBIFICIDA | 3 | | Enchytraeidae
Naididae | 3 | | Nais communis | 5 | | ARTHROPODA | | | INSECTA EPHEMEROPTERA | | | Ameletidae | | | Ameletus sp. | 2 | | Baetidae
Acentrella insignificans | 11 | | Baetis flavistriga | 2 | | Baetis tricaudatus | 499 | | Ephemerellidae | 10 | | Drunella coloradensis
Drunella doddsi | 32 | | Heptageniidae | | | Cinygmula sp.
Epeorus deceptivus | 2
10 | | Epeorus longimanus | 11 | | Rhithrogena robusta | 10 | | Leptophlebiidae | 5 | | Paraleptophlebia sp.
PLECOPTERA | 5 | | Chloroperlidae | | | Sweltsa sp. | 22 | | Perlodidae
<i>Cultus sp</i> . | 2 | | Skwala americana | 22 | | TRICHOPTERA | | | Brachycentridae Brachycentrus americanus | 3 | | Glossosomatidae | | | Glossosoma sp. | 29 | | Hydropsychidae
Arctopsyche grandis | 43 | | Lepidostomatidae | | | Lepidostoma ormea/pluviale | 3 | | Rhyacophilidae
Rhyacophila angelita/tucula | 37 | | Rhyacophila brunnea/vao | 38 | | COLEOPTERA | | | Elmidae
Cleptelmis sp. | 16 | | Heterlimnius corpulentus | 91 | | DIPTERA | • | | Ceratopogonidae
Chironomidae | 2 | | Brillia sp. | 6 | | Micropsectra sp. | 232 | | Orthocladius/Cricotopus gr.
Pagastia sp. | 6
17 | | Rheocricotopus sp. | 6 | | Psychodidae | 1.0 | | <i>Pericoma sp.</i>
Simuliidae | 16 | | Simulium sp. | 54 | | Tipulidae | - | | Dicranota sp.
Limonia sp. | 2 | | птшопта вр. | ی | Total Abundance: 1,263 Abundance per square meter | Organisms | square met | |--|--------------| | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA
Planariidae | | | Polycelis coronata | 6 | | NEMATODA | 45 | | ANNELIDA
OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae | 19 | | Naididae | 6 | | Ophidonais serpentina ARTHROPODA | 0 | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae
<i>Lebertia sp.</i> | 51 | | INSECTA | - | | EPHEMEROPTERA | | | Baetidae
Acentrella insignificans | 26 | | Baetis tricaudatus | 762 | | Ephemerellidae | | | Attenella margarita
Drunella coloradensis | 26
134 | | Drunella doddsi | 51 | | Heptageniidae | | | Cinygmula sp. | 154
6 | | Epeorus deceptivus
Epeorus longimanus | 32 | | Leptophlebiidae | | | Paraleptophlebia sp. | 1,203 | | PLECOPTERA
Chloroperlidae | | | Sweltsa sp. | 141 | | Perlidae | 26 | | <i>Hesperoperla pacifica</i>
Perlodidae | 20 | | Skwala americana | 122 | | TRICHOPTERA
Brachycentridae | | | Brachycentrus americanus | 83 | | Glossosomatidae | | | <i>Glossosoma sp.</i>
Hydropsychidae | 77 | | Arctopsyche grandis | 96 | | Lepidostomatidae | | | <i>Lepidostoma ormea/pluviale</i>
Philopotamidae | 19 | | Chimarra utahensis | 6 | | Rhyacophilidae | | | Rhyacophila angelita/tucula
Rhyacophila brunnea/vao | 64
83 | | COLEOPTERA | 03 | | Elmidae | | | <i>Cleptelmis ornata</i>
Chironomidae | 506 | | Cricotopus trifascia | 75 | | Eukiefferiella sp. | 75 | | Micropsectra sp.
Orthocladius/Cricotopus gr. | 373
75 | | Pagastia sp. | 281 | | Rheocricotopus sp. | 18 | | Stempellinella sp. | 18
18 | | <i>Tvetenia sp.</i>
Empididae | 10 | | Neoplasta sp. | 13 | | Psychodidae | 6 | | <i>Pericoma sp.</i>
Simuliidae | 0 | | Simulium sp. | 301 | | Tipulidae | 6 | | Hexatoma sp. MOLLUSCA | О | | PELECYPODA | | | VENEROIDA
Pisidiidae | | | Sphaerium sp. | 6 | | | F 000 | | Total Abundance: | 5,009 | 09064600 EAGLE RIVER NEAR MINTURN, CO (LAT 39 33 14N LONG 106 24 07W) Date 8/16/00 Time 1430 Abundance per square meter | | Abundance | |---|------------| | Organisms | square met | | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA
Planariidae | | | Polycelis coronata | 35 | | NEMATODA | 6 | | ANNELIDA
OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae
ARTHROPODA | 96 | | ARACHNIDA | | | TROMBIDIFORMES
Lebertiidae | | | Lebertia sp. | 32 | | Sperchonidae | 2 | | Sperchon/Sperchonopsis sp. Torrenticolidae | 3 | | Testudacarus sp. | 10 | | INSECTA
EPHEMEROPTERA | | | Ameletidae | | | Ameletus sp. | 6 | | Baetidae
Baetis flavistriga | 192 | | Baetis tricaudatus | 189 | | Ephemerellidae
Drunella doddsi | 493 | | Drunella grandis | 6 | | Ephemerella inermis | 48 | | <i>Serratella tibialis</i>
Heptageniidae | 6 | | Cinygmula sp. | 13 | | Epeorus deceptivus
Rhithrogena robusta | 6
83 | | PLECOPTERA | 03 | | Capniidae | 10 | | Chloroperlidae
Suwallia sp. | 3 | | Sweltsa sp. | 86 | | Nemouridae
Zapada cinctipes | 10 | | Perlidae | | | <i>Claassenia saboulosa</i>
Perlodidae | 3 | | Isoperla sp. | 13 | | Skwala americana | 3 | | Pteronarcyidae
Pteronarcella badia | 10 | | TRICHOPTERA | | | Brachycentridae Brachycentrus americanus | 32 | | Glossosomatidae | | | <i>Glossosoma sp.</i>
Hydropsychidae | 3 | | Arctopsyche grandis | 102 | | Lepidostomatidae | 6 | | <i>Lepidostoma sp.</i>
Rhyacophilidae | 6 | | Rhyacophila sibirica gr. | 3 | | COLEOPTERA
Elmidae | | | Heterlimnius corpulentus | 106 | | Narpus concolor
DIPTERA | 22 | | Athericidae | | | Atherix pachypus | 6 | | Ceratopogonidae
Chironomidae | 13 | | Micropsectra sp. | 112 | | Pagastia sp.
Rheocricotopus sp. | 303
350 | | Tvetenia sp. | 31 | | Empididae | 19 | | <i>Neoplasta sp.</i>
Psychodidae | 19 | | Pericoma sp. | 6 | | Simuliidae Simulium sp. | 80 | | Tipulidae | | | Hexatoma sp. | 6 | | | | Total Abundance: 2,562 Abundance per square meter | Organisms | square met | |---|------------| | _ | | | ANNELIDA
OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae | 6 | | ARTHROPODA
ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | | | Lebertia sp. | 83 | | Sperchonidae Sperchon/Sperchonopsis sp. | 26 | | INSECTA | 20 | | EPHEMEROPTERA | | | Baetidae | 45 | | Acentrella insignificans
Baetis bicaudatus | 51 | | Baetis flavistriga | 83 | | Baetis tricaudatus | 589 | | Ephemerellidae
Drunella doddsi | 19 | | Drunella grandis | 45 | | Ephemerella infrequens | 262 | | Serratella tibialis | 19 | | Heptageniidae | 6 | | Epeorus deceptivus
Epeorus longimanus | 6 | | Rhithrogena robusta | 38 | | Leptophlebiidae | 20 | | Paraleptophlebia sp. PLECOPTERA | 38 | | Chloroperlidae | | | Sweltsa sp. | 134 | | Nemouridae | 6 | | Zapada oregonensis gr.
Perlidae | 6 | | Claassenia saboulosa | 26 | | Hesperoperla pacifica | 26 | | Perlodidae
Isoperla sp. | 58 | | Pteronarcyidae | 56 | | Pteronarcella badia | 6 | | TRICHOPTERA | | | Brachycentridae Brachycentrus americanus | 333 | | Glossosomatidae | | | Glossosoma sp. | 160 | | Hydropsychidae
Arctopsyche grandis | 64 | | Lepidostomatidae | 01 | | Lepidostoma ormea/pluviale | 6 | | Philopotamidae | 6 | | Chimarra utahensis
Rhyacophilidae | 6 | | Rhyacophila brunnea/vao | 13 | | Rhyacophila rotunda | 6 | | COLEOPTERA
Elmidae | | | Heterlimnius corpulentus | 134 | | Narpus concolor | 6 | | DIPTERA | | | Athericidae
Atherix pachypus | 6 | | Chironomidae | · · | | Conchapelopia/Thienemannimy | 78 | | Micropsectra sp.
Orthocladius | 256
20 | | Orthocladius/Cricotopus gr. | 78 | | Pagastia sp. | 413 | | Polypedilum fallax | 40 | | Rheocricotopus sp.
Stempellinella sp. | 20
40 | | Tanytarsus sp. | 20 | | Tvetenia sp. | 20 | | Empididae | 10 | | <i>Neoplasta sp.</i>
Simuliidae | 13 | | Simulium sp. | 115 | | | 2 412 | | Total Abundance: | 3,419 | | | | 09065500 GORE CREEK AT UPPER STATION NEAR MINTURN, CO (LAT 39 37 40N LONG 106 16 24W) Date 8/18/00 Time 0835 Date Abundance per square meter Organisms PLATYHELMINTHES TURBELLARIA TRICLADIDA Planariidae Polycelis coronata 30 ANNELIDA OLIGOCHAETA TUBIFICIDA Enchytraeidae 13 Naididae Nais communis 4 ARTHROPODA TROMBIDIFORMES Sperchonidae Sperchon/Sperchonopsis sp. 86 INSECTA LEPIDOPTERA Pyralidae Petrophila sp. EPHEMEROPTERA 4 Ameletidae 4 Ameletus sp. Baetidae Baetis tricaudatus Ephemerellidae 426 Drunella coloradensis Drunella doddsi Serratella/Ephemerella sp. 265 4 Heptageniidae Cinygmula sp. 51 179 Epeorus deceptivus PLECOPTERA Chloroperlidae Sweltsa sp. Leuctridae 34 Nemouridae 51 Zapada oregonensis gr. Perlidae Hesperoperla pacifica Perlodidae 4 Skwala americana 13 Pteronarcyidae Pteronarcella badia 34 TRICHOPTERA Hydropsychidae Hydropsyche sp. 90 Rhyacophilidae Rhyacophila angelita/tucula Rhyacophila brunnea/vao 68 55 DIPTERA Chironomidae Hydrobaenus sp. Pagastia sp. Rheocricotopus sp. Pericoma sp. Simuliidae Prosimulium sp. Psychodidae Micropsectra sp. Orthocladius/Cricotopus gr. Empididae Chelifera/Metachela sp. Total Abundance: 2,286 9 291 75 38 9 47 333 09066000 \$\$BLACK\$ GORE CREEK NEAR MINTURN, CO (LAT 39 35 47N LONG 106 15 52W) Date 8/17/00 Time 1435 Abundance per square meter Organisms | Organisms | 5 | | |--|-----------------|-----------| | PLATYHELMINTHES | | | | TURBELLARIA | | | | TRICLADIDA | | | | Planariidae
<i>Polycelis coro</i> z | nata | 70 | | ANNELIDA | iaca | 70 | | OLIGOCHAETA | | | |
TUBIFICIDA | | 26 | | Enchytraeidae
ARTHROPODA | | 26 | | ARACHNIDA | | | | TROMBIDIFORMES | | | | Lebertiidae | | | | Lebertia sp. | | 6 | | Sperchonidae
Sperchon/Sperch | hononsis sn | 6 | | INSECTA | ionopolo op. | · · | | EPHEMEROPTERA | | | | Baetidae | | 12 | | Acentrella ins:
Baetis tricauda | | 13
966 | | Ephemerellidae | acus | 200 | | Drunella colora | adensis | 83 | | Drunella dodds: | | 186 | | Ephemerella ine | ermis | 6 | | Heptageniidae
<i>Cinygmula sp.</i> | | 96 | | Epeorus decepti | ivus | 90 | | Rhithrogena rol | | 109 | | PLECOPTERA | | | | Capniidae | | 51 | | Chloroperlidae
Sweltsa sp. | | 435 | | Leuctridae | | 133 | | Perlomyia sp. | | 13 | | Nemouridae | | | | Zapada oregoner
Perlodidae | nsis gr. | 134 | | Cultus sp. | | 115 | | Isoperla sp. | | 26 | | Kogotus sp. | | 6 | | Megarcys signat | | 51 | | Skwala american | na | 64 | | Taeniopterygidae
Taenionema sp. | | 38 | | TRICHOPTERA | | | | Brachycentridae | | | | Brachycentrus a | americanus | 6 | | Limnephilidae
<i>Oligophlebodes</i> | gn | 26 | | Rhyacophilidae | sp. | 20 | | Rhyacophila bru | unnea/vao | 83 | | Rhyacophila col | loradensis | 6 | | Rhyacophila sik | birica gr. | 115 | | COLEOPTERA
Elmidae | | | | Heterlimnius co | orpulentus | 307 | | DIPTERA | _ | | | Chironomidae | | 40 | | Diamesa sp.
Eukiefferiella | an | 48
175 | | Hydrobaenus sp. | | 10 | | Orthocladius/Ci | | 98 | | Pagastia sp. | | 137 | | Polypedilum fal | llax | 10 | | Tvetenia sp.
Empididae | | 10 | | Oreogeton sp. | | 6 | | Psychodidae | | | | Pericoma sp. | | 109 | | Simuliidae
Simulium sp. | | _ | | Simulium sp.
Tipulidae | | 6 | | Hexatoma sp. | | 19 | | _ | | | | To | otal Abundance: | 3,761 | | | | | 09066050 BLACK GORE CREEK NEAR VAIL, CO (LAT 39 38 28N LONG 106 23 37W) Date 8/17/00 Time 1530 Abundance per square meter | Out | square mete | |--|-------------| | Organisms | | | NEMATODA | 13 | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA
Enchytraeidae | 3 | | ARTHROPODA | 3 | | ARACHNIDA | | | TROMBIDIFORMES | | | Sperchonidae | | | Sperchon/Sperchonopsis sp. | 3 | | INSECTA | | | EPHEMEROPTERA
Baetidae | | | Acentrella insignificans | 19 | | Baetis flavistriga | 16 | | Baetis tricaudatus | 477 | | Ephemerellidae | | | Drunella coloradensis | 16 | | Drunella doddsi | 19
3 | | <i>Serratella tibialis</i>
Heptageniidae | 3 | | Cinygmula sp. | 19 | | Epeorus longimanus | 157 | | PLECOPTERA | | | Chloroperlidae | | | Sweltsa sp. | 3 | | Leuctridae | 3 | | <i>Paraleuctra utahensis</i>
Nemouridae | 3 | | Zapada oregonensis gr. | 42 | | Perlodidae | | | Megarcys signata | 3 | | Skwala americana | 19 | | TRICHOPTERA | | | Hydropsychidae | 3 | | <i>Arctopsyche grandis</i>
Rhyacophilidae | 3 | | Rhyacophila angelita/tucula | 3 | | Rhyacophila brunnea/vao | 6 | | Rhyacophila rotunda | 16 | | COLEOPTERA | | | Elmidae | F1 | | Heterlimnius corpulentus
DIPTERA | 51 | | Ceratopogonidae | 3 | | Chironomidae | 9 | | Orthocladius euorthocladius | 7 | | Pagastia sp. | 379 | | Rheocricotopus sp. | 7 | | Psychodidae | 16 | | <i>Pericoma sp.</i>
Simuliidae | 16 | | Prosimulium sp. | 54 | | | | | Total Abundance: | 1,360 | | | | | | | 09066310 GORE CREEK AT LOWER STATION AT VAIL, CO (LAT 39 38 28N LONG 106 23 37W) Date 8/18/00 Time 1425 2,554 | Date | 8/18/00 | Time | 1425 | | | | |------------|---|--------------------|-------------|------|------------------------|--| | | | | | | Abundance
square me | | | | Org | ganisms | | | | | | TURB
TR | ELMINTHES
ELLARIA
ICLADIDA
Planariidae | _ | | | | | | | Polycelia | | ata | | 128 | | | NEMATO | DA | | | | 3 | | | ANNELI | | | | | | | | | OCHAETA
BIFICIDA | | | | | | | | Enchytraeio | dae | | | 301 | | | ARTHRO | | | | | | | | | HNIDA | 30 | | | | | | | OMBIDIFORM
Hygrobatida | | | | | | | | Atractide | | | | 6 | | | | Lebertiida | | | | | | | | Lebertia | sp. | | | 16 | | | INSE | | | | | | | | | HEMEROPTERA
Baetidae | A | | | | | | | Baetis f. | lavistr | iga | | 16 | | | | Baetis s | ο. | | | 64 | | | | Baetis t | | tus | | 35 | | | | Ephemerell: | | | | 10 | | | | Drunella
Drunella | | | | 102 | | | | Serratel. | | | | 6 | | | | Heptageniio | dae | | | | | | | Cinygmula | | | | 10 | | | | Epeorus (
Epeorus . | decepti
lanaima | vus | | 48
26 | | | | Rhithroge | ena rob | nus
usta | | 3 | | | PL | ECOPTERA | | | | _ | | | | Chloroperl: | | | | | | | | Sweltsa: | sp. | | | 67 | | | | Nemouridae
Zapada o | rogonon | aia ar | | 10 | | | | Perlodidae | Legonen | sis gi. | | 10 | | | | Cultus s | o. | | | 3 | | | | Megarcys | signat | a | | 16 | | | | ICHOPTERA | | | | | | | | Brachycent:
Brachyce | | merican | 119 | 32 | | | | Brachycei | ntrus o | ccident | alis | 42 | | | | Hydropsych: | | | | | | | | Arctopsy | | ndis | | 13 | | | | Rhyacophil:
Rhyacophi | | nnon /*** | | 3 | | | | Rhyacoph: | | | | 16 | | | CO | LEOPTERA | | 11100 9 | - • | 20 | | | | Elmidae | | | | | | | | Heterlim | nius co | rpulent | us | 16 | | | | PTERA | nidao | | | 3 | | | | Ceratopogo:
Chironomida | | | | 3 | | | | Cardiocla | | p. | | 31 | | | | Pagastia | sp. | = | | 656 | | | | Rheocrico | otopus | sp. | | 94 | | | | Simuliidae
Simulium | gn | | | 778 | | | | STIIUTTUII | ωp. | | | 770 | | | | | - | | | 0 554 | | Total Abundance: 09066510 GORE CREEK AT MOUTH NEAR MINTURN, CO (LAT 39 36 34N LONG 106 26 50W) Date 8/17/00 Time 1220 Abundance per square meter | Organisms | square met | |--|------------| | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA | | | Planariidae
<i>Polycelis coronata</i> | 51 | | NEMATODA | 6 | | ANNELIDA
OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae
Naididae | 358 | | Nais bretscheri | 12 | | Nais communis | 74 | | HAPLOTAXIDA
Lumbricidae | | | Eiseniella tetraedra | 6 | | ARTHROPODA
ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | | | <i>Lebertia sp.</i>
Sperchonidae | 51 | | Sperchon/Sperchonopsis sp. | 6 | | INSECTA
EPHEMEROPTERA | | | Baetidae | | | Acentrella insignificans | 390 | | Baetis bicaudatus
Baetis flavistriga | 32
160 | | Baetis sp. | 346 | | Baetis tricaudatus | 499 | | Fallceon quilleri
Ephemerellidae | 6 | | Drunella doddsi | 96 | | Drunella grandis
Serratella tibialis | 301
51 | | Heptageniidae | | | Epecrus deceptivus | 70 | | <i>Epeorus longimanus</i>
Leptophlebiidae | 26 | | Paraleptophlebia sp. | 6 | | PLECOPTERA
Chloroperlidae | | | Sweltsa sp. | 83 | | Nemouridae | 10 | | Zapada cinctipes
Zapada oregonensis gr. | 13
13 | | Perlodidae | | | Megarcys signata | 13
134 | | Skwala americana
Pteronarcyidae | 134 | | Pteronarcella badia | 6 | | TRICHOPTERA
Brachycentridae | | | Brachycentrus americanus | 109 | | Brachycentrus occidentalis | 13,101 | | Hydropsychidae
Arctopsyche grandis | 96 | | Hydropsyche sp. | 6 | | Lepidostomatidae Lepidostoma sp. | 160 | | Rhyacophilidae | 100 | | Rhyacophila coloradensis | 26 | | COLEOPTERA
Dytiscidae | | | Oreodytes sp. | 13 | | Elmidae
Heterlimnius corpulentus | 13 | | Optioservus quadrimaculatus | 26 | | Zaitzevia parvula | 13 | | DIPTERA
Chironomidae | | | Cardiocladius sp. | 43 | | Pagastia sp. | 1,718 | | <i>Polypedilum fallax</i>
Empididae | 645 | | Clinocera sp. | 6 | | Psychodidae
Pericoma sp. | 6 | | Pericoma sp.
Simuliidae | О | | Simulium sp. | 243 | | Tipulidae
Antocha sp. | 19 | | Tipula sp. | 6 | | | 10.050 | Total Abundance: 19,058 09067000 BEAVER CREEK AT AVON, CO (LAT 39 37 47N LONG 106 31 20W) Date 8/16/00 Time 0915 Abundance per Total Abundance: 1,669 | | Abundance pe
square meter | |---|------------------------------| | Organisms | | | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA | | | Planariidae | 1.7 | | Polycelis coronata
ANNELIDA | 17 | | HIRUDINEA | | | ARHYNCHOBDELLIDA | | | Erpobdellidae | | | Erpobdella punctata | 4 | | ARTHROPODA | _ | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | | | Baetis bicaudatus | 42 | | Baetis tricaudatus | 192 | | Ephemerellidae | _ | | Drunella coloradensis | 9 | | Drunella doddsi | 26 | | Serratella tibialis | 4 | | Heptageniidae | 9 | | Epeorus deceptivus
Epeorus longimanus | 26 | | PLECOPTERA | 20 | | Chloroperlidae | | | Sweltsa sp. | 34 | | Perlidae | 31 | | Hesperoperla pacifica | 9 | | Perlodidae | _ | | Megarcys signata | 9 | | Skwala americana | 4 | | Pteronarcyidae | | | Pteronarcella badia | 4 | | TRICHOPTERA | | | Brachycentridae | | | Brachycentrus americanus | 13 | | Hydropsychidae | | | Arctopsyche grandis | 81 | | Lepidostomatidae | 4 | | Lepidostoma ormea/pluviale | 4 | | Rhyacophilidae
Rhyacophila brunnea/vao | 38 | | Rhyacophila coloradensis | 17 | | Rhyacophila rotunda | 64 | | COLEOPTERA | 01 | | Elmidae | | | Heterlimnius corpulentus | 304 | | Narpus concolor | 4 | | Zaitzevia parvula | 4 | | DIPTERA | | | Chironomidae | 17 | | Eukiefferiella sp. | 17 | | Micropsectra sp. | 83 | | Pagastia sp. | 613 | | Tvetenia sp. | 17 | | Simuliidae | 4 | | Prosimulium sp. | 4 | | | | 09067005 EAGLE RIVER AT AVON, CO (LAT 39 37 54N LONG 106 31 19W) Date 8/16/00 Time 0800 Abundance per square meter Organisms | Organisms | | |--|-----------| | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA | | | Planariidae | | | Polycelis coronata | 13 | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA | | | Tubificidae with capilliform chaetae | 26 | | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | | | Lebertia sp. | 64 | | Sperchonidae | 0.5 | | Sperchon/Sperchonopsis sp. INSECTA | 26 | | EPHEMEROPTERA | | | Baetidae | | | Baetis tricaudatus | 77 | | Ephemerellidae | 7.7 | | Drunella coloradensis | 205 | | Drunella doddsi | 730 | | PLECOPTERA | ,50 | | Chloroperlidae | | | Sweltsa sp. | 38 | | Pteronarcyidae | | | Pteronarcella badia | 26 |
| TRICHOPTERA | | | Brachycentridae | | | Brachycentrus americanus | 13 | | Brachycentrus occidentalis | 3,264 | | Glossosomatidae | 504 | | Glossosoma sp. | 794 | | Hydropsychidae | 51 | | Arctopsyche grandis
Lepidostomatidae | 21 | | Lepidostomacidae
Lepidostoma ormea/pluviale | 525 | | COLEOPTERA | 323 | | Elmidae | | | Heterlimnius corpulentus | 90 | | DIPTERA | | | Athericidae | | | Atherix pachypus | 26 | | Chironomidae | | | Conchapelopia/Thienemannimy | 36 | | Eukiefferiella sp. | 324 | | Micropsectra sp. | 108 | | Orthocladius euorthocladius | 36 | | Orthocladius/Cricotopus gr. | 217 | | Pagastia sp. | 793 | | Polypedilum fallax
Rheocricotopus sp. | 144
73 | | Tvetenia sp. | 36 | | Ivecenia sp. | 50 | | Total Abundance: | 7,735 | | | . , | 09067200 LAKE CREEK NEAR EDWARDS, CO (LAT 39 38 51N LONG 106 36 31W) Date 8/15/00 Time 1430 Abundance per square meter | | square meter | |--|--------------| | Organisms | | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA | 20 | | Enchytraeidae
Naididae | 38 | | Nais communis | 13 | | ARTHROPODA | 13 | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | 0 556 | | Baetis tricaudatus
Ephemerellidae | 8,576 | | Attenella margarita | 26 | | Drunella coloradensis | 768 | | Drunella doddsi | 64 | | Heptageniidae | | | Cinygmula sp. | 13 | | Epeorus longimanus | 38 | | PLECOPTERA | | | Chloroperlidae
Sweltsa sp. | 90 | | Leuctridae | 50 | | Paraleuctra utahensis | 13 | | Nemouridae | | | Amphinemura sp. | 26 | | Perlidae | 1.0 | | <i>Claassenia saboulosa</i>
Perlodidae | 13 | | Skwala americana | 26 | | TRICHOPTERA | 20 | | Glossosomatidae | | | Glossosoma sp. | 38 | | Hydropsychidae | | | Arctopsyche grandis | 320 | | Lepidostomatidae Lepidostoma ormea/pluviale | 192 | | Rhyacophilidae | 192 | | Rhyacophila brunnea/vao | 77 | | Rhyacophila rotunda | 51 | | COLEOPTERA | | | Elmidae | 100 | | Cleptelmis ornata | 102
154 | | Heterlimnius corpulentus
Narpus concolor | 134 | | DIPTERA | 13 | | Chironomidae | | | Eukiefferiella sp. | 78 | | Micropsectra sp. | 157 | | Pagastia sp. | 3,358
78 | | Rheocricotopus sp.
Tvetenia sp. | 78
157 | | Psychodidae | 137 | | Pericoma sp. | 13 | | Simuliidae | | | Simulium sp. | 691 | | Tipulidae | 1.2 | | Antocha sp.
Hexatoma sp. | 13
13 | | nenatoma sp. | 13 | | Total Abundance: | 15,209 | 09069000 EAGLE RIVER AT GYPSUM, CO (LAT 39 39 00N LONG 106 57 06W) Date 8/14/00 Time 1050 Abundance per square meter | Organisms | square met | |--|------------| | Organisms | | | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae
<i>Lebertia sp.</i> | 16 | | Sperchonidae | 10 | | Sperchon/Sperchonopsis sp. | 22 | | Torrenticolidae | | | Testudacarus sp. | 3 | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | 6 | | Acentrella insignificans
Baetis flavistriga | 6
3 | | Baetis tricaudatus | 205 | | Ephemerellidae | | | Attenella margarita | 6 | | Drunella grandis | 10 | | Ephemerella sp. | 10 | | Heptageniidae | 19 | | <i>Rhithrogena sp.</i>
Leptophlebiidae | 13 | | Paraleptophlebia sp. | 3 | | Leptohyphidae | - | | Tricorythodes minutus | 243 | | PLECOPTERA | | | Chloroperlidae | | | Sweltsa sp. | 19 | | Perlidae
<i>Claassenia saboulosa</i> | 6 | | Hesperoperla pacifica | 6
19 | | Perlodidae | 19 | | Cultus sp. | 13 | | Isogenoides sp. | 13 | | Skwala americana | 3 | | Pteronarcyidae | | | Pteronarcella badia | 3 | | TRICHOPTERA Brachycentridae | | | Brachycentrus occidentalis | 2,058 | | Glossosomatidae | 2,050 | | Glossosoma sp. | 1,283 | | Hydropsychidae | | | Arctopsyche grandis | 3 | | Hydropsyche sp. | 493 | | Lepidostomatidae | 70 | | <i>Lepidostoma sp.</i>
Leptoceridae | 70 | | Ceraclea sp. | 3 | | Rhyacophilidae | | | Culoptila sp. | 250 | | COLEOPTERA | | | Elmidae | 260 | | Optioservus sp. | 362
317 | | Zaitzevia parvula
DIPTERA | 317 | | Athericidae | | | Atherix pachypus | 32 | | Chironomidae | | | Cladotanytarsus sp. | 142 | | Conchapelopia/Thienemannimy | 23 | | Eukiefferiella sp. | 48
23 | | Micropsectra sp.
Microtendipes sp. | 332 | | Orthocladius/Cricotopus gr. | 71 | | Polypedilum sp. | 547 | | Empididae | | | Neoplasta sp. | 6 | | Tipulidae | | | Antocha sp. | 3
51 | | Hexatoma sp. MOLLUSCA | 51 | | GASTROPODA | | | BASOMMATOPHORA | | | Physidae | | | Physa/Physella sp. | 6 | | | | Total Abundance: 6,758 393030106224700 EAGLE RIVER BLW HOMESTAKE CREEK NR RED CLIFF, CO (LAT 39 30 30N LONG 106 22 47W) Date 8/17/00 Time 0845 Abundance per square meter | Organisms | square met | |---|------------| | PLATYHELMINTHES TURBELLARIA | | | TRICLADIDA
Planariidae | | | Polycelis coronata
NEMATODA | 6
6 | | ANNELIDA | 0 | | OLIGOCHAETA
TUBIFICIDA | | | Enchytraeidae | 318 | | HAPLOTAXIDA
Lumbricidae | | | Eiseniella tetraedra
ARTHROPODA | 6 | | ARACHNIDA | | | TROMBIDIFORMES
Hygrobatidae | | | Atractides sp. | 6 | | INSECTA
EPHEMEROPTERA | | | Baetidae | 19 | | Acentrella insignificans
Baetis tricaudatus | 544 | | Ephemerellidae
Drunella coloradensis | 19 | | Drunella doddsi | 70 | | Drunella grandis
Ephemerella inermis | 19
26 | | Heptageniidae | | | Cinygmula sp.
Epeorus deceptivus | 13
77 | | Epeorus longimanus | 19 | | <i>Rhithrogena robusta</i>
Leptophlebiidae | 6 | | Paraleptophlebia sp.
PLECOPTERA | 13 | | Capniidae | 6 | | Chloroperlidae
Sweltsa sp. | 83 | | Nemouridae | | | Zapada oregonensis gr.
Perlidae | 13 | | <i>Hesperoperla pacifica</i>
Perlodidae | 6 | | Megarcys signata | 19 | | TRICHOPTERA
Brachycentridae | | | Brachycentrus americanus | 6 | | <i>Micrasema bactro</i> Glossosomatidae | 13 | | Glossosoma sp. | 288 | | Hydropsychidae
Arctopsyche grandis | 109 | | Limnephilidae
Oligophlebodes sp. | 6 | | Rhyacophilidae | | | Rhyacophila brunnea/vao
Rhyacophila sibirica gr. | 32
64 | | Rhyacophila sp. | 6 | | COLEOPTERA
Elmidae | | | Heterlimnius corpulentus | 83 | | <i>Zaitzevia parvula</i>
DIPTERA | 6 | | Chironomidae
Cardiocladius sp. | 25 | | Eukiefferiella sp. | 50 | | Micropsectra sp.
Orthocladius/Cricotopus gr. | 99
298 | | Pagastia sp. | 670 | | Rheocricotopus sp.
Tvetenia sp. | 74
25 | | Empididae | | | <i>Oreogeton sp.</i>
Psychodidae | 6 | | Pericoma sp.
Simuliidae | 6 | | Simulium sp. | 1,754 | | Tipulidae
<i>Hexatoma sp.</i> | 13 | | | 1 005 | | | | Total Abundance: 4,927 393221106450700 EAST BRUSH CREEK ABOVE CONFLUENCE (LAT 39 38 52N LONG 106 50 32W) Date 8/14/00 Time 1640 8,916 | | 106450700
8/14/00 | | | CREEK | ABOVE | CONFLUENCE | (LAT | 39 3 | |---------|-------------------------------|---------|----------|---------|-------|------------|----------|------| | | | | | | | | dance | | | | Org | ganisms | 3 | | | squar | re met | _er | | NEMATOI | | | | | | | 3 | | | ANNELII | | | | | | | | | | | OCHAETA | | | | | | | | | | BIFICIDA
Enchytraeio | do. | | | | | 3 | | | ARTHROI | | aac | | | | | 3 | | | INSEC | | | | | | | | | | EPH | HEMEROPTERA | A | | | | | | | | E | Baetidae | | | | | | | | | | Acentrel. | | | cans | | , | 6 | | | - | Baetis t | | atus | | | 9 | 986 | | | 1 | Ephemerell:
Attenell | | i+- | | | | 6 | | | | Drunella | | | 2 | | | 51 | | | | Drunella | | | _ | | 2 | 144 | | | I | Heptageniio | | | | | | | | | | Cinygmula | | | | | | 61 | | | | Epeorus o | | | | | | 19 | | | | Epeorus . | | | | | | 32 | | | DT I | Rhithroge
ECOPTERA | ena roi | ousta | | | - | 144 | | | | Chloroperl: | idae | | | | | | | | ` | Sweltsa: | | | | | | 29 | | | 1 | Vemouridae | - | | | | | | | | | Zapada c | inctipe | es | | | | 3 | | | I | Perlodidae | | | | | | 1.0 | | | | Megarcys
Skwala a | | | | | | 13
26 | | | ī | skwaia a
eteronarcy: | | la | | | | 20 | | | - | Pteronar | | badia | | | | 19 | | | TRI | CHOPTERA | | | | | | | | | | Glossosomat | | | | | | | | | | Glossosoi | | | | | | 99 | | | ŀ | Arctopsych: | | andia | | | | 83 | | | т | Limnephilio | | muis | | | | 03 | | | - | Oligophle | | sp. | | | | 739 | | | I | Philopotam: | | | | | | | | | | Dolophil | | equalia | 3 | | | 22 | | | F | Rhyacophil: | | 7.1. | | | | _ | | | | Rhyacoph. | ila ang | gelita, | /tucula | 3 | | 6
70 | | | | Rhyacoph:
Rhyacoph: | | | | | | 13 | | | COI | LEOPTERA | iia co. | LOI adei | .1515 | | | 13 | | | | Elmidae | | | | | | | | | | Cleptelm | | | | | | 10 | | | | Heterlim | | | ntus | | | 51 | | | DII | Narpus co | oncoloi | r | | | | 10 | | | | PTERA
Chironomida | 20 | | | | | | | | | Eukieffe | | sn | | | | 14 | | | | Micropse | | | | | | 44 | | | | Orthocla | | | ous gr | | | 7 | | | | Pagastia | | | | | 2 | 274 | | | | Parametr. | | | | | | 14 | | | | Rheocric | | sp. | | | | 7 | | | | <i>Tanytars</i>
Simuliidae | us sp. | | | | | 7 | | | 2 | Simulium | sp. | | | | 5.3 | 398 | | | 7 | ripulidae | -F- | | | | 3,0 | | | | | Hexatoma | sp. | | | | | 3 | | | | | | | _ | | | | | Total Abundance: 393501106313200 BEAVER CREEK ABOVE AVON, CO (LAT 39 35 01N LONG 106 31 32W) Date 8/16/00 Time 1030 Total Abundance: 3,096 | | Abundance per
square meter | |--|-------------------------------| | Organisms | | | PLATYHELMINTHES
TURBELLARIA | | | TRICLADIDA | | | Planariidae | | | Polycelis coronata | 13 | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae | 19 | | ARTHROPODA | | | INSECTA | | | EPHEMEROPTERA | | | Baetidae
Baetis tricaudatus | 100 | | | 198 | | Ephemerellidae
Drunella doddsi | 20 | | Drunella doddsl
Serratella tibialis | 38
58 | | Heptageniidae | 56 | | Cinyqmula sp. | 35 | | Epeorus deceptivus | 90 | | Epecrus longimanus | 3 | | Leptophlebiidae | 5 | | Paraleptophlebia sp. | 3 | | PLECOPTERA | 3 | | Chloroperlidae | | | Sweltsa sp. | 3 | | Nemouridae | _ | | Zapada oregonensis gr. | 48 | | Perlodidae | | | Megarcys signata | 3 | | TRICHOPTERA | | | Hydropsychidae | | | Arctopsyche grandis | 10 | |
Lepidostomatidae | | | Lepidostoma ormea/pluviale | 1,187 | | Rhyacophilidae | | | Rhyacophila angelita/tucula | 3 | | Rhyacophila brunnea/vao | 19 | | Rhyacophila rotunda | 19 | | COLEOPTERA | | | Elmidae | 0.5 | | Cleptelmis ornata | 86 | | DIPTERA | 2 | | Ceratopogonidae | 3 | | Chironomidae | 1 114 | | Orthocladius/Cricotopus gr. | 1,114
124 | | Pagastia sp.
Empididae | 124 | | Hemerodromia sp. | 10 | | Psychodidae | 10 | | Pericoma sp. | 10 | | TOTTCOMA DP. | 10 | | | | # Abundance per square meter | Organisms | square mete | |---|-------------| | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA | | | Planariidae | 70 | | Polycelis coronata NEMATODA | 70
6 | | ANNELIDA | O | | OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae | 224 | | ARTHROPODA | | | INSECTA
EPHEMEROPTERA | | | Baetidae | | | Baetis bicaudatus | 141 | | Baetis tricaudatus | 691 | | Ephemerellidae | | | Drunella doddsi | 371 | | Serratella tibialis
Heptageniidae | 51 | | Cinygmula sp. | 205 | | | 166 | | Epeorus deceptivus
Epeorus longimanus | 58 | | Rhithrogena robusta | 122 | | PLECOPTERA | 10 | | Capniidae | 13 | | Chloroperlidae
Sweltsa sp. | 26 | | Nemouridae | 20 | | Zapada oregonensis gr. | 51 | | Perlodidae | | | Cultus sp. | 13 | | Isoperla sp. | 13 | | Taeniopterygidae
<i>Taenionema sp.</i> | 45 | | TRICHOPTERA | 43 | | Brachycentridae | | | Micrasema bactro | 26 | | Glossosomatidae | | | Glossosoma sp. | 6 | | Hydropsychidae
Arctopsyche grandis | 6 | | Limnephilidae | 13 | | Neothremma sp. | 1,197 | | Oligophlebodes sp. | 6 | | Rhyacophilidae | | | Rhyacophila brunnea/vao | 51
77 | | Rhyacophila sibirica gr.
COLEOPTERA | // | | Elmidae | | | Heterlimnius corpulentus | 512 | | DIPTERA | | | Blephariceridae | 6 | | Chironomidae | 23 | | Boreoheptagyia sp.
Brillia sp. | 11 | | Eukiefferiella sp. | 58 | | Micropsectra sp. | 47 | | Orthocladius/Cricotopus gr. | 82 | | Stempellinella sp. | 210 | | Tvetenia sp. | 151 | | Empididae
Neoplasta sp | 6 | | Neoplasta sp.
Oreogeton sp. | 13 | | Psychodidae | 13 | | Pericoma sp. | 51 | | Simuliidae | _ | | Simulium sp. | 58 | | | | Total Abundance: 4,876 393627106264000 EAGLE RIVER ABOVE GORE CREEK NR. MINTURN, CO (LAT 39 36 27N LONG 106 26 40W) Date 8/16/00 Time 1135 Abundance per square meter ## Organisms | Organisms | | |---|----------| | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES | | | Sperchonidae | | | Sperchon/Sperchonopsis sp. | 3 | | INSECTA | | | EPHEMEROPTERA | | | Ameletidae | 1.0 | | Ameletus sp.
Baetidae | 10 | | Baetis flavistriga | 67 | | Baetis tricaudatus | 125 | | Ephemerellidae | | | Drunella doddsi | 538 | | Drunella grandis | 3 | | Serratella tibialis | 3 | | Heptageniidae | 1.0 | | Cinygmula sp. | 10
10 | | Epeorus deceptivus
Rhithrogena robusta | 48 | | PLECOPTERA | 40 | | Chloroperlidae | | | Sweltsa sp. | 26 | | Nemouridae | | | Zapada cinctipes | 13 | | Perlidae | | | Claassenia saboulosa | 3 | | Perlodidae | | | Cultus sp. | 6
16 | | Isogenoides sp.
Isoperla sp. | 32 | | Pteronarcyidae | 32 | | Pteronarcella badia | 45 | | TRICHOPTERA | | | Brachycentridae | | | Brachycentrus americanus | 96 | | Brachycentrus occidentalis | 275 | | Hydropsychidae | 000 | | Arctopsyche grandis | 202 | | Lepidostomatidae
Lepidostoma sp. | 13 | | Rhyacophilidae | 13 | | Rhyacophila brunnea/vao | 3 | | Rhyacophila brunnea/vao
Rhyacophila coloradensis
Rhyacophila sibirica gr. | 3 | | Rhyacophila sibirica gr. | 6 | | COLEOPTERA | | | Elmidae | 1.0 | | Heterlimnius corpulentus | 19
6 | | Narpus concolor
Optioservus quadrimaculatus | 3 | | DIPTERA | 3 | | Athericidae | | | Atherix pachypus | 22 | | Chironomidae | | | Conchapelopia/Thienemannimy | 6 | | Eukiefferiella sp. | 6 | | Micropsectra sp. | 10
64 | | Orthocladius/Cricotopus gr.
Pagastia sp. | 118 | | Parorthocladius sp. | 6 | | Rheocricotopus sp. | 10 | | Stempellinella sp. | 22 | | Tvetenia sp. | 22 | | Empididae | _ | | Neoplasta sp. | 3 | | Tipulidae | 2 | | Antocha sp. | 3 | | Total Abundance: | 1,876 | | rocar mountainee. | -,0,0 | # Abundance per square meter | | square mete | |--|-------------| | Organisms | - | | PLATYHELMINTHES TURBELLARIA TRICLADIDA | | | Planariidae | | | Polycelis coronata | 192 | | ANNELIDA | | | OLIGOCHAETA
TUBIFICIDA | | | Enchytraeidae | 128 | | Naididae
Nais bretscheri | 38 | | Nais communis | 256 | | ARTHROPODA | 250 | | ARACHNIDA | | | TROMBIDIFORMES | | | Sperchonidae | | | Sperchon/Sperchonopsis sp. | 192 | | INSECTA
EPHEMEROPTERA | | | Baetidae | | | Acentrella insignificans | 26 | | Baetis sp. | 435 | | Baetis tricaudatus | 51 | | Ephemerellidae | | | Drunella coloradensis | 102 | | <i>Drunella doddsi</i>
Heptageniidae | 128 | | | 38 | | Epeorus deceptivus
Epeorus longimanus | 13 | | PLECOPTERA | | | Perlodidae | | | Skwala americana | 38 | | TRICHOPTERA | | | Brachycentridae Brachycentrus americanus | 64 | | Hydropsychidae | 04 | | Arctopsyche grandis | 13 | | Lepidostomatidae | | | Lepidostoma ormea/pluviale | 3,046 | | Rhyacophilidae | 0.6 | | Rhyacophila coloradensis | 26 | | COLEOPTERA
Dytiscidae | | | Oreodytes sp. | 13 | | Elmidae | 13 | | Heterlimnius corpulentus | 13 | | DIPTERA | | | Chironomidae | 22 | | Cricotopus trifascia
Eukiefferiella sp. | 33
33 | | Hydrobaenus sp. | 33 | | Micropsectra sp. | 65 | | Micropsectra sp. | 65 | | Orthocladius/Cricotopus gr. | 260 | | Pagastia sp. | 942 | | Polypedilum fallax | 228 | | Rheocricotopus sp. | 33 | | Empididae
Neoplasta sp. | 13 | | Psychodidae | 13 | | Pericoma sp. | 13 | | Simuliidae | | | Prosimulium sp. | 38 | | Total Abundance: | 6,516 | | Total Abuldance. | 0,510 | 31 2 2 5 336 #### MACROINVERTEBRATE ANALYSIS--Continued 393824106221700 $\,$ MILL CREEK NEAR VAIL, CO (LAT 39 38 24N LONG 106 22 17W) Date $\,$ 8/17/00 $\,$ Time $\,$ 1645 #### Abundance per square meter Organisms PLATYHELMINTHES TURBELLARIA TRICLADIDA Planariidae Polycelis coronata 22 ANNELIDA OLIGOCHAETA TUBIFICIDA Enchytraeidae 4 ARTHROPODA ARACHNIDA TROMBIDIFORMES Sperchonidae Sperchon/Sperchonopsis sp. INSECTA 16 EPHEMEROPTERA Baetidae Baetis tricaudatus 3 Ephemerellidae Drunella coloradensis Drunella doddsi 13 1 Heptageniidae Cinygmula sp. Epeorus deceptivus 1 1 PLECOPTERA Chloroperlidae Sweltsa sp. 1 Nemouridae 2 Zapada oregonensis gr. COLEOPTERA Cleptelmis sp. Heterlimnius corpulentus 1 DIPTERA Ceratopogonidae Chironomidae 2 Eukiefferiella sp. Hydrobaenus sp. 14 23 5 23 77 Micropsectra sp. Orthocladius euorthocladius Orthocladius/Cricotopus gr. Pagastia sp. Pseudodiamesa sp. Rheocricotopus sp. 9 5 Tvetenia sp. 5 Muscidae Limnophora/Lispoides sp. Total Abundance: Psychodidae Pericoma sp. Simuliidae ${\it Prosimulium sp.}$ Tipulidae Tipula sp. 393825106213400 Gore Creek Downstream of Pulis Bridge at Vail (Lat 39 38 25n Long 106 21 34W) Date 8/18/00 Time 1550 # Abundance per square meter | | square mete | |---|-------------| | Organisms | square meet | | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA | | | Planariidae
Polycelis coronata | 109 | | NEMATODA | 6 | | ANNELIDA | - | | OLIGOCHAETA | | | TUBIFICIDA | 160 | | Enchytraeidae
ARTHROPODA | 160 | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae
Lebertia sp. | 13 | | Sperchonidae | 13 | | Sperchon/Sperchonopsis sp. | 26 | | INSECTA | | | EPHEMEROPTERA
Baetidae | | | Acentrella turbida | 64 | | Baetis flavistriga | 19 | | Baetis sp. | 352 | | Ephemerellidae | 10 | | Drunella doddsi
Drunella grandis | 19
70 | | Heptageniidae | , 0 | | Cinygmula sp. | 13 | | Epeorus deceptivus | 6 | | Epeorus longimanus
PLECOPTERA | 96 | | Chloroperlidae | | | Suwallia sp. | 51 | | Sweltsa sp. | 230 | | Nemouridae
Zapada oregonensis gr. | 19 | | Perlodidae | | | Skwala americana | 58 | | TRICHOPTERA | | | Brachycentridae Brachycentrus americanus | 282 | | Hydropsychidae | | | Arctopsyche grandis | 122 | | Lepidostomatidae | 45 | | <i>Lepidostoma sp.</i>
Rhyacophilidae | 45 | | Rhyacophila brunnea/vao | 6 | | Rhyacophila | 6 | | COLEOPTERA | | | Elmidae
Heterlimnius corpulentus | 83 | | DIPTERA | 03 | | Chironomidae | | | Eukiefferiella sp. | 34
34 | | Micropsectra sp.
Orthocladius euorthocladius | 34 | | Orthocladius/Cricotopus gr. | 26 | | Pagastia sp. | 202 | | Parametriocnemus sp. | 9 | | Polypedilum fallax
Rheocricotopus sp. | 18
43 | | Stempellinella sp. | 9 | | Tvetenia sp. | 26 | | Simuliidae | 100 | | Simulium sp. | 128 | Total Abundance: 2,418 393826106235300 Gore Creek BLW Wastewater treatment plant (Lat $39\ 38\ 26n\ \text{Long}\ 106\ 23\ 53W)$ Date 8/18/00 Time 1215 Abundance per square meter | Organisms | square met | |---|--------------| | or Janzbins | | | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA
Planariidae | | | Polycelis coronata | 38 | | ANNELIDA | 30 | | OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae | 499 | | Naididae | | | Nais bretscheri | 51 | | Nais communis
HAPLOTAXIDA | 205 | | Lumbricidae | | | Eiseniella tetraedra | 13 | | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | 20 | | Lebertia sp. | 38 | | Sperchonidae Sperchon/Sperchonopsis sp. | 38 | | INSECTA | 30 | | EPHEMEROPTERA | | | Baetidae | | | Baetis sp. | 627 | | Baetis tricaudatus | 51 | | Ephemerellidae | 1.70 | | Drunella coloradensis | 179 | | Drunella doddsi
Serratella tibialis | 26
64 | | Heptageniidae | 04 | | Epeorus deceptivus | 26 | | Epeorus longimanus | 26 | | PLECOPTERA | | | Chloroperlidae | | | Suwallia sp. | 26 | | Sweltsa sp. | 13 | | Perlodidae
Skwala americana | 13 | | TRICHOPTERA | 13 | | Brachycentridae | | | Brachycentrus americanus | 38 | | Hydropsychidae | | | Arctopsyche grandis | 13 | | Rhyacophilidae | 26 | | Rhyacophila rotunda
COLEOPTERA | 20 | | Elmidae | | | Heterlimnius
corpulentus | 26 | | DIPTERA | | | Ceratopogonidae | 13 | | Chironomidae | | | Orthocladius/Cricotopus gr. | 4,446 | | Pagastia sp. | 5,099
131 | | Rheocricotopus sp.
Muscidae | 131 | | Limnophora/Lispoides sp. | 38 | | Psychodidae | 50 | | Pericoma sp. | 64 | | Simuliidae | | | Simulium sp. | 77 | | | | Total Abundance: 11,904 | Date | 8/18/00 | Time | 1025 | | | | |---------|---|------------------|----------------|----|----------------------|--| | | | | | | Abundance square met | | | TR | Org
ELLARIA
ICLADIDA
Planariidae | | PLATYHELMINTHE | is | | | | | Polycelis | | ata | | 205 | | | ANNELII | DΑ | | | | | | | | OCHAETA | | | | | | | | BIFICIDA
Enchytraeid | lae | | | 770 | | | ARTHROI | | | | | | | | ARACI | | | | | | | | | OMBIDIFORME
Hygrobatida | | | | | | | - | Atractide | | | | 19 | | | I | Lebertiidae | | | | | | | | Lebertia
Sperchonida | | | | 26 | | | | | | onopsis sp. | | 19 | | | INSE | CTA | | | | | | | | HEMEROPTER <i>A</i>
Baetidae | A | | | | | | 1 | | la insi | gnificans | | 13 | | | | Baetis bi | caudat | us | | 147 | | | | Baetis fl | | iga | | 403 | | | | Baetis sp
Baetis ti | | tus | | 64
608 | | | I | Ephemerelli | | ·oub | | 000 | | | | Drunella | | | | 19 | | | | Drunella
Drunella | | | | 109
6 | | | | Serratell | | | | 77 | | | I | Teptageniid | | | | _ | | | | Cinygmula
Epeorus d | ı sp.
Hecenti | T/IIIS | | 6
160 | | | | Rhithroge | | | | 13 | | | | ECOPTERA | | | | 10 | | | | Capniidae
Chloroperli | dae | | | 13 | | | ` | Sweltsa s | | | | 173 | | | 1 | Vemouridae | | | | 50 | | | ī | Zapada oz
Perlodidae | regonen | sıs gr. | | 58 | | | _ | Cultus sp | | | | 19 | | | | Megarcys | signat | a | | 26 | | | | ICHOPTERA
Brachycentr | ridae | | | | | | - | | | ccidentalis | | 6 | | | I | łydropsychi | | | | 141 | | | F | <i>Arctopsyc</i>
Rhyacophili | | nais | | 141 | | | | Rhyacophi | la bru | | | 6 | | | | | | oradensis | | 38 | | | 1 | Rhyacophili
Rhyacophi | | pirica gr. | | 109 | | | | LEOPTERA | | | | | | | I | Elmidae | | | | 90 | | | DII | TERA | iius co | rpulentus | | 90 | | | (| Chironomida | | | | | | | | _ ' | | hienemannimy | | 10
55 | | | | Diamesa s
Eukieffei | | SD. | | 10 | | | | Heterotri | ssocla | dius sp. | | 10 | | | | Hydrobaer | | | | 10 | | | | Micropsec
Orthoclac | | ricotopus gr. | | 10
10 | | | | Pagastia | sp. | | | 400 | | | | Rheocrico | | sp. | | 22 | | | ī | Tvetenia
Psychodidae | | | | 10 | | | | Pericoma | | | | 38 | | | 7 | Tipulidae
<i>Hexatoma</i> | gn | | | 6 | | | | 11CAGCOIIIA | Sp. | | | o o | | | | | То | tal Abundance: | | 3,934 | | | Date 8/15/00 Time 1600 | | |---|----------------------------| | | Abundance per square meter | | Organisms ARTHROPODA | | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | 004 | | Baetis tricaudatus | 294 | | Ephemerellidae | 1 013 | | Drunella doddsi | 1,213
16 | | Drunella grandis | 10 | | Heptageniidae
Rhithrogena robusta | 10 | | PLECOPTERA | 10 | | Chloroperlidae | | | Sweltsa sp. | 13 | | Perlodidae | 13 | | Isogenoides sp. | 13 | | Skwala americana | 6 | | Pteronarcyidae | | | Pteronarcella badia | 6 | | TRICHOPTERA | | | Brachycentridae | | | Brachycentrus occidentalis | 691 | | Glossosomatidae | | | Glossosoma sp. | 134 | | Hydropsychidae | | | Arctopsyche grandis | 163 | | Hydropsyche sp. | 259 | | Lepidostomatidae | 4.0 | | Lepidostoma sp. | 48 | | Rhyacophilidae | 3 | | Rhyacophila brunnea/vao
Rhyacophila coloradensis | 6 | | COLEOPTERA | o o | | Elmidae | | | Narpus concolor | 3 | | Optioservus sp. | 26 | | DIPTERA | | | Athericidae | | | Atherix pachypus | 13 | | Blephariceridae | | | Bibiocephala grandis | 13 | | Chironomidae | | | Cardiocladius sp. | 69 | | Conchapelopia/Thienemannimy | 35 | | Orthocladius euorthocladius | 104 | | Orthocladius/Cricotopus gr. | 310 | | Pagastia sp. | 586 | | Polypedilum fallax | 688 | | Simuliidae
Simulium sp. | 35 | | Tipulidae | 33 | | Antocha sp. | 3 | | integeria op. | 5 | | Total Abundance: | 4,760 | 393851106503400 $\,$ BRUSH CREEK AT MOUTH NEAR EAGLE, CO (LAT 39 38 51N LONG 106 50 34W) Date $\,$ 8/14/00 $\,$ Time $\,$ 1430 Abundance per square meter | Organisms | square me | |---|--------------| | NEMATODA | 3 | | ANNELIDA | 3 | | HIRUDINEA
PHARYNGOBDELLIDA | | | Erpobdellidae
<i>Dina dubia</i> | 3 | | OLIGOCHAETA | 3 | | TUBIFICIDA
Enchytraeidae | 3 | | Naididae
<i>Nais bretscheri</i> | 16 | | Nais variabilis | 6 | | Tubificidae Limnodrilus sp. | 3 | | Tubificidae with Capilliform chaetae | 51 | | Tubificidae without capilliform chaetae HAPLOTAXIDA | 29 | | Lumbricidae
Eiseniella tetraedra | 3 | | ARTHROPODA | 3 | | ARACHNIDA
TROMBIDIFORMES | | | Lebertiidae | 2 | | <i>Lebertia sp.</i>
Sperchonidae | 3 | | Sperchon/Sperchonopsis sp. | 6 | | MALACOSTRACA
AMPHIPODA | | | Gammaridae
<i>Gammarus lacustris</i> | 3 | | INSECTA | 3 | | EPHEMEROPTERA
Baetidae | | | Baetis sp. | 6 | | <i>Baetis tricaudatus</i>
Ephemerellidae | 1,146 | | Drunella grandis | 32 | | Leptophlebiidae
Paraleptophlebia sp. | 3 | | PLECOPTERA
Chloroperlidae | | | Sweltsa sp. | 6 | | Perlodidae
Isoperla sp. | 3 | | Skwala americana | 6 | | Pteronarcyidae
Pteronarcella badia | 29 | | TRICHOPTERA Brachycentridae | | | Brachycentrus americanus | 10 | | Brachycentrus occidentalis Glossosomatidae | 234 | | Agapetus boulderensis | 13 | | Glossosoma sp.
Hydropsychidae | 3 | | Arctopsyche grandis
Hydropsyche sp. | 218
1,546 | | Hydroptilidae | | | <i>Ochrotrichia sp.</i>
Lepidostomatidae | 3 | | Lepidostoma sp. | 10 | | COLEOPTERA
Dytiscidae | | | Oreodytes congruus
Elmidae | 3 | | Cleptelmis ornata | 16 | | Optioservus quadrimaculatus
Zaitzevia parvula | 2,048
19 | | DIPTERA | | | Athericidae
Atherix pachypus | 45 | | Chironomidae
Cardiocladius sp. | 102
134 | | Cladotanytarsus sp. | 34 | | Conchapelopia/Thienemannimy
Eukiefferiella sp. | 34
1,379 | | Micropsectra sp. | 34 | | Orthocladius/Cricotopus gr.
Pagastia sp. | 404
539 | | Parametriocnemus sp.
Polypedilum fallax | 506
606 | | Polypedilum sp. | 102 | | <i>Rheotanytarsus s</i> p.
Empididae | 134 | | Neoplasta sp. | 6 | | <i>Wiedemannia sp.</i>
Simuliidae | 6 | | Simulium sp. | 461 | | Tipulidae
<i>Antocha sp</i> . | 154 | | MOLLUSCA | | | | | 393851106503400 BRUSH CREEK AT MOUTH NEAR EAGLE, CO (LAT 39 38 51N LONG 106 50 34W)--Continued Abundance per square meter--Continued Organisms--Continued MOLLUSCA--Continued GASTROPODA--Continued BASOMMATOPHORA--Continued Physidae Physa/Physella sp. 38 Total Abundance: 10,201 393852106503200 EAGLE RIVER ABOVE BRUSH CREEK AT EAGLE, CO (LAT 39 38 52N LONG 106 50 32W) Date 8/14/00 Time 1400 Abundance per square meter # Organisms | Organisms | | |---|-------| | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA | | | Tubificidae without capilliform chaetae | 3 | | ARTHROPODA | 3 | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | | | Baetis tricaudatus | 563 | | Ephemerellidae | 505 | | Attenella margarita | 3 | | Drunella grandis | 32 | | Heptageniidae | | | Heptagenia sp. | 6 | | Leptohyphidae | | | Tricorythodes minutus | 26 | | PLECOPTERA | | | Chloroperlidae | | | Sweltsa sp. | 67 | | Perlidae | | | Hesperoperla pacifica | 19 | | Pteronarcyidae | | | Pteronarcella badia | 3 | | TRICHOPTERA | | | Brachycentridae | | | Brachycentrus americanus | 6 | | Brachycentrus occidentalis | 2,250 | | Glossosomatidae | | | Glossosoma sp. | 685 | | Hydropsychidae | | | Arctopsyche grandis | 38 | | Hydropsyche sp. | 742 | | Lepidostomatidae | | | Lepidostoma ormea/pluviale | 16 | | Leptoceridae | | | Ceraclea annulicornis | 6 | | COLEOPTERA | | | Elmidae | | | Optioservus quadrimaculatus | 602 | | Zaitzevia parvula | 214 | | DIPTERA | | | Athericidae | - 1 | | Atherix pachypus | 64 | | Blephariceridae | 10 | | Bibiocephala grandis | 19 | | Chironomidae | 37 | | Cladotanytarsus sp. | 37 | | Conchapelopia/Thienemannimy | 91 | | Eukiefferiella sp. | 165 | | Microtendipes sp. | 54 | | Orthocladius/Cricotopus gr.
Pagastia sp. | 128 | | Chironomidae | 120 | | Polypedilum fallax | 368 | | Polypedilum sp. | 18 | | Tanytarsus sp. | 18 | | Simuliidae | | | Simulium sp. | 38 | | Tanyderidae | 50 | | Protanyderus margarita | 10 | | Tipulidae | - | | Antocha sp. | 6 | | Hexatoma sp. | 35 | | <u>*</u> | | | | | | Total Abundance: | 6,369 | 393858106570900 GYPSUM CREEK AT MOUTH (LAT 39 38 58N LONG 106 57 09W) Date 8/14/00 Time 1130 Abundance per square meter | Organisms | square mete | |-----------------------------|-------------| | | | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA | | | Naididae | 204 | | Nais bretscheri | 224 | | Tubificidae | 2 | | Limnodrilus sp. | 3 | | HAPLOTAXIDA | | | Lumbricidae | | | Eiseniella tetraedra | 6 | | ARTHROPODA | | | MALACOSTRACA | | | AMPHIPODA | | | Gammaridae | | | Gammarus lacustris | 61 | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | | | Baetis tricaudatus | 614 | | TRICHOPTERA | | | Brachycentridae | | | Brachycentrus americanus | 6 | | Brachycentrus occidentalis | 1,062 | | Hydropsychidae | | | Arctopsyche grandis | 29 | | Hydropsyche sp. | 42 | | COLEOPTERA | | | Elmidae | | | Cleptelmis ornata | 285 | | Heterlimnius corpulentus | 278 | | DIPTERA | | | Athericidae | | | Atherix pachypus | 19 | | Chironomidae | | | Cardiocladius sp. | 521 | | Eukiefferiella sp. | 1,302 | | Micropsectra sp. | 33 | | Orthocladius/Cricotopus gr. | 1,042 | | Pagastia sp. | 66 | | Parametriocnemus sp. | 98 | | Polypedilum fallax | 33 | | Tvetenia sp. | 260 | | Empididae | | | Neoplasta sp. | 19 | | Simuliidae | | | Simulium sp. | 666 | | Tipulidae | | | Antocha sp. | 10 | | Dicranota sp. | 10 | | <u>*</u> | | | Total Abundance: | 6,689 | | | • | 393930106382001 SQUAW CREEK (LAT 39 39 30N LONG 106 38 20W) Date 8/15/00 Time 1100 Abundance per
square meter | | square meter | |--|--------------| | Organisms | _ | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA
Naididae | | | Nais variabilis | 7 | | Tubificidae | _ | | Ilyodrilus templetoni Tubificidae with capilliform chaetae | 7
110 | | HAPLOTAXIDA | 110 | | Lumbricidae | | | Eiseniella tetraedra | 26 | | ARTHROPODA
INSECTA | | | EPHEMEROPTERA | | | Baetidae | | | Baetis bicaudatus | 1,334 | | <i>Baetis tricaudatus</i>
Ephemerellidae | 326 | | Drunella sp. | 3 | | Leptophlebiidae | | | Paraleptophlebia sp. | 22 | | PLECOPTERA
Nemouridae | | | Amphinemura sp. | 10 | | Perlidae | | | Hesperoperla pacifica | 10 | | Perlodidae
Isoperla sp. | 3 | | Skwala americana | 3 | | Pteronarcyidae | | | Pteronarcella badia | 195 | | TRICHOPTERA
Brachycentridae | | | Brachycentrus occidentalis | 3 | | Hydropsychidae | | | Arctopsyche grandis | 3 | | <i>Hydropsyche sp.</i>
Hydroptilidae | 422 | | Hydroptila sp. | 6 | | Ochrotrichia sp. | 3 | | Rhyacophilidae | 3 | | Rhyacophila brunnea/vao
COLEOPTERA | 3 | | Dytiscidae | | | Oreodytes congruus | 13 | | Elmidae | 131 | | Cleptelmis ornata
Heterlimnius corpulentus | 61 | | Optioservus quadrimaculatus | 1,450 | | Zaitzevia parvula | 99 | | DIPTERA | 3 | | Ceratopogonidae
Chironomidae | 3 | | Cricotopus trifascia | 245 | | Eukiefferiella sp. | 107 | | Micropsectra sp.
Pagastia sp. | 10
38 | | Pentaneura sp. | 19 | | Polypedilum sp. | 10 | | Tanytarsus sp. | 10 | | <i>Tvetenia sp.</i>
Psychodidae | 38 | | Pericoma sp. | 3 | | Simuliidae | | | Simulium sp. | 64 | | Tipulidae
Antocha sp. | 3 | | Dicranota sp. | 3 | | Hexatoma sp. | 3 | | | | Total Abundance: 4,806 394129106393300 EAGLE RIVER AT EAGLE SPGS. GOLF COURSE NR WOLCOTT (LAT 39 41 29N LONG 106 39 33W) Date 8/15/00 Time 0950 Abundance per square meter | | square met | |--|------------| | Organisms | | | PLATYHELMINTHES | | | TURBELLARIA
TRICLADIDA | | | Planariidae | | | Polycelis coronata | 3 | | NEMATODA
ANNELIDA | 16 | | OLIGOCHAETA | | | TUBIFICIDA
Naididae | | | Nais bretscheri | 3 | | Tubificidae | 2 | | Limnodrilus sp. ARTHROPODA | 3 | | ARACHNIDA | | | TROMBIDIFORMES
Hygrobatidae | | | Atractides sp. | 3 | | Sperchonidae | | | Sperchon/Sperchonopsis sp. INSECTA | 29 | | EPHEMEROPTERA | | | Baetidae | 6 | | Acentrella insignificans
Baetis tricaudatus | 6
1,392 | | Ephemerellidae | | | Drunella doddsi | 189
144 | | Drunella grandis
PLECOPTERA | 144 | | Chloroperlidae | | | <i>Sweltsa sp.</i>
Perlidae | 26 | | Claassenia saboulosa | 3 | | Perlodidae | 6 | | <i>Skwala americana</i>
Pteronarcyidae | 0 | | Pteronarcella badia | 6 | | Pteronarcys californica TRICHOPTERA | 3 | | Brachycentridae | | | Brachycentrus americanus | 67 | | Brachycentrus occidentalis Glossosomatidae | 1,133 | | Glossosoma sp. | 931 | | Hydropsychidae | 54 | | Arctopsyche grandis
Hydropsyche sp. | 1,626 | | Lepidostomatidae | | | Lepidostoma ormea/pluviale
COLEOPTERA | 355 | | Elmidae | | | Cleptelmis sp. | 262 | | Narpus concolor
Zaitzevia parvula | 6
6 | | DIPTERA | | | Athericidae
Atherix pachypus | 83 | | Blephariceridae | 05 | | Bibiocephala grandis | 16 | | Chironomidae
Cardiocladius sp. | 62 | | Eukiefferiella sp. | 62 | | Micropsectra sp. | 62
554 | | Microtendipes sp.
Pagastia sp. | 617 | | Polypedilum fallax | 185 | | Psychodidae
Pericoma sp. | 3 | | Simuliidae | J | | Simulium sp. | 275 | | Tanyderidae
Protanyderus margarita | 10 | | Tipulidae | | | Antocha sp. | 6 | | Hexatoma sp. MOLLUSCA | 10 | | GASTROPODA | | | BASOMMATOPHORA
Physidae | | | Physa/Physella sp. | 6 | | motal aboutdones. | 0 000 | | Total Abundance: | 8,223 | 394220106431500 $\,$ EAGLE R BLW MILK CR NR WOLCOTT (LAT 39 42 20N LONG 106 43 15W) Date $\,$ 8/15/00 $\,$ Time $\,$ 0815 Abundance per square meter | Organisms | square meter | |---|--------------| | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES Sperchonidae | | | Sperchon/Sperchonopsis sp. | 22 | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | | | Baetis sp.
Baetis tricaudatus | 1 202 | | Ephemerellidae | 1,293 | | Drunella doddsi | 3 | | Drunella grandis | 10 | | Heptageniidae | 1.0 | | Rhithrogena robusta PLECOPTERA | 10 | | Chloroperlidae | | | Sweltsa sp. | 38 | | Perlidae | | | <i>Claassenia saboulosa</i>
Perlodidae | 13 | | Cultus sp. | 3 | | Isogenoides sp. | 13 | | Skwala americana | 6 | | Pteronarcyidae | 6 | | Pteronarcella badia
TRICHOPTERA | 0 | | Brachycentridae | | | Brachycentrus occidentalis | 419 | | Glossosomatidae | 200 | | <i>Glossosoma sp.</i>
Hydropsychidae | 326 | | Arctopsyche grandis | 122 | | Hydropsyche sp. | 1,302 | | Lepidostomatidae | | | Lepidostoma sp. | 176 | | Rhyacophilidae Rhyacophila coloradensis | 3 | | COLEOPTERA | - | | Elmidae | | | Optioservus sp. | 154 | | Zaitzevia parvula
DIPTERA | 6 | | Athericidae | | | Atherix pachypus | 35 | | Blephariceridae | 0 | | <i>Agathon sp.</i>
Chironomidae | 8 | | Cladotanytarsus sp. | 20 | | Cricotopus trifascia | 4 | | Eukiefferiella sp. | 45 | | <i>Micropsectra sp.</i>
Chironomidae | 33 | | Microtendipes sp. | 29 | | Pagastia sp. | 20 | | Polypedilum fallax | 48 | | Simuliidae | 182 | | Simulium sp.
Tipulidae | 102 | | Antocha sp. | 6 | | Hexatoma sp. | 16 | | MOLLUSCA PEL EGYPODA | | | PELECYPODA
VENEROIDA | | | Pisidiidae | | | Sphaerium sp. | 3 | | Total Abundance: | 4 277 | | TOTAL ADUNGANCE: | 4,377 | 09065500 GORE CREEK AT UPPER STATION, NEAR MINTURN, CO (LAT 39 37 33N LONG 106 16 39W) Date 4/14/00 Time 1440 Abundance per square meter | | Abundance | |---|------------| | Organisms | square me | | 5 | | | PLATYHELMINTHES
TURBELLARIA | | | TRICLADIDA | | | Planariidae
Polycelis coronata | 16 | | ANNELIDA | 10 | | OLIGOCHAETA | | | TUBIFICIDA
Enchytraeidae | 19 | | Naididae | | | Nais sp. | 10 | | ARTHROPODA
ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae
<i>Lebertia sp.</i> | 6 | | Sperchonidae | | | Sperchon/Sperchonopsis sp. | 3 | | INSECTA
COLLEMBOLA | 3 | | EPHEMEROPTERA | | | Ameletidae Ameletus sp. | 3 | | Baetidae | 5 | | Baetis bicaudatus | 1,462 | | Baetis tricaudatus
Ephemerellidae | 6 | | Drunella doddsi | 42 | | Ephemerella sp.
Heptageniidae | 51
42 | | Cinygmula sp. | 157 | | Epeorus longimanus | 160 | | Rhithrogena robusta PLECOPTERA | 70 | | Capniidae | 3 | | Chloroperlidae | 77 | | <i>Sweltsa sp.</i>
Leuctridae | // | | Perlomyia sp. | 19 | | Nemouridae Prostoia besametsa | 80 | | Zapada cinctipes | 10 | | Zapada oregonensis gr. | 35 | | Perlodidae
Cultus sp. | 10 | | Megarcys signata | 10 | | Taeniopterygidae Doddsia occidentalis | 109 | | Taenionema sp. | 26 | | TRICHOPTERA | | | Hydropsychidae
Arctopsyche grandis | 3 | | Lepidostomatidae | | | Lepidostoma sp. | 19 | | Limnephilidae Dicosmoecus sp. | 3 | | Rhyacophilidae | | | Rhyacophila brunnea/vao
Rhyacophila sibirica gr. | 29
202 | | Rhyacophila sp. | 13 | | COLEOPTERA | | | Elmidae
Heterlimnius corpulentus | 19 | | DIPTERA | | | Blephariceridae
Bibiocephala grandis | 13 | | Chironomidae | 13 | | Brillia sp. | 26 | | Conchapelopia/Thienemannimy
Diamesa sp. | 26
235 | | Eukiefferiella sp. | 26 | | Micropsectra sp.
Orthocladius/Cricotopus gr. | 391
391 | | Pagastia sp. | 26 | | Parorthocladius sp. | 104 | | Rheocricotopus sp.
Tvetenia sp. | 53
26 | | Empididae | | | Chelifera/Metachela sp. | 3 | | Clinocera sp.
Oreogeton sp. | 10 | | Psychodidae | 25 | | <i>Pericoma sp.</i>
Simuliidae | 26 | | Prosimulium sp. | 51 | | Tipulidae | 6 | | Dicranota sp. | б | Total Abundance: 4,133 09066050 BLACK GORE CREEK NEAR VAIL, CO (LAT 39 37 24N LONG 106 16 47W) Date 4/14/00 Time 1235 Abundance per square meter Organisms | Organisms | | |---|-------| | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA | | | Planariidae | | | Polycelis coronata | 13 | | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES | | | Hygrobatidae | | | Atractides sp. | 3 | | Lebertiidae | | | Lebertia sp. | 19 | | Protziidae | | | Protzia sp. | 3 | | Sperchonidae | | | Sperchon/Sperchonopsis sp. | 13 | | INSECTA | | | EPHEMEROPTERA
Baetidae | | | Baetis bicaudatus | 534 | | Baetis bicaudatus
Baetis tricaudatus | 3 | | Ephemerellidae | 3 | | Drunella doddsi | 10 | | Ephemerella sp. | 26 | | Heptageniidae | 20 | | Cinygmula sp. | 26 | | Epeorus longimanus | 6 | | Rhithrogena robusta | 13 | | PLECOPTERA | | | Capniidae | 3 | | Chloroperlidae | | | Sweltsa sp. | 80 | | Leuctridae | | | Perlomyia sp. | 6 | | Nemouridae | | | Amphinemura sp. | 3 | | Prostoia besametsa | 701 | | Zapada oregonensis gr. | 64 | | Perlodidae | | | Cultus sp. | 22 | | Isoperla sp. | 3 | | Megarcys signata | 6 | | Taeniopterygidae | 4.5 | | Doddsia occidentalis | 45 | | Taenionema sp. | 29 | | TRICHOPTERA
Brachycentridae | | | Brachycentrus americanus | 10 | | Hydropsychidae | 10 | | Arctopsyche grandis | 10 | | Limnephilidae | | | Oligophlebodes sp. | 10 | | Rhyacophilidae | = - | | Rhyacophila coloradensis | 29 | | Rhyacophila sibirica gr. | 29 | | Rhyacophila sp. | 10 | | COLEOPTERA | | | Elmidae | | | Heterlimnius corpulentus | 6 | | DIPTERA | | | Ceratopogonidae | 6 | | Chironomidae | | | Brillia sp. | 15 | | Diamesa sp. | 15 | | Orthocladius euorthocladius | 323 | | Orthocladius/Cricotopus gr. | 7 | | Pagastia sp. | 23 | | Empididae Oreogeton sp. | 3 | | Psychodidae | 3 | | Pericoma sp. | 67 | | Simuliidae | 0, | | Prosimulium sp. | 3 | | Tipulidae | | | Dicranota sp. | 6 | | * | | | Total Abundance: | 2,203 | | | | 09066310 GORE CREEK, LOWER STATION, AT VAIL, CO (LAT 39 38 28N LONG 106 23 37W) Date 4/13/00 Time 1600 Abundance per square meter | Organisms | square mete | |---|-------------| | PLATYHELMINTHES | | | TURBELLARIA |
 | TRICLADIDA | | | Planariidae
Polycelis coronata | 19 | | NEMATODA | 3 | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae
Naididae | 109 | | Nais elinguis | 231 | | ARTHROPODA | 231 | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | 70 | | <i>Lebertia sp.</i>
Sperchonidae | 70 | | Sperchon/Sperchonopsis sp. | 22 | | INSECTA | | | COLLEMBOLA | 6 | | EPHEMEROPTERA | | | Baetidae
Baetis tricaudatus | 22 | | Ephemerellidae | 22 | | Drunella doddsi | 3 | | Drunella grandis | 35 | | Ephemerella sp. | 6 | | Heptageniidae | 3 | | Cinygmula sp.
Epeorus sp. | 10 | | PLECOPTERA | 10 | | Capniidae | 6 | | Chloroperlidae | 10 | | Sweltsa sp.
Nemouridae | 13 | | Prostoia besametsa | 6 | | Perlodidae | · · | | Cultus sp. | 3 | | Isoperla sp.
Megarcys signata | 3 | | Megarcys signata
TRICHOPTERA | 3 | | Brachycentridae | | | Brachycentrus americanus | 70 | | Brachycentrus occidentalis | 6 | | Hydropsychidae | 0.5 | | Arctopsyche grandis
Lepidostomatidae | 26 | | Lepidostoma sp. | 10 | | Rhyacophilidae | 10 | | Rhyacophila coloradensis | 10 | | COLEOPTERA | | | Elmidae
Heterlimnius corpulentus | 10 | | Narpus concolor | 3 | | DIPTERA | 3 | | Chironomidae | | | Diamesa sp. | 166 | | Hydrobaenus sp.
Limnophyes sp. | 83
28 | | Orthocladius euorthocladius | 111 | | Orthocladius/Cricotopus gr. | 360 | | Pagastia sp. | 388 | | Rheocricotopus sp. | 278 | | Psychodidae Pericoma sp. | 3 | | Tipulidae | 3 | | Dicranota sp. | 3 | | Tipula sp. | 6 | | | | Total Abundance: 2,134 09066510 GORE CREEK AT MOUTH NEAR MINTURN, CO (LAT 39 36 34N LONG 106 26 50W) Date 4/13/00 Time 1030 Abundance per square meter | Organisms | square meter | |--|--------------| | Organisms | | | PLATYHELMINTHES
TURBELLARIA | | | TRICLADIDA | | | Planariidae
<i>Polycelis coronata</i> | 51 | | NEMATODA | 3 | | ANNELIDA | | | OLIGOCHAETA | | | TUBIFICIDA | | | Enchytraeidae | 112 | | Naididae
<i>Nais bretscheri</i> | 22 | | Nais elinguis | 51 | | Nais sp. | 10 | | Tubificidae | | | Rhyacodrilus sp. | 3 | | Tubificidae with capilliform chaetae | 16 | | LUMBRICULIDA | 2 | | Lumbriculidae
ARTHROPODA | 3 | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | | | Lebertia sp. | 38 | | Sperchonidae | | | Sperchon/Sperchonopsis sp. | 13 | | INSECTA
EPHEMEROPTERA | | | Ephemerellidae | | | Drunella doddsi | 3 | | Drunella grandis | 35 | | PLECOPTERA | | | Chloroperlidae | 1.0 | | <i>Sweltsa sp.</i>
Perlodidae | 10 | | Diura knowltoni | 3 | | TRICHOPTERA | 3 | | Brachycentridae | | | Brachycentrus americanus | 6 | | Brachycentrus occidentalis | 237 | | Glossosomatidae Glossosoma sp. | 13 | | Lepidostomatidae | 13 | | Lepidostoma sp. | 218 | | Rhyacophilidae | | | Rhyacophila coloradensis | 6 | | DIPTERA | | | Chironomidae
Eukiefferiella sp. | 26 | | Hydrobaenus sp. | 26
77 | | Orthocladius euorthocladius | 26 | | Orthocladius/Cricotopus gr. | 1,054 | | Pagastia sp. | 26 | | Rheocricotopus sp. | 77 | | Psychodidae | 6 | | Pericoma sp.
Tipulidae | Ü | | Antocha sp. | 3 | | | | | Total Abundance: | 2,148 | 393715106253600 Gore Creek at stephens park at vail (Lat 39 $37\ 15N\ \text{Long}\ 106\ 25\ 36W)$ Date 4/13/00 Time 1230 3 3 Total Abundance: 1,824 | | Abundance per
square meter | |--|-------------------------------| | Organisms | | | PLATYHELMINTHES
TURBELLARIA
TRICLADIDA | | | Planariidae | | | Polycelis coronata | 61 | | ANNELIDA | | | OLIGOCHAETA
TUBIFICIDA | | | Enchytraeidae | 16 | | Naididae | 10 | | Nais bretscheri | 6 | | Nais elinguis | 32 | | Nais sp. | 3 | | Tubificidae with capilliform chaetae | 3 | | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | | | Lebertia sp. | 26 | | Protziidae | | | Protzia sp. | 3 | | Sperchonidae | | | Sperchon/Sperchonopsis sp. | 3 | | INSECTA | | | EPHEMEROPTERA | | | Baetidae | | | Baetis tricaudatus | 13 | | Ephemerellidae | 3 | | Drunella doddsi | 19 | | Drunella grandis | 3 | | Ephemerella sp. TRICHOPTERA | 3 | | Brachycentridae | | | Brachycentrus americanus | 22 | | Brachycentrus occidentalis | 29 | | Lepidostomatidae | 2, | | Lepidostoma sp. | 3 | | Lepidostoma sp. | 16 | | Rhyacophilidae | | | Rhyacophila coloradensis | 35 | | COLEOPTERA | | | Elmidae | | | Heterlimnius corpulentus | 3 | | DIPTERA | | | Chironomidae | | | Micropsectra sp. | 30 | | Orthocladius euorthocladius | 61 | | Orthocladius/Cricotopus gr. | 1,064 | | Pagastia sp. | 182 | | Rheocricotopus sp. | 182 | | Psychodidae | | Pagastia sp. Rheocricotopus sp. Psychodidae Pericoma sp. Tipulidae Tipula sp. 393824106221700 $\,$ MILL CREEK NEAR VAIL, CO (LAT 39 38 24N LONG 106 22 17W) Date $\,$ 4/13/00 $\,$ Time $\,$ 1730 Abundance per square meter | Organisms | | |--|----------| | PLATYHELMINTHES
TURBELLARIA
TRICLADIDA | | | Planariidae | 77 | | Polycelis coronata ANNELIDA | // | | OLIGOCHAETA
TUBIFICIDA | | | Enchytraeidae | 179 | | Naididae | | | Nais elinguis | 35 | | ARTHROPODA | | | ARACHNIDA | | | TROMBIDIFORMES | | | Sperchonidae | | | Sperchon/Sperchonopsis sp. INSECTA | 6 | | TRICHOPTERA | | | Limnephilidae | | | Dicosmoecus sp. | 3 | | DIPTERA | <u> </u> | | Chironomidae | | | Orthocladius euorthocladius | 344 | | Orthocladius/Cricotopus gr. | 24 | | Pagastia sp. | 31 | | Tipulidae | | | Tipula sp. | 3 | | | | | Total Abundance: | 702 | Abundance per square meter | 0 | square met | |--|------------| | Organisms | | | PLATYHELMINTHES | | | TURBELLARIA
TRICLADIDA | | | Planariidae | | | Polycelis coronata | 112 | | NEMATODA
ANNELIDA | 3 | | OLIGOCHAETA | | | TUBIFICIDA | 40 | | Enchytraeidae
Naididae | 48 | | Nais bretscheri | 26 | | Nais sp. | 22 | | ARTHROPODA
ARACHNIDA | | | TROMBIDIFORMES | | | Lebertiidae | 278 | | <i>Lebertia sp.</i>
Protziidae | 278 | | Protzia sp. | 3 | | Sperchonidae | 86 | | Sperchon/Sperchonopsis sp. INSECTA | 00 | | COLLEMBOLA | 6 | | EPHEMEROPTERA
Baetidae | | | Baetis bicaudatus | 6 | | Baetis tricaudatus | 154 | | Ephemerellidae
Drunella doddsi | 3 | | Drunella grandis | 22 | | Ephemerella sp. | 48 | | Heptageniidae Cinygmula sp. | 22 | | Epeorus longimanus | 202 | | Rhithrogena hageni | 3 | | Rhithrogena robusta
PLECOPTERA | 3 | | Capniidae | 6 | | Chloroperlidae | 06 | | Sweltsa sp.
Leuctridae | 96 | | Perlomyia sp. | 3 | | Nemouridae | 128 | | Prostoia besametsa
Zapada oregonensis gr. | 128 | | Perlodidae | | | Megarcys signata | 10 | | Taeniopterygidae
Doddsia occidentalis | 3 | | TRICHOPTERA | | | Brachycentridae Brachycentrus americanus | 173 | | Hydropsychidae | 175 | | Arctopsyche grandis | 115 | | Rhyacophilidae
Rhyacophila sibirica gr. | 22 | | Rhyacophila sp. | 6 | | COLEOPTERA | | | Elmidae
Heterlimnius corpulentus | 42 | | DIPTERA | | | Ceratopogonidae | 10 | | Chironomidae Micropsectra sp. | 34 | | Orthocladius/Cricotopus gr. | 1,906 | | Pagastia sp. | 1,037 | | Psychodidae Pericoma sp. | 22 | | Simuliidae | | | <i>Prosimulium sp.</i>
Tipulidae | 3 | | Antocha sp. | 10 | | Dicranota sp. | 3 | | Hexatoma sp. | 6 | Total Abundance: 4,688 393826106235300 Gore Creek blw wastewater treatment plant (Lat 39 38 26n Long 106 23 53W) Date 4/13/00 Time 1430 2,909 | | Abundance per
square meter | |--|-------------------------------| | Organisms | | | PLATYHELMINTHES TURBELLARIA TRICLADIDA | | | Planariidae
<i>Polycelis coronata</i> | 106 | | NEMATODA
ANNELIDA
OLIGOCHAETA
LUMBRICULIDA | 3 | | Lumbriculidae
TUBIFICIDA | 46 | | Enchytraeidae | 117 | | Naididae
<i>Nais bretscheri</i> | 69 | | Nais elinguis
Nais sp. | 759
69 | | ARTHROPODA ARACHNIDA TROMBIDIFORMES Lebertiidae | | | Lebertia sp. | 38 | | Protziidae
<i>Protzia sp.</i> | 3 | | Sperchonidae Sperchon/Sperchonopsis sp. | 3 | | INSECTA EPHEMEROPTERA Ephemerellidae | | | Drunella grandis
PLECOPTERA | 29 | | Nemouridae
Zapada oregonensis gr.
TRICHOPTERA
Brachycentridae | 3 | | Brachycentridae
Brachycentrus americanus
Lepidostomatidae | 19 | | <i>Lepidostoma sp.</i>
Rhyacophilidae | 3 | | Rhyacophila coloradensis
DIPTERA | 3 | | Chironomidae Hydrobaenus sp. Orthocladius euorthocladius Orthocladius/Cricotopus gr. Pagastia sp. Rheocricotopus sp. | 32
32
968
419
162 | | Muscidae
<i>Muscidae</i> sp. | 13 | | Psychodidae Pericoma sp. | 10 | | Tipulidae | | | Tipula sp. | 3 | Total Abundance: 393836106182500 . Gore Creek above katsos ranch at vall (Lat 39 38 36n long 106 18 25W) Date 4/14/00 . Time 1100 # Abundance per square meter # Organisms | Organisms | | |--|------------| | PLATYHELMINTHES | | | TURBELLARIA | | | TRICLADIDA | | | Planariidae
<i>Polycelis coronata</i> | 176 | | ANNELIDA | 1,0 | | OLIGOCHAETA | | | TUBIFICIDA
Enchytraeidae | 157 | | Naididae | 157 | | Nais sp. | 10 | | ARTHROPODA | | | ARACHNIDA
TROMBIDIFORMES | | | Hygrobatidae | | | Atractides sp. | 3 | | Lebertiidae | 20 | | <i>Lebertia sp.</i>
Sperchonidae | 29 | | Sperchon/Sperchonopsis sp. | 45 | | INSECTA | | | EPHEMEROPTERA
Ameletidae | | | Ameletus sp. | 3 | | Baetidae | | | Baetis bicaudatus | 42 | | Baetis tricaudatus
Ephemerellidae | 64 | | Drunella doddsi | 6 | | Drunella grandis | 10 | | Ephemerella sp. | 16 | | Heptageniidae
Cinygmula sp. | 16 | | Epeorus longimanus | 19 | | PLECOPTERA | 1.0 | | Capniidae
Chloroperlidae | 13 | | Sweltsa sp. | 74 | | Leuctridae | | | <i>Perlomyia sp.</i>
Nemouridae | 19 | | Prostoia besametsa | 240 | | Zapada oregonensis gr. | 16 | | Perlodidae | 6 | | Cultus sp.
Megarcys signata | 6
3 | | Taeniopterygidae | 3 | | Doddsia occidentalis | 10 | | TRICHOPTERA
Brachycentridae | | | Brachycentrus americanus | 10 | | Hydropsychidae | | | Arctopsyche grandis | 32
| | Lepidostomatidae Lepidostoma sp. | 3 | | Rhyacophilidae | 3 | | Rhyacophila brunnea/vao | 10 | | Rhyacophila coloradensis
Rhyacophila sibirica gr. | 3
19 | | Rhyacophila sp. | 3 | | COLEOPTERA | | | Elmidae | 2 | | Heterlimnius corpulentus
DIPTERA | 3 | | Ceratopogonidae | 10 | | Chironomidae | 15 | | Brillia sp.
Conchapelopia/Thienemannimy | 31
15 | | Diamesa sp. | 47 | | Hydrobaenus sp. | 62 | | Micropsectra sp. | 15 | | Orthocladius euorthocladius
Orthocladius/Cricotopus gr. | 203
172 | | Pagastia sp. | 110 | | Rheocricotopus sp. | 110 | | Psychodidae | 128 | | <i>Pericoma sp.</i>
Simuliidae | 128 | | Prosimulium sp. | 13 | | | | Total Abundance: 1,991 #### NORTH FORK ELK RIVER BLOWDOWN STUDY In October of 1997 an unusual windstorm blew down thousands of acres of trees on the western side of the continental divide, and on the western edge of the Mt. Zirkel Wilderness Area, between Steamboat Springs, Colorado and the Wyoming border. This area is referred to as the "Routt Divide Blowdown" by the U.S. Forest Service, and this area lies within the watershed which is drained by the Elk River and its tributaries. This two year cooperative water-quality study between the USGS and the U.S. Forest Service may help determine the effects of the blowndown and salvage logging operations on water-quality in the Elk River watershed. 405057106451000 NORTH FORK ELK RIVER ABOVE AGNES CREEK, NEAR CLARK, CO. #### WATER-OUALITY RECORDS LOCATION.--Lat. $40^{\circ}50^{\circ}57^{\circ}$, long $106^{\circ}45^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.1, T.10 N, R.84 W., Routt County, Hydrologic Unit 14050001, on right bank 100 ft above confluence with Agnes Creek, 200 ft downstream of private cabins, 6.8 mi above the mouth, and 17.3 mi northeast of Clark. PERIOD OF RECORD. -- March 1999 to September 2000 (discontinued). REMARKS.—The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DISCHARGE INSTANTAL CUB. FEI PEI SECCE (0006) | GE, SPE F. CIF IC CON ET DUC R ANC DND (US/ | IC WHO
- FI:
T- (ST:
E A:
CM) UN: | H
FER
OLE
ELD
AND-
RD
ITS)
400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | |------------------|--|---|--|--|--|--|--|--|---|--| | NOV
10 | 1000 | 2 | .5 40 | 7 | .1 | 1.7 | .5 | 8.9 | 20 | 6.18 | | APR
06 | 1200 | 3 | .2 43 | 7 | .5 | .7 | .3 | 10.9 | 18 | 5.62 | | MAY
23 | 1210 | 106 | 27 | 7 | .1 | 5.4 | . 4 | 8.9 | 10 | 3.20 | | JUN
14 | 1220 | 105 | 25 | 7 | . 2 | 6.0 | .3 | 8.8 | 10 | 3.04 | | AUG
16 | 1100 | 10 | 36 | 7 | . 4 | 11.6 | 2.0 | 7.9 | 15 | 4.64 | | DATE | MAGNE
SIUM
DIS-
SOLVE
(MG/I
AS MG | DIS-
DIS-
DIS-
DIS-
DIS-
DIS-
DIS-
DIS- | - SOR
ED TI
/L RAT
NA) | D- S:
P- D:
ON SO:
IO (M:
AS | FAS-
IUM,
IS-
LVED
G/L
K)
935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | | NOV
10
APR | 1.12 | 1.9 | 9 .2 | | . 8 | 23 | 4.5 | E.3 | <.1 | 7.5 | | 06 | .96 | 1.3 | 1.1 | 1 | . 0 | 21 | 2.0 | <.3 | <.1 | 6.2
4.3
4.0 | | MAY
23 | .56 | . 6 | 5 .1 | | .6 | 11 | 1.5 | E.2 | <.1 | | | JUN
14 | .48 | . (| 5 .1 | | .7 | 11 | 1.4 | <.3 | <.1 | | | AUG
16 | 75 .9 | | 9 .1 | | . 9 | 16 | 1.5 | <.3 | <.1 | 4.7 | | 1 | N | NITRO-
GEN,
IITRITE
DIS-
SOLVED
(MG/L
AS N)
00613) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,
MONI
ORGA
TOI | ,AM- GE
IA + MO
ANIC OR
FAL D
G/L (I
N) A | GANIC PHO
IS. TO
MG/L (I
S N) A | HOS- PHO DRUS D DTAL SO MG/L (M S P) AS | OS- PHO PRUS OF PIS- DI PLVED SOL IG/L (MO | | | NOV
10
APR | | <.001 | .079 | <.002 | E.1 | 10 < | .10 < | .008 <. | 006 <. | 001 | | 06
MAY | | <.001 | .181 | <.002 | E.1 | 10 E | .10 < | .008 E. | 004 . | 004 | | 23 | | <.001 | .084 | <.002 | .1 | 12 E | .10 | .008 <. | 006 . | 001 | | JUN
14 | | <.001 | .070 | <.002 | E.1 | 10 E | .10 < | .008 <. | 006 <. | 001 | | AUG
16 | | .001 | .049 | <.002 | E.1 | 10 E | .10 < | .008 <. | 006 <. | 001 | # NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued 405057106451000 NORTH FORK ELK RIVER ABOVE AGNES CREEK, NEAR CLARK, CO.--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | AS CD) | TOTAL
(UG/L
AS CD) | AS CU) | SOLVED
(UG/L
AS CU) | RECOV-
ERABLE
(UG/L
AS FE) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | | |------------------|--|---|--|---|--|---|---|---|--| | APR
06
MAY | E9 <28 | | <.1 | <.1 | 2 | E1 | 60 | 20 | | | 23
JUN | 48 | 114 | <.1 | <.1 | E1 | <1 | 150 | 30 | | | 14 | 22 | 48 | <.1 | <.1 | <1 | E1 | 40 | 20 | | | DATE | | AL LEA
OV- DI
BLE SOL
/L (UG
PB) AS | NESD, TOTOS RECOVED ERAPORTO (UGPB) AS | TAL NES
COV- DI
ABLE SOI
G/L (UC
MN) AS | S- Di
LVED SOI
G/L (UC
MN) AS | IS- DI
LVED SOI
G/L (UC
AG) AS | ZIN NC, TOT IS- REC LVED ERA G/L (UG ZN) AS 090) (010 | AL
OV-
BLE
JL
ZN) | | | APR
06
MAY | <1 | <1 | <3 | 3 E2 | 2 < | 1 <: | 20 <3 | 1 | | | 23
JUN | <1 | <1 | 5 | 5 3 | 3 < | 1 < | 20 <3 | 1 | | | 14 | <1 | <1 | E2 | E2 | ? < | 1 E | 11 <3 | 1 | | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS- | | | SEDI- | |-------|------|---------|---------|---------|---------| | | | CHARGE, | | | MENT, | | | | INST. | | SEDI- | DIS- | | | | CUBIC | TEMPER- | MENT, | CHARGE, | | | | FEET | ATURE | SUS- | SUS- | | DATE | TIME | PER | WATER | PENDED | PENDED | | | | SECOND | (DEG C) | (MG/L) | (T/DAY) | | | | (00061) | (00010) | (80154) | (80155) | | 27077 | | | | | | | NOV | 1000 | 0.5 | | | 0.0 | | 10 | 1000 | 2.5 | 1.7 | M | .00 | | APR | 1000 | 2.0 | _ | | 0.7 | | 06 | 1200 | 3.2 | .7 | 1 | .01 | | MAY | 1010 | 106 | - 4 | 1.0 | 2 0 | | 23 | 1210 | 106 | 5.4 | 10 | 3.0 | | JUN | | | | | | | 14 | 1220 | 105 | 6.0 | 4 | 1.2 | | AUG | | | | | | | 16 | 1100 | 10 | 11.6 | 4 | .12 | #### NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued 404950106462700 NORTH FORK ELK RIVER ABOVE TRAIL CREEK NEAR CLARK, CO. #### WATER-QUALITY RECORDS LOCATION.--Lat. $40^{\circ}49^{\circ}50^{\circ}$, long. $106^{\circ}46^{\circ}27^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.14, T.10 N, R.84 W., Routt County, Hydrologic Unit 14050001, on left bank approximately 100 ft above confluence with Trail Creek, 4.5 mi above the mouth, and 15.0 mi northeast of Clark. PERIOD OF RECORD. -- March 1999 to September 2000 (discontinued). REMARKS.—The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE NOV 10 | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIF:
CON-
DUC'
ANCI
(US/(| IC WHO
- FIE
I- (STA
E AR
CM) UNI | ER
LE
LD TEMI
ND- ATI
D WA:
TS) (DE: | PER-
URE
FER
G C)
010) | | D-
Y | DXYGI
DIS
SOLV
(MG, | EN,
S-
VED
/L)
00) (| HARI
NESS
TOTA
(MG/
AS
CACC | S CAL
AL DI
'L SO
(M
03) AS | CIUM
S-
LVED
G/L
CA)
915) (| MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | | |---------------|---|---|---|---|---|--|--|--------------------------------------|------------------------------|--|--
--|--|--|---|--| | APR | | | | | | | | | | | | | | | | | | 06
MAY | 1345 | 7.4 | 52 | | | .5 | | 4 | 11. | | 21 | 6. | | 1.13 | 1.7 | | | 23
JUN | 1500 | 266 | 28 | 7. | 1 6 | .6 | 1. | 8 | 8.9 | 9 | 11 | 3. | 38 | .58 | .8 | | | 14
AUG | 1400 | 135 | 26 | 7. | 4 8 | . 4 | • | 4 | 8.! | 5 | 10 | 3. | 13 | .51 | .7 | | | 16 | 1220 | 14 | 42 | 7. | 5 14 | . 0 | 1. | 8 | 7. | 7 | 17 | 5. | 25 | .85 | 1.2 | | | DATE | | O- S
P- I
ON SO
IO (N | SIUM,
DIS-
DLVED
MG/L
S K) | | DIS-
SOLVED
(MG/L
AS SO4) | RI
DI
SO
(M
AS | DE,
S-
LVED
G/L
CL) | (MG/
AS E | E,
S-
ÆD
'L
?) | SOLV
(MG/
AS
SIO2 | /ED
/L | (MG/L
AS BR) | RESID
AT 18
DEG.
DIS
SOLV
(MG/ | C TU
-
ED S
L) (| M OF
NSTI-
ENTS,
DIS-
OLVED
MG/L) | | | NOV
101 .9 | | | . 9 | 18 | 2.3 | E | .2 | 2 <.1 | | 6.5 | 5 | <.01 | 21 | | | | | APR
06 | 2 .9 25 | | 25 | 2.0 | E | .2 | <.1 | | 7.3 | | | | | | | | | MAY
23 | .1 | | . 6 | 12 | 1.4 | | .3 | <.1 | L | 4.6 | | | | | 19 | | | JUN
14 | .1 | | . 7 | 11 | 1.4 | E | .1 | <.1 | L | | | | | | | | | AUG
16 | .1 | | . 9 | 19 | 1.6 | < | <.3 | | L | 5.3 | 3 | | | | | | | DATE | SOLVED SOLVED DIS- (TONS (TONS SOLVED ATE PER PER (MG/L AC-FT) DAY) AS N) | | GEN, | G
AMM
D
SO
(M
AS | EN,
ONIA
IS-
LVED
G/L
N) | GEN, A
MONIA
ORGAN
TOTA
(MG/
AS N | NITRO- NITRO-
EEN,AM- GEN,AM-
ONIA + MONIA +
RGANIC ORGANIC
TOTAL DIS.
(MG/L (MG/L
AS N) AS N) | | 1)
IIC
A + | TOTAL
(MG/L
AS P) | (MG/
AS P | - PH
S C
- D
ED SC
L (M | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | | | NOV
10 | | _ | | .001 | .110 | _ | 002 | <.10 |) | <.10 | 1 | <.008 | <.00 | 6 < | .001 | | | APR
06 | | | | <.001 | .140 | | 002 | E.10 | | E.10 | | .010 | .00 | | .005 | | | MAY
23 | | | 3.6 | <.001 | .062 | | 002 | .30 | | .18 | | .010 | E.00 | | .005 | | | JUN
14 | | | | | | | | | | | | E.004 | | | | | | AUG | | | | <.001 | .056 | | 002 | .13 | | E.10 | | | <.00 | | .001 | | | 16 | | - | | .001 | .029 | • | 005 | E.10 | J | E.10 | J | <.008 | <.00 | ь < | .001 | | | DATE | ALUI
INUI
DIS
SOLV
(UG,
AS A | M- IN
M, TO
S- RE
VED EF
/L (U
AL) AS | LUM-
NUM,
DTAL
ECOV-
RABLE
UG/L
S AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | D
SO
(U
AS | RON,
IS-
LVED
G/L
B)
020) | CADMI
DIS
SOLV
(UG/
AS C | S-
ÆD
'L
ED) | CADMI
WATE
UNFLI
TOTA
(UG/
AS C | ER
ERD
AL
(L
ED) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | | R, I
R
ED E
L (
U) A | RON,
OTAL
ECOV-
ERABLE
UG/L
S FE)
1045) | | | NOV | .41 | = | | -2.0 | c | | 16 | | | | | | | | | | | 10
APR | <1! | | | <2.0 | 6 | | 16 | | | | | | | | | | | 06
MAY | <1! | | 29 | | | | | <.1 | | <.1 | | 4 | 2 | | 210 | | | 23
JUN | 43 | | 309 | | | | | <.1 | | <.1 | | E1 | <1 | | 450 | | | 14 | 24 | 1 | 51 | | | | | <.1 | L | <.1 | _ | <1 | E1 | | 70 | | # NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued # 404950106462700 NORTH FORK ELK RIVER ABOVE TRAIL CREEK NEAR CLARK, CO.--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | | MANGA- | | | | | | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | | LEAD, | | | NESE, | MANGA- | | STRON- | | ZINC, | | | IRON, | TOTAL | LEAD, | LITHIUM | TOTAL | NESE, | SILVER, | TIUM, | ZINC, | TOTAL | | | DIS- | RECOV- | DIS- | DIS- | RECOV- | DIS- | DIS- | DIS- | DIS- | RECOV- | | | SOLVED | ERABLE | SOLVED | SOLVED | ERABLE | SOLVED | SOLVED | SOLVED | SOLVED | ERABLE | | DATE | (UG/L | | AS FE) | AS PB) | AS PB) | AS LI) | AS MN) | AS MN) | AS AG) | AS SR) | AS ZN) | AS ZN) | | | (01046) | (01051) | (01049) | (01130) | (01055) | (01056) | (01075) | (01080) | (01090) | (01092) | | | | | | | | | | | | | | NOV | | | | | | | | | | | | 10 | 20 | | | <3.9 | | <2 | | 20.1 | | | | APR | | | | | | | | | | | | 06 | 80 | E1 | <1 | | 11 | 10 | <1 | | <20 | <31 | | MAY | | | | | | | | | | | | 23 | 30 | <1 | <1 | | 24 | 4 | <1 | | <20 | <31 | | JUN | | | | | | | | | | | | 14 | 20 | <1 | <1 | | 4 | 3 | <1 | | <20 | <31 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |-----------|------|---|---|---|---| | NOV
10 | 1200 | 5.9 | 1.7 | М | .00 | | MAY
23 | 1500 | 266 | 6.6 | 79 | 57 | | JUN
14 | 1400 | 135 | 8.4 | 3 | 1.1 | | AUG
16 | 1220 | 14 | 14.0 | 2 | .07 | ### NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued # 404750106454200 LOST DOG CREEK ABOVE MOUTH NEAR CLARK, CO. # WATER-QUALITY RECORDS LOCATION.--Lat. $40^{\circ}47^{\circ}50^{\circ}$, long. $106^{\circ}45^{\circ}42^{\circ}$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec.25, T.10 N, R.84 W., Routt County, Hydrologic Unit 14050001, on left bank 30 ft above FS Road---culvert, 0.5 mi above confluence with North Fork Elk River, 12.4 mi northeast of Clark. PERIOD OF RECORD. -- March 1999 to September 2000 (discontinued). REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DIS- | DIS-
SOLVED
(MG/L
AS MG) | |--|--| | 09 1200 3.8 39 7.4 .1 .7 10.8 14 3.91 APR 07 0947 9.1 44 7.8 .5 .4 10.5 18 4.82 MAY 24 1309 41 21 7.0 3.5 .6 10.1 8 2.20 JUN 14 1600 20 27 7.6 9.9 .3 7.9 10 2.89 AUG | 1.33 | | 07 0947 9.1 44 7.8 .5 .4 10.5 18 4.82 MAY 24 1309 41 21 7.0 3.5 .6 10.1 8 2.20 JUN 14 1600 20 27 7.6 9.9 .3 7.9 10 2.89 AUG | .59 | | 24 1309 41 21 7.0 3.5 .6 10.1 8 2.20
JUN
14 1600 20 27 7.6 9.9 .3 7.9 10 2.89
AUG | | | 14 1600 20 27 7.6 9.9 .3 7.9 10 2.89 AUG | .66 | | | | | | 1.29 | | | | | SOLIDS | SOLIDS, DIS- SOLVED (TONS PER AC-FT) | | NOV
09 2.0 .2 .4 19 1.2 E.3 <.1 13.0 | | | APR 07 2.1 .2 .6 22 .8 .4 <.1 13.4 37 | .05 | | MAY 24 1.0 .2 .5 9 1.0 .3 <.1 6.6 18 | .02 | | JUN 14 1.3 .2 .4 12 .9 <.3 <.1 8.1 | | | AUG 15 1.9 .2 .4 20 .7 E.1 <.1 11.1 | | | 15 1.5 .2 .4 20 .7 8.1 1.1 | | | SOLIDS, GEN, GEN, GEN, GEN, AM- GEN, AM- DIS- NITRITE NO2+NO3 AMMONIA MONIA + MONIA + PHOS- PHORUS O SOLVED DIS- DIS- DIS- ORGANIC PHORUS DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS | IOS-
DRUS
ETHO,
IS-
JVED
J/L
P)
1671) | | NOV
09 <.001 .045 <.002 .12 E.10 E.006 <.006 <
APR | 001 | | 0791 <.001 .079 <.002 .23 .18 E.006 E.004 | .003 | | MAY
24 2.00 <.001 .120 .002 .17 .17 .010 E.005
JUN | .002 | | 14 <.001 .018 .026 .15 .13 E.006 E.003 < | 001 | | AUG
15001 .020 .003 E.10 .20 <.008 E.003 | 001 | | ALUM- ALUM- INUM, TOTAL CADMIUM COPPER, IRON, INUM, TOTAL CADMIUM WATER TOTAL COPPER, TOTAL IRON, DIS- RECOV- DIS- UNFLITED RECOV- DIS- RECOV- DIS- SOLVED ERABLE SOLVED TOTAL ERABLE SOLVED ERABLE SOLVE DATE (UG/L (U | | | APR 07 29 37 <.1 <.1 2 E1 160 120 | | | MAY | |
 24 68 126 <.1 <.1 E1 <1 140 80 JUN | | # NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued # 404750106454200 LOST DOG CREEK ABOVE MOUTH NEAR CLARK, CO.--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | |------------------|--|---|--|---|---|---|--| | APR
07
MAY | <1 | <1 | E3 | E2 | <1 | <20 | <31 | | 24
JUN | <1 | <1 | 5 | E2 | <1 | <20 | <31 | | 14 | <1 | <1 | 3 | E2 | <1 | E13 | <31 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS-
CHARGE, | | | SEDI-
MENT, | |-----------|------|-----------------|------------------|---------------|-----------------| | | | INST. | | SEDI- | DIS- | | | | CUBIC
FEET | TEMPER-
ATURE | MENT,
SUS- | CHARGE,
SUS- | | DATE | TIME | PER | WATER | PENDED | PENDED | | | | SECOND | (DEG C) | (MG/L) | | | | | (00061) | (00010) | (80154) | (80155) | | NOV | | | | | | | 09 | 1200 | 3.8 | .1 | 1 | .01 | | APR | 0947 | 9.1 | .5 | 10 | .23 | | 07
MAY | 0947 | 9.1 | . 5 | 10 | .23 | | 24 | 1309 | 41 | 3.5 | 4 | .42 | | JUN | | | | | | | 14 | 1600 | 20 | 9.9 | 4 | .21 | | AUG
15 | 1010 | 4.1 | 10.5 | 1 | . 01 | #### NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued ### 404727106453700 ENGLISH CREEK ABOVE MOUTH NEAR CLARK, CO. #### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}47^{\circ}27^{\circ}$, long $106^{\circ}45^{\circ}37^{\circ}$, in $NW^{1}/_{4}NW^{1}/_{4}$ sec.36, T.10 N, R.84 W., Routt County, Hydrologic Unit 14050001, on left bank 30 ft upstream from Forest Service Road 466 culvert, 0.5 mi upstream from the confluence with North Fork Elk River, and 11.5 mi northeast of Clark. PERIOD OF RECORD. -- March 1999 to September 2000 (discontinued). REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | INST. CUBIC FEET PER SECOND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | ITY
(NTU) | DIS-
SOLVED
(MG/L) | TOTAL
(MG/L
AS
CACO3) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | AS MG) | |-----------|---|--|---|---|--|--|---|--|---|--| | NOV
09 | 1120 | 2.8 | 35 | 7.4 | .2 | .6 | 10.4 | 15 | 4.17 | 1.09 | | APR
07 | 1100 | 1.5 | 39 | 7.5 | .7 | .7 | 10.6 | 16 | 4.66 | 1.14 | | MAY
24 | 1145 | 20 | 20 | 7.1 | 2.5 | .5 | 10.2 | 8 | 2.16 | .53 | | JUN
15 | 1215 | 14 | 23 | 7.4 | 8.3 | .3 | 8.2 | 9 | 2.61 | .55 | | AUG
15 | 1115 | 1.8 | 37 | 7.6 | 10.9 | 2.4 | 7.8 | 16 | 4.64 | 1.05 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SORP-
TION
RATIO | SIUM,
DIS-
SOLVED
(MG/L
AS K) | FET
LAB
CACO3
(MG/L) | (MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | | DIS-
SOLVED
(TONS
PER
AC-FT) | | NOV
09 | 2.3 | .3 | . 4 | 20 | 1.4 | E.3 | <.1 | 14.7 | | | | APR
07 | 2.2 | .2 | .6 | 21 | 1.0 | . 4 | <.1 | 14.2 | 37 | .05 | | MAY
24 | 1.0 | .2 | .5 | 9 | 1.1 | .3 | <.1 | 6.6 | 18 | .02 | | JUN
15 | 1.4 | . 2 | . 4 | 11 | 1.1 | <.3 | <.1 | 8.4 | | | | AUG
15 | 2.2 | .2 | . 4 | 21 | .7 | <.3 | <.1 | 12.4 | | | | DAT | DI
SOI
(TC
E PI
DA | IDS, GE
IS- NITR
LVED DI
ONS SOL | N, GE ITE NO2+ S- DI VED SOL /L (MG N) AS | N, GE NO3 AMMO S- DI VED SOL //L (MG N) AS | NIA MONI
S- ORGA
VED TOT
(MG
N) AS | AM- GEN, A + MONI NIC ORGA AL DIS /L (MG N) AS | AM- A + PHO NIC PHOR . TOT /L (MG N) AS | US DI
AL SOL
/L (MG
P) AS | US ORT S- DIS VED SOLV :/L (MG/ P) AS P | US
HO,
-
ED
L
) | | NOV
09 | | <.0 | 01 .0 | 10 <.0 | 02 .3 | 8 E.1 | 0 E.O | 07 <.0 | 06 <.0 | 01 | | APR 07 | | .15 <.0 | | 39 <.0 | | | | | | | | MAY
24 | | .98 <.0 | 01 .0 | 93 <.0 | 02 .1 | 6 .1 | 3 .0 | 12 .0 | 07 .0 | 02 | | JUN
15 | - | <.0 | 01 .0 | 08 <.0 | 02 .1 | 2 .1 | 3 E.0 | 06 E.0 | 04 <.0 | 01 | | AUG
15 | - | <.0 | 01 <.0 | 05 <.0 | 02 E.1 | 0 .1 | 0 <.0 | 08 <.0 | 06 <.0 | 01 | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CADMIUM
WATER
UNFLIRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | | | AP.
MA | 07 | 34 | 66 | <.1 | <.1 | 4 | 3 | 200 | 130 | | | | 24 | 65 | 148 | <.1 | <.1 | E1 | <1 | 210 | 80 | | | | 15 | 47 | 61 | <.1 | <.1 | 1 | 2 | 100 | 70 | | # NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued # 404727106453700 ENGLISH CREEK ABOVE MOUTH NEAR CLARK, CO.--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | |------------------|--|---|--|---|---|---|--| | APR
07
MAY | <1 | <1 | 3 | E1 | <1 | <20 | <31 | | 24
JUN | <1 | <1 | 9 | 3 | <1 | <20 | <31 | | 15 | <1 | <1 | 3 | E1 | <1 | <20 | <31 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |------------------|------|---|---|---|---| | NOV
09 | 1120 | 2.8 | . 2 | 1 | .01 | | APR 07 | 1100 | 1.5 | .7 | 3 | .01 | | MAY
24 | 1145 | 20 | 2.5 | 9 | .47 | | JUN
15
AUG | 1215 | 14 | 8.3 | 1 | .04 | | 15 | 1115 | 1.8 | 10.9 | 1 | .01 | ### NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued ### 404620106461900 NORTH FORK ELK RIVER ABOVE MOUTH NEAR CLARK, CO ### WATER-QUALITY RECORDS LOCATION.--Lat $40^{\circ}46^{\circ}20^{\circ}$, long $106^{\circ}46^{\circ}19^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.2, T.9 N, R.84 W., Routt County, Hydrologic Unit 14050001, on left bank 30 ft above FS Road 433, 500 ft upstream of mouth, and 10.7 mi northeast of Clark. PERIOD OF RECORD. -- March 1999 to September 2000 (discontinued). REMARKS.--The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count; M, presence of material verified but not quantified. WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | , | MIBIC QUAL | III DAIA, | WAIRK IE | MC OCTODE | 10 1000 10 | OBE TEMBE | 10 2000 | | | |-----------|---|---|---|--|--|--|---|--|---|--| | DATE | TIME |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(NTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | (MG/L
AS
CACO3) | DIS-
SOLVED
(MG/L
AS CA) | AS MG) | | NOV
09 | 1320 | 25 | 64 | 7.8 | .7 | .6 | 9.8 | 28 | 8.59 | 1.67 | | APR
06 | 1200 | 19 | 74 | 7.5 | .6 | .6 | 10.6 | 30 | 9.32 | 1.73 | | MAY
24 | 1000 | 300 | 26 | 7.1 | 3.0 | . 2 | 10.1 | 11 | 3.40 | .61 | | JUN
15 | 1045 | 238 | 29 | 7.9 | 7.6 | .3 | 9.4 | 12 | 3.85 | .67 | | AUG | | | 58 | | | | | 27 | | | | 15 | 1230 | 23 | 58 | 7.6 | 15.4 | <.5 | 7.4 | 21 | 8.48 | 1.44 | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | WAT.DIS
FET
LAB
CACO3
(MG/L) | AS SO4) | DIS-
SOLVED
(MG/L
AS CL) | DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | DIS-
SOLVED
(TONS
PER
AC-FT) | | NOV
09 | 2.1 | .2 | .7 | 30 | 1.4 | E.3 | <.1 | 8.9 | | | | APR
06 | 2.2 | .2 | . 8 | 33 | 3.9 | .4 | <.1 | 9.5 | 48 | .07 | | MAY | | .1 | | | | E.2 | <.1 | | 40 | | | JUN | .8 | | .6 | 12 | 1.5 | | | 4.8 | | | | 15
AUG | .9 | .1 | .6 | 14 | 1.6 | <.3 | <.1 | 5.2 | | | | 15 | 1.8 | .1 | .8 | 28 | 3.2 | E.2 | <.1 | 6.9 | | | | DAT | SOI
(TO
E PE
DA | S- NITR
VED DI
NS SOL
R (MG | N, GE
ITE NO2+
S- DI
VED SOL
/L (MG
N) AS | N, GE
NO3 AMMO
S- DI
VED SOL
/L (MG
N) AS | | AM- GEN, A + MONI NIC ORGA AL DIS /L (MG N) AS | AM- A + PHO NIC PHOR TOT (MG N) AS | US DI
PAL SOL
P) AS | US ORT S- DIS VED SOLV (/L (MG/ P) AS P | US
HO,
-
ED
L
) | | NOV
09 | _ | - <.0 | 01 .05 | 0 <.0 | 02 .1 | 7 E.1 | 0 E.O | 06 <.0 | 06 <.0 | 01 | | APR
06 | | 46 <.0 | | | | | | | | | | MAY 24 | | - <.0 | | | | | | 15 E.O | | 01 | | JUN
15 | | - <.0 | | | | | | | | | | AUG
15 | | 0 | | | | | | | | | | 13 | | .0 | .01 | , | | | | | | 00 | | | DATE | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS AL)
(01105) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(UG/L
AS CD)
(01027) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | | | AP: | R
06 | E12 | 38 | <.1 | <.1 | 1 | <1 | 100 | 50 | | | MA | | 61 | 185 | <.1 | <.1 | E1 | <1 | 220 | 60 | | | JU | | 26 | 63 | <.1 | <.1 | <1 | <1 | 80 | 30 | | | | · · · · • | | - - | • = | •- | - | - | | | | # NORTH FORK ELK RIVER BLOWDOWN STUDY--Continued 404620106461900 NORTH FORK ELK RIVER ABOVE MOUTH NEAR CLARK, CO--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | SILVER,
DIS-
SOLVED
(UG/L
AS AG)
(01075) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | |------------------|--|---|--|---|---|---|--| | APR
06
MAY | <1 | <1 | E2 | 2 | <1 | <20 | <31 | | 24
JUN | <1 | <1 | 9 | 3 | <1 | <20 | <31 | | 15 | <1 | <1 | 4 | E2 | <1 | <20 | <31 | SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | DIS-
CHARGE, | | | SEDI-
MENT, | |-----------|------|-------------------------------|---------------------------|----------------------------------|-----------------------------------| | DATE | TIME | INST.
CUBIC
FEET
PER | TEMPER-
ATURE
WATER | SEDI-
MENT,
SUS-
PENDED | DIS-
CHARGE,
SUS-
PENDED | | | | SECOND
(00061) | (DEG C)
(00010) | (MG/L)
(80154) | (T/DAY)
(80155) | | NOV | | | | | | | 09
APR | 1320 | 25 | .7 | 1 | .06 | | 06
MAY | 1200 | 19 | .6 | 2 | .10 | | 24 | 1000 | 300 | 3.0 | 21 | 17 | | JUN
15 | 1045 | 238 | 7.6 | 3 | 1.9 | | AUG
15 | 1230 | 23 | 15.4 | 1 | .03 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY #### WATER-OUALITY RECORDS Selenium concentrations are elevated in several segments of the lower Gunnison River Basin. Segments that do not meet the Colorado water-quality standard for selenium (5 ug/L) include the Gunnison River from the Colorado River to the Uncompangre River, several tributaries to the North Fork Gunnison River, the Uncompangre River from the Gunnison River to Highway 550, and Sweitzer Lake. The State Water Quality Control Commission placed temporary modifications for selenium for the affected water bodies to allow time for measures to be taken at the local level to address the selenium issue. A local initiative did occur in 1998 with formation of the Gunnison Basin Selenium Task Force, a group of private, local, state, and federal interests. The goal of the task force was to examine what might be done to reduce selenium levels in the lower Gunnison River Basin. Much of the existing selenium data for the area had been collected in the Uncompangre River Basin or at gaging station 09152500, Gunnison River near Grand Junction, CO, and there were only limited selenium data available for the North Fork Gunnison Basin and for tributary streams of the Gunnsion River. More detailed selenium information was needed to better characterize selenium loading in the North Fork Basin and selenium studies initiated for the Task Force or for the National Irrigation Water Quality Program, collected selenium data at numerous sites in the lower Gunnison River Basin in water years 1999 and 2000. At some sites, major-ion and dissolved-solids data also were collected. The data was collected to support the design of remediation efforts that address the selenium impairments. Note: The following remark codes may appear in the data tables below: e, estimated; E, estimated laboratory analysis value; K, based on non-ideal colony count. WATER-OUALITY DATA, WATER YEARS OCTOBER 1998 TO SEPTEMBER 2000 DTS-PН WATER CHARGE, SPE-SELE-MAGNE-HARD-INST. CIFIC CALCIUM WHOLE NIUM. NESS SIUM, SODIUM. CON-CITTE TEMPER-DTS-TOTAL DTS-DTS-DTS-DUCT-ATURE SOLVED (MG/L SOLVED SOLVED SOLVED FEET (STAND-DATE TIME ANCE (UG/L (MG/L PER ARD WATER AS (MG/L (MG/L CACO3) SECOND (US/CM) UNITS) (DEG C) AS SE) AS CA) AS MG) AS NA (00915) (00061) (00095) (00400) (00010) (01145) (00900) (00925) (00930) 384414107501601 SMITH FORK AT MOUTH (LAT 38 44 14N LONG 107 50 16W MAY 1999 13... 0740 5.2 283 8.2 12.5 3.1 JUL Λ1 0735 1.9 3680 8 1 18 1 1 4 SEP 01... 0730 2.0 3260 8.2 17.8 2.7 NOV 12. 0850 5.4 3230 8.2 3.5 2.6 MAR 2000 17... 0845 3.8 3270 8 2 4.7 4 0 --09132500 NORTH FORK GUNNISON RIVER NEAR SOMERSET, CO. (LAT 38 55 33N LONG 107 26 01W) MAY 1999 10... 1050 1290 151 8.3 5.9 <1.0 ATIG 30... 1055 247 142 13.6 <1.0 NOV 79 0.8 1110 94 181 8 4 9 3 < 7 24 4 4 28 6 5 MAR 2000 7.5 1130 73 8.2 3.5 66 20.5 3.68 13... 166 <.7 385532107310501 HUBBARD CREEK AT MOUTH, NEAR BOWIE (LAT 38 55 32N LONG 107 31 05W) MAY 1999 10... 1230 93 8.1 6.7 <1.0 AUG 1150 11 201 16.3 <1.0 30... NOV ΛR 1202 .84 389 8.4 11.8 E.4 MAR 2000 1215 7.2 1.8 450 8.3 <.7 385414107334001 TERROR CREEK AT HIGHWAY 133, NR MOUTH (LAT 38 54 14N LONG 107 33 40W) MAY 1999 1330 45 111 8.1 6.0 <1.0 10... AUG 30... 1250 .93 328 18.3 <1.0 NOV 0.8 1240 .30 503 8.4 11.6 E.5 MAR 2000 1304 .97 288 8.0 <.7 13... 8.3 09134050 MINNESOTA CREEK AT PAONIA, CO. (LAT 38 52 27N LONG 107 35 18W) MAY 1999 11... 0940 3.0 1160 8.2 6.6 1.3 JUN 23... 1150 12 708 8 2 16.2 < 1 0 AUG 30... 1230 13 8.3 18.4 1.5 NOV 08.. 1145 3.0 1240 8.3 6.7 <2.4 MAR 2000 13... 1045 3 3 1110 8 3 4 9 1 4 # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued WATER-QUALITY DATA, WATER YEARS OCTOBER 1998 TO SEPTEMBER 2000 | DATE | SODIUM AD- SORP- TION RATIO (00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |-----------------------|-------------------------------------|--|--|--|--|---|--|--|--|--| | | 3844 | 1410750160 | 01 SMITH | FORK AT MO | TAL) HTUC |
38 44 14 | N LONG 10 | 7 50 16W) | | | | MAY 1999
13
JUL | | | | | | | | | | | | 01
SEP | | | | | | | | | | | | 01
NOV | | | | | | | | | | | | 12 | | | | | | | | | | | | MAR 2000
17 | | | | | | | | | | | | 09132500 | N | ORTH FORK | GUNNISON | RIVER NE | AR SOMERSI | ET, CO. (| LAT 38 55 | 33N LONG | 107 26 0 | 1W) | | MAY 1999
10 | | | | | | | | | | | | 30 | | | | | | | | | | | | NOV
08 | .3 | .7 | 87 | 6.2 | 2.0 | .1 | 10.1 | 106 | .14 | 26.9 | | MAR 2000
13 | . 4 | .7 | 72 | 9.4 | 2.1 | <.1 | 8.5 | 96 | .13 | 18.7 | | 385 | 532107310 | 501 HUBBAI | RD CREEK | AT MOUTH, | NEAR BOW | IE (LAT 3 | 8 55 32N | LONG 107 | 31 05W) | | | MAY 1999 | | | | | | | | | | | | 10
AUG | | | | | | | | | | | | 30
NOV | | | | | | | | | | | | 08
MAR 2000 | | | | | | | | | | | | 13 | | | | | | | | | | | | 3854 | 141073340 | 01 TERROR | CREEK AT | HIGHWAY 3 | 133, NR M | OUTH (LAT | 38 54 14 | N LONG 10 | 7 33 40W) | | | MAY 1999
10
AUG | | | | | | | | | | | | 30
NOV | | | | | | | | | | | | 08
MAR 2000 | | | | | | | | | | | | 13 | | | | | | | | | | | | 0: | 9134050 | MIN | NESOTA CR | EEK AT PAG | ONIA, CO. | (LAT 38 | 52 27N LO | NG 107 35 | 18W) | | | MAY 1999
11 | | | | | | | | | | | | JUN
23 | | | | | | | | | | | | AUG
30 | | | | | | | | | | | | NOV
08 | | | | | | | | | | | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued # WATER-QUALITY DATA, WATER YEARS OCTOBER 1998 TO SEPTEMBER 2000 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER -
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | |--|----------|---|--|---|--|--|--|---|---|---|--| | 385144107371701 ROATCAP CREEK AT HIGHWAY 133, NR MOUTH (LAT 38 51 44N LONG 107 37 17W) | | | | | | | | | | | | | MAY 1999
11
AUG | 1000 | 11 | 390 | 8.2 | 5.2 | <1.0 | | | | | | | 30
NOV | 1330 | 6.8 | 1080 | 8.1 | 18.9 | 4.3 | | | | | | | 08
MAR 2000 | 1230 | 3.2 | 703 | 8.4 | 12.3 | <2.4 | | | | | | | 13 | 1140 | 1.1 | 1460 | 8.3 | 6.9 | 4.9 | | | | | | | 385051107372701 REYNOLDS CREEK AT CTY ROAD J75 (LAT 38 50 51N LONG 107 37 27W) | | | | | | | | | | | | | MAY 1999 | | | | | | | | | | | | | 11
AUG | 1135 | 7.5 | 416 | 8.2 | 6.6 | <1.0 | | | | | | | 30
NOV
08 | 1120 | 4.3 | 646 | 8.4 | 17.4 | 1.8 | | | | | | | | 1505 | .18 | 1580 | 8.4 | 9.6 | 7.5 | | | | | | | MAR 2000
13 | 1215 | .13 | 2680 | 8.3 | 6.3 | 8.0 | | | | | | | 3849221074 | 02001 BE | LL CREEK A | AT CTY RO. | AD AND RR | TRACKS, | NR MOUTH | (LAT 38 4 | 9 22N LON | G 107 40 | 20W) | | | MAY 1999 | | | | | | | | | | | | | 11 | 1325 | 11 | 1320 | 8.4 | 11.9 | 2.5 | | | | | | | JUN 23 JUL 19 AUG 30 NOV 08 | 1040 | 24 | 982 | 8.0 | 15.6 | 2.6 | 460 | 115 | 41.1 | 38.7 | | | | 1120 | 13 | 1470 | 8.0 | 18.6 | 3.7 | | | | | | | | 1420 | 9.5 | 1560 | 8.2 | 20.0 | 5.1 | | | | | | | | 1500 | 1.6 | 2870 | 8.2 | 10.5 | 7.4 | | | | | | | MAR 2000
13 | 1220 | 1.8 | 3380 | 8.3 | 7.0 | 6.9 | | | | | | | 384915107412101 JAY CREEK AT HIGHWAY 133, NR MOUTH (LAT 38 49 15N LONG 107 41 21W) | | | | | | | | | | | | | MAY 1999 | | | | | | | | | | | | | 11
AUG | 1120 | .32 | 1460 | 8.0 | 9.8 | 12.8 | | | | | | | 30
NOV | 1120 | 4.8 | 837 | 8.0 | 16.7 | 6.4 | | | | | | | 08 | 1200 | .84 | 1730 | 8.2 | 7.5 | 13.1 | | | | | | | MAR 2000
13 | 1030 | .07 | 2240 | 8.1 | 4.7 | 18.8 | | | | | | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued # WATER-QUALITY DATA, WATER YEARS OCTOBER 1998 TO SEPTEMBER 2000 | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | |--|--|--|--|--|--|---|--|--|--|--|--| | 385144107371701 ROATCAP CREEK AT HIGHWAY 133, NR MOUTH (LAT 38 51 44N LONG 107 37 17W) | | | | | | | | | | | | | MAY 1999
11
AUG
30 | | | | | | | | | | | | | NOV | | | | | | | | | | | | | 08
MAR 2000 | | | | | | | | | | | | | 13 | | | | | | | | | | | | | 385051107372701 REYNOLDS CREEK AT CTY ROAD J75 (LAT 38 50 51N LONG 107 37 27W) | | | | | | | | | | | | | MAY 1999 | | | | | | | | | | | | | 11
AUG | | | | | | | | | | | | | 30 | | | | | | | | | | | | | NOV
08 | | | | | | | | | | | | | MAR 2000
13 | | | | | | | | | | | | | | 400001 PE | | amır Do | | mp a greg | | / T T T 20 4 | 0 001 101 | a 107 40 | 0.0**) | | | 384922107 | 402001 BEI | L CREEK . | AT CTY RO. | AD AND RE | R TRACKS, 1 | NR MOUTH | (LAT 38 4 | 9 ZZN LON | G 107 40 | 20W) | | | MAY 1999
11
JUN | | | | | | | | | | | | | 23 | .8 | 3.1 | 180 | 348 | 6.8 | .3 | 14.8 | 673 | .92 | 43.4 | | | 19
AUG | | | | | | | | | | | | | 30
NOV | | | | | | | | | | | | | 08
MAR 2000 | | | | | | | | | | | | | MAR 2000 | | | | | | | | | | | | | 384915107412101 JAY CREEK AT HIGHWAY 133, NR MOUTH (LAT 38 49 15N LONG 107 41 21W) | | | | | | | | | | | | | MAY 1999 | | | | | | | | | | | | | 11 | | | | | | | | | | | | | AUG
30 | | | | | | | | | | | | | NOV
08
MAR 2000 | | | | | | | | | | | | | 13 | | | | | | | | | | | | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | | | WAILK QUAL | JIII DAIA | , WAIER I | EARD OCTO | DER IJJO I | O DEFIE | IDER 2000 | | | |----------------|-----------|---|--|--|---|--|--|---|---|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | 38441410 | 7350101 | COTTONWOOI | O CREEK A | BV ASPEN | DITCH, AT | G DRIVE (| LAT 38 4 | 4 14N LON | IG 107 35 | 01W) | | JUL 2000 | | | | | | | | | | | | 25 | 0920 | .45 | 1570 | 8.0 | 15.5 | 4.7 | | | | | | 09134 | 1200 | COTTON | WOOD CREEK | NEAR HO | TCHKISS, | CO. (LAT 3 | 8 48 22N | LONG 107 | 41 12W) | | | MAY 1999 | | | | | | | | | | | | 11 | 1240 | 9.5 | 2690 | 8.2 | 10.9 | 7.2 | | | | | | JUN
23 | 1020 | 15 | 2280 | 8.0 | 15.5 | 4.2 | 1000 | 240 | 109 | 151 | | JUL
19 | 1030 | 7.0 | 2990 | 8.0 | 18.2 | 9.3 | 1500 | 338 | 161 | 226 | | AUG
30 | 1330 | 13 | 2650 | 7.0 | 18.5 | 6.5 | 1300 | 292 | 131 | 170 | | NOV
08 | 1350 | 4.9 | 1320 | 8.3 | 10.2 | 12.9 | | | | | | MAR 2000 | | | | | | | | | | | | 13
JUL | 1130 | 5.6 | 2740 | 8.2 | 4.8 | 8.5 | | | | | | 25 | 1030 | 4.4 | 3240 | 8.1 | 17.4 | 7.3 | | | | | | 3847471074 | 130501 SH | HORT DRAW V | WEST OF C | TY FAIRGR | OUNDS,AT | HOTCHKISS | (LAT 38 | 47 47N LC | NG 107 43 | 05W) | | OCT 1998 | | | | | | | | | | | | 15
MAY 1999 | 1220 | 7.4 | 1740 | 8.1 | 12.5 | 9.4 | | | | | | 12
JUN | 1020 | 4.6 | 1530 | 8.1 | 9.4 | 11.3 | | | | | | 23 | 1245 | 8.8 | 1370 | 7.9 | 16.8 | 14.6 | | | | | | JUL
19 | 1120 | 12 | 1520 | 7.9 | 16.4 | 8.3 | | | | | | AUG
30 | 1350 | 5.6 | 1500 | | 16.9 | 9.6 | | | | | | NOV
09 | 1000 | 2.8 | 2390 | 7.9 | 9.4 | 18.0 | | | | | | MAR 2000
14 | 1340 | .73 | 2790 | 8.3 | 8.3 | 29.4 | | | | | | | | | | | | | | | |
| | 091 | 134500 | LEROU | JX CREEK I | NEAR CEDA | REDGE, CO | . (LAT 38 | 55 35N L | ONG 107 4 | :7 35W) | | | JUN 2000
20 | 1245 | 1.7 | 91 | 8.0 | 12.1 | <.7 | | | | | | (| 9134700 | COV | V CREEK N | EAR CEDAR | EDGE, CO. | (LAT 38 5 | 5 34N LC | NG 107 47 | 31W) | | | JUN 2000 | | | | | | | | | | | | 20 | 1230 | 26 | 102 | 8.1 | 15.2 | <.7 | | | | | | | 38525 | 4107470701 | l dever ci | REEK AT M | OUTH (LAT | 38 52 54N | LONG 10 | 7 47 07W) | | | | JUN 2000
20 | 1400 | .24 | 998 | 8.6 | 17.7 | 3.4 | | | | | | | | | | | | | | | | | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |-----------------------|--|--|--|--|--|---|--|--|--|--| | 3844141 | 07350101 | COTTONWOO | D CREEK A | BV ASPEN I | DITCH, AT | G DRIVE | (LAT 38 4 | 4 14N LON | G 107 35 | 01W) | | JUL 2000
25 | | | | | | | | | | | | 0913 | 4200 | COTTON | WOOD CREE | K NEAR HO | TCHKISS, C | O. (LAT | 38 48 22N | LONG 107 | 41 12W) | | | MAY 1999
11 | | | | | | | | | | | | JUN
23 | 2 | 5.2 | 237 | 1130 | 11.7 | .5 | 16.0 | 1810 | 2.46 | 72.8 | | JUL
19 | 3 | 7.7 | 263 | 1590 | 22.1 | .5 | 16.9 | 2510 | 3.43 | 47.4 | | AUG
30
NOV | 2 | 5.5 | 264 | 1350 | 15.3 | .6 | 17.3 | 2140 | 2.92 | 76.4 | | 08
MAR 2000 | | | | | | | | | | | | 13
JUL | | | | | | | | | | | | 25 | | | | | | | | | | | | 384747107
OCT 1998 | 430501 SH | ORT DRAW | WEST OF C | TY FAIRGRO | DUNDS,AT E | OTCHKISS | (LAT 38 | 47 47N LO | NG 107 43 | 05W) | | 15
MAY 1999 | | | | | | | | | | | | 12
JUN | | | | | | | | | | | | 23
JUL | | | | | | | | | | | | 19
AUG | | | | | | | | | | | | 30
NOV
09 | | | | | | | | | | | | MAR 2000 | | | | | | | | | | | | | 134500 | LERO | UX CREEK | NEAR CEDA | REDGE, CO. | (LAT 38 | 55 35N L | ONG 107 4 | 7 35W) | | | JUN 2000 | | | | | | | | | | | | 20 |
09134700 |
CO | M CDEEK N | EAR CEDARI | TOGE CO | (T.AT 38 |
55 34N t∩ |
NG 107 47 |
31W) | | | JUN 2000 | 09134700 | CO | W CREEK N | EAR CEDARI | EDGE, CO. | (LAI 30 . | JJ J4N LO | NG 107 47 | JIW) | | | 20 | | | | | | | | | | | | | 38525 | 410747070 | 1 DEVER C | REEK AT MO | OUTH (LAT | 38 52 541 | N LONG 10 | 7 47 07W) | | | | JUN 2000
20 | | | | | | | | | | | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | | WATER-QUALIT | 1 1211111, 1 | WILDIC IDI | and ourobe | 110 1000 10 | J DEFIENDE | MC 2000 | |--|--|---|---|---|---|---|---| | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | | 385247107472501 | LEROUX CREEK | AT 3100 | ROAD, BE | ELOW DEVER | R CREEK (1 | LAT 38 52 | 47N LONG 107 47 25W) | | | | | , | | , | | | | | NOV 1999
09
MAR 2000 | 1020 | 2.2 | 947 | 8.4 | 6.2 | E2.0 | | | 14 | 1020 | 1.2 | 920 | 8.7 | 4.0 | | | 09135000 | LERO | UX CREEK | NEAR LAZ | ZEAR, CO. | (LAT 38 | 52 52N LON | NG 107 47 07W) | | | JUN 2000
20 | 1420 | 3.7 | 280 | 9.0 | 21.5 | E.7 | | 38510710746 | 5601 LEROUX | CREEK NEA | AR N AND | 3100 ROAT | OS (LAT 3) | 8 51 07N T | LONG 107 46 56W) | | 30310710710 | | CICEDIC IVE | ne iv invid | JIOU ROIL |)D (1111) | 5 51 071 v 1 | 30NG 107 10 30N7 | | | JUN 2000
20 | 1510 | .46 | 1380 | 8.8 | 26.2 | 7.4 | | 384944107463601 | TEROUX CREE | K ABV FT | PE MT CZ | ΔΝΔΤ.(NO 4) | DIVERSI | אר (ד.בעד אר | 3 49 44N LONG 107 46 36W) | | 301911107103001 | | 10 110 1 11 | ш пт. ст | шчш(по. г) | DIVERSI | SIV (11111 SC | 7 17 1 IIV BONG 107 10 50W7 | | | JUN 2000
20 | 0930 | 1.8 | 1320 | 8.5 | 13.1 | 7.2 | | | | | | | | | | | 384938107 | 463601 FIRE | mT. CANAI | L AT LERO | OUX CREEK | (LAT 38 | 49 38N LON | NG 107 46 36W) | | 384938107 | 463601 FIRE
JUN 2000 | mT. CANAI | L AT LERO | OUX CREEK | (LAT 38 | 49 38N LON | NG 107 46 36W) | | 384938107 | | mT. CANAI | E.20 | OUX CREEK | (LAT 38 - | 49 38N LON | NG 107 46 36W) | | | JUN 2000
20 | 0955 | E.20 | 135 | 8.1 | 13.7 | | | | JUN 2000
20 | 0955 | E.20 | 135 | 8.1 | 13.7 | <.7 | | 3849371074 | JUN 2000
20
63801 LEROUX
JUN 2000
20 | 0955
CREEK BI | E.20
ELOW FIRE | 135
E MT. CANA
2020 | 8.1
AL (LAT 3 | 13.7
8 49 37N I
16.6 | <.7
LONG 107 46 38W) | | 3849371074 | JUN 2000
20
63801 LEROUX
JUN 2000
20 | 0955
CREEK BI | E.20
ELOW FIRE | 135
E MT. CANA
2020 | 8.1
AL (LAT 3 | 13.7
8 49 37N I
16.6 | <.7
LONG 107 46 38W) | | 3849371074 | JUN 2000
20
63801 LEROUX
JUN 2000
20 | 0955
CREEK BI | E.20
ELOW FIRE | 135
E MT. CANA
2020 | 8.1
AL (LAT 3 | 13.7
8 49 37N I
16.6 | <.7
LONG 107 46 38W) | | 3849371074
38491510746080 | JUN 2000
20
63801 LEROUX
JUN 2000
20
1 LEROUX CRE
JUN 2000
20 | 0955
CREEK BI
1015
EK ABOVE | E.20 ELOW FIRE .05 JESSIE I | 135 E MT. CANA 2020 DITCH DIVE | 8.1
AL (LAT 3)
8.3
ERSION (LAT 3) | 13.7
8 49 37N I
16.6
AT 38 49 1 | <.7 LONG 107 46 38W) 140 L5N LONG 107 46 08W) | | 3849371074
38491510746080 | JUN 2000
20
63801 LEROUX
JUN 2000
20
1 LEROUX CRE
JUN 2000
20 | 0955
CREEK BI
1015
EK ABOVE | E.20 ELOW FIRE .05 JESSIE I | 135 E MT. CANA 2020 DITCH DIVE | 8.1
AL (LAT 3)
8.3
ERSION (LAT 3) | 13.7
8 49 37N I
16.6
AT 38 49 1 | <.7 LONG 107 46 38W) 140 L5N LONG 107 46 08W) 53.2 | | 3849371074
38491510746080
384853107451201 | JUN 2000
20
63801 LEROUX
JUN 2000
20
1 LEROUX CRE
JUN 2000
20
JESSIE DITCH
JUL 2000
25 | 0955
CREEK BI
1015
EK ABOVE
1015
AT 3250 | E.20 ELOW FIRE .05 JESSIE I .61 AND L RO | 135 E MT. CANA 2020 DITCH DIVE 2570 DADS, NEAR | 8.1
AL (LAT 33
8.3
ERSION (La
8.0
R HOTCHKI: | 13.7
8 49 37N I
16.6
AT 38 49 1
14.7
SS (LAT 38 | <.7 LONG 107 46 38W) 140 LSN LONG 107 46 08W) 53.2 8 48 53N LONG 107 45 12W) | | 3849371074
38491510746080
384853107451201 | JUN 2000 20 63801 LEROUX JUN 2000 20 1 LEROUX CRE JUN 2000 20 JESSIE DITCH JUL 2000 25 01 SEEP ALON | 0955
CREEK BI
1015
EK ABOVE
1015
AT 3250 | E.20 ELOW FIRE .05 JESSIE I .61 AND L RO | 135 E MT. CANA 2020 DITCH DIVE 2570 DADS, NEAR | 8.1
AL (LAT 33
8.3
ERSION (La
8.0
R HOTCHKI: | 13.7
8 49 37N I
16.6
AT 38 49 1
14.7
SS (LAT 38 | <.7 LONG 107 46 38W) 140 L5N LONG 107 46 08W) 53.2 8 48 53N LONG 107 45 12W) 10.4 | | 3849371074
38491510746080
384853107451201 | JUN 2000
20
63801 LEROUX
JUN 2000
20
1 LEROUX CRE
JUN 2000
20
JESSIE DITCH
JUL 2000
25 | 0955
CREEK BI
1015
EK ABOVE
1015
AT 3250 | E.20 ELOW FIRE .05 JESSIE I .61 AND L RO | 135 E MT. CANA 2020 DITCH DIVE 2570 DADS, NEAR | 8.1
AL (LAT 33
8.3
ERSION (La
8.0
R HOTCHKI: | 13.7
8 49 37N I
16.6
AT 38 49 1
14.7
SS (LAT 38 | <.7 LONG 107 46 38W) 140 L5N LONG 107 46 08W) 53.2 8 48 53N LONG 107 45 12W) 10.4 | | 3849371074
38491510746080
384853107451201
3848551074501 | JUN 2000 20 63801 LEROUX JUN 2000 20 1 LEROUX CRE JUN 2000 20 JESSIE DITCH JUL 2000 25 01 SEEP ALON JUN 2000 20 | 0955 CREEK BI 1015 EK ABOVE 1015 AT 3250 0815 G LEROUX | E.20 ELOW FIRE .05 JESSIE I .61 AND L RO | 135 E MT. CANA 2020 DITCH DIVE 2570 DADS, NEAF 626 ABOVE DUKE | 8.1
8.3
8.3
8.0
8 HOTCHKI:
8.2
E DITCH (: | 13.7
8 49 37N I
16.6
AT 38 49 1
14.7
SS (LAT 38
15.8
LAT 38 48 | <.7 LONG 107 46 38W) 140 L5N LONG 107 46 08W) 53.2 3 48 53N LONG 107 45 12W) 10.4 55N LONG 107 45 01W) | | 3849371074
38491510746080
384853107451201
3848551074501 | JUN 2000 20 63801 LEROUX JUN 2000 20 1 LEROUX CRE JUN 2000 20 JESSIE DITCH JUL 2000 25 01 SEEP ALON JUN 2000 20 | 0955 CREEK BI 1015 EK ABOVE 1015 AT 3250 0815 G LEROUX | E.20 ELOW FIRE .05 JESSIE I .61 AND L RO | 135 E MT. CANA 2020 DITCH DIVE 2570 DADS, NEAF 626 ABOVE DUKE | 8.1
8.3
8.3
8.0
8 HOTCHKI:
8.2
E DITCH (: | 13.7
8 49 37N I
16.6
AT 38 49 1
14.7
SS (LAT
38
15.8
LAT 38 48 | <.7 LONG 107 46 38W) 140 L5N LONG 107 46 08W) 53.2 8 48 53N LONG 107 45 12W) 10.4 55N LONG 107 45 01W) 9.4 | | 3849371074
38491510746080
384853107451201
3848551074501 | JUN 2000 20 63801 LEROUX JUN 2000 20 1 LEROUX CRE JUN 2000 20 JESSIE DITCH JUL 2000 25 01 SEEP ALON JUN 2000 20 | 0955 CREEK BI 1015 EK ABOVE 1015 AT 3250 0815 G LEROUX | E.20 ELOW FIRE .05 JESSIE I .61 AND L RO | 135 E MT. CANA 2020 DITCH DIVE 2570 DADS, NEAF 626 ABOVE DUKE | 8.1
8.3
8.3
8.0
8 HOTCHKI:
8.2
E DITCH (: | 13.7
8 49 37N I
16.6
AT 38 49 1
14.7
SS (LAT 38
15.8
LAT 38 48 | <.7 LONG 107 46 38W) 140 L5N LONG 107 46 08W) 53.2 8 48 53N LONG 107 45 12W) 10.4 55N LONG 107 45 01W) 9.4 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | | MVIRK GOVERI | I DAIA, | MUIRIC IRU | ICD OCTODE | 1 1000 10 | , ORE IRRIDER | 2000 | |----------------|-----------------------|----------|---|---|---------------|---------------------------|---| | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM) | ARD
UNITS) | TEMPER-
ATURE
WATER | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
01145) | | 38484210744390 | 1 LEROUX CRE | EK AT 3 | 30 ROAD, N | EAR HOTCH | KISS (LAT | 38 48 42N | LONG 107 44 39W) | | | | | | | | | | | | MAR 2000
14
JUN | 1115 | 1.3 | 1010 | 8.6 | 10.6 | 4.5 | | | 20 | 1150 | .52 | 1210 | 8.4 | 17.5 | 13.7 | | 09135900 | LEROU | X CREEK | AT HOTCHK | ISS, CO. | (LAT 38 4 | 7 53N LONG | 107 43 53W) | | | JUN 2000 | | | | | | | | | 20 | 1105 | 1.9 | 1240 | 8.1 | 16.1 | 5.0 | | 3847 | 32107434801 | LEROUX (| CREEK AT M | OUTH (LAT | 38 47 32 | N LONG 107 | 43 48W) | | | OCT 1998 | 1015 | 1.0 | 1000 | 0 0 | 10 5 | 5.0 | | | 14
MAY 1999 | 1215 | 12 | 1230 | 8.3 | 13.5 | 5.2 | | | 12 | 1140 | 4.0 | 1430 | 8.3 | 11.6 | 8.2 | | | AUG
30 | 1230 | 11 | 1300 | | 16.9 | 8.2 | | | NOV | | | | | | | | | 09
MAR 2000 | 1150 | 11 | 1140 | 8.3 | 10.6 | 6.6 | | | 14 | 1230 | 5.1 | 1190 | 8.5 | 11.3 | 7.6 | | | JUN
20 | 1340 | 3.7 | 1470 | 8 1 | 22.1 | 9.5 | | | | | | | | | | | 384 | 610107455001 | ALUM G | ULCH AT MO | UTH (LAT | 38 46 10N | LONG 107 | 45 50W) | | | OCT 1998
15 | 1.420 | 8.5 | 2450 | 8.4 | 13.0 | 2.1 | | | MAY 1999 | 1430 | 0.5 | 2450 | 0.4 | 13.0 | 2.1 | | | 12
AUG | 1200 | 16 | 1680 | 8.4 | 9.7 | 1.6 | | | 30 | 1110 | 11 | 2230 | 7.4 | 17.0 | 2.4 | | | NOV
10 | 1220 | 5.1 | 2440 | 8.3 | 6.2 | 2.8 | | | MAR 2000
14 | 0050 | 6.8 | 2220 | 8.5 | 3.9 | 3.2 | | | 11 | 0930 | 0.0 | 2220 | 0.5 | 3.9 | 3.2 | | 38475 | 6107490801 B | IG GULC | H AT HIGHW | AY 92 (LA | т 38 47 5 | 6N LONG 10 | 7 49 08W) | | | MAY 1999 | 1240 | 1 1 | 2650 | 7 7 | 1/ 5 | 8.6 | | | 12
AUG | 1240 | 1.1 | | 7.7 | 14.5 | 0.0 | | | 31
NOV | 1015 | .38 | 2140 | 7.8 | 15.8 | 8.1 | | | 09 | 1245 | 5.5 | 1320 | 8.2 | 8.3 | 6.7 | | | MAR 2000
14 | 1200 | 6.3 | 1140 | 8.6 | 7.3 | 7.2 | | | ±7 | 1200 | 0.3 | 1110 | 0.0 | 1.3 | 1.4 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |------------------|----------------------|---|--|--|---|--|---|--|---|---|---| | 093 | 136100 | NORT | H FORK GU | NNISON RI | VER NEAR | LAZEAR, CO | O. (LAT 38 | 8 47 00N | LONG 107 | 50 07W) | | | OCT 1998
16 | 1045 | 214 | 1210 | 8.3 | 10.1 | 2.0 | | | | | | | NOV
10
DEC | 1000 | 258 | 1130 | 8.5 | 2.0 | 2.1 | | 500 | 108 | 55.0 | 57.1 | | 10
JAN 1999 | 1400 | 192 | 1110 | 8.1 | 3.0 | 2.5 | | 500 | 113 | 53.3 | 55.4 | | 11
27
FEB | 1125
1310 | 128
180 | 1170
1270 | 8.4
8.5 | 1.5
4.5 | 2.3 | | 510
550 | 110
122 | 57.2
60.8 | 61.6
76.3 | | 08
23
MAR | 1100
1025 | 177
131 | 1110
1040 | 8.4
8.4 | 5.5
2.5 | 2.2 | | 490
450 | 108
97.3 | 53.7
50.9 | 61.8
60.1 | | 22
APR | 1025 | 395 | 559 | 8.2 | 6.5 | 2.6 | 2 | 220 | 50.5 | 22.5 | 29.0 | | 20
30
MAY | 1055
1145 | 348
e1190 | 564
644 | 8.1
8.1 | 9.5
9.0 | 1.2 |
<1 | 230
280 | 53.1
64.0 | 24.5
28.0 | 30.8
31.2 | | 13
24
JUN | 0820
1120 | e1080
e3050 | 465
267 | 8.0
8.4 | 9.7
10.0 | 1.1 <1.0 |
<1 | 190
110 | 47.6
27.8 | 17.6
8.88 | 20.5
10.3 | | 11
29
JUL | 1020
1145 | e1500
702 | 387
515 | 8.4
8.7 | 11.0
16.5 | <1.0
1.1 | | 160
230 | 40.2
56.0 | 14.1
20.9 | 15.0
21.5 | | 20
AUG | 0835 | 181 | 1460 | 8.3 | 17.5 | 3.8 | | 710 | 166 | 73.1 | 73.2 | | 12
31
SEP | 1030
1045 | 297
165 | 1210
1460 | 8.3
8.3 | 17.5
18.7 | 2.7
3.7 | 2 | 540
690 | 126
159 | 55.0
71.4 | 58.9
72.0 | | 22
OCT | 0930 | 269 | 1190 | 8.4 | 11.4 | 2.0 | | 560 | 130 | 56.7 | 61.7 | | 20
NOV | 1100 | 454 | 744 | 8.5 | 7.1 | <2.4 | | 350 | 84.9 | 34.0 | 35.6 | | 09
DEC | 1250 | 220 | 1070 | 8.5 | 9.5 | 3.5 | | 480 | 107 | 51.3 | 53.2 | | 10
JAN 2000 | 1125 | 143 | 1200 | 8.5 | 2.1 | 3.0 | | 530 | 118 | 58.2 | 76.3 | | 11
FEB | 1125 | 125 | 1120 | 8.4 | 1.3 | 5.7 | | 490 | 105 | 54.8 | 61.6 | | 02
MAR | 1240 | 120 | 1080 | 8.4 | 4.0 | 3.7 | | 460 | 97.8 | 51.8 | 63.8 | | 14
24
APR | 1100
1015 | 145
358 | 1090
608 | 8.6
8.4 | 8.4
7.6 | 2.7
1.5 | | 470
260 | 101
61.3 | 53.4
24.8 | 62.5
30.6 | | 07
MAY | 1000 | e850 | 339 | 8.2 | 6.9 | .9 | 1 | 140 | 34.1 | 12.3 | 16.5 | | 01
05
18 | 1000
0710
0915 | e1350
e2250
e940 | 252
195
413 | 8.3
8.1
8.3 | 7.1
8.3
8.8 | E.7
E.5
1.2 |

 | 100
77
170 | 26.1
20.6
41.8 | 9.16
6.20
15.6 | 10.7
8.3
17.5 | | JUN
09 | 0905 | 675 | 472 | 8.2 | 15.3 | 1.1 | | 190 | 45.5 | 17.7 | 20.2 | | JUL
07
AUG | 1225 | 73 | 1530 | 8.2 | 21.2 | 3.4 | | 690 | 150 | 76.7 | 80.4 | | 14 | 1130 | 116 | 1410 | 8.2 | 20.7 | 3.6 | | 660 | 154 | 67.9 | 72.9 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ANC
UNFLTRD
TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) | | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | CONSTI- | SOLIDS
DIS-
SOLVEI
(TONS
PER
AC-FT
(70303 | DIS- D SOLVED (TONS PER) DAY) | |-----------------|---|--|--|------------|--|--|---|--|-------------|---|--------------------------------| | 091 | 136100 | NORT | H FORK GU | NNISON RI | VER NEAR | LAZEAR, CO |). (LAT 3 | 8 47 00N | LONG 107 | 50 07W) | | | OCT 1998
16 | | | | | | | | | | | | | 10
DEC | 1 | 4.9 | 225 | | 389 | 8.8 | . 4 | 17.8 | 776 | 1.06 | 540 | | 10
JAN 1999 | 1 | 5.5 | 222 | | 383 | 8.8 | .5 | 20.1 | 772 | 1.05 | 400 | | 11
27
FEB | 1
1 | 5.4
5.1 | 243
236 | | 400
457 | 9.0
11.4 | .6
.5 | 19.6
18.5 | 809
892 | 1.10
1.21 | 280
434 | | 08
23
MAR | 1
1 | 4.7
4.6 | 219
223 | | 379
357 | 9.0
9.4 | . 4
. 4 | 17.0
17.6 | 765
731 | 1.04
.99 | 365
259 | | 22
APR | .9 | 2.5 | 135 | | 150 | 5.5 | . 2 | 13.6 | 355 | .48 | 379 | | 20
30
MAY | .9
.8 | 3.0
3.2 | 129
117 | | 159
210 | 4.7
5.5 | .2 | 12.7
12.4 | 365
425 | | 343
e1370 | | 13
24 | .6
.4 | 2.0
1.2 | | 110
73 | 116
56.2 | 3.0
1.6 | .2 | 11.1
9.8 | 288
160 | | e828
e1310 | | 11
29
JUL | .5
.6 | 1.4
1.9 | | 84
110 | 107
156 | 2.1
2.7 | .1 | 9.8
12.3 | 240
342 | .33 | e972
640 | | 20
AUG | 1 | 7.0 | | 257 | 562 | 9.4 | .5 | 22.3 | 1070 | 1.45 | 521 | | 12
31
SEP | 1
1 | 5.1
6.0 | | 241
252 | 438
572 | 8.9
10.8 | . 4
. 6 | 19.6
20.8 | 856
1060 | 1.16
1.45 | 687
474 | | 22
OCT | 1 | 5.1 | | 253 | 423 | 9.8 | .6 | 18.6 | 858 | 1.17 | 623 | | 20
NOV | .8 | 3.4 | | 188 | 216 | 4.7 | .3 | 16.3 | 508 | .69 | 623 | | 09
DEC | 1 | 4.9 | | 193 | 364 | <.3 | .5 | 18.7 | 715 | .97 | 424 | | 10
JAN
2000 | 1 | 5.6 | | 255 | 399 | 14.3 | .5 | 22.3 | 846 | 1.15 | 327 | | 11
FEB | 1 | 5.4 | | 239 | 374 | 9.9 | .5 | 21.6 | 776 | 1.06 | 262 | | 02
MAR | 1 | 5.7 | | 237 | 359 | 9.7 | .5 | 20.9 | 752 | 1.02 | 244 | | 14
24
APR | 1.8 | 4.8 | | 213
165 | 357
153 | 10.3
4.9 | .4 | 15.9
12.7 | 734
389 | 1.00
.53 | 287
376 | | 07
MAY | .6 | 1.9 | | 102 | 67.6 | 3.2 | .1 | 11.2 | 208 | .28 | 477 | | 01 | .5 | 1.4 | | 69 | 53.4 | 1.5 | .1 | 10.8 | 155 | .21 | 565 | | 05
18 | . 4
. 6 | 1.1
1.6 | | 56
90 | 35.5
115 | 1.1 | .1 | 9.8
10.9 | 117
259 | .16
.35 | 711
657 | | JUN
09 | .6 | 1.8 | | 96 | 132 | 2.3 | .2 | 9.9 | 288 | .39 | 524 | | JUL
07 | 1 | 7.5 | | 232 | 601 | 9.3 | .5 | 20.3 | 1080 | 1.48 | 215 | | AUG
14 | 1 | 7.0 | | 244 | 533 | 8.2 | .5 | 19.3 | 1010 | 1.37 | 316 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | | | ~ - | | | | | | | | | |-----------------------|-----------|---|--|--|---|--|--|---|---|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | | 38475210 | 7502201 St | JLPHUR GU | LCH AT HI | GHWAY 92 | (LAT 38 47 | 7 52N LON | IG 107 50 | 22W) | | | MAY 1999
17
AUG | 1055 | .33 | 1660 | 8.3 | 13.3 | 6.7 | | | | | | 31
NOV | 1125 | .06 | 5720 | 8.2 | 18.4 | 4.5 | | | | | | 09 | 1225 | .10 | 5350 | 8.0 | 5.4 | 14.4 | | | | | | MAR 2000
14 | 1220 | .09 | 6680 | 8.3 | 5.3 | 21.3 | | | | | | | 38480210 | 7522201 L | AWHEAD GU | LCH AT HI | GHWAY 92 | (LAT 38 48 | 02N LON | IG 107 52 | 22W) | | | MAY 1999 | | | | | | | | | | | | 17
AUG | 1050 | .80 | 1400 | 8.1 | 10.1 | 7.3 | | | | | | 31
NOV | 1030 | .14 | 2550 | 7.9 | 16.9 | 5.2 | | | | | | 10
MAR 2000 | 0920 | .19 | 7060 | 8.2 | 3.5 | 8.2 | | | | | | 14 | 1530 | .04 | 4990 | 7.7 | 8.4 | 6.7 | | | | | | | 3848121 | 07524501 | DASIS DIT | CH AT HIG | HWAY 92 (| LAT 38 48 | 12N LONG | 107 52 4 | 5W) | | | NOV 1999
09 | 1320 | 6.7 | 2580 | 8.0 | 9.1 | 16.0 | | | | | | 384643107 | 540301 UN | NAMED DRA | INAGE BEL | OW OASIS | POND, AT | CTY ROAD (| LAT 38 4 | 6 43N LON | G 107 54 | 03W) | | MAY 1999
17
JUN | 1155 | 9.8 | 2060 | 8.2 | 16.0 | 15.1 | | | | | | 24 | 1030 | 8.3 | 1840 | 7.9 | 20.8 | 6.6 | | | | | | JUL
19 | 1005 | 3.0 | 2210 | 8.0 | 20.8 | 5.5 | | | | | | AUG
31 | 1110 | 5.0 | 2250 | 8.2 | 21.1 | 6.9 | | | | | | NOV
10 | 0955 | 3.0 | 2730 | 8.2 | 5.9 | 12.2 | | | | | | MAR 2000
14 | 1110 | 3.1 | 2760 | 8.3 | 7.7 | 13.8 | | | | | | 3853141075 | 04301 CUR | RANT CREEK | K 0.1 MI | ABOVE DRY | CREEK, N | R CEDAR ME | ESA (LAT | 38 53 14N | LONG 107 | 50 43W) | | JUL 2000
07 | 1025 | 2.1 | 1720 | 7.9 | 15.8 | 2.3 | | | | | | | 09137050 | CUI | RRANT CRE | EK NEAR R | EAD, CO. | (LAT 38 47 | 05N LON | IG 107 56 | 18W) | | | MAY 1999 | | | | | | | | | | | | 17
JUN | 1155 | 14 | 2390 | 8.2 | 10.8 | 19.0 | | | | | | 24
JUL | 1025 | 11 | 2710 | 8.1 | 16.9 | 12.2 | 1300 | 241 | 162 | 200 | | 20 | 0910 | 4.9 | 3730 | 8.0 | 17.0 | 15.8 | 1800 | 322 | 233 | 310 | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | SODIUM AD- SORP- TION RATIO (00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |----------------|-------------------------------------|--|--|---|--|---|--|--|--|--| | | 38475210 | 7502201 S | ULPHUR GU | LCH AT HI | GHWAY 92 | (LAT 38 4 | / 52N LON | G 107 50 | 22W) | | | MAY 1999 | | | | | | | | | | | | 17 | | | | | | | | | | | | AUG
31 | | | | | | | | | | | | NOV | | | | | | | | | | | | 09
MAR 2000 | | | | | | | | | | | | 14 | | | | | | | | | | | | | 20400010 | | | | ~ | / 20 A | | ~ 105 50 | 00*** | | | | 38480210 | 7522201 L | AWHEAD GU | LCH AT HI | GHWAY 92 | (LAT 38 48 | 3 U2N LON | G 107 52 | 22W) | | | MAY 1999 | | | | | | | | | | | | 17
AUG | | | | | | | | | | | | 31 | | | | | | | | | | | | NOV | | | | | | | | | | | | 10
MAR 2000 | | | | | | | | | | | | 14 | | | | | | | | | | | | | 2040101 | 07504501 | 03.070 DTF | | | | 101 1010 | 107 50 4 | Fr.7.) | | | | 3848121 | 07524501 | OASIS DIT | CH AT HIG | HWAY 92 (. | LAT 38 48 | 12N LONG | 107 52 4 | 5W) | | | NOV 1999 | | | | | | | | | | | | 09 | | | | | | | | | | | | 384643107 | 7540301 UNI | NAMED DRA | INAGE BEL | OW OASIS | POND, AT | CTY ROAD | (LAT 38 4 | 6 43N LON | G 107 54 | 03W) | | 1000 | | | | | | | | | | | | MAY 1999
17 | | | | | | | | | | | | JUN | | | | | | | | | | | | 24
JUL | | | | | | | | | | | | 19 | | | | | | | | | | | | AUG | | | | | | | | | | | | 31
NOV | | | | | | | | | | | | 10 | | | | | | | | | | | | MAR 2000 | | | | | | | | | | | | 14 | | | | | | | | | | | | 3853141075 | 04301 CUR | RANT CREE | K 0.1 MI | ABOVE DRY | CREEK, N | R CEDAR M | ESA (LAT | 38 53 14N | LONG 107 | 50 43W) | | JUL 2000 | | | | | | | | | | | | 07 | 09137050 | CU | RRANT CRE | EK NEAR R | EAD, CO. | (LAT 38 4 | 7 05N LON | G 107 56 | 18W) | | | MAY 1999 | | | | | | | | | | | | 17 | | | | | | | | | | | | JUN
24 | 2 | 14.0 | 286 | 1370 | 84.4 | .6 | 20.4 | 2290 | 3.07 | 67.7 | | JUL | | | | | | | | | | | | 20 | 3 | 17.6 | 324 | 2010 | 30.9 | .6 | 24.8 | 3100 | 4.27 | 41.7 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM AD- SORP- TION RATIO (00931) | | |----------|------|---|--|--|---|--|--|---|---|---|-------------------------------------|--| | | 091 | 37050 | CURRAN | T CREEK N | NEAR READ, | CO. (LAT | 38 47 05 | N LONG 10 | 7 56 18W) | | | | | AUG 1999 | 1055 | 2.8 | 4260 | 8.1 | 19.0 | 21.5 | | | | | | | | DATE | TIME | PER
SECOND
(00061) | ANCE
(US/CM)
(00095) | ARD
UNITS)
(00400) | WATER
(DEG C)
(00010) | (UG/L
AS SE)
(01145) | AS
CACO3)
(00900) | (MG/L
AS CA)
(00915) | (MG/L
AS MG)
(00925) | (MG/L
AS NA)
(00930) | RATIO
(00931 | |-----------------------|-------|--------------------------|----------------------------|--------------------------|-----------------------------|----------------------------|-------------------------|----------------------------|----------------------------|----------------------------|-----------------| | | 09 | 137050 | CURRAN | T CREEK N | IEAR READ, | CO. (LAT | 38 47 05 | 5N LONG 10 | 7 56 18W) | | | | AUG 1999
31
NOV | 1055 | 2.8 | 4260 | 8.1 | 19.0 | 21.5 | | | | | | | 09
MAR 2000 | 1455 | 8.3 | 3750 | 8.1 | 10.0 | 30.0 | | | | | | | 14 | 1035 | 4.3 | 4480 | 8.4 | 5.6 | 43.6 | | | | | | | JUL
07 | 0845 | 1.2 | 3960 | 7.8 | 16.3 | 10.0 | | | | | | | | 38462 | 4107570701 | GUNNISON | RIVER AT | OLD AUSTI | N BRIDGE | (LAT 38 4 | 16 24N LON | IG 107 57 | 07W) | | | MAY 1999 | 1205 | 0700 | 204 | 0.1 | 10.5 | 1.0 | | | | | | | 17
AUG | 1325 | 2790 | 324 | 8.1 | 10.5 | 1.3 | | | | | | | 31
NOV | 0830 | 1010 | 549 | 8.0 | 19.0 | 1.6 | 230 | 61.1 | 19.6 | 21.6 | .6 | | 10
MAR 2000 | 0753
 1100 | 432 | 8.0 | 7.1 | 1.2 | 180 | 45.3 | 15.8 | 17.4 | .6 | | 15 | 0900 | 921 | 456 | 8.2 | 4.4 | 1.1 | 180 | 43.1 | 16.9 | 20.0 | .7 | | | 384 | 60410757070 | 1 PEACH V | ALLEY ARE | ROYO NEAR | MOUTH (LA | т 38 46 (|)4N LONG 1 | .07 57 07W |) | | | MAY 1999
18
AUG | 1345 | 7.1 | 1140 | 8.1 | 14.6 | 5.3 | | | | | | | 31
NOV | 1041 | 3.7 | 613 | 8.2 | 21.0 | 4.7 | | | | | | | 09
DEC | 1425 | 3.2 | 5990 | 7.8 | 9.4 | 95.0 | | | | | | | 10
MAR 2000 | 1005 | .69 | 6740 | 8.2 | .0 | 20.4 | | | | | | | 15 | 1010 | .21 | 7420 | 8.4 | 3.0 | 15.4 | | | | | | | | | 384649107 | 570501 AL | FALFA RUN | I AT AUSTI | N (LAT 38 | 46 49N I | LONG 107 5 | 7 05W) | | | | MAY 1999 | 1000 | | 0050 | 0.1 | 11.0 | 15.5 | | | | | | | 18
JUN | 1030 | 5.6 | 2050 | 8.1 | 11.2 | 17.5 | | | | | | | JUL | 1115 | 4.8 | 2070 | 8.1 | 16.6 | 16.7 | | | | | | | 20
AUG | 0945 | 6.0 | 2050 | 8.0 | 16.1 | 10.7 | | | | | | | 31
NOV | 1110 | 4.4 | 2090 | 7.9 | 18.5 | 13.2 | | | | | | | 09
MAR 2000 | 1215 | 2.4 | 2690 | 8.1 | 10.7 | 18.1 | | | | | | | 15 | 1035 | .75 | 2550 | 8.3 | 7.6 | 16.4 | JUL 20 0945 6.0 2050 8.0 16.1 10.7 AUG 31 1110 4.4 2090 7.9 18.5 13.2 NOV 09 1215 2.4 2690 8.1 10.7 18.1 MAR 2000 15 1035 .75 2550 8.3 7.6 16.4 384551107591901 SUNFLOWER DRAIN AT HIGHWAY 92,NEAR READ (LAT 38 45 51N LONG 107 59 19W) NOV 1998 10 0815 10 3510 8.5 3.0 44.7 1100 225 129 531 7 | 24 | 1115 | 4.8 | 2070 | 8.1 | 16.6 | 16.7 | | | | | | |---|----|----------|---------|-----------|----------|---------|--------------|------|-----------|----------|---------|---| | 31 1110 4.4 2090 7.9 18.5 13.2 NOV 09 1215 2.4 2690 8.1 10.7 18.1 MAR 2000 15 1035 .75 2550 8.3 7.6 16.4 384551107591901 SUNFLOWER DRAIN AT HIGHWAY 92,NEAR READ (LAT 38 45 51N LONG 107 59 19W) NOV 1998 | | 0945 | 6.0 | 2050 | 8.0 | 16.1 | 10.7 | | | | | | | 09 1215 2.4 2690 8.1 10.7 18.1 MAR 2000 15 1035 .75 2550 8.3 7.6 16.4 | 31 | 1110 | 4.4 | 2090 | 7.9 | 18.5 | 13.2 | | | | | | | 15 1035 .75 2550 8.3 7.6 16.4 384551107591901 SUNFLOWER DRAIN AT HIGHWAY 92,NEAR READ (LAT 38 45 51N LONG 107 59 19W) NOV 1998 | 09 | 1215 | 2.4 | 2690 | 8.1 | 10.7 | 18.1 | | | | | | | NOV 1998 | | 1035 | .75 | 2550 | 8.3 | 7.6 | 16.4 | | | | | | | | | 38455110 | 7591901 | SUNFLOWER | DRAIN AT | HIGHWAY | 92,NEAR READ | (LAT | 38 45 51N | LONG 107 | 59 19W) | | | | | 0815 | 10 | 3510 | 8.5 | 3.0 | 44.7 | 1100 | 225 | 129 | 531 | 7 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |-----------------------|--|---|--|--|--|---|--|--|--|--| | | 09137050 | CU | RRANT CRE | EK NEAR RI | EAD, CO. (| LAT 38 4 | 7 05N LON | IG 107 56 | 18W) | | | AUG 1999
31
NOV | | | | | | | | | | | | 09 | | | | | | | | | | | | MAR 2000
14 | | | | | | | | | | | | 07 | | | | | | | | | | | | 20. | 4604107570 | 701 CUBBUT | CON DIVIED | AT OLD A | IOMINI DDII | OCE (TAIL | 20 46 24% | T T ONG 107 | F7 07W) | | | 384 | 102410/5/0 | /UI GUNNI | SON KIVER | . AI OLD A | JSIIN BRII | JGE (LAI | 38 40 Z4r | LONG 107 | 5/ U/W) | | | MAY 1999
17
AUG | | | | | | | | | | | | 31 | 2.3 | | 122 | 149 | 4.8 | .3 | 12.5 | 345 | .47 | 940 | | NOV
10
MAR 2000 | 2.2 | | 112 | 99.5 | 4.0 | .2 | 13.2 | 265 | .36 | 787 | | 15 | 2.2 | | 112 | 111 | 5.2 | .2 | 11.9 | 277 | .38 | 689 | | | 2046041075 | 70701 DEA | OII 1731 1 DV | ADDOVO M | TAD MOLIUM | / T T T 20 | 46 04N TO | NG 107 F7 | 0.7141) | | | • | 30400410/3 | /U/UI PEA | CH VALLEI | ARROYO NI | LAR MOUIN | (LIAI 30 | 40 04W TC | MG 107 37 | 0 / W) | | | MAY 1999 | | | | | | | | | | | | 18
AUG | | | | | | | | | | | | 31
NOV | | | | | | | | | | | | 09
DEC | | | | | | | | | | | | 10
MAR 2000 | | | | | | | | | | | | 15 | | | | | | | | | | | | | 38464 | 910757050 | 1 ALFALFA | RUN AT AU | JSTIN (LAT | 38 46 4 | 9N LONG 1 | .07 57 05W |) | | | MAY 1999
18
JUN | | | | | | | | | | | | 24 | | | | | | | | | | | | JUL
20 | | | | | | | | | | | | AUG | | | | | | | | | | | | 31
NOV | | | | | | | | | | | | 09 | | | | | | | | | | | | MAR 2000
15 | | | | | | | | | | | | 13 | | | | | | | | | | | | | 5110759190 | 1 SUNFLOW | ER DRAIN | AT HIGHWAY | 92,NEAR | READ (LA | г 38 45 5 | 1 LONG 1 | 07 59 19W |) | | NOV 1998
10 | 7.7 | 243 | | 1780 | 26.8 | .3 | 11.4 | 2860 | 3.89 | 78.8 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | | | | ~ - | • | | | | | | | | |----------------------------|-----------------|---|--|---|---|--|--|--|---|--|---| | DATE
3 | TIME
8455110 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
7591901 SU | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) RAIN AT H | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147)
D (LAT 38 | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | | | | | | | | | | | | | | DEC 1998
10
JAN 1999 | 1230 | 3.9 | 4100 | 8.4 | 2.0 | 53.3 | | 1300 | 272 | 152 | 581 | | 11
MAY | 1315 | 8.3 | 2600 | 8.4 | 1.0 | 33.4 | | 770 | 158 | 91.7 | 337 | | 18
JUN | 1115 | 12 | 1840 | 8.0 | 11.8 | 17.2 | | | | | | | 11
JUL | 0945 | 62 | 1320 | 8.3 | 13.5 | 14.1 | | 480 | 125 | 39.8 | 107 | | 19
AUG | 1335 | 89 | 1280 | 8.0 | 18.1 | 9.7 | | 490 | 131 | 38.6 | 101 | | 31
NOV | 1150 | 101 | 1180 | 8.1 | 18.7 | 12.0 | | 420 | 111 | 35.4 | 92.9 | | 10
FEB 2000 | 1100 | 11 | 3790 | 8.2 | 6.8 | 45.0 | | | | | | | 22
MAR | 0910 | 2.6 | 7590 | 8.3 | 6.0 | 102 | 107 | | | | | | 15
APR | 1000 | 2.4 | 7980 | 8.2 | 6.4 | 58.6 | | 2300 | 430 | 290 | 1340 | | 04 | 1110 | 85 | 813 | 8.4 | 8.2 | 6.5 | | 270 | 69.1 | 24.1 | 64.8 | | 17
MAY | 0945 | 24 | 1210 | 8.3 | 8.9 | 12.6 | | 360 | 86.2 | 35.3 | 128 | | 01 | 0925 | 19 | 1450 | 8.3 | 9.7 | 15.8 | | 470 | 115 | 43.5 | 148 | | 15 | 1455 | 40 | 1380 | 8.2 | 14.4 | 14.4 | | 480 | 126 | 39.8 | 123 | | JUN | | | | | | | | | | | | | 02 | 1000 | 33 | 1200 | 8.1 | 14.9 | 8.9 | | 420 | 111 | 35.0 | 96.3 | | 15
26 | 1135
1150 | 23
46 | 1660
1550 | 8.2
8.2 | 17.2
17.5 | 23.7
18.5 | | 590
520 | 149
132 | 51.7
47.0 | 157
153 | | JUL | 1130 | 40 | 1330 | 0.2 | 17.5 | 10.5 | | 320 | 132 | 47.0 | 133 | | 12 | 0915 | 39 | 1550 | 8.1 | 17.9 | 15.3 | | 530 | 137 | 46.4 | 136 | | 25 | 1150 | 19 | 1840 | 8.1 | 19.8 | 16.7 | | 640 | 162 | 56.0 | 161 | | AUG | | | | | | | | | | | | | 07 | 1050 | 34 | 1430 | 8.1 | 16.6 | 16.4 | | 490 | 127 | 43.1 | 119 | | 18
SEP | 0910 | 40 | 1440 | 8.1 | 17.2 | 15.3 | | 530 | 136 | 45.9 | 116 | | 01 | 0845 | 68 | 1360 | 8.1 | 16.1 | 13.6 | | 490 | 127 | 41.2 | 104 | | 08 | 0935 | 73 | 1420 | 8.1 | 15.9 | 15.8 | | 540 | 143 | 44.6 | 119 | | 22 | 1015 | 72 | 1470 | 8.2 | 14.0 | 15.6 | | 530 | 134 | 46.8 | 124 | | 38 | 5708107 | 533701 SUR | FACE CREE | K ABV MIL | K CREEK, | AT U50 RO | AD (LAT 3 | 8 57 08N | LONG 107 | 53 37W) | | | TIME 0000 | | | | | | | | | | | | | JUN 2000
26 | 0945 | 47 | 76 | 8.2 | 10.8 | <.7 | | | | | | | ۷0 | U743 | ±/ | 70 | 0.4 | 10.0 | <./ | | | | | | | 3 | 8481610 | 7593801 SU | RFACE CRE | EK AT 197 | 5 ROAD, N | EAR MOUTH | (LAT 38 | 48 16N L | ONG 107 59 | 9 38W) | | | | | | | | • | | | | | • | | | JUN 2000
26 | 1055 | 3.7 | 658 | 8.4 | 16.4 | 1.1 | | | | | | | | | | | | | | | | | | | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued WATER-QUALITY DATA, WATER YEARS OCTOBER 1998 TO SEPTEMBER 2000 | DATE | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | TIT 4.5
LAB
(MG/L
AS
CACO3)
(90410) |
ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
D (LAT 38 | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |----------------|--|--|--|--|--|--|--|--|--|--|--| | DEC 1998 | | | | | | | | | | | | | 10
JAN 1999 | 7 | 9.1 | 255 | | 2220 | 32.2 | .3 | 10.1 | 3430 | 4.66 | 36.2 | | 11 | 5 | 5.8 | 194 | | 1240 | 19.0 | .3 | 11.3 | 1980 | 2.70 | 44.5 | | MAY
18 | | | | | | | | | | | | | JUN
11 | 2 | 4.4 | | 167 | 529 | 8.1 | .3 | 12.7 | 927 | 1.26 | 154 | | JUL | 2 | 4.2 | | 165 | F14 | 8.6 | . 4 | 15.0 | 010 | 1.24 | 219 | | 19
AUG | | 4.3 | | 165 | 514 | | | | 910 | | | | 31
NOV | 2 | 3.5 | | 157 | 469 | 6.2 | .3 | 12.6 | 825 | 1.12 | 225 | | 10
FEB 2000 | | | | | | | | | | | | | 22 | | | | | | | | | | | | | MAR
15 | 12 | 15.7 | | 370 | 4520 | 75.6 | .3 | 5.3 | 6900 | 9.38 | 44.9 | | APR
04 | 2 | 2.8 | | 127 | 290 | 5.6 | .3 | 12.1 | 545 | .74 | 125 | | 17 | 3 | 4.0 | | 136 | 472 | 9.0 | .3 | 12.1 | 828 | 1.13 | 54.3 | | MAY | 2 | | | 154 | | 10.0 | 2 | 10.0 | 1040 | | FO 1 | | 01
15 | 3
2 | 5.6
5.2 | | 154
162 | 611
553 | 10.2
9.4 | .3 | 12.9
13.3 | 1040
967 | 1.41
1.31 | 52.1
104 | | JUN | 2 | 3.4 | | 102 | 333 | 9.4 | . 4 | 13.3 | 907 | 1.31 | 104 | | 02 | 2 | 4.2 | | 150 | 475 | 7.6 | .3 | 13.4 | 834 | 1.13 | 74.3 | | 15 | 3 | 4.9 | | 190 | 696 | 10.5 | . 4 | 14.6 | 1200 | 1.63 | 73.1 | | 26
JUL | 3 | 4.9 | | 172 | 636 | 9.8 | .3 | 13.0 | 1100 | 1.49 | 136 | | 12 | 3 | 4.7 | | 181 | 634 | 8.8 | . 3 | 14.5 | 1090 | 1.48 | 115 | | 25 | 3 | 5.7 | | 204 | 784 | 10.8 | . 4 | 15.4 | 1320 | 1.79 | 66.5 | | AUG | | | | | | | | | | | | | 07 | 2 | 4.2 | | 173 | 581 | 8.0 | .3 | 13.6 | 1000 | 1.36 | 92.6 | | 18
SEP | 2 | 4.4 | | 181 | 606 | 8.5 | . 4 | 14.2 | 1040 | 1.41 | 113 | | 01 | 2 | 4.0 | | 182 | 530 | 7.9 | .3 | 14.9 | 939 | 1.28 | 172 | | 08 | 2 | 4.4 | | 184 | 555 | 7.9 | .5 | 16.1 | 1000 | 1.36 | 197 | | 22 | 2 | 4.5 | | 184 | 608 | 8.5 | . 4 | 13.4 | 1050 | 1.43 | 204 | | 3 | 3857081075 | 33701 SUF | RFACE CREE | K ABV MII | K CREEK, | AT U50 RO | AD (LAT 3 | 8 57 08N | LONG 107 | 53 37W) | | | JUN 2000 | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 384816107 | 593801 SU | JRFACE CRE | EK AT 197 | 75 ROAD, N | NEAR MOUTH | (LAT 38 | 48 16N LC | NG 107 59 | 38W) | | JUN 2000 26... # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | | | ~ - | | | | | | | | | | |-----------------------|-----------|---|--|--|---|--|--|---|---|---|--| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | | | 0914420 | 0 | TONGUE CR | EEK AT CO | RY, CO. (| LAT 38 47 | 16N LONG | 107 59 4 | 1W) | | | | MAY 1999
18 | 1115 | 24 | 1630 | 8.2 | 12.6 | 4.1 | | | | | | | JUN
24 | 1200 | 34 | 1430 | 8.2 | 20.7 | 4.5 | 630 | 134 | 71.5 | 85.8 | | | JUL
20 | 1025 | 41 | 1560 | 8.2 | 17.1 | 4.7 | 700 | 151 | 79.5 | 93.1 | | | AUG
31 | 1220 | 38 | 1480 | 8.4 | 18.8 | 5.4 | | | | | | | NOV
10 | 1215 | 33 | 1560 | 8.4 | 7.3 | 4.8 | 690 | 140 | 81.9 | 87.6 | | | MAR 2000
15 | 1050 | 29 | 1200 | 8.5 | 5.8 | 4.0 | 490 | 101 | 57.9 | 72.0 | | | JUN
05 | 0855 | 10 | 2000 | 8.1 | 16.0 | 9.8 | | | | | | | | 38463 | 510801030 | 1 TONGUE | CREEK AT | MOUTH (LA | г 38 46 35 | N LONG 1 | .08 01 03W |) | | | | JUN 2000
05 | 1000 | 12 | 2120 | 8.2 | 16.9 | 12.0 | | | | | | | 3845561 | .08024601 | HARTLAND | DITCH NE. | AR GUNNIS | ON R.DIVE | RSION (LAT | 38 45 5 | 6N LONG 1 | 08 02 46W | 1) | | | MAY 1999 | | | | | | | | | | | | | 18
SEP | 1230 | 33 | 380 | 8.0 | 10.8 | 1.4 | | | | | | | 01
NOV | 1005 | 36 | 650 | 8.1 | 15.1 | 3.0 | | | | | | | 10 | 0940 | 20 | 589 | 8.3 | 7.1 | E2.2 | | | | | | | | 384459 | 108033201 | BONAFIDE | DITCH AT | DELTA (L | AT 38 44 5 | 9N LONG | 108 03 32 | W) | | | | MAY 1999
19
SEP | 0955 | 75 | 1390 | 7.9 | 12.2 | 12.8 | | | | | | | 01
NOV | 1010 | 96 | 1870 | 7.8 | 16.4 | 18.7 | 640 | 176 | 48.8 | 170 | | | 10
MAR 2000 | 1110 | 34 | 1670 | 8.3 | 7.3 | 11.9 | 660 | 182 | 50.9 | 122 | | | 15 | 1140 | 2.1 | 5090 | 8.0 | 7.1 | 34.2 | 1900 | 476 | 176 | 664 | | | 384544 | 10806000 | 1 EAST UN | NNAMED DR. | AIN AT HW | Y 50, NR | DELTA (LAT | 38 45 4 | 4N LONG 1 | 08 06 00W | 1) | | | APR 1999
27 | 1040 | 7.1 | 1090 | 8.1 | 10.8 | 5.8 | | | | | | | 07 | 1010 | 3.2 | 1060 | 8.1 | 14.5 | 4.6 | | | | | | | NOV
16 | 1120 | .12 | 1110 | 8.2 | 4.2 | 6.6 | | | | | | | MAR 2000
20 | | | | | | | | | | | | | SEP
07 | | | | | | | | | | | | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | SODIUM AD- SORP- TION RATIO (00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |---|-------------------------------------|---|--|--|--|---|--|--|--|--| | | 0914420 | r 0 | ONGUE CR | EEK AT COP | RY, CO. (I | LAT 38 47 | 16N LONG | 107 59 4 | 1W) | | | MAY 1999
18
JUN | | | | | | | | | | | | 24 | 1 | 8.2 | 317 | 513 | 7.4 | .6 | 31.3 | 1040 | 1.42 | 96.8 | | 20 | 2 | 8.6 | 325 | 565 | 8.0 | .6 | 35.3 | 1140 | 1.54 | 127 | | AUG
31 | | | | | | | | | | | | NOV
10 | 1 | 8.7 | 307 | 555 | 7.3 | .6 | 35.2 | 1100 | 1.50 | 98.7 | | MAR 2000
15 | 1 | 5.9 | 272 | 375 | 6.6 | .4 | 26.7 | 809 | 1.10 | 64.0 | | JUN
05 | | | | | | | | | | | | | 38463 | 5108010301 | TONGUE | CREEK AT N | MOUTH (LAT | r 38 46 3! | 5N LONG 1 | 08 01 03W |) | | | JUN 2000 | | | | | , | | | | • | | | 05 | | | | | | | | | | | | 384556 | 108024601 | HARTLAND | DITCH NE | AR GUNNISC | ON R.DIVER | RSION (LA | г 38 45 5 | 6N LONG 1 | 08 02 46W | .) | | MAY 1999
18
SEP | | | | | | | | | | | | 01
NOV | | | | | | | | | | | | 10 | | | | | | | | | | | | | 384459 | 108033201 | DOM: 0100 | | | | | | | | | MAY 1999
19 | | | BONAFIDE | DITCH AT | DELTA (LA | AT 38 44 ! | 59N LONG | 108 03 32 | W) | | | SEP | | | BONAFIDE | DITCH AT | DELTA (LA | AT 38 44 !
 | 59N LONG | 108 03 32 | W) | | | 01 |
3 |
4.5 | | | | | 59N LONG

15.5 | 108 03 32

1340 | W)

1.82 |
347 | | 01
NOV
10 | | | | | | | | | |
347
114 | | 01
NOV | 3 | 4.5 |
184 | |
13.9 |
.5 |
15.5 |
1340 | 1.82 | | | 01
NOV
10
MAR 2000 | 3
2
7 | 4.5
3.8
10.2 |
184
171
289 |
800
734 | 13.9
10.3
43.3 |
.5
.5 |
15.5
15.3
9.3 |
1340
1220
4380 |
1.82
1.66
5.96 | 114 | | 01
NOV
10
MAR 2000 | 3
2
7 | 4.5
3.8
10.2 |
184
171
289 |
800
734
2830 | 13.9
10.3
43.3 |
.5
.5 |
15.5
15.3
9.3 |
1340
1220
4380 |
1.82
1.66
5.96 | 114 | | 01
NOV
10
MAR 2000
15
38454
APR 1999
27
SEP | 3
2
7 | 4.5
3.8
10.2
1 EAST UNIN |
184
171
289 |

800
734
2830 | 13.9
10.3
43.3
7 50, NR I |
.5
.5 |
15.5
15.3
9.3 |
1340
1220
4380
4N LONG 1 |
1.82
1.66
5.96 | 114 | | 01 NOV 10 MAR 2000 15 38454 APR 1999 27 SEP 07 NOV | 3
2
7
410806000 | 4.5
3.8
10.2 |
184
171
289 |
800
734
2830 | 13.9
10.3
43.3 |
.5
.5 |
15.5
15.3
9.3 |
1340
1220
4380 |
1.82
1.66
5.96 | 114 25.3 | | 01
NOV
10
MAR 2000
15
38454
APR 1999
27
SEP
07 | 3
2
7
410806000 | 4.5
3.8
10.2
1 EAST UNIN |
184
171
289 |
800
734
2830 | 13.9
10.3
43.3
7 50, NR I |
.5
.5 |
15.5
15.3
9.3 |
1340
1220
4380
4N LONG 1 |
1.82
1.66
5.96 | 114 25.3 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | |-----------------------|--------------|---|--|---|---|--|---|--|---|---|---|--| | | 38454 | 5108061601 | WEST UNN | AMED DRAI | N AT HWY | 50, NEAR | DELTA (LAT | г 38 45 4 | 15N LONG 1 | 08 06 16W | 1) | | | APR 1999
27
JUN | 1145 | 12 | 1010 | 8.0 | 12.2 | 3.6 | | | | | | | | 28
SEP | 1040 | 1.5 | 1010 | 7.8 | 17.2 | 2.0 | | | | | | | | 07 | 1100 | 11 | 941 | 8.3 | 15.7 | 2.8 | | | | | | | | NOV
16 | 1200 | 1.6 | 1070 | 8.1 | 5.4 | 4.9 | | | | | | | | | | 384448 | 108070301 | CUMMINGS | GULCH AT | MOUTH (L | AT 38 44 4 | 18N LONG | 108 07 031 | W) | | | | APR 1999
27
SEP | 1405 | 61 | 1140 | 8.1 | 12.2 | 3.4 | | | | | | | | 07 | 1140 | 69 | 1260 | 8.0 | 15.9 | 3.9 | | | | | | | | NOV
17 | 0750 | 6.0 | 2320 | 8.0 | 6.1 | 8.4 | | | | | | | | MAR 2000
20 | 1020 | 2.3 | 2460 | 8.1 | 4.6 | 12.7 | | | | | | | | 38 | 34013108 | 8091401 RO | UBIDEAU C | REEK UPST | REAM OF U | NCOMPAHGR | E PROJECT | (LAT 38 | 40 13N LO | NG 108 09 | 14W) | | | APR 1999
30 | 1040 | 296 | 204 | 8.5 | 6.5 | <1.0 | <1 | 52 | 14.5 | 3.91 | 22.0 | 1 | | JUN
21 | 1015 | 18 | 354 | 8.5 | 19.0 | <1.0 | | 130 | 35.4 | 8.97 | 23.3 | .9 | | JUL
20 | 1250 | 3.1 | 672 | 8.5 | 25.5 | <1.0 | | 200 | 56.4 | 14.3 | 61.0 | 2 | | | 09150 | 500 | ROUBIDEA | U CREEK A | T MOUTH, | NEAR DELT | A, CO. (LA | AT 38 44 | 06N LONG | 108 09 40 | W) | | | APR 1999 | 1405 | 104 | 514 | 8.1 | 12 5 | -1 0 | | | | | | | | 27
JUN | 1425 | 184
124 | | | 13.5 | <1.0
2.7 | | | 148 | 35.9 | | .8 | | 21
JUL | 1155
1400 | 102 | 1080
1210 | 8.3 | 19.0
21.5 | 2.1 | | 520
580 | 164 | 41.9 | 42.9
52.9 | 1 | | 20
SEP | | | | 8.4 | | | | | | | | _ | | 07
NOV | 1305 | 134 | 1140 | 8.2 | 16.8 | 2.4 | | 550 | 156 | 39.2 | 40.5 | .8 | | 16
MAR 2000 | 1240 | 29 | 1730 | 8.2 | 6.2 | 3.7 | | | | | | | | 20 | 1145 | 77 | 850 | 8.2 | 4.9 | 3.0 | | | | | | | | 7DD 1000 | 384 | 2101081118 | UI ALKALI | CREEK BE | LOW HWY 5 | U, NEAR D | ELTA (LAT | 38 45 10 | N LONG 10 | 8 II 18W) | | | | APR 1999
07 | 1140 | .05 | 4470 | 8.1 | 8.1 | 33.4 | | | | | | | | NOV
17
JAN 2000 | 0930 | .03 | 4940 | 8.1 | 2.8 | 92.0 | | | | | | | | 17
19 | 1150
1140 | .12
.17 | 5560
5520 | 8.3
8.4 | .0 | 115
150 | | | | | | | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | |--|--|--|--|---|--|--|--|---|--|--|--|--| | | 384545 | 108061601 | WEST UNN | AMED DRAI | N AT HWY | 50, NEAR 1 | DELTA (LAT | 38 45 4 | 5N LONG 1 | 08 06 16W |) | | | APR 1999
27
JUN | | | | | | | | | | | | | | 28
SEP | | | | | | | | | | | | | | 07
NOV | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | | 384448 | 108070301 | CUMMINGS | GULCH AT | MOUTH (L | AT 38 44 4 | 8N LONG | 108 07 03 | W) | | | | APR 1999
27
SEP | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | NOV
17 | | | | | | | | | | | | | | MAR 2000
20 | | | | | | | | | | | | | | : | 384013108 | 091401 RC | UBIDEAU C | REEK UPST | REAM OF U | NCOMPAHGRI | E PROJECT | (LAT 38 | 40 13N LO | NG 108 09 | 14W) | | | APR 1999 | | | | | | | | | | | | | | 30
JUN | 2.9 | 83 | 68 | 86 | | 20.9 | 2.7 | .2 | 5.6 | 113 | .15 | 90.7 | | 21
JUL | 2.1 | | | | 114 | 47.3 | 11.5 | .2 | 6.4 | 199 | .28 | 10.1 | | 20 | 4.0 | | | | 153 | 134 | 37.2 | .4 | 7.6 | 407 | .55 | 3.36 | | | 091505 | 500 | ROUBIDEA | U CREEK A | T MOUTH, | NEAR DELTA | A, CO. (LA | AT 38 44 | 06N LONG | 108 09 40 | W) | | | APR 1999 | | | | | | | | | | | | | | 27
JUN | | | | | | | | | | | | | | 21
JUL | | | | | | | | | | | | | | 0.0 | 2.8 | | | | 189 | 400 |
6.2 | .8 | 18.8 |
771 | 1.05 | 258 | | 20
SEP | 2.8 | | | | | | |
.8
1.0 | | |
1.05
1.21 | | | SEP
07 | | |

 | | 189 | 400 | 6.2 | | 18.8 | 771 | | 258 | | SEP
07
NOV
16 | 3.2 |

 |

 | | 189
201 | 400
477 | 6.2
6.5 | 1.0 | 18.8
22.5 | 771
889 | 1.21 | 258
245 | | SEP
07
NOV | 3.2
2.7 |

 |

 |
 | 189
201 | 400
477 | 6.2
6.5
5.5 | 1.0 | 18.8
22.5
21.2 | 771
889
796 | 1.21 | 258
245 | | SEP
07
NOV
16
MAR 2000 | 3.2
2.7
 | |

 |

 | 189
201
202
 | 400
477
409 | 6.2
6.5
5.5
 | 1.0
1.1
 | 18.8
22.5
21.2
 | 771
889
796
 | 1.21 | 258
245 | | SEP
07
NOV
16
MAR 2000
20 | 3.2
2.7
 | |

 |

 | 189
201
202
 | 400
477
409
 | 6.2
6.5
5.5
 | 1.0
1.1
 | 18.8
22.5
21.2
 | 771
889
796
 | 1.21 | 258
245 | | SEP
07
NOV
16
MAR 2000
20 | 3.2
2.7
 |

5101081118 |

01 ALKALI |

CREEK BE | 189
201
202

LOW HWY 5 | 400
477
409

0, NEAR D | 6.2
6.5
5.5

ELTA (LAT | 1.0
1.1
 | 18.8
22.5
21.2

N LONG 10 | 771
889
796

8 11 18W) | 1.21
1.08
 | 258
245
288
 | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | TIME
3845101 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) EK BELOW | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | | | |-----------------------|--|---|--|--|---|--|---|--
---|---|---|--|--|--| | 0000 | | | | | , | | , | | | , | | | | | | JAN 2000
26
FEB | 1000 | .09 | 4760 | 8.3 | .5 | 105 | | | | | | | | | | 07
MAR | 1055 | .04 | 4810 | 8.2 | .8 | 118 | | | | | | | | | | 20 | 1200 | .14 | 4410 | 8.2 | 1.6 | 85.3 | | | | | | | | | | APR
04 | 0825 | .03 | 4570 | 8.3 | 2.0 | 74.3 | | | | | | | | | | 384 | 52710815 | 2701 GUNNI | SON RIVER | AB ESCAI | ANTE CREE | K. NEAR DI | TLTA (LAT | 38 45 27 | 'N LONG 10 | 8 15 27W) | | | | | | APR 1999 | | | | | | , | (| | | , | | | | | | 28
SEP | 0940 | 2380 | 749 | 8.0 | 11.2 | 3.6 | | | | | | | | | | 08 | 0955 | 3150 | 726 | 8.2 | 14.9 | 4.3 | | | | | | | | | | | 09151500 ESCALANTE CREEK NEAR DELTA, CO. (LAT 38 45 24N LONG 108 15 34W) | | | | | | | | | | | | | | | APR 1999
28 | 0850 | 146 | 171 | 8.0 | 8.4 | <1.0 | | | | | | | | | | JUN
28 | 1105 | 5.0 | 550 | 8.3 | 21.0 | <1.0 | | | | | | | | | | JUL
20 | 1105 | 4.8 | 576 | 8.3 | 21.1 | <1.0 | | | | | | | | | | SEP
08 | 0900 | 5.1 | 507 | 8.4 | 15.4 | <1.0 | 38483610 | 8171501 WE | LLS GULCH | AT FOOLS | S HILL AT | HIGHWAY 50 |) (LAT 38 | 48 36N L | ONG 108 1 | 7 15W) | | | | | | JAN 2000
19 | 1045 | E.01 | 2000 | 8.2 | 4.9 | 2.5 | | | | | | | | | | | 38481310 | 8184301 WE | LLS GULCH | AT DOMIN | NGUEZ ROAI | CROSSING | (LAT 38 | 48 13N LC | NG 108 18 | 43W) | | | | | | JUN 1999 | | | | | | | | | | | | | | | | 17
JUL | 2055 | .60 | 506 | 9.4 | 16.4 | 10.0 | 5 | | | | | | | | | 15
JAN 2000 | 0730 | .04 | 379 | 7.9 | | <1.0 | | | | | | | | | | 17 | 1105 | E.03 | 784 | 8.7 | 5.5 | | 3 | | | | | | | | | 26
MAR | 0915 | <.01 | 702 | 8.7 | 5.0 | | 3 | | | | | | | | | 21 | 0930 | .74 | 611 | 9.0 | 2.0 | 8.2 | | | | | | | | | | | 385130 | 108202301 | DEER CREE | K BLW KIN | IG CR. UPI | PER SITE (1 | LAT 38 51 | 30N LONG | 108 20 2 | 3W) | | | | | | JAN 2000
17
19 | 1020
1000 | .05 | 5760
5300 | 8.2
8.3 | 2.0
1.6 | 9.1
8.3 | | | | | | | | | | 26 | 0830 | .04 | 6230 | 8.3 | 3.3 | 10.6 | | 2600 | 389 | 402 | 793 | | | | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | |-----------------------|---|--|--|--|--|---|--|--|--|--|--| | | 38451010 | 8111801 <i>A</i> | ALKALI CRI | EEK BELOW | HWY 50, N | EAR DELTA | A (LAT 38 | 45 10N LO | NG 108 11 | 18W) | | | JAN 2000
26
FEB | | | | | | | | | | | | | 07
MAR | | | | | | | | | | | 5.42 | | 20
APR | | | | | | | | | | | | | 04 | | | | | | | | | | | 3.99 | | 384 | 1527108152 | 701 GUNNI | ISON RIVE | R AB ESCAL | ANTE CREE | K, NEAR D | DELTA (LAT | 38 45 27 | N LONG 10 | 8 15 27W |) | | APR 1999 | | | | | | | | | | | | | 28
SEP | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | 09151 | 500 | ESCALA | NTE CREEK | NEAR DELT | A, CO. (I | AT 38 45 | 24N LONG | 108 15 34 | W) | | | APR 1999
28
JUN | | | | | | | | | | | | | 28
JUL | | | | | | | | | | | | | 20
SEP | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | 384836108 | 171501 WE | ELLS GULCE | H AT FOOLS | HILL AT | HIGHWAY 5 | 0 (LAT 38 | 8 48 36N L | ONG 108 1 | 7 15W) | | | JAN 2000 | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 384813108 | 184301 WE | ELLS GULCE | H AT DOMIN | GUEZ ROAD | CROSSING | G (LAT 38 | 48 13N LO | NG 108 18 | 43W) | | | JUN 1999
17 | | | | | | | | | | | | | JUL
15 | | | | | | | | | | | | | JAN 2000 | | | | | | | | | | | | | 17
26 | | | | | | | | | | | | | MAR
21 | | | | | | | | | | | 3.45 | | | 3851301 | 08202301 | DEER CREE | EK BLW KIN | G CR. UPP | ER SITE (| LAT 38 51 | 30N LONG | 108 20 2 | 3W) | | | JAN 2000 | | | | | | (| | | 2 | / | | | 17 | | | | | | | | | | | | | 19
26 | 7 | 7.3 | 303 | 3680 | 171 | .7 | 21.9 | 5650 | 7.68 | .61 | | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
WATER
WHOLE
FIELD
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | |----------------|---------|---|--|--|---|--|---|--|--|---|---|---| | | 385104 | 1108213501 | DEER CRE | EEK BELOW | WINDY CRE | EK, NEAR | MOUTH (LA | AT 38 51 0 | 4n Long 1 | .08 21 35W |) | | | FEB 2000
07 | 1015 | <.01 | 9600 | 8.0 | 1.5 | E2.0 | | | | | | | | MAR
21 | 1015 | .35 | 1110 | 8.7 | 6.9 | 4.7 | | | | | | | | | | 38494210 | 8224701 I | OMINGUEZ | CREEK NEA | R MOUTH (| LAT 38 49 | 42N LONG | 108 22 4 | ₹7W) | | | | APR 1999 | 1015 | 11 | 202 | 8.3 | 11 2 | -1 0 | | | | | | | | 29
SEP | 1015 | 11 | 302 | | 11.3 | <1.0 | | | | | | | | 08 | 1130 | 1.7 | 326 | 8.5 | 16.1 | 1.6 | | | | | | | | | 09 | 9152000 | KANN | NAH CREEK | NEAR WHIT | EWATER, C | O. (LAT 3 | 38 57 42N | LONG 108 | 13 47W) | | | | JUN 1999
29 | 1100 | 35 | 118 | 8.1 | 11.5 | <1.0 | | | | | | | | JUL
21 | 1130 | 26 | 135 | 8.2 | 13.7 | <1.0 | | | | | | | | NOV
17 | 1020 | 4.3 | 154 | 8.6 | 6.5 | <.7 | | | | | | | | MAR 2000
21 | 1030 | 4.7 | 192 | 8.2 | 1.0 | <.7 | | | | | | | | JUL
25 | 0915 | 18 | 114 | 7.8 | 14.0 | <.7 | 44 | 38 | 48 | 12.6 | 3.94 | 2.5 | | AUG
21 | 1400 | 22 | 93 | 7.8 | 16.0 | <.7 | K33 | K45 | 42 | 10.9 | 3.52 | 2.1 | | SEP
28 | 0850 | 4.1 | 136 | 8.2 | 8.6 | E.2 | | K13 | 65 | 17.4 | 5.24 | 3.4 | | | 3856001 | L08250301 | KANNAH CF | REEK ABOUT | .1 MI BE | LOW INDIA | N CREEK (| (LAT 38 56 | 00N LONG | 108 25 0 | 3W) | | | APR 1999 | | | | | | | | | | | | | | 29
MAY | 1140 | 1.5 | 2530 | 8.2 | 14.3 | 9.6 | | | | | | | | 27
JUN | 1305 | 51 | 514 | 8.0 | 12.3 | 3.5 | | | | | | | | 29
JUL | 0915 | .41 | 2550 | 7.9 | 18.9 | 5.5 | | | | | | | | 21 | 1010 | 1.8 | 1450 | 8.0 | 19.7 | 5.0 | | | | | | | | SEP
08 | 1025 | 1.1 | 1920 | 8.2 | 15.5 | 11.4 | | | | | | | | NOV
17 | 1045 | 4.7 | 3380 | 8.2 | 5.3 | 29.3 | | | | | | | | MAR 2000
21 | 0945 | 5.7 | 3040 | 8.1 | 3.3 | 31.2 | | | | | | | | AUG
21 | 1240 | .83 | 2320 | 8.2 | 21.8 | 7.9 | K42 | K200 | 990 | 207 | 115 | 193 | | SEP
27 | 1300 | .45 | 2420 | 8.3 | 17.6 | 14.4 | 250 | 380 | 1100 | 227 | 118 | 192 | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | SODIUM AD- SORP- TION RATIO (00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | |-----------------------|-------------------------------------|--|--|--|--
---|--|--|--|--|--| | 3 | 851041082 | 13501 DEE | R CREEK | BELOW WIND | CREEK, | NEAR MOUT | TH (LAT 38 | 3 51 04N L | ONG 108 2 | 1 35W) | | | FEB 2000
07
MAR | | | | | | | | | | | <.050 | | 21 | | | | | | | | | | | 6.70 | | | 384 | 942108224 | 701 DOMII | NGUEZ CREE | NEAR MO | UTH (LAT | 38 49 421 | I LONG 108 | 22 47W) | | | | APR 1999
29
SEP | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | 091520 | 00 | KANNAH (| CREEK NEAR | WHITEWAT | ER, CO. (| LAT 38 57 | 42N LONG | 108 13 4 | 7W) | | | JUN 1999
29 | | | | | | | | | | | | | JUL
21 | | | | | | | | | | | | | NOV
17 | | | | | | | | | | | | | MAR 2000
21 | | | | | | | | | | | | | JUL
25 | . 2 | .9 | 53 | 3.3 | . 4 | <.1 | 16.0 | 72 | .10 | 3.41 | .081 | | AUG
21 | .1 | .9 | 46 | 2.4 | .4 | <.1 | 14.3 | 62 | .08 | 3.61 | | | SEP
28 | . 2 | 1.0 | 64 | 6.3 | .8 | <.1 | 18.9 | 91 | .12 | 1.00 | E.035 | | 38 | 560010825 | 0301 KANN | AH CREEK | ABOUT .1 M | MI BELOW | INDIAN CF | REEK (LAT | 38 56 00N | LONG 108 | 25 03W) | | | APR 1999 | | | | | | | | | | | | | 29
MAY | | | | | | | | | | | | | 27
JUN | | | | | | | | | | | | | 29
JUL | | | | | | | | | | | | | 21
SEP | | | | | | | | | | | | | 08
NOV | | | | | | | | | | | <.050 | | 17
MAR 2000 | | | | | | | | | | | 1.20 | | 21
AUG | | | | | | | | | | | 1.07 | | 21
SEP | 3 | 5.2 | 218 | 1150 | 22.7 | .5 | 21.0 | 1840 | 2.51 | 4.13 | | | 27 | 3 | 4.9 | 230 | 1190 | 20.8 | .6 | 22.7 | 1910 | 2.60 | 2.32 | .077 | # LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | | | | WIII DIC S | 20111111111111 | iii, wiiibic | IDINO OCI | ODDEC 1990 | , IO DELI | Bribbic 2000 | , | | | |-----------------------------|--------------|---|---|----------------|---|--|---|--|--|---|---|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | E. COLI
WATER
WHOLE
TOTAL
UREASE
(COL /
100 ML)
(31633) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | | 3 | 885824108 | 8274401 EAS | ST CREEK | K AT HIGHWA | AY 141 BRI | DGE,NR WH | ITEWATER | (LAT 38 | 58 24N LOI | NG 108 27 | 44W) | | | APR 1999
29
SEP
08 | 1515
1240 | 2.7 | 654
510 | 8.6
8.6 | 14.5
18.2 | 1.3 | | | | | | | | 08 | | | | | | | | | | | | | | | 39 | 90053108181 | 1700 BRA | ANDON DITC | H NEAR WHI | TEWATER, | CO (LAT 3 | 9 00 53N | LONG 108 | 18 17W) | | | | JUN 1999
29
JUL | 0925 | .77 | 210 | 8.1 | 13.2 | <1.0 | | | | | | | | 21 | 1230 | 5.7 | 104 | 7.9 | 14.4 | <1.0 | | | | | | | | NOV
17
MAR 2000 | 0915 | .26 | 176 | 8.4 | 3.9 | <.7 | | | | | | | | 21 | 1120 | .77 | 197 | 8.2 | 1.4 | <.7 | | | | | | | | JUL
25
AUG | 1140 | 3.9 | 89 | 7.8 | 17.4 | <.7 | 46 | 35 | 37 | 9.52 | 3.21 | 2.4 | | 22
SEP | 1240 | 1.2 | 144 | 8.2 | 16.8 | <.7 | K25 | K37 | 66 | 16.8 | 5.80 | 4.0 | | 28 | 1110 | .93 | 152 | 8.7 | 10.6 | 1.5 | 53 | 60 | 76 | 20.0 | 6.27 | 4.5 | | 38 | 58391082 | 264401 WHIT | TEWATER | CREEK 0.4 | MI ABOVE | MOUTH, AT | WHITEWATE | R (LAT 3 | 8 58 39N I | LONG 108 2 | 6 44W) | | | APR 1999 | | | | | | | | | | | | | | 29
JUN | 1310 | 7.3 | 2520 | 8.2 | 11.9 | 30.6 | | | | | | | | 29
JUL | 1030 | 6.9 | 1840 | 8.0 | 17.9 | 16.1 | | | 800 | 194 | 77.9 | 127 | | 21
SEP | 0915 | 8.6 | 1490 | 8.1 | 18.5 | 13.0 | | | 600 | 140 | 62.0 | 107 | | 08 | 1125 | 6.2 | 1910 | 8.2 | 14.2 | 15.4 | | | 800 | 178 | 85.2 | 138 | | NOV
17 | 1125 | 3.6 | 2810 | 8.3 | 4.8 | 24.1 | | | | | | | | MAR 2000
21 | 1205 | 4.7 | 3970 | 8.2 | 4.0 | 48.0 | | | | | | | | JUL
25
AUG | 1245 | 1.2 | 3100 | 8.1 | 20.9 | 41.4 | 460 | 420 | 1100 | 209 | 138 | 360 | | 22 | 1036 | 1.5 | 3340 | 7.9 | 17.7 | 34.7 | 430 | 1200 | 1200 | 235 | 149 | 353 | | SEP
27 | 1215 | 1.3 | 3570 | 8.2 | 13.4 | 44.5 | 470 | K500 | 1400 | 276 | 169 | 380 | | | 38585 | 55108285501 | L BANGS | CANYON AT | MOUTH, NE | AR WHITEW | ATER (LAT | 38 58 5 | 5N LONG 10 | 08 28 55W) | | | | APR 1999
30 | 0905 | 1.4 | 1010 | 8.4 | 9.2 | <1.0 | | | | | | | #### LOWER GUNNISON RIVER BASIN SELENIUM STUDY--Continued | DATE | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT.DIS
FET
LAB
CACO3
(MG/L)
(29801) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | |-----------------------|---|--|--|--|--|---|--|--|--|--|--| | 3858 | 241082744 | 01 EAST C | REEK AT I | HIGHWAY 143 | 1 BRIDGE, | NR WHITEW | ATER (LAT | 38 58 24 | N LONG 10 | 8 27 44W |) | | APR 1999
29
SEP | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | 390053 | 108181700 | BRANDON | DITCH NEAR | R WHITEWA | TER, CO (| LAT 39 00 | 53N LONG | 108 18 1 | 7W) | | | JUN 1999 | | | | | | | | | | | | | 29 | | | | | | | | | | | | | JUL
21 | | | | | | | | | | | | | NOV
17 | | | | | | | | | | | | | MAR 2000
21 | | | | | | | | | | | | | JUL
25 | .2 | .9 | 41 | 2.4 | .6 | <.1 | 14.0 | 58 | .08 | .61 | .068 | | AUG
22 | . 2 | 1.1 | 73 | 3.8 | . 4 | .1 | 24.7 | 100 | .14 | .32 | | | SEP
28 | . 2 | 1.4 | 74 | 4.7 | .7 | .1 | 26.6 | 109 | .15 | .27 | | | 38583 | 910826440 | 1 WHITEWA | TER CREEK | 0.4 MI A | BOVE MOUT | H,AT WHIT | EWATER (L | AT 38 58 | 39N LONG | 108 26 44 | 1W) | | APR 1999 | | | | | | | | | | | | | 29
JUN | | | | | | | | | | | | | 29
JUL | 2 | 4.3 | 171 | 871 | 17.1 | .6 | 19.2 | 1410 | 1.92 | 26.4 | | | 21
SEP | 2 | 3.8 | 160 | 637 | 13.2 | . 4 | 18.5 | 1080 | 1.46 | 25.0 | | | 08
NOV | 2 | 4.6 | 205 | 861 | 16.4 | .5 | 19.9 | 1430 | 1.94 | 24.1 | .570 | | 17
MAR 2000 | | | | | | | | | | | 1.69 | | 21 | | | | | | | | | | | 7.97 | | JUL
25 | 5 | 6.2 | 240 | 1550 | 42.0 | . 4 | 16.5 | 2480 | 3.37 | 8.10 | 2.63 | | AUG
22 | 4 | 6.3 | 243 | 1710 | 42.1 | .6 | 19.3 | 2660 | 3.61 | 10.5 | | | SEP
27 | 4 | 7.1 | 246 | 1870 | 42.3 | .7 | 20.1 | 2920 | 3.98 | 10.3 | 2.55 | | | 385855108 | 285501 BA | NGS CANYO | ON AT MOUTE | H, NEAR W | HITEWATER | (LAT 38 | 58 55N LC | NG 108 28 | 55W) | | | APR 1999
30 | | | | | | | | | | | | #### GROUND-WATER LEVELS 589 #### LA PLATA COUNTY 371127107484801 NB03400915BDD1 SIMON LOCATION.--Lat $37^{\circ}11^{\circ}27^{\circ}$, long $107^{\circ}48^{\circ}48^{\circ}$, in SE $^{1}/_{4}$ NW $^{1}/_{4}$ sec.15, T.34 N., R.9 W., La Plata County, Hydrologic Unit 14080104, 0.5 mi southwest of Pastorius Reservoir, 7.5 mi southeast of Durango, Colo. AQUIFER.--Animas Formation of Paleocene-Upper Cretaceous age. Aquifer code: 125ANMS. WELL CHARACTERISTICS. -- Drilled, observation well, diameter 3 in., depth 300 ft. INSTRUMENTATION. -- Water-level recorder. DATUM.--Elevation of land-surface datum is 6,845 ft above sea level, from topographic map. Measuring point: screw in recorder shelf above well casing, 3.00 ft above land-surface datum. REMARKS. -- Daily record is good. PERIOD OF RECORD. -- June 1995 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level 97.66 ft below land-surface datum, Sept. 25, 1998; lowest, 100.43 ft below land-surface datum, Mar. 22-24, 1998. EXTREMES FOR CURRENT YEAR.--Highest water level 97.71 ft below land-surface datum, Aug. 2, 3; lowest, 100.36 ft below land-surface datum, May 18. | | DEPT | H BELOW | LAND SURFACE | E (WATER | | (FEET), WA | | OCTOBER : | 1999 TO SE | PTEMBER 2 | 000 | | |----------------------------------|--|---
---|---|---|--|--|--|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 98.70
98.70
98.71
98.72
98.71 | 98.91
98.93
98.96
98.98
99.00 | 99.37
99.39
99.40
99.42
99.42 | 99.69
99.69
99.71
99.71 | 99.91
99.91
99.91
99.92
99.93 | 99.99
99.99
100.00
100.00 | 100.13
100.13
100.14
100.14
100.14 | 100.26
100.25
100.26
100.25
100.26 | 100.05
100.02
99.99
99.96
99.93 | 98.56
98.55
98.53
98.51
98.50 | 97.73
97.72
97.72
97.72
97.72 | 98.03
98.04
98.04
98.06
98.06 | | 6
7
8
9
10 | 98.69
98.69
98.70
98.70
98.70 | 99.02
99.04
99.05
99.07
99.09 | 99.43
99.43
99.45
99.46
99.46 | 99.74
99.74
99.75
99.76
99.77 | 99.94
99.94
99.94
99.93
99.93 | 100.01
100.01
100.02
100.02
100.03 | 100.15
100.16
100.16
100.16
100.17 | 100.26
100.25
100.25
100.25
100.25 | 99.89
99.84
99.80
99.75
99.71 | 98.47
98.46
98.45
98.44
98.43 | 97.73
97.75
97.76
97.78
97.80 | 98.07
98.08
98.09
98.11
98.13 | | 11
12
13
14
15 | 98.70
98.70
98.70
98.69
98.68 | 99.10
99.09
99.12
99.14
99.16 | 99.47
99.49
99.49
99.51
99.52 | 99.78
99.79
99.80
99.80
99.81 | 99.93
99.93
99.93
99.93
99.94 | 100.03
100.04
100.04
100.05
100.05 | 100.18
100.18
100.18
100.18
100.19 | 100.24
100.31
100.34
100.34
100.35 | 99.65
99.59
99.52
99.45
99.37 | 98.42
98.41
98.39
98.37
98.34 | 97.82
97.84
97.86
97.88
97.90 | 98.14
98.16
98.17
98.18
98.19 | | 16
17
18
19
20 | 98.68
98.68
98.66
98.66 | 99.17
99.18
99.20
99.22
99.22 | 99.53
99.54
99.55
99.56
99.57 | 99.82
99.83
99.83
99.84
99.84 | 99.94
99.94
99.94
99.95
99.95 | 100.06
100.06
100.07
100.06
100.07 | 100.19
100.19
100.18
100.19
100.23 | 100.34
100.34
100.34
100.33 | 99.31
99.25
99.18
99.11
99.04 | 98.32
98.29
98.26
98.23
98.19 | 97.91
97.92
97.93
97.93 | 98.20
98.21
98.22
98.22
98.23 | | 21
22
23
24
25 | 98.67
98.69
98.71
98.73
98.75 | 99.24
99.26
99.27
99.28
99.30 | 99.58
99.60
99.61
99.62
99.63 | 99.85
99.86
99.87
99.87
99.87 | 99.95
99.96
99.95
99.96
99.97 | 100.09
100.08
100.09
100.10
100.10 | 100.27
100.28
100.28
100.28 | 100.31
100.29
100.27
100.25
100.23 | 98.98
98.92
98.86
98.82
98.77 | 98.15
98.11
98.07
98.02
97.98 | 97.96
97.97
97.98
97.99 | 98.22
98.23
98.25
98.27
98.28 | | 26
27
28
29
30
31 | 98.76
98.79
98.80
98.84
98.86
98.89 | 99.31
99.33
99.35
99.36
99.37 | 99.64
99.65
99.66
99.66
99.68 | 99.87
99.88
99.89
99.89
99.90 | 99.97
99.97
99.98
99.98 | 100.11
100.11
100.11
100.12
100.12 | 100.29
100.28
100.27
100.27
100.27 | 100.21
100.19
100.16
100.14
100.11
100.08 | 98.73
98.69
98.65
98.62
98.59 | 97.93
97.89
97.85
97.81
97.78 | 97.99
98.00
98.01
98.03
98.03
98.03 | 98.29
98.30
98.31
98.32
98.34 | | MEAN
MAX
MIN | 98.72
98.89
98.66 | 99.16
99.37
98.91 | 99.53
99.68
99.37 | 99.81
99.90
99.69 | 99.94
99.98
99.91 | 100.06
100.12
99.99 | 100.20
100.29
100.13 | 100.26
100.35
100.08 | 99.33
100.05
98.59 | 98.24
98.56
97.74 | 97.88
98.03
97.72 | 98.18
98.34
98.03 | 590 GROUND-WATER LEVELS #### LA PLATA COUNTY--Continued 371422107473301 NB03400807BBA1 ROYCE LOCATION.--Lat $37^{\circ}14^{\circ}22^{\circ}$, long $107^{\circ}47^{\circ}33^{\circ}$, in NW $^{1}/_{4}$ NW $^{1}/_{4}$ sec.7, T.34 N., R.8 W., La Plata County, Hydrologic Unit 14080104, 0.5 mi north of the Florida Mesa School, 7.0 mi southeast of Durango, Colo. AQUIFER.--Animas Formation of Paleocene-Upper Cretaceous age. Aquifer code: 125ANMS. WELL CHARACTERISTICS. -- Drilled, unused well, diameter 3 in., depth 110 ft. INSTRUMENTATION. -- Water-level recorder. DATUM.--Elevation of land-surface datum is 7,000 ft above sea level, from topographic map. Measuring point: screw in recorder shelf above well casing, 3.00 ft above land-surface datum. REMARKS. -- Daily record is good. PERIOD OF RECORD. -- June 1995 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level 21.03 ft below land-surface datum, Oct. 26, 1998; lowest, 29.15 ft below land-surface datum, May 12, 2000. EXTREMES FOR CURRENT YEAR.--Highest water level 22.19 ft below land-surface datum, Sep. 30; lowest, 29.15 ft below land-surface datum, May 12. DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 | | | | | (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | DAIL | Y MEAN VA | LUES | | | | | | |----------------------------------|--|---|--|--|--------------------------------------|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 23.99 | 24.26 | 24.76 | 25.73 | 26.83 | 27.79 | 28.37 | 29.04 | 28.47 | 26.01 | 24.19 | 22.60 | | 2 | 24.00 | 24.26 | 24.79 | 25.72 | 26.87 | 27.81 | 28.39 | 29.05 | 28.41 | 25.93 | 24.13 | 22.59 | | 3 | 24.01 | 24.24 | 24.81 | 25.76 | 26.91 | 27.85 | 28.43 | 29.05 | 28.32 | 25.85 | 24.07 | 22.57 | | 4 | 24.02 | 24.23 | 24.86 | 25.82 | 26.95 | 27.87 | 28.48 | 29.06 | 28.23 | 25.79 | 24.02 | 22.55 | | 5 | 24.02 | 24.23 | 24.90 | 25.83 | 26.98 | 27.87 | 28.51 | 29.07 | 28.13 | 25.73 | 23.94 | 22.53 | | 6 | 24.00 | 24.24 | 24.93 | 25.88 | 27.02 | 27.87 | 28.53 | 29.09 | 28.03 | 25.68 | 23.87 | 22.51 | | 7 | 23.99 | 24.25 | 24.95 | 25.91 | 27.08 | 27.86 | 28.57 | 29.11 | 27.93 | 25.62 | 23.81 | 22.50 | | 8 | 24.02 | 24.25 | 24.99 | 25.94 | 27.11 | 27.88 | 28.61 | 29.11 | 27.84 | 25.55 | 23.74 | 22.47 | | 9 | 24.03 | 24.25 | 25.04 | 25.96 | 27.14 | 27.88 | 28.63 | 29.13 | 27.77 | 25.49 | 23.68 | 22.45 | | 10 | 24.05 | 24.27 | 25.06 | 26.00 | 27.16 | 27.91 | 28.65 | 29.12 | 27.71 | 25.44 | 23.62 | 22.45 | | 11 | 24.06 | 24.29 | 25.09 | 26.05 | 27.19 | 27.95 | 28.68 | 29.12 | 27.64 | 25.40 | 23.57 | 22.44 | | 12 | 24.08 | 24.31 | 25.14 | 26.10 | 27.21 | 27.98 | 28.70 | 29.13 | 27.56 | 25.37 | 23.50 | 22.44 | | 13 | 24.10 | 24.32 | 25.16 | 26.16 | 27.22 | 28.01 | 28.72 | 29.13 | 27.48 | 25.34 | 23.42 | 22.43 | | 14 | 24.11 | 24.34 | 25.20 | 26.20 | 27.27 | 28.04 | 28.72 | 29.12 | 27.41 | 25.30 | 23.36 | 22.43 | | 15 | 24.12 | 24.36 | 25.25 | 26.24 | 27.31 | 28.07 | 28.73 | 29.11 | 27.32 | 25.25 | 23.31 | 22.42 | | 16 | 24.18 | 24.37 | 25.28 | 26.28 | 27.36 | 28.10 | 28.77 | 29.10 | 27.24 | 25.21 | 23.25 | 22.41 | | 17 | 24.24 | 24.37 | 25.31 | 26.33 | 27.37 | 28.13 | 28.79 | 29.08 | 27.17 | 25.17 | 23.19 | 22.39 | | 18 | 24.25 | 24.39 | 25.33 | 26.37 | 27.41 | 28.17 | 28.80 | 29.09 | 27.10 | 25.10 | 23.12 | 22.37 | | 19 | 24.28 | 24.43 | 25.36 | 26.40 | 27.46 | 28.19 | 28.83 | 29.08 | 27.01 | 25.06 | 22.98 | 22.35 | | 20 | 24.29 | 24.44 | 25.39 | 26.43 | 27.49 | 28.18 | 28.86 | 29.05 | 26.92 | 25.00 | 22.93 | 22.34 | | 21 | 24.31 | 24.45 | 25.42 | 26.46 | 27.52 | 28.17 | 28.87 | 29.04 | 26.84 | 24.95 | 22.91 | 22.32 | | 22 | 24.32 | 24.46 | 25.47 | 26.50 | 27.54 | 28.18 | 28.88 | 28.99 | 26.76 | 24.86 | 22.88 | 22.30 | | 23 | 24.35 | 24.50 | 25.51 | 26.54 | 27.58 | 28.20 | 28.91 | 28.93 | 26.68 | 24.77 | 22.84 | 22.29 | | 24 | 24.38 | 24.53 | 25.55 | 26.58 | 27.59 | 28.25 | 28.94 | 28.89 | 26.61 | 24.71 | 22.81 | 22.29 | | 25 | 24.41 | 24.56 | 25.58 | 26.61 | 27.63 | 28.28 | 28.98 | 28.82 | 26.54 | 24.65 | 22.77 | 22.28 | | 26
27
28
29
30
31 | 24.43
24.40
24.36
24.32
24.31
24.29 | 24.58
24.62
24.66
24.70
24.74 | 25.61
25.64
25.67
25.68
25.71
25.74 | 26.58
26.60
26.65
26.69
26.74
26.77 | 27.68
27.72
27.72
27.76
 | 28.31
28.34
28.34
28.38
28.41
28.40 | 29.00
28.99
28.99
29.00
29.02 | 28.77
28.73
28.69
28.63
28.57
28.52 | 26.47
26.39
26.31
26.20
26.09 | 24.58
24.51
24.46
24.39
24.33
24.25 | 22.74
22.72
22.69
22.67
22.63
22.61 | 22.27
22.26
22.24
22.22
22.21 | | MEAN | 24.18 | 24.40 | 25.26 | 26.25 | 27.31 | 28.09 | 28.74 | 28.98 | 27.29 | 25.15 | 23.29 | 22.40 | | MAX | 24.43 | 24.74 | 25.74 | 26.77 | 27.76 | 28.41 | 29.02 | 29.13 | 28.47 | 26.01 | 24.19 | 22.60 | | MIN | 23.99 | 24.23 | 24.76 | 25.72 | 26.83 | 27.79 | 28.37 | 28.52 | 26.09 | 24.25 | 22.61 | 22.21 | | Α | Cement Creek at Silverton | |---|--| | Access to USGS
Water Data, | Chemical oxygen demand, definition of | | explanation of | Chlorophyll, definition of | | Accuracy of the records, explanation of | Cimarron River near Cimarron | | Acid neutralizing capacity, definition of | Classification of records, explanation of | | Acre-foot, definition of | Cochetopa Creek below Rock Creek near Parlin | | Adenosine triphosphate, definition of | Color unit, definition of | | Algae, definition of | Colorado River basin | | Blue-green, definition of | Colorado River, | | Fire, definition of | above Glenwood Springs, | | Algal growth potential, definition of | water-quality record | | Alkali Creek below Muddy Creek near Wolcott, | at Windy Gap near Granby, | | water-quality record | surface-water record | | Alkali Slough #2 at Wolford Mtn Reservoir near Kremmling, | water-quality record | | water-quality record | surface-water record | | Alkalinity, definition of | below Glenwood Springs | | Alva B. Adams Tunnel at east portal near Estes Park, water-quality record | below Grand Valley Diversion near Palisade 223 | | Animas River, | near Cameo, | | at Durango | surface-water record | | at Silverton | water-quality record | | below Silverton, | near CO-UT State line,
surface-water record | | surface-water record | water-quality record | | water-quality record | near Dotsero | | Annual 7-day minimum, definition of | near Granby 56 | | Aquifer, water table, definition of | near Kremmling, | | Aroclor | surface-water record | | Arrangement of records, explanation of | water-quality record | | Artificial substrate, definition of | Confined aquifer, definition of | | Ash mass, definition of | Continuous-record station, definition of | | | Control structure, definition of | | В | Control, definition of | | Bacteria, definition of | Cooperation | | Enterococcus, definition of | Corral Gulch near Rangely, | | Escherichia coli, definition of | surface-water record | | Fecal coliform, definition of | water-quality record | | Fecal streptococcal, definition of | above Pole Creek at Tabernash, | | Base flow, definition of | water-quality record | | Beaver Creek at Avon | below Ptarmigan Creek near Tabernash, | | Bed load, definition of | water-quality record | | Bed material, definition of | below Tipperary Creek near Tabernash, water-quality record | | Bed-load discharge, definition of | Cross Creek near Minturn | | Benthic organisms, definition of | Crystal River, | | Bighorn Creek near Minturn | above Avalanche Creek near Redstone, | | Biochemical oxygen demand, definition of | surface-water record | | Biomass pigment ratio, definition of | water-quality record | | Biomass, definition of | below Carbondale, | | Black Gore Creek near Minturn | surface-water record | | Blue River basin, surface-water records in | Cubic foot per second per square mile, definition of | | Blue River, | Cubic foot per second, definition of | | at Blue River | Cubic foot per second-day, definition of | | below Dillon | | | below Green Mountain Reservoir | D | | near Dillon | Daily record station, definition of | | Blue-green algae, definition of | Daily record, definition of | | Bobtail Creek near Jones Pass | Dallas Creek near Ridgway | | Bottom material, definition of | Darling Creek near Leal | | | Data collection and computation, | | C | explanation of | | Oakin Oarakaasa Farras | Data presentation, explanation of | | Cabin Creek near Fraser | Data table of daily mean values, explanation of9 | | Callow Creek at Whitewater,
surface-water record | Datum, definition of | | water-quality record | Definition of terms | | Cells/volume, definition of | Diatom, definition of | | | Dickson Creek near Vail | | Diel, definition of | Elk Creek at upper station near Fraser | 63 | |--|---|---| | Discharge at partial-record stations, | Elk River, | | | miscellaneous sites, crest-stage indicator | above Clark | | | miscellaneous sites, low flow | at Clark | | | Discharge, definition of | near Milner | . 322 | | stage only stations | above Long Gulch near Hayden, | | | Discontinued surface-water-quality stations | surface-water record | . 326 | | Dissolved oxygen, definition of | water-quality record | | | Dissolved, definition of | below Maynard Gulch near Craig, | | | Dissolved-solids concentration, definition of | surface-water record | . 329 | | Diversity index, definition of | water-quality record | . 330 | | Divide Creek basin, | English Creek above mouth near Clark, | | | surface-water records in | water-quality record | | | Dolores River basin, | Enterococcus bacteria, definition of | | | surface-water records in | Escherichia coli (E. coli), definition of | | | at Bedrock, | Explanation of the records | | | surface-water record | Explanation of the records | | | water-quality record | F | | | at Dolores | F | | | below Rico | Fecal coliform bacteria, definition of | | | near Bedrock, | Fecal streptococcal bacteria, definition of | | | surface-water record | Fire algae, definition of | | | water-quality record | | | | near Slick Rock | Flow (see Discharge) | | | Downstream order system, | Foidel Creek. | 1 | | explanation of 6 Drainage area, definition of 17 | at mouth near Oak Creek | . 325 | | Drainage basin, definition of | near Oak Creek | | | Dry Creek Meteorological Station near Ridgway, | Fraser River basin, | | | meteorological record | surface-water records in | 57 | | Dry mass, definition of | Fraser River, | | | Dry weight, definition of | at Hwy 40, at Granby, | | | | water-quality record | 80 | | E | at Tabernash, | 6 | | Eagle River Watershed Synoptic Sampling, | water-quality record | 0. | | water-quality record, | surface-water record | 57 | | miscellaneous station analyses | water-quality record | | | periphyton analysis | at Winter Park | | | macroinvertebrate analysis513 | below Buck Creek at Winter Park, | | | Eagle River, | water-quality record | 59 | | at Avon, | below Crooked Creek at Tabernash, | | | water-quality record | surface-water record | | | at Gypsum, | water-quality record | /8 | | water-quality record | below Vasquez Creek at Winter Park, water-quality record | 6 | | surface-water record | Freeman Creek near Minturn | | | water-quality record | French Gulch at Breckenridge | | | below Gypsum | Fryingpan River near Ruedi | | | below Milk Creek near Wolcott, CO, | | | | water-quality record | G | | | below Wastewater Treatment Plant at Avon 170 | | 1.5 | | near Minturn | Gage datum, definition of Gage height, definition of | | | East Fork Eagle River near Red Cliff, | Gaging station, definition of | | | water-quality record | Gas chromatography/flame ionization detector, definition of | | | at West Fork Campground near Pagosa Springs 382 | Gore Creek, | | | East Meadow Creek near Minturn | above Red Sanstone Creek at Vail | . 160 | | East River, | at mouth near Minturn, | | | above Crested Butte | at mouth near willitum, | 1.00 | | | surface-water record | | | water-quality record | surface-water recordwater-quality record | . 163 | | above Slate River, | surface-water record water-quality record at upper station near Minturn | . 163 | | above Slate River, water-quality record | surface-water record water-quality record at upper station near Minturn Governor Basin Meteorological Station near Telluride, | . 163 | | above Slate River, water-quality record | surface-water record water-quality record at upper station near Minturn Governor Basin Meteorological Station near Telluride, meteorological record | . 163 | | above Slate River, water-quality record | surface-water record water-quality record at upper station near Minturn Governor Basin Meteorological Station near Telluride, meteorological record Granby Pump Canal near Grand Lake, | . 163
. 154 | | above Slate River, water-quality record | surface-water record water-quality record at upper station near Minturn Governor Basin Meteorological Station near Telluride, meteorological record Granby Pump Canal near Grand Lake, water-quality record | . 163
. 154 | | above Slate River, water-quality record | surface-water record water-quality record at upper station near Minturn Governor Basin Meteorological Station near Telluride, meteorological record Granby Pump Canal near Grand Lake, water-quality record Grand Lake Outlet basin, | . 163
. 154
. 421 | | above Slate River, water-quality record | surface-water record water-quality record at upper station near Minturn Governor Basin Meteorological Station near Telluride, meteorological record Granby Pump Canal near Grand Lake, water-quality record Grand Lake Outlet basin, water-quality records in | . 163
. 154
. 421
50 | | above Slate River, water-quality record | surface-water record water-quality record at upper station near Minturn Governor Basin Meteorological Station near Telluride, meteorological record Granby Pump Canal near Grand Lake, water-quality record Grand Lake Outlet basin, | . 163
. 154
. 421
50
46
20 | | Ground-water level, definition of | Lemon Reservoir near Durango, | |--|---| | Ground-water records, by county, | contents of | | La Plata589 | Light-attenuation coefficient, definition of | | Gunnison River basin, | Lipid, definition of | | surface-water records in | Little Snake River near Lily, | | Gunnison River, | surface-water record | | at County Road 32 below Gunnison, | water-quality record | | water-quality record | Los Pinos River, | | at Delta 272 | at La Boca | | below Gunnison Tunnel, | near Ignacio 388 | | surface-water record | Lost Canyon Creek near Dolores
 | water-quality record | Lost Dog Creek above mouth near Clark, | | near Grand Junction, | water-quality record 557 | | surface-water record | Low flow, 7-day 10-year, definition of | | water-quality record | Lower Gunnison River Basin Selenium Study | | near Gunnison, | water-quality record 563 | | surface-water record | | | water-quality record | M | | | | | Н | Macrophytes, definition of | | | Mancos River near Towaoc | | Hardness, definition of | Map of Colorado, showing locations of | | Homestake Creek, | crest-stage partial-record stations | | at Gold Park | Map of Colorado, showing locations of lakes, | | near Red Cliff | surface-water and surface-water-quality stations | | Hunter Creek near Aspen | McCullough-Spruce-Crystal diversion near Hoosier Pass 124 | | Hurd Creek below Trail Creek near Tabernash, | McElmo Creek, | | water-quality record | above Trail Canyon near Cortez, | | Hydrologic Benchmark Network, | surface-water-record | | explanation of5 | water-quality record | | Hydrologic benchmark station, definition of | near CO-UT State line, | | Hydrologic unit, definition of | surface-water record | | | water-quality record | | | Mean discharge, definition of | | Identifying estimated daily discharge, | Measuring point, definition of | | explanation of | Membrane filter, definition of | | Instantaneous discharge, definition of | Metamorphic stage, definition of | | Introduction | Methylene blue active substances, definition of | | Ironton Meteorological Station near Ouray, | Micrograms per gram, definition of | | meteorological record | Micrograms per kilogram, definition of | | meteorological record | Micrograms per liter, definition of | | | Microsiemens per centimeter, definition of | | K | Middle Creek, | | Keystone Gulch near Dillon | near Minturn | | ., | near Oak Creek | | • | Milligrams per liter, definition of | | L | Mineral Creek at Silverton | | La Plata River, | Minnesota Creek near Paonia | | at CO-NM State line | Miscellaneous site, definition of | | at Hesperus | Missouri Creek near Gold Park | | Laboratory measurements, | Monte Cristo diversion near Hoosier Pass | | explanation of | Most probable number (MPN), definition of | | Laboratory measurements, explanation of | Mud Creek at Highway 32 near Cortez, | | Lake Creek near Edwards | surface-water record 403
water-quality record 404 | | Lake Fork at Gateview | | | Lake Granby (West) near Granby, | Muddy Creek, | | water-quality record54 | above Antelope Creek near Kremmling, | | Lake Granby near Granby, | surface-water record | | contents of | water-quality record | | water-quality record52 | . | | Lakes and reservoirs, | surface-water record | | Lake Granby51 | water-quality record | | Lemon Reservoir | Multiple-plate samplers, definition of | | Paonia Reservoir | | | Ridgway Reservoir | N | | Ruedi Reservoir | Nanograms per liter, definition of | | Silver Jack Reservoir | National Atmospheric Deposition Program/, | | Taylor Park Reservoir | National Trends Network, (NADP/NTN), | | Vallecito Reservoir | explanation of | | Wolford Mountain Reservoir | National Geodetic Vertical Datum of 1929, definition of | | Land-surface datum, definition of | National Stream-Quality Accounting Network, (NASQAN), | | Latitude-Longitude System, explanation of 6 | explanation of | | National Water-Quality Assessment Program, | Plateau Creek basin, | |---|--| | (NAWQA), explanation of5 | surface-water records in | | Natural substrate, definition of | Plateau Creek near Cameo, | | Nekton, definition of | surface-water record | | Nephelometric turbidity unit, definition of | water-quality record | | NGVD of 1929, definition of | Pleasant Valley Meteorological Station near Ridgway, | | North Fork Elk River, | meteorological record | | above Trail Creek near Clark, | Pole Creek, | | • | , | | water-quality record | at mouth near Tabernash, | | above mouth near Clark, | water-quality record | | water-quality record | at upper station near Tabernash, | | above Agnes Creek, near Clark, | water-quality record | | water-quality record553 | Polychlorinated biphenyls (PCB's), definition of | | North Fork Gunnison River, | Polychlorinated naphthalenes, definition of | | below Leroux Creek near Hotchkiss | Portland Meteorological Station near Ouray, | | below Paonia | meteorological record | | near Somerset | Primary productivity, definition of | | North Fork White River at Buford, | Carbon method, definition of | | surface-water record | Oxygen method, definition of | | water-quality record | Publications on techniques of water-resources | | water-quality record | | | | investigations | | 0 | | | | R | | Oh-Be-Joyful Creek above Slate River, | | | water-quality record | Radioisotopes, definition of | | Ohio Creek above mouth near Gunnison, | Ranch Creek, | | surface-water record | below Meadow Creek near Tabernash, | | water-quality record | surface-water record70 | | Onsite measurements and sample collection, | water-quality record | | explanation of | near Fraser, | | Open or screened interval, definition of | surface-water record | | Organic carbon, definition of | water-quality record | | Organic mass, definition of | Records of Ground-Water Quality, | | Organism count, definition of | definition of | | Area, definition of | explanation of | | · | | | Total, definition | Records of Stage and Water Discharge, | | Volume, definition of | definition of | | Organism, definition of | explanation of | | Organochlorine compounds, definition of | Records of Surface-Water Quality, | | Other records available, explanation of | definition of | | Ouray Meteorological Station at Ouray, | explanation of 1 | | meteorological record | Recoverable, bottom material, definition of | | | Recurrence interval, definition of | | n | Red Sandstone Creek near Minturn 16 | | Р | Reed Wash basin, | | Paonia Reservoir near Bardine, | surface-water records in | | contents of | Reed Wash near Mack surface-water record | | Parameter Code, definition of | Remark codes, explanation of | | Partial-record station, definition of | Replicate samples, definition of | | Particle size, definition of | | | Particle-size classification, definition of | Ridgway Meteorological Station at Ridgway, | | | meteorological record | | Percent composition, definition of | Ridgway Reservoir Meteorological Station near Ridgway, | | Periodic station, definition of | meteorological record445 | | Periphyton, definition of | Ridgway Reservoir near Ridgway, | | Pesticides, definition of | contents of | | pH, definition of | River mile, definition of | | Phytoplankton, definition of | River mileage, definition of | | Piceance Creek, | Roaring Fork River basin, | | at White River, | surface-water records in | | surface-water record | Roaring Fork River, | | water-quality record | above Difficult Creek near Aspen, | | below Ryan Gulch near Rio Blanco, | | | surface-water record | surface-water record | | | water-quality record | | water-quality record | at Glenwood Springs, | | Picocurie, definition of | surface-water record | | Piedra River near Arboles | water-quality record | | Piney River basin, | near Aspen | | surface-water records in | near Basalt, | | Piney River, | water-quality record | | below Piney Lake near Minturn | near Emma, | | near State Bridge141 | surface-water record | | Pitkin Creek near Minturn | water-quality record | | Plankton definition of | mator quality 1000rd | | Ruedi Reservoir near Basalt, | System of numbering wells, springs, and | | |---|---|-------| | contents of | miscellaneous sites | 6 | | Runoff, definition of | | | | | Т | | | S | | 21 | | San Juan River, | Taxonomy, definition of | 22 | | at Pagosa Springs | contents of | 226 | | near Carracas | Taylor River, | . 22. | | San Miguel River, | at Almont, | | | at Brooks Bridge near Nucla | surface-water record | 227 | | at Uravan | water-quality record | | | near Placerville | at Taylor Park | | | Sea level, definition of | below Taylor Park Reservoir | | | Sediment, | Ten Mile Creek, | | | explanation of | above Pond Above Eight Mile Creek near Granby, | | | Sediment, definition of | water-quality record | 81 | | Selected references | near Granby, | | | Shadow Mountain Lake near Grand Lake, | water-quality record | 82 | | water-quality record | Tenmile Creek below North Tenmile Creek at Frisco | . 130 | | Silver Jack Reservoir near Cimarron, | Time-weighted average, definition of | 22 | | contents of | Tomichi Creek, | | | Slate River above East River, | at Gunnison, | | | near Crested Butte | surface-water record | . 255 | | water-quality record | water-quality record | | | Slate River, | at Sargents | | | above Coal Creek, | Tons per acre-foot, definition of | | | water-quality record | Tons per day, definition of | | | above Oh-Be-Joyful Creek, | Total coliform bacteria, definition of | | | water-quality record | Total discharge, definition of | | | near Crested Butte, | Total length, definition of | | | surface-water record | Total load, definition of | | | water-quality record | Total organism count, definition of | | | Slater Fork near Slater | Total recoverable, definition of | | | Snake River near Montezuma | Total sediment discharge, definition of | | | Sodium adsorption ratio, definition of | Total sediment load, definition of | | | Solute, definition of | Total, bottom material, definition of | | | South Fork White River at Buford, | Total, definition of | 22 | | water-quality record | Transmountain diversions, no longer published | 414 | | Special networks and programs | Turbidity, definition of | | | Specific conductance, definition of | Turkey Creek near Red Cliff | | | Spring Creek at La Boca | Turkey Oreak flear flea Oilli | . 140 | | St. Louis Creek near Fraser | | | | Stable isotope ratio, definition of
 U | | | Stage (see gage height) | Uncompahgre River, | | | Stage-discharge relation, definition of | at Colona | . 277 | | Station Identification Numbers, | at Delta, | | | explanation of5 | surface-water record | . 278 | | Station manuscript, explanation of | water-quality record | | | Statistics of monthly mean data, | below Ridgway Reservoir | | | explanation of9 | near Ridgway | . 273 | | Straight Creek below Laskey Gulch near Dillon | | | | Streamflow, definition of | V | | | Substrate, artificial, definition of | Vallacita Crack poor Poufield | 20, | | Substrate, definition of | Vallecite Recognition Postfield | . 380 | | Substrate, natural, definition of | Vallecito Reservoir near Bayfield contents of | 201 | | Summary statistics, explanation of9 | contents of | . 30 | | Supplemental water-quality data | Vasquez Creek at Winter Park | 6 | | Surface area, definition of | Volatile organic compounds, definition of | | | Surface Creek, | Volatile organic compounds, definition or | 2. | | at Cedaredge | | | | near Cedaredge | W | | | Surficial bed material, definition of | Water level, definition of | 23 | | Suspended sediment, definition of | Water table, definition of | 23 | | Suspended sediment, mean concentration, definition of | Water temperature, explanation of | | | Suspended, definition of | Water year, definition of | 23 | | Recoverable, definition of | Water-quality data reporting convention, | | | Total, definition of | explanation of | | | Suspended-sediment discharge, definition of | Water-table aquifer, definition of | | | Suspended-sediment load, definition of | WDR, definition of | | | Synontic studies definition of | Wearyman Creek near Red Cliff | . 147 | | Weighted average, definition of | Wolford Mountain Reservoir, | |--|--| | Well, definition of | at Inflow near Kremmling, | | West Divide Creek near Raven | water-quality record | | West Fork Dallas Creek Meteorological Station near Ridgway, | at Midlake near Kremmling, | | meteorological record | water-quality record | | West Paradox Creek above Bedrock, | near Kremmling, | | water-quality record | contents of | | Wet mass, definition of | water-quality record | | Wet weight, definition of | WSP, definition of | | White River, | , | | above Coal Creek near Meeker, | V | | surface-water record | Υ | | water-quality record | Yampa River, | | above Dry Creek near Meeker, | above Little Snake River near Maybell, | | water-quality record | surface-water record | | below Boise Creek near Rangely, | water-quality record | | surface-water record | above Stagecoach Reservoir 31 | | water-quality record | at Deerlodge Park, | | below Meeker. | surface-water record | | surface-water record | water-quality record | | water-quality record | at Steamboat Springs, | | below Taylor Draw Reservoir above Rangely, | surface-water record | | water-quality record | water-quality record | | near Meeker | below Craig, | | Whitehouse Creek Meteorological Station near Ouray, | surface-water record | | meteorological record | water-quality record | | Williams Fork (tributary to Colorado River), | below Stagecoach Reservoir | | above Darling Creek near Leal | near Maybell, | | below Steelman Creek | surface-water record | | below Williams Fork Reservoir | water-quality record | | near Leal91 | Yellow Creek near White River, | | near Parshall | surface-water record | | Williams Fork basin, | water-quality record | | surface-water records in | | | Williams Fork River (tributary to Yampa River), | Z | | at mouth near Hamilton | - | | Wilson Gulch near Durango | Zooplankton, definition of | | The same of sa | | # **CONVERSION FACTORS AND VERTICAL DATUM** | Multiply | Ву | To obtain | | | |--|------------------------|----------------------------|--|--| | | Length | | | | | inch (in.) | 2.54×10^{1} | millimeter | | | | | 2.54×10^{-2} | meter | | | | foot (ft) | 3.048×10^{-1} | meter | | | | mile (mi) | 1.609×10^0 | kilometer | | | | | Area | | | | | acre | 4.047×10^3 | square meter | | | | | 4.047×10^{-1} | square hectometer | | | | | 4.047×10^{-3} | square kilometer | | | | square mile (mi ²) | 2.590×10^{0} | square kilometer | | | | | Volume | | | | | gallon (gal) | 3.785×10^{0} | liter | | | | 8 (8) | 3.785×10^{0} | cubic decimeter | | | | | 3.785×10^{-3} | cubic meter | | | | million gallons (Mgal) | 3.785×10^3 | cubic meter | | | | | 3.785×10^{-3} | cubic hectometer | | | | cubic foot (ft ³) | 2.832×10^{1} | cubic decimeter | | | | 1 | 2.832x10 ⁻² | cubic meter | | | | cubic-foot-per-second day [(ft ³ /s) d] | 2.447×10^3 | cubic meter | | | | educio rest per second dal [(it /s) d] | 2.447×10^{-3} | cubic hectometer | | | | acre-foot (acre-ft) | 1.233×10^3 | cubic meter | | | | 1000 (u010 10) | 1.233×10^{-3} | cubic hectometer | | | | | 1.233×10^{-6} | cubic kilometer | | | | | Flow | | | | | cubic foot per second (ft ³ /s) | 2.832×10^{1} | liter per second | | | | cubic root per second (it 75) | 2.832×10^{1} | cubic decimeter per second | | | | | 2.832×10^{-2} | cubic meter per second | | | | gallon per minute (gal/min) | 6.309×10^{-2} | liter per second | | | | guilon per minute (gui/min) | 6.309×10^{-2} | cubic decimeter per second | | | | | 6.309×10^{-5} | cubic meter per second | | | | million gallons per day (Mgal/d) | 4.381×10^{1} | cubic decimeter per second | | | | minion ganons per day (Nigard) | 4.381×10^{-2} | cubic meter per second | | | | | Mass | | | | | ton (short) | 9.072x10 ⁻¹ | megagram or metric ton | | | Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.